Mass spectrometry imaging based on laser desorption ionization from inorganic and nanophotonic platforms

Mass spectrometry imaging (MSI) has become an important analytical tool for the label‐free chemical imaging of diverse molecules in biological specimens. This minireview surveys some emerging methods in the context of factors that can lead to inaccurate information in MSI, chemical and spatial aberr...

Full description

Saved in:
Bibliographic Details
Published inView (Beijing, China) Vol. 1; no. 4
Main Authors Samarah, Laith Z., Vertes, Akos
Format Journal Article
LanguageEnglish
Published 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mass spectrometry imaging (MSI) has become an important analytical tool for the label‐free chemical imaging of diverse molecules in biological specimens. This minireview surveys some emerging methods in the context of factors that can lead to inaccurate information in MSI, chemical and spatial aberrations, along with their common sources. Matrix‐assisted laser desorption ionization, based on organic matrices, has become the most widely used MSI technique for biomolecules. However, due to inherent limitations associated with the use of organic matrices, for example, heterogeneous matrix‐analyte cocrystallization, and spectral interferences due to the matrix, laser desorption ionization (LDI) from inorganic and nanophotonic platforms has emerged as an alternative MSI modality with complementary advantages. In this review, inorganic and nanophotonic platforms for LDI‐MSI, their applications in imaging, notable merits, and limitations are described. Mass spectrometry imaging (MSI) by laser desorption ionization (LDI) based on inorganic and nanophotonic platforms is an emerging field that offers complementary advantages to conventional matrix‐assisted laser desorption ionization (MALDI). This mini‐review looks at the limitations of various MSI platforms in terms of the related spatial and chemical aberrations. Recent developments in inorganic substrates for LDI and nanophotonic ionization, for example, nanopost array platforms, are reported with emphasis on MSI.
AbstractList Mass spectrometry imaging (MSI) has become an important analytical tool for the label‐free chemical imaging of diverse molecules in biological specimens. This minireview surveys some emerging methods in the context of factors that can lead to inaccurate information in MSI, chemical and spatial aberrations, along with their common sources. Matrix‐assisted laser desorption ionization, based on organic matrices, has become the most widely used MSI technique for biomolecules. However, due to inherent limitations associated with the use of organic matrices, for example, heterogeneous matrix‐analyte cocrystallization, and spectral interferences due to the matrix, laser desorption ionization (LDI) from inorganic and nanophotonic platforms has emerged as an alternative MSI modality with complementary advantages. In this review, inorganic and nanophotonic platforms for LDI‐MSI, their applications in imaging, notable merits, and limitations are described. Mass spectrometry imaging (MSI) by laser desorption ionization (LDI) based on inorganic and nanophotonic platforms is an emerging field that offers complementary advantages to conventional matrix‐assisted laser desorption ionization (MALDI). This mini‐review looks at the limitations of various MSI platforms in terms of the related spatial and chemical aberrations. Recent developments in inorganic substrates for LDI and nanophotonic ionization, for example, nanopost array platforms, are reported with emphasis on MSI.
Mass spectrometry imaging (MSI) has become an important analytical tool for the label‐free chemical imaging of diverse molecules in biological specimens. This minireview surveys some emerging methods in the context of factors that can lead to inaccurate information in MSI, chemical and spatial aberrations, along with their common sources. Matrix‐assisted laser desorption ionization, based on organic matrices, has become the most widely used MSI technique for biomolecules. However, due to inherent limitations associated with the use of organic matrices, for example, heterogeneous matrix‐analyte cocrystallization, and spectral interferences due to the matrix, laser desorption ionization (LDI) from inorganic and nanophotonic platforms has emerged as an alternative MSI modality with complementary advantages. In this review, inorganic and nanophotonic platforms for LDI‐MSI, their applications in imaging, notable merits, and limitations are described.
Author Vertes, Akos
Samarah, Laith Z.
Author_xml – sequence: 1
  givenname: Laith Z.
  orcidid: 0000-0003-1358-2727
  surname: Samarah
  fullname: Samarah, Laith Z.
  organization: George Washington University
– sequence: 2
  givenname: Akos
  orcidid: 0000-0001-5186-5352
  surname: Vertes
  fullname: Vertes, Akos
  email: vertes@gwu.edu
  organization: George Washington University
BookMark eNp9UMlOwzAQtVCRKKU3PsAfQIqXxnaOqGKpVMSF7RY5jt0apXZkW0Lh63EXLkhwmJk3o_dmNO8cjJx3GoBLjGYYIXL9unybEUQQQoyegDFhQhQ5vY-OmFZCnIFpjB-ZQkqMeVWOweZRxghjr1UKfqtTGKDdyrV1a9jIqFvoHewyCLDV0Yc-2TzIYb_kHpqsgtb5sJbOKihdC510vt_45HeDvpPJ-LCNF-DUyC7q6bFOwMvd7fPioVg93S8XN6tCUTwnheGskgobjankc40aqahiWGDKcNPSqmyQnCveak5wyXBbUVHyyqiWa8pEZkzA1WGvCj7GoE3dh_xRGGqM6p1RdTaq_jEq08kvurJp_1oK0nZ_idBB9Gk7Pfx7YNeQktBvA1d-jw
CitedBy_id crossref_primary_10_1002_adma_202007978
crossref_primary_10_1016_j_cclet_2022_04_019
crossref_primary_10_1016_j_talanta_2022_123475
crossref_primary_10_1002_smtd_202100206
crossref_primary_10_1021_acsnano_1c09864
crossref_primary_10_1002_ange_202015251
crossref_primary_10_1016_j_bios_2020_112919
crossref_primary_10_2147_IJN_S307648
crossref_primary_10_1002_advs_202203786
crossref_primary_10_1016_j_bios_2021_113607
crossref_primary_10_1021_acsami_1c19157
crossref_primary_10_1016_j_cclet_2022_107992
crossref_primary_10_1016_j_trac_2022_116565
crossref_primary_10_1039_D1AN01163D
crossref_primary_10_1021_acs_analchem_2c01784
crossref_primary_10_1002_smtd_202001001
crossref_primary_10_1002_smll_202200090
crossref_primary_10_1021_acsami_0c20944
crossref_primary_10_1021_acsnano_3c10717
crossref_primary_10_1002_adma_202107986
crossref_primary_10_1002_advs_202302023
crossref_primary_10_1002_anie_202100734
crossref_primary_10_1039_D3TB01076G
crossref_primary_10_1016_j_ijms_2022_116872
crossref_primary_10_1021_acs_jpcc_1c02433
crossref_primary_10_1002_smll_202206349
crossref_primary_10_1039_D2MO00060A
crossref_primary_10_1021_acsnano_2c02616
crossref_primary_10_1021_acsnano_0c07581
crossref_primary_10_1021_acs_analchem_2c03743
crossref_primary_10_1021_jasms_1c00149
crossref_primary_10_1002_adsr_202200052
crossref_primary_10_1093_rb_rbac040
crossref_primary_10_1021_acs_analchem_2c01890
crossref_primary_10_1002_smll_202207190
crossref_primary_10_1021_acsomega_1c06479
crossref_primary_10_1002_asia_202101310
crossref_primary_10_1021_acsmeasuresciau_2c00019
crossref_primary_10_1002_smtd_202301317
crossref_primary_10_1007_s10853_022_06913_6
crossref_primary_10_1002_adfm_202206670
crossref_primary_10_1002_advs_202101333
crossref_primary_10_1007_s12010_022_03892_x
crossref_primary_10_1016_j_talanta_2024_126329
crossref_primary_10_1007_s12035_023_03793_y
crossref_primary_10_1007_s40242_022_2117_7
crossref_primary_10_1007_s00216_025_05741_2
crossref_primary_10_1002_adfm_202106743
crossref_primary_10_1016_j_nantod_2025_102702
crossref_primary_10_1039_D1TB00289A
crossref_primary_10_1002_aisy_202100191
crossref_primary_10_1002_anie_202015251
crossref_primary_10_1002_admi_202101157
crossref_primary_10_1002_smtd_202301046
crossref_primary_10_1002_smtd_202301684
crossref_primary_10_1002_smll_202106412
crossref_primary_10_1016_j_ijms_2021_116539
crossref_primary_10_1021_acs_analchem_2c01563
crossref_primary_10_1016_j_ijms_2022_116979
crossref_primary_10_1002_cplu_202200221
crossref_primary_10_1039_D3NR05895F
crossref_primary_10_1016_j_plipres_2021_101114
crossref_primary_10_1002_smtd_202200264
crossref_primary_10_1016_j_aca_2024_342528
crossref_primary_10_1016_j_teac_2024_e00253
crossref_primary_10_1002_smtd_202100812
crossref_primary_10_1039_D1AN00696G
crossref_primary_10_1016_j_aca_2024_343124
crossref_primary_10_1016_j_isci_2023_106622
crossref_primary_10_1002_asia_202100044
crossref_primary_10_1016_j_talanta_2021_122535
crossref_primary_10_1016_j_materresbull_2021_111558
crossref_primary_10_1016_j_bios_2023_115903
crossref_primary_10_1016_j_microc_2022_108294
crossref_primary_10_1016_j_trac_2022_116795
crossref_primary_10_1002_advs_202305701
crossref_primary_10_1002_anbr_202200148
crossref_primary_10_1002_rcm_9269
crossref_primary_10_1002_smll_202003902
crossref_primary_10_3390_molecules27030985
crossref_primary_10_1002_smtd_202001212
crossref_primary_10_1002_anse_202100032
crossref_primary_10_1002_mas_21670
crossref_primary_10_1002_slct_202200734
crossref_primary_10_1021_acsnano_2c05355
crossref_primary_10_1002_ange_202100734
crossref_primary_10_1002_smtd_202201486
Cites_doi 10.1021/ac000746f
10.1016/j.aca.2016.03.023
10.1002/(SICI)1096-9888(200003)35:3<417::AID-JMS952>3.0.CO;2-#
10.1039/c4an00504j
10.1002/jms.1632
10.1039/C7CC09649F
10.1021/ac800081z
10.1007/s13361-015-1243-6
10.1016/j.aca.2013.03.007
10.1021/ac9026466
10.1246/cl.2009.142
10.1021/acsami.8b03804
10.1021/cr3004295
10.1021/acscentsci.7b00546
10.1007/s10967-012-2176-1
10.1007/s13361-018-2081-0
10.1021/ac00119a021
10.1039/C6CC07371A
10.1021/ac402240q
10.1038/nnano.2014.282
10.1038/nchembio.2077
10.1155/2018/5439729
10.1021/ac1020485
10.1021/ac802615r
10.1016/j.microc.2019.104190
10.1016/j.jasms.2010.04.005
10.1039/C6RA20469D
10.1021/ac048460o
10.1021/acs.analchem.7b04565
10.1021/acs.analchem.0c00392
10.1038/srep01415
10.1021/ac4031658
10.1039/C7AY00112F
10.1126/science.1104404
10.1016/j.aca.2013.11.050
10.1007/s00216-013-7525-6
10.1021/acs.analchem.6b01859
10.1002/cne.24566
10.1038/ncomms6998
10.1021/ac0345695
10.1039/C8TB01587B
10.1039/C6AY02753A
10.1016/j.jneumeth.2016.02.004
10.1021/ac9026077
10.1021/ac049657j
10.1021/jp3034402
10.1039/C6AN00220J
10.1103/PhysRevLett.96.113002
10.1038/20400
10.1021/ac201602s
10.1186/1752-0509-2-74
10.1021/acs.analchem.8b02362
10.1126/science.1111886
10.1021/ac071181r
10.1039/c3cc40934a
10.1021/acsami.6b14362
10.1021/acs.analchem.7b04733
10.1002/adfm.201801730
10.1016/j.ijms.2009.12.006
10.1007/s40820-018-0204-6
10.1039/c2cp00038e
10.1021/acsami.9b16260
10.1039/c2jm34745h
10.1021/acsnano.8b02376
10.1038/s41467-017-00220-4
10.1007/s13361-016-1560-4
10.1039/C6RA00877A
10.1007/s13361-017-1665-4
10.1002/chem.201800994
10.1016/j.jasms.2005.03.009
10.1038/ki.2015.3
10.1371/journal.pone.0090901
10.1016/j.jasms.2004.11.017
10.1039/C7SC04089J
10.1002/dta.1691
10.1016/0168-1176(94)04119-R
10.1021/ac062216a
10.1038/86573
10.1016/j.jasms.2010.08.002
10.1039/c2cc17696c
10.1021/ac502422a
10.1021/ac503097v
10.1039/C5NR06635B
10.1021/acs.analchem.9b02231
10.1016/j.aca.2018.06.035
10.1002/jms.4443
10.1016/j.snb.2019.02.011
10.1038/nature06195
10.1016/j.aca.2015.07.029
10.1007/s00216-012-6077-5
10.1021/ac0706170
10.1021/am4024143
10.1002/jms.922
10.1021/acs.analchem.6b04167
10.1002/rcm.451
10.1039/C8NA00319J
10.1002/rcm.5281
10.1021/ac101022m
10.1021/jp9110103
10.1002/jms.1385
10.1039/C5CC02495A
10.1146/annurev-biochem-061516-044952
10.1002/smll.201803051
10.1007/s13361-016-1454-5
10.1038/s41598-019-53938-0
10.1371/journal.pone.0072532
10.1002/anie.201511691
10.1016/j.aca.2011.04.008
10.1016/j.ijms.2012.10.009
10.1039/C0CS00050G
10.1021/acsami.6b06225
10.1021/ac101565f
10.1021/ac062251h
10.1016/j.jprot.2012.04.012
10.1002/rcm.1290020802
10.1021/ac0611465
10.1146/annurev-matsci-070616-124259
10.1021/jp906834z
10.1039/C7SC00937B
10.1021/ac301238k
10.1021/ac053355f
10.1021/ac5025864
10.1002/mas.20186
10.1111/j.1365-313X.2008.03507.x
10.1021/ac071152g
10.1021/acs.analchem.6b02733
10.1039/c3ra22977g
10.1021/ac970888i
10.1016/j.aca.2019.08.048
10.1021/ac902990p
10.1002/mas.20124
10.1021/ac802576q
10.1002/anie.202001135
10.1021/ac501943n
10.1021/acs.analchem.6b02732
10.1063/1.1381531
10.1021/ac7026029
10.1002/rcm.1290081105
10.1021/ac3036469
10.1002/smtd.201900469
10.1039/C4CC08762C
10.1021/acs.analchem.9b01217
10.1007/s12274-017-1591-6
10.1002/jms.4370
10.1002/anie.200805114
10.1007/s00795-008-0427-6
10.1021/ac001440b
10.1016/j.cplett.2013.12.027
10.1021/acsami.8b16694
ContentType Journal Article
Copyright 2020 The Authors. published by John Wiley & Sons Australia, Ltd and Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM)
Copyright_xml – notice: 2020 The Authors. published by John Wiley & Sons Australia, Ltd and Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM)
DBID 24P
AAYXX
CITATION
DOI 10.1002/VIW.20200063
DatabaseName Wiley Online Library Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2688-268X
EndPage n/a
ExternalDocumentID 10_1002_VIW_20200063
VIW252
Genre reviewArticle
GrantInformation_xml – fundername: National Science Foundation
– fundername: Division of Integrative Organismal Systems
  funderid: IoS‐1734145
GroupedDBID 0R~
1OC
24P
7X7
8FI
8FJ
AAHHS
ABUWG
ACCFJ
ACCMX
ACXQS
ADKYN
ADPDF
ADZMN
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BENPR
CCPQU
EBS
FYUFA
GROUPED_DOAJ
HMCUK
IAO
IHR
INH
ITC
M~E
OVD
PIMPY
TEORI
UKHRP
WIN
AAYXX
CITATION
IGS
PHGZM
PHGZT
ID FETCH-LOGICAL-c3142-f769ac1fe13a74e0bac3c6181361bd395b0a4c7de721561d938579fcd7e368bd3
IEDL.DBID 24P
ISSN 2688-3988
2688-268X
IngestDate Tue Jul 01 02:42:39 EDT 2025
Thu Apr 24 23:15:51 EDT 2025
Wed Jan 22 16:59:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3142-f769ac1fe13a74e0bac3c6181361bd395b0a4c7de721561d938579fcd7e368bd3
ORCID 0000-0001-5186-5352
0000-0003-1358-2727
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2FVIW.20200063
PageCount 14
ParticipantIDs crossref_primary_10_1002_VIW_20200063
crossref_citationtrail_10_1002_VIW_20200063
wiley_primary_10_1002_VIW_20200063_VIW252
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationTitle View (Beijing, China)
PublicationYear 2020
References 2017; 86
2017; 8
2014; 139
2013; 3
2017; 1
2009; 81
2019; 11
2014 2015; 406 88
2019; 54
2010 2011; 82 83
2001 2013; 115 296
2013 2013 2016 2018; 775 85 27 10
2012; 14
2008; 2
2013; 8
2007; 79
2011; 6892
2012; 404
2009; 48
2004; 76
2018 2018 2019 2018; 10 90 91 9
2010; 21
2008 2019; 43 288
2010; 114
1995; 67
2010 2012 2012 2014 2017 2017 2018; 82 22 48 86 89 9 54
2020; 92
2008; 27
1994 2001 2001 2020; 8 15 73 59
2015; 87
2013; 113
2005; 308
2011 2016 2019; 40 141 1090
1997 2001; 69 7
2014; 9
2005 2009 2013; 16 38 5
2014; 6
2005; 77
2007; 26
2016; 272
2016; 88
2011; 697
2018; 28
2018 2019 2019 2018 2018; 11 1 15 6 10
2015; 6
2006; 96
2007; 449
2013; 49
2014 2017; 86 28
2019; 30
2017; 28
2015; 51
2011; 83
2013; 85
2015; 10
2005; 40
2016; 52
2008; 55
2007 2017; 79 9
2018 2019 2009 2010 2011; 12 150 42 21 25
2019 2019 2019; 527 9 55
2003; 75
2012; 75
2016; 12
2016; 55
1988; 2
2015; 26
2016; 6
2018; 2018
2000; 35
2017 2018 2020; 8 4 4
2004 2007 2007 2009 2010; 306 79 79 44 82
2018; 90
1999; 399
2009 2010 2013 2013 2014 2014 2015 2016 2016 2016 2019; 81 82 335 85 809 592 87 919 8 88 91
2015 2015 2016 2018 2018; 888 51 6 1032 24
2005 2008 2012; 77 80 116
1995; 143
2010; 290
2005; 16
2016; 8
2001; 73
2008; 80
2012; 84
e_1_2_7_3_1
e_1_2_7_7_2
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_26_1
e_1_2_7_26_2
e_1_2_7_49_1
e_1_2_7_26_3
e_1_2_7_26_4
e_1_2_7_26_5
e_1_2_7_26_6
e_1_2_7_26_7
Goto‐Inoue N. (e_1_2_7_55_1) 2010; 21
e_1_2_7_90_1
e_1_2_7_71_1
e_1_2_7_52_1
Fincher J. A. (e_1_2_7_62_3) 2019; 55
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_33_2
e_1_2_7_33_3
e_1_2_7_56_1
e_1_2_7_33_4
e_1_2_7_33_5
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_33_6
e_1_2_7_33_7
e_1_2_7_33_8
e_1_2_7_33_9
Klein S. (e_1_2_7_68_1) 2011
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_12_4
e_1_2_7_40_2
e_1_2_7_63_2
e_1_2_7_12_3
e_1_2_7_40_3
e_1_2_7_63_1
e_1_2_7_12_2
e_1_2_7_40_4
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_63_3
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_1
e_1_2_7_29_2
e_1_2_7_29_3
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_74_1
e_1_2_7_32_2
e_1_2_7_20_3
e_1_2_7_20_2
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_5_1
e_1_2_7_9_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_62_2
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_43_2
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_25_3
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_2
e_1_2_7_21_5
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_21_4
e_1_2_7_54_2
e_1_2_7_21_3
e_1_2_7_54_1
e_1_2_7_21_2
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_80_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_42_2
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_46_2
e_1_2_7_46_3
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_46_4
e_1_2_7_27_2
e_1_2_7_46_5
e_1_2_7_27_3
e_1_2_7_27_4
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_33_10
e_1_2_7_33_11
e_1_2_7_53_3
e_1_2_7_22_2
e_1_2_7_53_2
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_53_5
e_1_2_7_57_1
e_1_2_7_34_2
e_1_2_7_53_4
e_1_2_7_38_1
e_1_2_7_38_2
e_1_2_7_38_3
e_1_2_7_38_4
e_1_2_7_38_5
References_xml – volume: 6
  start-page: 949
  year: 2014
  publication-title: Drug Test. Anal.
– volume: 83
  start-page: 2
  year: 2011
  publication-title: Anal. Chem.
– volume: 11 1 15 6 10
  start-page: 68 459 7280 52
  year: 2018 2019 2019 2018 2018
  publication-title: Nano Res. Nanoscale Adv. Small J. Mater. Chem. B Nano‐Micro Lett.
– volume: 10 90 91 9
  start-page: 3863 2212
  year: 2018 2018 2019 2018
  publication-title: ACS Appl. Mater. Interfaces Anal. Chem. Anal. Chem. Chem. Sci.
– volume: 30
  start-page: 299
  year: 2019
  publication-title: J. Am. Soc. Mass Spectrom.
– volume: 77
  start-page: 142A
  year: 2005
  publication-title: Anal. Chem.
– volume: 888 51 6 1032 24
  start-page: 103 8785 91 9598
  year: 2015 2015 2016 2018 2018
  publication-title: Anal. Chim. Acta Chem. Commun. RSC Adv. Anal. Chim. Acta Chem. Eur. J.
– volume: 90
  year: 2018
  publication-title: Anal. Chem.
– volume: 8
  start-page: 3926
  year: 2017
  publication-title: Chem. Sci.
– volume: 40
  start-page: 1261
  year: 2005
  publication-title: J. Mass Spectrom.
– volume: 67
  start-page: 4335
  year: 1995
  publication-title: Anal. Chem.
– volume: 2
  start-page: 74
  year: 2008
  publication-title: BMC Syst. Biol.
– volume: 55
  start-page: 348
  year: 2008
  publication-title: Plant J
– volume: 73
  start-page: 1399
  year: 2001
  publication-title: Anal. Chem.
– volume: 306 79 79 44 82
  start-page: 471 7867 8098 1469 2753
  year: 2004 2007 2007 2009 2010
  publication-title: Science Anal. Chem. Anal. Chem. J. Mass Spectrom. Anal. Chem.
– volume: 92
  start-page: 6613
  year: 2020
  publication-title: Anal. Chem.
– volume: 87
  start-page: 431
  year: 2015
  publication-title: Anal. Chem.
– volume: 113
  start-page: 2309
  year: 2013
  publication-title: Chem. Rev.
– volume: 115 296
  start-page: 1891 1113
  year: 2001 2013
  publication-title: J. Sunner, J. Chem. Phys. J. Radioanal. Nucl. Chem.
– volume: 8
  year: 2013
  publication-title: PLoS One
– volume: 76
  start-page: 4484
  year: 2004
  publication-title: Anal. Chem.
– volume: 27
  start-page: 661
  year: 2008
  publication-title: Mass Spectrom. Rev.
– volume: 8 15 73 59
  start-page: 881 1899 612
  year: 1994 2001 2001 2020
  publication-title: Rapid Commun. Mass Spectrom. Rapid Commun. Mass Spectrom. Anal. Chem. Angew. Chem. Int. Ed.
– volume: 1
  start-page: 1
  year: 2017
  publication-title: Ann. Rev. Mater. Res.
– volume: 54
  start-page: 612
  year: 2019
  publication-title: J. Mass Spectrom.
– volume: 775 85 27 10
  start-page: 75 3836 1686
  year: 2013 2013 2016 2018
  publication-title: Anal. Chim. Acta Anal. Chem. J. Am. Soc. Mass Spectrom. ACS Appl. Mater. Interfaces
– volume: 88
  start-page: 8926
  year: 2016
  publication-title: Anal. Chem.
– volume: 83
  start-page: 7283
  year: 2011
  publication-title: Anal. Chem.
– volume: 6892
  year: 2011
– volume: 12
  start-page: 482
  year: 2016
  publication-title: Nat. Chem. Biol.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 333
  year: 2005
  publication-title: J. Am. Soc. Mass Spectrom.
– volume: 308
  start-page: 1607
  year: 2005
  publication-title: Science
– volume: 40 141 1090
  start-page: 1269 2816 1
  year: 2011 2016 2019
  publication-title: Chem. Soc. Rev. Analyst Anal. Chim. Acta
– volume: 35
  start-page: 417
  year: 2000
  publication-title: J. Mass Spectrom.
– volume: 48
  start-page: 1669
  year: 2009
  publication-title: Angew. Chem. Int. Ed
– volume: 2018
  year: 2018
  publication-title: Research
– volume: 79
  start-page: 3535
  year: 2007
  publication-title: Anal. Chem.
– volume: 43 288
  start-page: 1063 667
  year: 2008 2019
  publication-title: J. Mass Spectrom. Sens. Actuators B Chem.
– volume: 82 22 48 86 89 9 54
  start-page: 6208 2418 9122 1307 2014 2723
  year: 2010 2012 2012 2014 2017 2017 2018
  publication-title: Anal. Chem. J. Mater. Chem. Chem. Commun. Anal. Chem. Anal. Chem. Anal. Methods Chem. Commun.
– volume: 86
  start-page: 277
  year: 2017
  publication-title: Annu. Rev. Biochem.
– volume: 77 80 116
  start-page: 1641 2973
  year: 2005 2008 2012
  publication-title: Anal. Chem. Anal. Chem. J. Phys. Chem. C
– volume: 79 9
  start-page: 4827 5092
  year: 2007 2017
  publication-title: Anal. Chem. ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 8453
  year: 2012
  publication-title: PCCP
– volume: 81 82 335 85 809 592 87 919 8 88 91
  start-page: 2991 3255 22 97 160 2114 62 1665 9881 8390
  year: 2009 2010 2013 2013 2014 2014 2015 2016 2016 2016 2019
  publication-title: Anal. Chem. Anal. Chem. Int. J. Mass Spectrom. Anal. Chem. Anal. Chim. Acta Chem. Phys. Lett. Anal. Chem. Anal. Chim. Acta Nanoscale Anal. Chem. Anal. Chem.
– volume: 51
  start-page: 6088
  year: 2015
  publication-title: Chem. Commun.
– volume: 12 150 42 21 25
  start-page: 6938 16 1446 3690
  year: 2018 2019 2009 2010 2011
  publication-title: ACS Nano Microchem. J. Med. Mol. Morphol. J. Am. Soc. Mass Spectrom. Rapid Commun. Mass Spectrom.
– volume: 55
  start-page: 4482
  year: 2016
  publication-title: Angew. Chem. Int. Ed.
– volume: 96
  year: 2006
  publication-title: Phys. Rev. Lett.
– volume: 80
  start-page: 4761
  year: 2008
  publication-title: Anal. Chem.
– volume: 21
  start-page: 1940
  year: 2010
  publication-title: J. Am. Soc. Mass Spectrom.
– volume: 28
  start-page: 1716
  year: 2017
  publication-title: J. Am. Soc. Mass Spectrom.
– volume: 3
  start-page: 6865
  year: 2013
  publication-title: RSC Adv.
– volume: 26
  start-page: 1963
  year: 2015
  publication-title: J. Am. Soc. Mass Spectrom.
– volume: 139
  start-page: 3528
  year: 2014
  publication-title: Analyst
– volume: 75
  start-page: 4893
  year: 2012
  publication-title: J. Proteom.
– volume: 84
  start-page: 7756
  year: 2012
  publication-title: Anal. Chem.
– volume: 697
  start-page: 1
  year: 2011
  publication-title: Anal. Chim. Acta
– volume: 16 38 5
  start-page: 883 142 7770
  year: 2005 2009 2013
  publication-title: J. Am. Soc. Mass Spectrom. Chem. Lett. ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 5998
  year: 2015
  publication-title: Nat. Commun.
– volume: 26
  start-page: 606
  year: 2007
  publication-title: Mass Spectrom. Rev.
– volume: 75
  start-page: 6191
  year: 2003
  publication-title: Anal. Chem.
– volume: 6
  year: 2016
  publication-title: RSC Adv.
– volume: 449
  start-page: 1033
  year: 2007
  publication-title: Nature
– volume: 3
  start-page: 1415
  year: 2013
  publication-title: Sci. Rep.
– volume: 143
  start-page: 191
  year: 1995
  publication-title: Int. J. Mass Spectrom. Ion Process.
– volume: 79
  start-page: 2373
  year: 2007
  publication-title: Anal. Chem.
– volume: 49
  start-page: 4929
  year: 2013
  publication-title: Chem. Commun.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 290
  start-page: 72
  year: 2010
  publication-title: Int. J. Mass Spectrom.
– volume: 85
  year: 2013
  publication-title: Anal. Chem.
– volume: 272
  start-page: 19
  year: 2016
  publication-title: J. Neurosci. Methods
– volume: 52
  year: 2016
  publication-title: Chem. Commun.
– volume: 406 88
  start-page: 1377 186
  year: 2014 2015
  publication-title: Anal. Bioanal. Chem. Kidney Int
– volume: 86 28
  start-page: 8496 409
  year: 2014 2017
  publication-title: Anal. Chem. J. Am. Soc. Mass Spectrom.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 82 83
  start-page: 1589 453
  year: 2010 2011
  publication-title: Anal. Chem. Anal. Chem.
– volume: 88
  start-page: 7365
  year: 2016
  publication-title: Anal. Chem.
– volume: 81
  start-page: 2969
  year: 2009
  publication-title: Anal. Chem.
– volume: 79
  start-page: 6575
  year: 2007
  publication-title: Anal. Chem.
– volume: 90
  start-page: 240
  year: 2018
  publication-title: Anal. Chem.
– volume: 9
  year: 2014
  publication-title: PLoS One
– volume: 10
  start-page: 176
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 2
  start-page: 151
  year: 1988
  publication-title: Rapid Commun. Mass Spectrom.
– volume: 8 4 4
  start-page: 220 223
  year: 2017 2018 2020
  publication-title: Nat. Commun. ACS Cent. Sci. Small Methods
– volume: 114
  start-page: 5574
  year: 2010
  publication-title: J. Phys. Chem. C
– volume: 527 9 55
  start-page: 2101 e4443
  year: 2019 2019 2019
  publication-title: J. Comp. Neurol. Sci. Rep. J. Mass Spectrom.
– volume: 8
  start-page: 8234
  year: 2016
  publication-title: Anal. Methods
– volume: 404
  start-page: 113
  year: 2012
  publication-title: Anal. Bioanal. Chem.
– volume: 399
  start-page: 243
  year: 1999
  publication-title: Nature
– volume: 114
  start-page: 4835
  year: 2010
  publication-title: J. Phys. Chem. C
– volume: 69 7
  start-page: 4751 493
  year: 1997 2001
  publication-title: Anal. Chem. Nat. Med.
– ident: e_1_2_7_12_3
  doi: 10.1021/ac000746f
– ident: e_1_2_7_33_8
  doi: 10.1016/j.aca.2016.03.023
– ident: e_1_2_7_15_1
  doi: 10.1002/(SICI)1096-9888(200003)35:3<417::AID-JMS952>3.0.CO;2-#
– ident: e_1_2_7_71_1
  doi: 10.1039/c4an00504j
– ident: e_1_2_7_21_4
  doi: 10.1002/jms.1632
– ident: e_1_2_7_26_7
  doi: 10.1039/C7CC09649F
– ident: e_1_2_7_56_1
  doi: 10.1021/ac800081z
– ident: e_1_2_7_74_1
  doi: 10.1007/s13361-015-1243-6
– ident: e_1_2_7_27_1
  doi: 10.1016/j.aca.2013.03.007
– ident: e_1_2_7_21_5
  doi: 10.1021/ac9026466
– ident: e_1_2_7_25_2
  doi: 10.1246/cl.2009.142
– ident: e_1_2_7_40_1
  doi: 10.1021/acsami.8b03804
– ident: e_1_2_7_8_1
  doi: 10.1021/cr3004295
– ident: e_1_2_7_20_2
  doi: 10.1021/acscentsci.7b00546
– ident: e_1_2_7_22_2
  doi: 10.1007/s10967-012-2176-1
– ident: e_1_2_7_84_1
  doi: 10.1007/s13361-018-2081-0
– ident: e_1_2_7_13_1
  doi: 10.1021/ac00119a021
– ident: e_1_2_7_47_1
  doi: 10.1039/C6CC07371A
– ident: e_1_2_7_58_1
  doi: 10.1021/ac402240q
– ident: e_1_2_7_75_1
  doi: 10.1038/nnano.2014.282
– ident: e_1_2_7_65_1
  doi: 10.1038/nchembio.2077
– ident: e_1_2_7_44_1
  doi: 10.1155/2018/5439729
– ident: e_1_2_7_54_2
  doi: 10.1021/ac1020485
– ident: e_1_2_7_33_1
  doi: 10.1021/ac802615r
– ident: e_1_2_7_53_2
  doi: 10.1016/j.microc.2019.104190
– ident: e_1_2_7_53_4
  doi: 10.1016/j.jasms.2010.04.005
– ident: e_1_2_7_88_1
  doi: 10.1039/C6RA20469D
– ident: e_1_2_7_29_1
  doi: 10.1021/ac048460o
– ident: e_1_2_7_40_2
  doi: 10.1021/acs.analchem.7b04565
– ident: e_1_2_7_41_1
  doi: 10.1021/acs.analchem.0c00392
– ident: e_1_2_7_52_1
  doi: 10.1038/srep01415
– ident: e_1_2_7_33_4
  doi: 10.1021/ac4031658
– ident: e_1_2_7_26_6
  doi: 10.1039/C7AY00112F
– ident: e_1_2_7_21_1
  doi: 10.1126/science.1104404
– ident: e_1_2_7_33_5
  doi: 10.1016/j.aca.2013.11.050
– ident: e_1_2_7_34_1
  doi: 10.1007/s00216-013-7525-6
– ident: e_1_2_7_36_1
  doi: 10.1021/acs.analchem.6b01859
– ident: e_1_2_7_62_1
  doi: 10.1002/cne.24566
– ident: e_1_2_7_78_1
  doi: 10.1038/ncomms6998
– ident: e_1_2_7_16_1
  doi: 10.1021/ac0345695
– ident: e_1_2_7_38_4
  doi: 10.1039/C8TB01587B
– ident: e_1_2_7_60_1
  doi: 10.1039/C6AY02753A
– ident: e_1_2_7_35_1
  doi: 10.1016/j.jneumeth.2016.02.004
– ident: e_1_2_7_54_1
  doi: 10.1021/ac9026077
– ident: e_1_2_7_28_1
  doi: 10.1021/ac049657j
– ident: e_1_2_7_29_3
  doi: 10.1021/jp3034402
– ident: e_1_2_7_63_2
  doi: 10.1039/C6AN00220J
– ident: e_1_2_7_82_1
  doi: 10.1103/PhysRevLett.96.113002
– ident: e_1_2_7_14_1
  doi: 10.1038/20400
– ident: e_1_2_7_85_1
  doi: 10.1021/ac201602s
– ident: e_1_2_7_2_1
  doi: 10.1186/1752-0509-2-74
– ident: e_1_2_7_76_1
  doi: 10.1021/acs.analchem.8b02362
– ident: e_1_2_7_80_1
  doi: 10.1126/science.1111886
– ident: e_1_2_7_21_3
  doi: 10.1021/ac071181r
– ident: e_1_2_7_90_1
  doi: 10.1039/c3cc40934a
– ident: e_1_2_7_32_2
  doi: 10.1021/acsami.6b14362
– ident: e_1_2_7_10_1
  doi: 10.1021/acs.analchem.7b04733
– ident: e_1_2_7_92_1
  doi: 10.1002/adfm.201801730
– ident: e_1_2_7_30_1
  doi: 10.1016/j.ijms.2009.12.006
– ident: e_1_2_7_38_5
  doi: 10.1007/s40820-018-0204-6
– ident: e_1_2_7_64_1
  doi: 10.1039/c2cp00038e
– ident: e_1_2_7_45_1
  doi: 10.1021/acsami.9b16260
– ident: e_1_2_7_26_2
  doi: 10.1039/c2jm34745h
– ident: e_1_2_7_53_1
  doi: 10.1021/acsnano.8b02376
– ident: e_1_2_7_20_1
  doi: 10.1038/s41467-017-00220-4
– ident: e_1_2_7_43_2
  doi: 10.1007/s13361-016-1560-4
– ident: e_1_2_7_46_3
  doi: 10.1039/C6RA00877A
– ident: e_1_2_7_37_1
  doi: 10.1007/s13361-017-1665-4
– ident: e_1_2_7_46_5
  doi: 10.1002/chem.201800994
– ident: e_1_2_7_25_1
  doi: 10.1016/j.jasms.2005.03.009
– ident: e_1_2_7_34_2
  doi: 10.1038/ki.2015.3
– ident: e_1_2_7_51_1
  doi: 10.1371/journal.pone.0090901
– ident: e_1_2_7_77_1
  doi: 10.1016/j.jasms.2004.11.017
– ident: e_1_2_7_40_4
  doi: 10.1039/C7SC04089J
– volume-title: Medical Image Computing and Computer‐Assisted Intervention
  year: 2011
  ident: e_1_2_7_68_1
– ident: e_1_2_7_50_1
  doi: 10.1002/dta.1691
– ident: e_1_2_7_3_1
  doi: 10.1016/0168-1176(94)04119-R
– ident: e_1_2_7_32_1
  doi: 10.1021/ac062216a
– ident: e_1_2_7_7_2
  doi: 10.1038/86573
– volume: 21
  start-page: 1940
  year: 2010
  ident: e_1_2_7_55_1
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1016/j.jasms.2010.08.002
– ident: e_1_2_7_26_3
  doi: 10.1039/c2cc17696c
– ident: e_1_2_7_43_1
  doi: 10.1021/ac502422a
– ident: e_1_2_7_33_7
  doi: 10.1021/ac503097v
– ident: e_1_2_7_33_9
  doi: 10.1039/C5NR06635B
– ident: e_1_2_7_40_3
  doi: 10.1021/acs.analchem.9b02231
– ident: e_1_2_7_46_4
  doi: 10.1016/j.aca.2018.06.035
– volume: 55
  start-page: e4443
  year: 2019
  ident: e_1_2_7_62_3
  publication-title: J. Mass Spectrom.
  doi: 10.1002/jms.4443
– ident: e_1_2_7_42_2
  doi: 10.1016/j.snb.2019.02.011
– ident: e_1_2_7_31_1
  doi: 10.1038/nature06195
– ident: e_1_2_7_46_1
  doi: 10.1016/j.aca.2015.07.029
– ident: e_1_2_7_70_1
  doi: 10.1007/s00216-012-6077-5
– ident: e_1_2_7_73_1
  doi: 10.1021/ac0706170
– ident: e_1_2_7_25_3
  doi: 10.1021/am4024143
– ident: e_1_2_7_72_1
  doi: 10.1002/jms.922
– ident: e_1_2_7_26_5
  doi: 10.1021/acs.analchem.6b04167
– ident: e_1_2_7_12_2
  doi: 10.1002/rcm.451
– ident: e_1_2_7_38_2
  doi: 10.1039/C8NA00319J
– ident: e_1_2_7_53_5
  doi: 10.1002/rcm.5281
– ident: e_1_2_7_26_1
  doi: 10.1021/ac101022m
– ident: e_1_2_7_18_1
  doi: 10.1021/jp9110103
– ident: e_1_2_7_42_1
  doi: 10.1002/jms.1385
– ident: e_1_2_7_46_2
  doi: 10.1039/C5CC02495A
– ident: e_1_2_7_67_1
  doi: 10.1146/annurev-biochem-061516-044952
– ident: e_1_2_7_38_3
  doi: 10.1002/smll.201803051
– ident: e_1_2_7_27_3
  doi: 10.1007/s13361-016-1454-5
– ident: e_1_2_7_62_2
  doi: 10.1038/s41598-019-53938-0
– ident: e_1_2_7_86_1
  doi: 10.1371/journal.pone.0072532
– ident: e_1_2_7_61_1
  doi: 10.1002/anie.201511691
– ident: e_1_2_7_9_1
  doi: 10.1016/j.aca.2011.04.008
– ident: e_1_2_7_33_3
  doi: 10.1016/j.ijms.2012.10.009
– ident: e_1_2_7_63_1
  doi: 10.1039/C0CS00050G
– ident: e_1_2_7_91_1
  doi: 10.1021/acsami.6b06225
– ident: e_1_2_7_57_1
  doi: 10.1021/ac101565f
– ident: e_1_2_7_23_1
  doi: 10.1021/ac062251h
– ident: e_1_2_7_11_1
  doi: 10.1016/j.jprot.2012.04.012
– ident: e_1_2_7_6_1
  doi: 10.1002/rcm.1290020802
– ident: e_1_2_7_48_1
  doi: 10.1021/ac0611465
– ident: e_1_2_7_81_1
  doi: 10.1146/annurev-matsci-070616-124259
– ident: e_1_2_7_19_1
  doi: 10.1021/jp906834z
– ident: e_1_2_7_39_1
  doi: 10.1039/C7SC00937B
– ident: e_1_2_7_93_1
  doi: 10.1021/ac301238k
– ident: e_1_2_7_5_1
  doi: 10.1021/ac053355f
– ident: e_1_2_7_49_1
  doi: 10.1021/ac5025864
– ident: e_1_2_7_66_1
  doi: 10.1002/mas.20186
– ident: e_1_2_7_24_1
  doi: 10.1111/j.1365-313X.2008.03507.x
– ident: e_1_2_7_21_2
  doi: 10.1021/ac071152g
– ident: e_1_2_7_33_10
  doi: 10.1021/acs.analchem.6b02733
– ident: e_1_2_7_89_1
  doi: 10.1039/c3ra22977g
– ident: e_1_2_7_7_1
  doi: 10.1021/ac970888i
– ident: e_1_2_7_63_3
  doi: 10.1016/j.aca.2019.08.048
– ident: e_1_2_7_33_2
  doi: 10.1021/ac902990p
– ident: e_1_2_7_4_1
  doi: 10.1002/mas.20124
– ident: e_1_2_7_59_1
  doi: 10.1021/ac802576q
– ident: e_1_2_7_12_4
  doi: 10.1002/anie.202001135
– ident: e_1_2_7_26_4
  doi: 10.1021/ac501943n
– ident: e_1_2_7_83_1
  doi: 10.1021/acs.analchem.6b02732
– ident: e_1_2_7_22_1
  doi: 10.1063/1.1381531
– ident: e_1_2_7_29_2
  doi: 10.1021/ac7026029
– ident: e_1_2_7_12_1
  doi: 10.1002/rcm.1290081105
– ident: e_1_2_7_27_2
  doi: 10.1021/ac3036469
– ident: e_1_2_7_20_3
  doi: 10.1002/smtd.201900469
– ident: e_1_2_7_79_1
  doi: 10.1039/C4CC08762C
– ident: e_1_2_7_33_11
  doi: 10.1021/acs.analchem.9b01217
– ident: e_1_2_7_38_1
  doi: 10.1007/s12274-017-1591-6
– ident: e_1_2_7_87_1
  doi: 10.1002/jms.4370
– ident: e_1_2_7_17_1
  doi: 10.1002/anie.200805114
– ident: e_1_2_7_53_3
  doi: 10.1007/s00795-008-0427-6
– ident: e_1_2_7_69_1
  doi: 10.1021/ac001440b
– ident: e_1_2_7_33_6
  doi: 10.1016/j.cplett.2013.12.027
– ident: e_1_2_7_27_4
  doi: 10.1021/acsami.8b16694
SSID ssj0002511795
Score 2.455774
SecondaryResourceType review_article
Snippet Mass spectrometry imaging (MSI) has become an important analytical tool for the label‐free chemical imaging of diverse molecules in biological specimens. This...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms aberrations in chemical imaging
inorganic matrices
laser desorption ionization
mass spectrometry imaging
nanophotonic ionization
nanostructures
Title Mass spectrometry imaging based on laser desorption ionization from inorganic and nanophotonic platforms
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2FVIW.20200063
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgLCwIBIjyUXmAAaGo9UdsZ0SoVUEqYqDQLXJsR61UnCoNAwu_HdtJSxlAYomU5JThYvvene69A-AyQVgjEovIuMUQUZmzSLqwGwmFmMoYdVmIr0OOHtlwTB8m8aQpuHkuTK0PsS64-Z0Rzmu_wWW27H6Lhr7cv7r0LjBNyDbY8exa39KH6dO6xuLhMw-DVzBzC4IkQjS97-5dd_MDP6LSJkoNYWawD_YafAhv6x96ALaMPQTTkYO4MJAivbpAVX7A2VsYLwR9FNKwsNChYFNCbZZFGU4B6AutNccSeg4JnNl6gpOC0mpopS0W06LyyrhwMZeVB6_LIzAe9J_vhlEzIiFSBFEc5ZwlUqHcICI5Nb1MKqKYi9qEoUyTJM56kiqujUv0HFLSCRExT3KluSFMOItj0LKFNScAophzw6RkiUI0Q0oYzLEiLiWjpJcL2gY3KxelqtEP92Ms5mmtfIxT59B05dA2uFpbL2rdjF_sroO3_zTyNzjGp_-wPQO7_kndeHIOWlX5bi4cfKiyTlgjnZB8u-vos_8FMy2_dw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UDnoxGjXizx70YMwCXbt2OxIjAQVOgMTL0rVdIMGOjHnwv7ftBuJBE49LX3p4e-373kvf9wFwGyFfIhyEnjLB4BGeUo-btOuFAlGRUGKqENuHHAxpd0yep8G00jm1szAlP8Sm4WZPhruv7QG3DenmN2vopPdq6js3aoJ3Qd0CGxPW9fZk_DbetFksgmZOe8WnJiZwFIbV83ez1tze4kdi2gaqLtN0DsFBBRFhu_ynR2BH6WMwGxiUC91cpCUYKPJPOH93CkPQJiIJMw0NEFY5lGqV5e4igLbXWo5ZQjtGAue6FHESkGsJNdfZcpYVlhwXLhe8sPh1dQLGnafRY9erVBI8gRHxvZTRiAuUKoQ5I6qVcIEFNYkbU5RIHAVJixPBpDK1ngFLMsJhwKJUSKYwDY3FKajpTKszAFHAmKKc00ggkiARKp_5ApuqjOBWGpIGeFi7KBYVhbhVsljEJfmxHxuHxmuHNsDdxnpZUmf8YnfvvP2nkf3wA__8H7Y3YK87GvTjfm_4cgH27Wr5DuUS1Ir8Q10ZNFEk11XEfAFcVMKM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA66gXgRRcX5Mwc9iJQtTZq0x6GOTd3wYOfwUtIkZYOZlq4e_O9N2m7Og4LHkkcOry_5vvfI-x4AlwFyJcKe7ygTDA7hCXW4gV3HF4iKmBKThdg65HBE-yF5mHiTuuBme2EqfYhVwc2ejPK-tgc8k0n7WzR0PHg16V3ZaYI3QdMzwNRpgGZ3HL6FqyqLJdCsHL3iUhMSOPD9-vW7WWuvb_EDl9Z5agk0vV2wUzNE2K1-6R7YUHofTIeG5MKyLdLqCxT5J5y9lwOGoMUhCVMNDQ9WOZRqkeblPQBtqbXqsoS2iwTOdDXDSUCuJdRcp9k0Law2LszmvLD0dXEAwt79y23fqYckOAIj4joJowEXKFEIc0ZUJ-YCC2pwG1MUSxx4cYcTwaQyqZ7hSjLAvseCREimMPWNxSFo6FSrIwCRx5iinNNAIBIj4SuXuQKbpIzgTuKTFrhZuigStYK4HWQxjyrtYzcyDo2WDm2Bq5V1Viln_GJ3XXr7TyP74Xru8T9sL8DW810vehqMHk_Atl2sXqGcgkaRf6gzwyWK-LwOmC9EesGs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mass+spectrometry+imaging+based+on+laser+desorption+ionization+from+inorganic+and+nanophotonic+platforms&rft.jtitle=View+%28Beijing%2C+China%29&rft.au=Samarah%2C+Laith+Z.&rft.au=Vertes%2C+Akos&rft.date=2020-12-01&rft.issn=2688-3988&rft.eissn=2688-268X&rft.volume=1&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2FVIW.20200063&rft.externalDBID=10.1002%252FVIW.20200063&rft.externalDocID=VIW252
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2688-3988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2688-3988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2688-3988&client=summon