Mass spectrometry imaging based on laser desorption ionization from inorganic and nanophotonic platforms
Mass spectrometry imaging (MSI) has become an important analytical tool for the label‐free chemical imaging of diverse molecules in biological specimens. This minireview surveys some emerging methods in the context of factors that can lead to inaccurate information in MSI, chemical and spatial aberr...
Saved in:
Published in | View (Beijing, China) Vol. 1; no. 4 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mass spectrometry imaging (MSI) has become an important analytical tool for the label‐free chemical imaging of diverse molecules in biological specimens. This minireview surveys some emerging methods in the context of factors that can lead to inaccurate information in MSI, chemical and spatial aberrations, along with their common sources. Matrix‐assisted laser desorption ionization, based on organic matrices, has become the most widely used MSI technique for biomolecules. However, due to inherent limitations associated with the use of organic matrices, for example, heterogeneous matrix‐analyte cocrystallization, and spectral interferences due to the matrix, laser desorption ionization (LDI) from inorganic and nanophotonic platforms has emerged as an alternative MSI modality with complementary advantages. In this review, inorganic and nanophotonic platforms for LDI‐MSI, their applications in imaging, notable merits, and limitations are described.
Mass spectrometry imaging (MSI) by laser desorption ionization (LDI) based on inorganic and nanophotonic platforms is an emerging field that offers complementary advantages to conventional matrix‐assisted laser desorption ionization (MALDI). This mini‐review looks at the limitations of various MSI platforms in terms of the related spatial and chemical aberrations. Recent developments in inorganic substrates for LDI and nanophotonic ionization, for example, nanopost array platforms, are reported with emphasis on MSI. |
---|---|
AbstractList | Mass spectrometry imaging (MSI) has become an important analytical tool for the label‐free chemical imaging of diverse molecules in biological specimens. This minireview surveys some emerging methods in the context of factors that can lead to inaccurate information in MSI, chemical and spatial aberrations, along with their common sources. Matrix‐assisted laser desorption ionization, based on organic matrices, has become the most widely used MSI technique for biomolecules. However, due to inherent limitations associated with the use of organic matrices, for example, heterogeneous matrix‐analyte cocrystallization, and spectral interferences due to the matrix, laser desorption ionization (LDI) from inorganic and nanophotonic platforms has emerged as an alternative MSI modality with complementary advantages. In this review, inorganic and nanophotonic platforms for LDI‐MSI, their applications in imaging, notable merits, and limitations are described.
Mass spectrometry imaging (MSI) by laser desorption ionization (LDI) based on inorganic and nanophotonic platforms is an emerging field that offers complementary advantages to conventional matrix‐assisted laser desorption ionization (MALDI). This mini‐review looks at the limitations of various MSI platforms in terms of the related spatial and chemical aberrations. Recent developments in inorganic substrates for LDI and nanophotonic ionization, for example, nanopost array platforms, are reported with emphasis on MSI. Mass spectrometry imaging (MSI) has become an important analytical tool for the label‐free chemical imaging of diverse molecules in biological specimens. This minireview surveys some emerging methods in the context of factors that can lead to inaccurate information in MSI, chemical and spatial aberrations, along with their common sources. Matrix‐assisted laser desorption ionization, based on organic matrices, has become the most widely used MSI technique for biomolecules. However, due to inherent limitations associated with the use of organic matrices, for example, heterogeneous matrix‐analyte cocrystallization, and spectral interferences due to the matrix, laser desorption ionization (LDI) from inorganic and nanophotonic platforms has emerged as an alternative MSI modality with complementary advantages. In this review, inorganic and nanophotonic platforms for LDI‐MSI, their applications in imaging, notable merits, and limitations are described. |
Author | Vertes, Akos Samarah, Laith Z. |
Author_xml | – sequence: 1 givenname: Laith Z. orcidid: 0000-0003-1358-2727 surname: Samarah fullname: Samarah, Laith Z. organization: George Washington University – sequence: 2 givenname: Akos orcidid: 0000-0001-5186-5352 surname: Vertes fullname: Vertes, Akos email: vertes@gwu.edu organization: George Washington University |
BookMark | eNp9UMlOwzAQtVCRKKU3PsAfQIqXxnaOqGKpVMSF7RY5jt0apXZkW0Lh63EXLkhwmJk3o_dmNO8cjJx3GoBLjGYYIXL9unybEUQQQoyegDFhQhQ5vY-OmFZCnIFpjB-ZQkqMeVWOweZRxghjr1UKfqtTGKDdyrV1a9jIqFvoHewyCLDV0Yc-2TzIYb_kHpqsgtb5sJbOKihdC510vt_45HeDvpPJ-LCNF-DUyC7q6bFOwMvd7fPioVg93S8XN6tCUTwnheGskgobjankc40aqahiWGDKcNPSqmyQnCveak5wyXBbUVHyyqiWa8pEZkzA1WGvCj7GoE3dh_xRGGqM6p1RdTaq_jEq08kvurJp_1oK0nZ_idBB9Gk7Pfx7YNeQktBvA1d-jw |
CitedBy_id | crossref_primary_10_1002_adma_202007978 crossref_primary_10_1016_j_cclet_2022_04_019 crossref_primary_10_1016_j_talanta_2022_123475 crossref_primary_10_1002_smtd_202100206 crossref_primary_10_1021_acsnano_1c09864 crossref_primary_10_1002_ange_202015251 crossref_primary_10_1016_j_bios_2020_112919 crossref_primary_10_2147_IJN_S307648 crossref_primary_10_1002_advs_202203786 crossref_primary_10_1016_j_bios_2021_113607 crossref_primary_10_1021_acsami_1c19157 crossref_primary_10_1016_j_cclet_2022_107992 crossref_primary_10_1016_j_trac_2022_116565 crossref_primary_10_1039_D1AN01163D crossref_primary_10_1021_acs_analchem_2c01784 crossref_primary_10_1002_smtd_202001001 crossref_primary_10_1002_smll_202200090 crossref_primary_10_1021_acsami_0c20944 crossref_primary_10_1021_acsnano_3c10717 crossref_primary_10_1002_adma_202107986 crossref_primary_10_1002_advs_202302023 crossref_primary_10_1002_anie_202100734 crossref_primary_10_1039_D3TB01076G crossref_primary_10_1016_j_ijms_2022_116872 crossref_primary_10_1021_acs_jpcc_1c02433 crossref_primary_10_1002_smll_202206349 crossref_primary_10_1039_D2MO00060A crossref_primary_10_1021_acsnano_2c02616 crossref_primary_10_1021_acsnano_0c07581 crossref_primary_10_1021_acs_analchem_2c03743 crossref_primary_10_1021_jasms_1c00149 crossref_primary_10_1002_adsr_202200052 crossref_primary_10_1093_rb_rbac040 crossref_primary_10_1021_acs_analchem_2c01890 crossref_primary_10_1002_smll_202207190 crossref_primary_10_1021_acsomega_1c06479 crossref_primary_10_1002_asia_202101310 crossref_primary_10_1021_acsmeasuresciau_2c00019 crossref_primary_10_1002_smtd_202301317 crossref_primary_10_1007_s10853_022_06913_6 crossref_primary_10_1002_adfm_202206670 crossref_primary_10_1002_advs_202101333 crossref_primary_10_1007_s12010_022_03892_x crossref_primary_10_1016_j_talanta_2024_126329 crossref_primary_10_1007_s12035_023_03793_y crossref_primary_10_1007_s40242_022_2117_7 crossref_primary_10_1007_s00216_025_05741_2 crossref_primary_10_1002_adfm_202106743 crossref_primary_10_1016_j_nantod_2025_102702 crossref_primary_10_1039_D1TB00289A crossref_primary_10_1002_aisy_202100191 crossref_primary_10_1002_anie_202015251 crossref_primary_10_1002_admi_202101157 crossref_primary_10_1002_smtd_202301046 crossref_primary_10_1002_smtd_202301684 crossref_primary_10_1002_smll_202106412 crossref_primary_10_1016_j_ijms_2021_116539 crossref_primary_10_1021_acs_analchem_2c01563 crossref_primary_10_1016_j_ijms_2022_116979 crossref_primary_10_1002_cplu_202200221 crossref_primary_10_1039_D3NR05895F crossref_primary_10_1016_j_plipres_2021_101114 crossref_primary_10_1002_smtd_202200264 crossref_primary_10_1016_j_aca_2024_342528 crossref_primary_10_1016_j_teac_2024_e00253 crossref_primary_10_1002_smtd_202100812 crossref_primary_10_1039_D1AN00696G crossref_primary_10_1016_j_aca_2024_343124 crossref_primary_10_1016_j_isci_2023_106622 crossref_primary_10_1002_asia_202100044 crossref_primary_10_1016_j_talanta_2021_122535 crossref_primary_10_1016_j_materresbull_2021_111558 crossref_primary_10_1016_j_bios_2023_115903 crossref_primary_10_1016_j_microc_2022_108294 crossref_primary_10_1016_j_trac_2022_116795 crossref_primary_10_1002_advs_202305701 crossref_primary_10_1002_anbr_202200148 crossref_primary_10_1002_rcm_9269 crossref_primary_10_1002_smll_202003902 crossref_primary_10_3390_molecules27030985 crossref_primary_10_1002_smtd_202001212 crossref_primary_10_1002_anse_202100032 crossref_primary_10_1002_mas_21670 crossref_primary_10_1002_slct_202200734 crossref_primary_10_1021_acsnano_2c05355 crossref_primary_10_1002_ange_202100734 crossref_primary_10_1002_smtd_202201486 |
Cites_doi | 10.1021/ac000746f 10.1016/j.aca.2016.03.023 10.1002/(SICI)1096-9888(200003)35:3<417::AID-JMS952>3.0.CO;2-# 10.1039/c4an00504j 10.1002/jms.1632 10.1039/C7CC09649F 10.1021/ac800081z 10.1007/s13361-015-1243-6 10.1016/j.aca.2013.03.007 10.1021/ac9026466 10.1246/cl.2009.142 10.1021/acsami.8b03804 10.1021/cr3004295 10.1021/acscentsci.7b00546 10.1007/s10967-012-2176-1 10.1007/s13361-018-2081-0 10.1021/ac00119a021 10.1039/C6CC07371A 10.1021/ac402240q 10.1038/nnano.2014.282 10.1038/nchembio.2077 10.1155/2018/5439729 10.1021/ac1020485 10.1021/ac802615r 10.1016/j.microc.2019.104190 10.1016/j.jasms.2010.04.005 10.1039/C6RA20469D 10.1021/ac048460o 10.1021/acs.analchem.7b04565 10.1021/acs.analchem.0c00392 10.1038/srep01415 10.1021/ac4031658 10.1039/C7AY00112F 10.1126/science.1104404 10.1016/j.aca.2013.11.050 10.1007/s00216-013-7525-6 10.1021/acs.analchem.6b01859 10.1002/cne.24566 10.1038/ncomms6998 10.1021/ac0345695 10.1039/C8TB01587B 10.1039/C6AY02753A 10.1016/j.jneumeth.2016.02.004 10.1021/ac9026077 10.1021/ac049657j 10.1021/jp3034402 10.1039/C6AN00220J 10.1103/PhysRevLett.96.113002 10.1038/20400 10.1021/ac201602s 10.1186/1752-0509-2-74 10.1021/acs.analchem.8b02362 10.1126/science.1111886 10.1021/ac071181r 10.1039/c3cc40934a 10.1021/acsami.6b14362 10.1021/acs.analchem.7b04733 10.1002/adfm.201801730 10.1016/j.ijms.2009.12.006 10.1007/s40820-018-0204-6 10.1039/c2cp00038e 10.1021/acsami.9b16260 10.1039/c2jm34745h 10.1021/acsnano.8b02376 10.1038/s41467-017-00220-4 10.1007/s13361-016-1560-4 10.1039/C6RA00877A 10.1007/s13361-017-1665-4 10.1002/chem.201800994 10.1016/j.jasms.2005.03.009 10.1038/ki.2015.3 10.1371/journal.pone.0090901 10.1016/j.jasms.2004.11.017 10.1039/C7SC04089J 10.1002/dta.1691 10.1016/0168-1176(94)04119-R 10.1021/ac062216a 10.1038/86573 10.1016/j.jasms.2010.08.002 10.1039/c2cc17696c 10.1021/ac502422a 10.1021/ac503097v 10.1039/C5NR06635B 10.1021/acs.analchem.9b02231 10.1016/j.aca.2018.06.035 10.1002/jms.4443 10.1016/j.snb.2019.02.011 10.1038/nature06195 10.1016/j.aca.2015.07.029 10.1007/s00216-012-6077-5 10.1021/ac0706170 10.1021/am4024143 10.1002/jms.922 10.1021/acs.analchem.6b04167 10.1002/rcm.451 10.1039/C8NA00319J 10.1002/rcm.5281 10.1021/ac101022m 10.1021/jp9110103 10.1002/jms.1385 10.1039/C5CC02495A 10.1146/annurev-biochem-061516-044952 10.1002/smll.201803051 10.1007/s13361-016-1454-5 10.1038/s41598-019-53938-0 10.1371/journal.pone.0072532 10.1002/anie.201511691 10.1016/j.aca.2011.04.008 10.1016/j.ijms.2012.10.009 10.1039/C0CS00050G 10.1021/acsami.6b06225 10.1021/ac101565f 10.1021/ac062251h 10.1016/j.jprot.2012.04.012 10.1002/rcm.1290020802 10.1021/ac0611465 10.1146/annurev-matsci-070616-124259 10.1021/jp906834z 10.1039/C7SC00937B 10.1021/ac301238k 10.1021/ac053355f 10.1021/ac5025864 10.1002/mas.20186 10.1111/j.1365-313X.2008.03507.x 10.1021/ac071152g 10.1021/acs.analchem.6b02733 10.1039/c3ra22977g 10.1021/ac970888i 10.1016/j.aca.2019.08.048 10.1021/ac902990p 10.1002/mas.20124 10.1021/ac802576q 10.1002/anie.202001135 10.1021/ac501943n 10.1021/acs.analchem.6b02732 10.1063/1.1381531 10.1021/ac7026029 10.1002/rcm.1290081105 10.1021/ac3036469 10.1002/smtd.201900469 10.1039/C4CC08762C 10.1021/acs.analchem.9b01217 10.1007/s12274-017-1591-6 10.1002/jms.4370 10.1002/anie.200805114 10.1007/s00795-008-0427-6 10.1021/ac001440b 10.1016/j.cplett.2013.12.027 10.1021/acsami.8b16694 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by John Wiley & Sons Australia, Ltd and Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM) |
Copyright_xml | – notice: 2020 The Authors. published by John Wiley & Sons Australia, Ltd and Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM) |
DBID | 24P AAYXX CITATION |
DOI | 10.1002/VIW.20200063 |
DatabaseName | Wiley Online Library Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2688-268X |
EndPage | n/a |
ExternalDocumentID | 10_1002_VIW_20200063 VIW252 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Science Foundation – fundername: Division of Integrative Organismal Systems funderid: IoS‐1734145 |
GroupedDBID | 0R~ 1OC 24P 7X7 8FI 8FJ AAHHS ABUWG ACCFJ ACCMX ACXQS ADKYN ADPDF ADZMN AEEZP AEQDE AFKRA AIWBW AJBDE ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU BENPR CCPQU EBS FYUFA GROUPED_DOAJ HMCUK IAO IHR INH ITC M~E OVD PIMPY TEORI UKHRP WIN AAYXX CITATION IGS PHGZM PHGZT |
ID | FETCH-LOGICAL-c3142-f769ac1fe13a74e0bac3c6181361bd395b0a4c7de721561d938579fcd7e368bd3 |
IEDL.DBID | 24P |
ISSN | 2688-3988 2688-268X |
IngestDate | Tue Jul 01 02:42:39 EDT 2025 Thu Apr 24 23:15:51 EDT 2025 Wed Jan 22 16:59:28 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3142-f769ac1fe13a74e0bac3c6181361bd395b0a4c7de721561d938579fcd7e368bd3 |
ORCID | 0000-0001-5186-5352 0000-0003-1358-2727 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2FVIW.20200063 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1002_VIW_20200063 crossref_citationtrail_10_1002_VIW_20200063 wiley_primary_10_1002_VIW_20200063_VIW252 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-12-00 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationTitle | View (Beijing, China) |
PublicationYear | 2020 |
References | 2017; 86 2017; 8 2014; 139 2013; 3 2017; 1 2009; 81 2019; 11 2014 2015; 406 88 2019; 54 2010 2011; 82 83 2001 2013; 115 296 2013 2013 2016 2018; 775 85 27 10 2012; 14 2008; 2 2013; 8 2007; 79 2011; 6892 2012; 404 2009; 48 2004; 76 2018 2018 2019 2018; 10 90 91 9 2010; 21 2008 2019; 43 288 2010; 114 1995; 67 2010 2012 2012 2014 2017 2017 2018; 82 22 48 86 89 9 54 2020; 92 2008; 27 1994 2001 2001 2020; 8 15 73 59 2015; 87 2013; 113 2005; 308 2011 2016 2019; 40 141 1090 1997 2001; 69 7 2014; 9 2005 2009 2013; 16 38 5 2014; 6 2005; 77 2007; 26 2016; 272 2016; 88 2011; 697 2018; 28 2018 2019 2019 2018 2018; 11 1 15 6 10 2015; 6 2006; 96 2007; 449 2013; 49 2014 2017; 86 28 2019; 30 2017; 28 2015; 51 2011; 83 2013; 85 2015; 10 2005; 40 2016; 52 2008; 55 2007 2017; 79 9 2018 2019 2009 2010 2011; 12 150 42 21 25 2019 2019 2019; 527 9 55 2003; 75 2012; 75 2016; 12 2016; 55 1988; 2 2015; 26 2016; 6 2018; 2018 2000; 35 2017 2018 2020; 8 4 4 2004 2007 2007 2009 2010; 306 79 79 44 82 2018; 90 1999; 399 2009 2010 2013 2013 2014 2014 2015 2016 2016 2016 2019; 81 82 335 85 809 592 87 919 8 88 91 2015 2015 2016 2018 2018; 888 51 6 1032 24 2005 2008 2012; 77 80 116 1995; 143 2010; 290 2005; 16 2016; 8 2001; 73 2008; 80 2012; 84 e_1_2_7_3_1 e_1_2_7_7_2 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_26_1 e_1_2_7_26_2 e_1_2_7_49_1 e_1_2_7_26_3 e_1_2_7_26_4 e_1_2_7_26_5 e_1_2_7_26_6 e_1_2_7_26_7 Goto‐Inoue N. (e_1_2_7_55_1) 2010; 21 e_1_2_7_90_1 e_1_2_7_71_1 e_1_2_7_52_1 Fincher J. A. (e_1_2_7_62_3) 2019; 55 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_33_2 e_1_2_7_33_3 e_1_2_7_56_1 e_1_2_7_33_4 e_1_2_7_33_5 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_33_6 e_1_2_7_33_7 e_1_2_7_33_8 e_1_2_7_33_9 Klein S. (e_1_2_7_68_1) 2011 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_12_4 e_1_2_7_40_2 e_1_2_7_63_2 e_1_2_7_12_3 e_1_2_7_40_3 e_1_2_7_63_1 e_1_2_7_12_2 e_1_2_7_40_4 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_63_3 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_1 e_1_2_7_29_2 e_1_2_7_29_3 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_74_1 e_1_2_7_32_2 e_1_2_7_20_3 e_1_2_7_20_2 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_5_1 e_1_2_7_9_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_62_2 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_43_2 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_25_3 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_2 e_1_2_7_21_5 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_21_4 e_1_2_7_54_2 e_1_2_7_21_3 e_1_2_7_54_1 e_1_2_7_21_2 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_80_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_42_2 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_46_2 e_1_2_7_46_3 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_46_4 e_1_2_7_27_2 e_1_2_7_46_5 e_1_2_7_27_3 e_1_2_7_27_4 e_1_2_7_91_1 e_1_2_7_72_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_33_10 e_1_2_7_33_11 e_1_2_7_53_3 e_1_2_7_22_2 e_1_2_7_53_2 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_53_5 e_1_2_7_57_1 e_1_2_7_34_2 e_1_2_7_53_4 e_1_2_7_38_1 e_1_2_7_38_2 e_1_2_7_38_3 e_1_2_7_38_4 e_1_2_7_38_5 |
References_xml | – volume: 6 start-page: 949 year: 2014 publication-title: Drug Test. Anal. – volume: 83 start-page: 2 year: 2011 publication-title: Anal. Chem. – volume: 11 1 15 6 10 start-page: 68 459 7280 52 year: 2018 2019 2019 2018 2018 publication-title: Nano Res. Nanoscale Adv. Small J. Mater. Chem. B Nano‐Micro Lett. – volume: 10 90 91 9 start-page: 3863 2212 year: 2018 2018 2019 2018 publication-title: ACS Appl. Mater. Interfaces Anal. Chem. Anal. Chem. Chem. Sci. – volume: 30 start-page: 299 year: 2019 publication-title: J. Am. Soc. Mass Spectrom. – volume: 77 start-page: 142A year: 2005 publication-title: Anal. Chem. – volume: 888 51 6 1032 24 start-page: 103 8785 91 9598 year: 2015 2015 2016 2018 2018 publication-title: Anal. Chim. Acta Chem. Commun. RSC Adv. Anal. Chim. Acta Chem. Eur. J. – volume: 90 year: 2018 publication-title: Anal. Chem. – volume: 8 start-page: 3926 year: 2017 publication-title: Chem. Sci. – volume: 40 start-page: 1261 year: 2005 publication-title: J. Mass Spectrom. – volume: 67 start-page: 4335 year: 1995 publication-title: Anal. Chem. – volume: 2 start-page: 74 year: 2008 publication-title: BMC Syst. Biol. – volume: 55 start-page: 348 year: 2008 publication-title: Plant J – volume: 73 start-page: 1399 year: 2001 publication-title: Anal. Chem. – volume: 306 79 79 44 82 start-page: 471 7867 8098 1469 2753 year: 2004 2007 2007 2009 2010 publication-title: Science Anal. Chem. Anal. Chem. J. Mass Spectrom. Anal. Chem. – volume: 92 start-page: 6613 year: 2020 publication-title: Anal. Chem. – volume: 87 start-page: 431 year: 2015 publication-title: Anal. Chem. – volume: 113 start-page: 2309 year: 2013 publication-title: Chem. Rev. – volume: 115 296 start-page: 1891 1113 year: 2001 2013 publication-title: J. Sunner, J. Chem. Phys. J. Radioanal. Nucl. Chem. – volume: 8 year: 2013 publication-title: PLoS One – volume: 76 start-page: 4484 year: 2004 publication-title: Anal. Chem. – volume: 27 start-page: 661 year: 2008 publication-title: Mass Spectrom. Rev. – volume: 8 15 73 59 start-page: 881 1899 612 year: 1994 2001 2001 2020 publication-title: Rapid Commun. Mass Spectrom. Rapid Commun. Mass Spectrom. Anal. Chem. Angew. Chem. Int. Ed. – volume: 1 start-page: 1 year: 2017 publication-title: Ann. Rev. Mater. Res. – volume: 54 start-page: 612 year: 2019 publication-title: J. Mass Spectrom. – volume: 775 85 27 10 start-page: 75 3836 1686 year: 2013 2013 2016 2018 publication-title: Anal. Chim. Acta Anal. Chem. J. Am. Soc. Mass Spectrom. ACS Appl. Mater. Interfaces – volume: 88 start-page: 8926 year: 2016 publication-title: Anal. Chem. – volume: 83 start-page: 7283 year: 2011 publication-title: Anal. Chem. – volume: 6892 year: 2011 – volume: 12 start-page: 482 year: 2016 publication-title: Nat. Chem. Biol. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 16 start-page: 333 year: 2005 publication-title: J. Am. Soc. Mass Spectrom. – volume: 308 start-page: 1607 year: 2005 publication-title: Science – volume: 40 141 1090 start-page: 1269 2816 1 year: 2011 2016 2019 publication-title: Chem. Soc. Rev. Analyst Anal. Chim. Acta – volume: 35 start-page: 417 year: 2000 publication-title: J. Mass Spectrom. – volume: 48 start-page: 1669 year: 2009 publication-title: Angew. Chem. Int. Ed – volume: 2018 year: 2018 publication-title: Research – volume: 79 start-page: 3535 year: 2007 publication-title: Anal. Chem. – volume: 43 288 start-page: 1063 667 year: 2008 2019 publication-title: J. Mass Spectrom. Sens. Actuators B Chem. – volume: 82 22 48 86 89 9 54 start-page: 6208 2418 9122 1307 2014 2723 year: 2010 2012 2012 2014 2017 2017 2018 publication-title: Anal. Chem. J. Mater. Chem. Chem. Commun. Anal. Chem. Anal. Chem. Anal. Methods Chem. Commun. – volume: 86 start-page: 277 year: 2017 publication-title: Annu. Rev. Biochem. – volume: 77 80 116 start-page: 1641 2973 year: 2005 2008 2012 publication-title: Anal. Chem. Anal. Chem. J. Phys. Chem. C – volume: 79 9 start-page: 4827 5092 year: 2007 2017 publication-title: Anal. Chem. ACS Appl. Mater. Interfaces – volume: 14 start-page: 8453 year: 2012 publication-title: PCCP – volume: 81 82 335 85 809 592 87 919 8 88 91 start-page: 2991 3255 22 97 160 2114 62 1665 9881 8390 year: 2009 2010 2013 2013 2014 2014 2015 2016 2016 2016 2019 publication-title: Anal. Chem. Anal. Chem. Int. J. Mass Spectrom. Anal. Chem. Anal. Chim. Acta Chem. Phys. Lett. Anal. Chem. Anal. Chim. Acta Nanoscale Anal. Chem. Anal. Chem. – volume: 51 start-page: 6088 year: 2015 publication-title: Chem. Commun. – volume: 12 150 42 21 25 start-page: 6938 16 1446 3690 year: 2018 2019 2009 2010 2011 publication-title: ACS Nano Microchem. J. Med. Mol. Morphol. J. Am. Soc. Mass Spectrom. Rapid Commun. Mass Spectrom. – volume: 55 start-page: 4482 year: 2016 publication-title: Angew. Chem. Int. Ed. – volume: 96 year: 2006 publication-title: Phys. Rev. Lett. – volume: 80 start-page: 4761 year: 2008 publication-title: Anal. Chem. – volume: 21 start-page: 1940 year: 2010 publication-title: J. Am. Soc. Mass Spectrom. – volume: 28 start-page: 1716 year: 2017 publication-title: J. Am. Soc. Mass Spectrom. – volume: 3 start-page: 6865 year: 2013 publication-title: RSC Adv. – volume: 26 start-page: 1963 year: 2015 publication-title: J. Am. Soc. Mass Spectrom. – volume: 139 start-page: 3528 year: 2014 publication-title: Analyst – volume: 75 start-page: 4893 year: 2012 publication-title: J. Proteom. – volume: 84 start-page: 7756 year: 2012 publication-title: Anal. Chem. – volume: 697 start-page: 1 year: 2011 publication-title: Anal. Chim. Acta – volume: 16 38 5 start-page: 883 142 7770 year: 2005 2009 2013 publication-title: J. Am. Soc. Mass Spectrom. Chem. Lett. ACS Appl. Mater. Interfaces – volume: 6 start-page: 5998 year: 2015 publication-title: Nat. Commun. – volume: 26 start-page: 606 year: 2007 publication-title: Mass Spectrom. Rev. – volume: 75 start-page: 6191 year: 2003 publication-title: Anal. Chem. – volume: 6 year: 2016 publication-title: RSC Adv. – volume: 449 start-page: 1033 year: 2007 publication-title: Nature – volume: 3 start-page: 1415 year: 2013 publication-title: Sci. Rep. – volume: 143 start-page: 191 year: 1995 publication-title: Int. J. Mass Spectrom. Ion Process. – volume: 79 start-page: 2373 year: 2007 publication-title: Anal. Chem. – volume: 49 start-page: 4929 year: 2013 publication-title: Chem. Commun. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 290 start-page: 72 year: 2010 publication-title: Int. J. Mass Spectrom. – volume: 85 year: 2013 publication-title: Anal. Chem. – volume: 272 start-page: 19 year: 2016 publication-title: J. Neurosci. Methods – volume: 52 year: 2016 publication-title: Chem. Commun. – volume: 406 88 start-page: 1377 186 year: 2014 2015 publication-title: Anal. Bioanal. Chem. Kidney Int – volume: 86 28 start-page: 8496 409 year: 2014 2017 publication-title: Anal. Chem. J. Am. Soc. Mass Spectrom. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 82 83 start-page: 1589 453 year: 2010 2011 publication-title: Anal. Chem. Anal. Chem. – volume: 88 start-page: 7365 year: 2016 publication-title: Anal. Chem. – volume: 81 start-page: 2969 year: 2009 publication-title: Anal. Chem. – volume: 79 start-page: 6575 year: 2007 publication-title: Anal. Chem. – volume: 90 start-page: 240 year: 2018 publication-title: Anal. Chem. – volume: 9 year: 2014 publication-title: PLoS One – volume: 10 start-page: 176 year: 2015 publication-title: Nat. Nanotechnol. – volume: 2 start-page: 151 year: 1988 publication-title: Rapid Commun. Mass Spectrom. – volume: 8 4 4 start-page: 220 223 year: 2017 2018 2020 publication-title: Nat. Commun. ACS Cent. Sci. Small Methods – volume: 114 start-page: 5574 year: 2010 publication-title: J. Phys. Chem. C – volume: 527 9 55 start-page: 2101 e4443 year: 2019 2019 2019 publication-title: J. Comp. Neurol. Sci. Rep. J. Mass Spectrom. – volume: 8 start-page: 8234 year: 2016 publication-title: Anal. Methods – volume: 404 start-page: 113 year: 2012 publication-title: Anal. Bioanal. Chem. – volume: 399 start-page: 243 year: 1999 publication-title: Nature – volume: 114 start-page: 4835 year: 2010 publication-title: J. Phys. Chem. C – volume: 69 7 start-page: 4751 493 year: 1997 2001 publication-title: Anal. Chem. Nat. Med. – ident: e_1_2_7_12_3 doi: 10.1021/ac000746f – ident: e_1_2_7_33_8 doi: 10.1016/j.aca.2016.03.023 – ident: e_1_2_7_15_1 doi: 10.1002/(SICI)1096-9888(200003)35:3<417::AID-JMS952>3.0.CO;2-# – ident: e_1_2_7_71_1 doi: 10.1039/c4an00504j – ident: e_1_2_7_21_4 doi: 10.1002/jms.1632 – ident: e_1_2_7_26_7 doi: 10.1039/C7CC09649F – ident: e_1_2_7_56_1 doi: 10.1021/ac800081z – ident: e_1_2_7_74_1 doi: 10.1007/s13361-015-1243-6 – ident: e_1_2_7_27_1 doi: 10.1016/j.aca.2013.03.007 – ident: e_1_2_7_21_5 doi: 10.1021/ac9026466 – ident: e_1_2_7_25_2 doi: 10.1246/cl.2009.142 – ident: e_1_2_7_40_1 doi: 10.1021/acsami.8b03804 – ident: e_1_2_7_8_1 doi: 10.1021/cr3004295 – ident: e_1_2_7_20_2 doi: 10.1021/acscentsci.7b00546 – ident: e_1_2_7_22_2 doi: 10.1007/s10967-012-2176-1 – ident: e_1_2_7_84_1 doi: 10.1007/s13361-018-2081-0 – ident: e_1_2_7_13_1 doi: 10.1021/ac00119a021 – ident: e_1_2_7_47_1 doi: 10.1039/C6CC07371A – ident: e_1_2_7_58_1 doi: 10.1021/ac402240q – ident: e_1_2_7_75_1 doi: 10.1038/nnano.2014.282 – ident: e_1_2_7_65_1 doi: 10.1038/nchembio.2077 – ident: e_1_2_7_44_1 doi: 10.1155/2018/5439729 – ident: e_1_2_7_54_2 doi: 10.1021/ac1020485 – ident: e_1_2_7_33_1 doi: 10.1021/ac802615r – ident: e_1_2_7_53_2 doi: 10.1016/j.microc.2019.104190 – ident: e_1_2_7_53_4 doi: 10.1016/j.jasms.2010.04.005 – ident: e_1_2_7_88_1 doi: 10.1039/C6RA20469D – ident: e_1_2_7_29_1 doi: 10.1021/ac048460o – ident: e_1_2_7_40_2 doi: 10.1021/acs.analchem.7b04565 – ident: e_1_2_7_41_1 doi: 10.1021/acs.analchem.0c00392 – ident: e_1_2_7_52_1 doi: 10.1038/srep01415 – ident: e_1_2_7_33_4 doi: 10.1021/ac4031658 – ident: e_1_2_7_26_6 doi: 10.1039/C7AY00112F – ident: e_1_2_7_21_1 doi: 10.1126/science.1104404 – ident: e_1_2_7_33_5 doi: 10.1016/j.aca.2013.11.050 – ident: e_1_2_7_34_1 doi: 10.1007/s00216-013-7525-6 – ident: e_1_2_7_36_1 doi: 10.1021/acs.analchem.6b01859 – ident: e_1_2_7_62_1 doi: 10.1002/cne.24566 – ident: e_1_2_7_78_1 doi: 10.1038/ncomms6998 – ident: e_1_2_7_16_1 doi: 10.1021/ac0345695 – ident: e_1_2_7_38_4 doi: 10.1039/C8TB01587B – ident: e_1_2_7_60_1 doi: 10.1039/C6AY02753A – ident: e_1_2_7_35_1 doi: 10.1016/j.jneumeth.2016.02.004 – ident: e_1_2_7_54_1 doi: 10.1021/ac9026077 – ident: e_1_2_7_28_1 doi: 10.1021/ac049657j – ident: e_1_2_7_29_3 doi: 10.1021/jp3034402 – ident: e_1_2_7_63_2 doi: 10.1039/C6AN00220J – ident: e_1_2_7_82_1 doi: 10.1103/PhysRevLett.96.113002 – ident: e_1_2_7_14_1 doi: 10.1038/20400 – ident: e_1_2_7_85_1 doi: 10.1021/ac201602s – ident: e_1_2_7_2_1 doi: 10.1186/1752-0509-2-74 – ident: e_1_2_7_76_1 doi: 10.1021/acs.analchem.8b02362 – ident: e_1_2_7_80_1 doi: 10.1126/science.1111886 – ident: e_1_2_7_21_3 doi: 10.1021/ac071181r – ident: e_1_2_7_90_1 doi: 10.1039/c3cc40934a – ident: e_1_2_7_32_2 doi: 10.1021/acsami.6b14362 – ident: e_1_2_7_10_1 doi: 10.1021/acs.analchem.7b04733 – ident: e_1_2_7_92_1 doi: 10.1002/adfm.201801730 – ident: e_1_2_7_30_1 doi: 10.1016/j.ijms.2009.12.006 – ident: e_1_2_7_38_5 doi: 10.1007/s40820-018-0204-6 – ident: e_1_2_7_64_1 doi: 10.1039/c2cp00038e – ident: e_1_2_7_45_1 doi: 10.1021/acsami.9b16260 – ident: e_1_2_7_26_2 doi: 10.1039/c2jm34745h – ident: e_1_2_7_53_1 doi: 10.1021/acsnano.8b02376 – ident: e_1_2_7_20_1 doi: 10.1038/s41467-017-00220-4 – ident: e_1_2_7_43_2 doi: 10.1007/s13361-016-1560-4 – ident: e_1_2_7_46_3 doi: 10.1039/C6RA00877A – ident: e_1_2_7_37_1 doi: 10.1007/s13361-017-1665-4 – ident: e_1_2_7_46_5 doi: 10.1002/chem.201800994 – ident: e_1_2_7_25_1 doi: 10.1016/j.jasms.2005.03.009 – ident: e_1_2_7_34_2 doi: 10.1038/ki.2015.3 – ident: e_1_2_7_51_1 doi: 10.1371/journal.pone.0090901 – ident: e_1_2_7_77_1 doi: 10.1016/j.jasms.2004.11.017 – ident: e_1_2_7_40_4 doi: 10.1039/C7SC04089J – volume-title: Medical Image Computing and Computer‐Assisted Intervention year: 2011 ident: e_1_2_7_68_1 – ident: e_1_2_7_50_1 doi: 10.1002/dta.1691 – ident: e_1_2_7_3_1 doi: 10.1016/0168-1176(94)04119-R – ident: e_1_2_7_32_1 doi: 10.1021/ac062216a – ident: e_1_2_7_7_2 doi: 10.1038/86573 – volume: 21 start-page: 1940 year: 2010 ident: e_1_2_7_55_1 publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1016/j.jasms.2010.08.002 – ident: e_1_2_7_26_3 doi: 10.1039/c2cc17696c – ident: e_1_2_7_43_1 doi: 10.1021/ac502422a – ident: e_1_2_7_33_7 doi: 10.1021/ac503097v – ident: e_1_2_7_33_9 doi: 10.1039/C5NR06635B – ident: e_1_2_7_40_3 doi: 10.1021/acs.analchem.9b02231 – ident: e_1_2_7_46_4 doi: 10.1016/j.aca.2018.06.035 – volume: 55 start-page: e4443 year: 2019 ident: e_1_2_7_62_3 publication-title: J. Mass Spectrom. doi: 10.1002/jms.4443 – ident: e_1_2_7_42_2 doi: 10.1016/j.snb.2019.02.011 – ident: e_1_2_7_31_1 doi: 10.1038/nature06195 – ident: e_1_2_7_46_1 doi: 10.1016/j.aca.2015.07.029 – ident: e_1_2_7_70_1 doi: 10.1007/s00216-012-6077-5 – ident: e_1_2_7_73_1 doi: 10.1021/ac0706170 – ident: e_1_2_7_25_3 doi: 10.1021/am4024143 – ident: e_1_2_7_72_1 doi: 10.1002/jms.922 – ident: e_1_2_7_26_5 doi: 10.1021/acs.analchem.6b04167 – ident: e_1_2_7_12_2 doi: 10.1002/rcm.451 – ident: e_1_2_7_38_2 doi: 10.1039/C8NA00319J – ident: e_1_2_7_53_5 doi: 10.1002/rcm.5281 – ident: e_1_2_7_26_1 doi: 10.1021/ac101022m – ident: e_1_2_7_18_1 doi: 10.1021/jp9110103 – ident: e_1_2_7_42_1 doi: 10.1002/jms.1385 – ident: e_1_2_7_46_2 doi: 10.1039/C5CC02495A – ident: e_1_2_7_67_1 doi: 10.1146/annurev-biochem-061516-044952 – ident: e_1_2_7_38_3 doi: 10.1002/smll.201803051 – ident: e_1_2_7_27_3 doi: 10.1007/s13361-016-1454-5 – ident: e_1_2_7_62_2 doi: 10.1038/s41598-019-53938-0 – ident: e_1_2_7_86_1 doi: 10.1371/journal.pone.0072532 – ident: e_1_2_7_61_1 doi: 10.1002/anie.201511691 – ident: e_1_2_7_9_1 doi: 10.1016/j.aca.2011.04.008 – ident: e_1_2_7_33_3 doi: 10.1016/j.ijms.2012.10.009 – ident: e_1_2_7_63_1 doi: 10.1039/C0CS00050G – ident: e_1_2_7_91_1 doi: 10.1021/acsami.6b06225 – ident: e_1_2_7_57_1 doi: 10.1021/ac101565f – ident: e_1_2_7_23_1 doi: 10.1021/ac062251h – ident: e_1_2_7_11_1 doi: 10.1016/j.jprot.2012.04.012 – ident: e_1_2_7_6_1 doi: 10.1002/rcm.1290020802 – ident: e_1_2_7_48_1 doi: 10.1021/ac0611465 – ident: e_1_2_7_81_1 doi: 10.1146/annurev-matsci-070616-124259 – ident: e_1_2_7_19_1 doi: 10.1021/jp906834z – ident: e_1_2_7_39_1 doi: 10.1039/C7SC00937B – ident: e_1_2_7_93_1 doi: 10.1021/ac301238k – ident: e_1_2_7_5_1 doi: 10.1021/ac053355f – ident: e_1_2_7_49_1 doi: 10.1021/ac5025864 – ident: e_1_2_7_66_1 doi: 10.1002/mas.20186 – ident: e_1_2_7_24_1 doi: 10.1111/j.1365-313X.2008.03507.x – ident: e_1_2_7_21_2 doi: 10.1021/ac071152g – ident: e_1_2_7_33_10 doi: 10.1021/acs.analchem.6b02733 – ident: e_1_2_7_89_1 doi: 10.1039/c3ra22977g – ident: e_1_2_7_7_1 doi: 10.1021/ac970888i – ident: e_1_2_7_63_3 doi: 10.1016/j.aca.2019.08.048 – ident: e_1_2_7_33_2 doi: 10.1021/ac902990p – ident: e_1_2_7_4_1 doi: 10.1002/mas.20124 – ident: e_1_2_7_59_1 doi: 10.1021/ac802576q – ident: e_1_2_7_12_4 doi: 10.1002/anie.202001135 – ident: e_1_2_7_26_4 doi: 10.1021/ac501943n – ident: e_1_2_7_83_1 doi: 10.1021/acs.analchem.6b02732 – ident: e_1_2_7_22_1 doi: 10.1063/1.1381531 – ident: e_1_2_7_29_2 doi: 10.1021/ac7026029 – ident: e_1_2_7_12_1 doi: 10.1002/rcm.1290081105 – ident: e_1_2_7_27_2 doi: 10.1021/ac3036469 – ident: e_1_2_7_20_3 doi: 10.1002/smtd.201900469 – ident: e_1_2_7_79_1 doi: 10.1039/C4CC08762C – ident: e_1_2_7_33_11 doi: 10.1021/acs.analchem.9b01217 – ident: e_1_2_7_38_1 doi: 10.1007/s12274-017-1591-6 – ident: e_1_2_7_87_1 doi: 10.1002/jms.4370 – ident: e_1_2_7_17_1 doi: 10.1002/anie.200805114 – ident: e_1_2_7_53_3 doi: 10.1007/s00795-008-0427-6 – ident: e_1_2_7_69_1 doi: 10.1021/ac001440b – ident: e_1_2_7_33_6 doi: 10.1016/j.cplett.2013.12.027 – ident: e_1_2_7_27_4 doi: 10.1021/acsami.8b16694 |
SSID | ssj0002511795 |
Score | 2.455774 |
SecondaryResourceType | review_article |
Snippet | Mass spectrometry imaging (MSI) has become an important analytical tool for the label‐free chemical imaging of diverse molecules in biological specimens. This... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | aberrations in chemical imaging inorganic matrices laser desorption ionization mass spectrometry imaging nanophotonic ionization nanostructures |
Title | Mass spectrometry imaging based on laser desorption ionization from inorganic and nanophotonic platforms |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2FVIW.20200063 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgLCwIBIjyUXmAAaGo9UdsZ0SoVUEqYqDQLXJsR61UnCoNAwu_HdtJSxlAYomU5JThYvvene69A-AyQVgjEovIuMUQUZmzSLqwGwmFmMoYdVmIr0OOHtlwTB8m8aQpuHkuTK0PsS64-Z0Rzmu_wWW27H6Lhr7cv7r0LjBNyDbY8exa39KH6dO6xuLhMw-DVzBzC4IkQjS97-5dd_MDP6LSJkoNYWawD_YafAhv6x96ALaMPQTTkYO4MJAivbpAVX7A2VsYLwR9FNKwsNChYFNCbZZFGU4B6AutNccSeg4JnNl6gpOC0mpopS0W06LyyrhwMZeVB6_LIzAe9J_vhlEzIiFSBFEc5ZwlUqHcICI5Nb1MKqKYi9qEoUyTJM56kiqujUv0HFLSCRExT3KluSFMOItj0LKFNScAophzw6RkiUI0Q0oYzLEiLiWjpJcL2gY3KxelqtEP92Ms5mmtfIxT59B05dA2uFpbL2rdjF_sroO3_zTyNzjGp_-wPQO7_kndeHIOWlX5bi4cfKiyTlgjnZB8u-vos_8FMy2_dw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UDnoxGjXizx70YMwCXbt2OxIjAQVOgMTL0rVdIMGOjHnwv7ftBuJBE49LX3p4e-373kvf9wFwGyFfIhyEnjLB4BGeUo-btOuFAlGRUGKqENuHHAxpd0yep8G00jm1szAlP8Sm4WZPhruv7QG3DenmN2vopPdq6js3aoJ3Qd0CGxPW9fZk_DbetFksgmZOe8WnJiZwFIbV83ez1tze4kdi2gaqLtN0DsFBBRFhu_ynR2BH6WMwGxiUC91cpCUYKPJPOH93CkPQJiIJMw0NEFY5lGqV5e4igLbXWo5ZQjtGAue6FHESkGsJNdfZcpYVlhwXLhe8sPh1dQLGnafRY9erVBI8gRHxvZTRiAuUKoQ5I6qVcIEFNYkbU5RIHAVJixPBpDK1ngFLMsJhwKJUSKYwDY3FKajpTKszAFHAmKKc00ggkiARKp_5ApuqjOBWGpIGeFi7KBYVhbhVsljEJfmxHxuHxmuHNsDdxnpZUmf8YnfvvP2nkf3wA__8H7Y3YK87GvTjfm_4cgH27Wr5DuUS1Ir8Q10ZNFEk11XEfAFcVMKM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA66gXgRRcX5Mwc9iJQtTZq0x6GOTd3wYOfwUtIkZYOZlq4e_O9N2m7Og4LHkkcOry_5vvfI-x4AlwFyJcKe7ygTDA7hCXW4gV3HF4iKmBKThdg65HBE-yF5mHiTuuBme2EqfYhVwc2ejPK-tgc8k0n7WzR0PHg16V3ZaYI3QdMzwNRpgGZ3HL6FqyqLJdCsHL3iUhMSOPD9-vW7WWuvb_EDl9Z5agk0vV2wUzNE2K1-6R7YUHofTIeG5MKyLdLqCxT5J5y9lwOGoMUhCVMNDQ9WOZRqkeblPQBtqbXqsoS2iwTOdDXDSUCuJdRcp9k0Law2LszmvLD0dXEAwt79y23fqYckOAIj4joJowEXKFEIc0ZUJ-YCC2pwG1MUSxx4cYcTwaQyqZ7hSjLAvseCREimMPWNxSFo6FSrIwCRx5iinNNAIBIj4SuXuQKbpIzgTuKTFrhZuigStYK4HWQxjyrtYzcyDo2WDm2Bq5V1Viln_GJ3XXr7TyP74Xru8T9sL8DW810vehqMHk_Atl2sXqGcgkaRf6gzwyWK-LwOmC9EesGs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mass+spectrometry+imaging+based+on+laser+desorption+ionization+from+inorganic+and+nanophotonic+platforms&rft.jtitle=View+%28Beijing%2C+China%29&rft.au=Samarah%2C+Laith+Z.&rft.au=Vertes%2C+Akos&rft.date=2020-12-01&rft.issn=2688-3988&rft.eissn=2688-268X&rft.volume=1&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2FVIW.20200063&rft.externalDBID=10.1002%252FVIW.20200063&rft.externalDocID=VIW252 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2688-3988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2688-3988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2688-3988&client=summon |