Single-faceted IrO2 monolayer enabling high-performing proton exchange membrane water electrolysis beyond 10,000 h stability at 1.5 A cm-2
Both commercial and laboratory-synthesized IrO 2 catalysts typically possess rutile-type structures with multiple facets. Theoretical results predict the (101) facet is the most energetically favorable for oxygen evolution reaction owing to its lowest energy barrier. Achieving monolayer thickness wh...
Saved in:
Published in | Nature communications Vol. 16; no. 1; pp. 7236 - 16 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
06.08.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Both commercial and laboratory-synthesized IrO
2
catalysts typically possess rutile-type structures with multiple facets. Theoretical results predict the (101) facet is the most energetically favorable for oxygen evolution reaction owing to its lowest energy barrier. Achieving monolayer thickness while exposing this desired facet is a significant opportunity for IrO
2
. Herein, we develop an ammonia-induced facet engineering for the synthesis of single-faceted IrO
2
(101) monolayer. It achieves 230 mV overpotential at 10 mA cm
geo
-2
in a three-electrode system and 1.70 V at 2 A cm
geo
-2
in a proton exchange membrane (PEM) electrolyzer. Though facet engineering primarily contributes to modulating the intrinsic activity rather than stability, single-faceted IrO
2
monolayer performs over 10,000-hour stability at constant 1.5 A cm
geo
-2
(3.95 mV kh
-1
decay) and 1000-hour stability at 0.2 mg
Ir
cm
geo
-2
under fluctuating conditions. This work proposes that ammonia-induced facet engineering of IrO
2
monolayer enables facet-dependent oxygen evolution reaction (OER) performance and high stability in industrial-scale PEM electrolysis.
IrO2 catalysts typically feature rutile structures with multiple facets. The authors develop an ammonia-induced method to synthesize single-faceted CuO₂ monolayers with the theoretically optimal (101) facet, resulting in high oxygen evolution activity and stability (>10,000 h) in a water electrolyser. |
---|---|
AbstractList | Both commercial and laboratory-synthesized IrO
2
catalysts typically possess rutile-type structures with multiple facets. Theoretical results predict the (101) facet is the most energetically favorable for oxygen evolution reaction owing to its lowest energy barrier. Achieving monolayer thickness while exposing this desired facet is a significant opportunity for IrO
2
. Herein, we develop an ammonia-induced facet engineering for the synthesis of single-faceted IrO
2
(101) monolayer. It achieves 230 mV overpotential at 10 mA cm
geo
-2
in a three-electrode system and 1.70 V at 2 A cm
geo
-2
in a proton exchange membrane (PEM) electrolyzer. Though facet engineering primarily contributes to modulating the intrinsic activity rather than stability, single-faceted IrO
2
monolayer performs over 10,000-hour stability at constant 1.5 A cm
geo
-2
(3.95 mV kh
-1
decay) and 1000-hour stability at 0.2 mg
Ir
cm
geo
-2
under fluctuating conditions. This work proposes that ammonia-induced facet engineering of IrO
2
monolayer enables facet-dependent oxygen evolution reaction (OER) performance and high stability in industrial-scale PEM electrolysis.
IrO2 catalysts typically feature rutile structures with multiple facets. The authors develop an ammonia-induced method to synthesize single-faceted CuO₂ monolayers with the theoretically optimal (101) facet, resulting in high oxygen evolution activity and stability (>10,000 h) in a water electrolyser. Both commercial and laboratory-synthesized IrO2 catalysts typically possess rutile-type structures with multiple facets. Theoretical results predict the (101) facet is the most energetically favorable for oxygen evolution reaction owing to its lowest energy barrier. Achieving monolayer thickness while exposing this desired facet is a significant opportunity for IrO2. Herein, we develop an ammonia-induced facet engineering for the synthesis of single-faceted IrO2(101) monolayer. It achieves 230 mV overpotential at 10 mA cmgeo-2 in a three-electrode system and 1.70 V at 2 A cmgeo-2 in a proton exchange membrane (PEM) electrolyzer. Though facet engineering primarily contributes to modulating the intrinsic activity rather than stability, single-faceted IrO2 monolayer performs over 10,000-hour stability at constant 1.5 A cmgeo-2 (3.95 mV kh-1 decay) and 1000-hour stability at 0.2 mgIr cmgeo-2 under fluctuating conditions. This work proposes that ammonia-induced facet engineering of IrO2 monolayer enables facet-dependent oxygen evolution reaction (OER) performance and high stability in industrial-scale PEM electrolysis.Both commercial and laboratory-synthesized IrO2 catalysts typically possess rutile-type structures with multiple facets. Theoretical results predict the (101) facet is the most energetically favorable for oxygen evolution reaction owing to its lowest energy barrier. Achieving monolayer thickness while exposing this desired facet is a significant opportunity for IrO2. Herein, we develop an ammonia-induced facet engineering for the synthesis of single-faceted IrO2(101) monolayer. It achieves 230 mV overpotential at 10 mA cmgeo-2 in a three-electrode system and 1.70 V at 2 A cmgeo-2 in a proton exchange membrane (PEM) electrolyzer. Though facet engineering primarily contributes to modulating the intrinsic activity rather than stability, single-faceted IrO2 monolayer performs over 10,000-hour stability at constant 1.5 A cmgeo-2 (3.95 mV kh-1 decay) and 1000-hour stability at 0.2 mgIr cmgeo-2 under fluctuating conditions. This work proposes that ammonia-induced facet engineering of IrO2 monolayer enables facet-dependent oxygen evolution reaction (OER) performance and high stability in industrial-scale PEM electrolysis. Both commercial and laboratory-synthesized IrO2 catalysts typically possess rutile-type structures with multiple facets. Theoretical results predict the (101) facet is the most energetically favorable for oxygen evolution reaction owing to its lowest energy barrier. Achieving monolayer thickness while exposing this desired facet is a significant opportunity for IrO2. Herein, we develop an ammonia-induced facet engineering for the synthesis of single-faceted IrO2(101) monolayer. It achieves 230 mV overpotential at 10 mA cmgeo-2 in a three-electrode system and 1.70 V at 2 A cmgeo-2 in a proton exchange membrane (PEM) electrolyzer. Though facet engineering primarily contributes to modulating the intrinsic activity rather than stability, single-faceted IrO2 monolayer performs over 10,000-hour stability at constant 1.5 A cmgeo-2 (3.95 mV kh-1 decay) and 1000-hour stability at 0.2 mgIr cmgeo-2 under fluctuating conditions. This work proposes that ammonia-induced facet engineering of IrO2 monolayer enables facet-dependent oxygen evolution reaction (OER) performance and high stability in industrial-scale PEM electrolysis.IrO2 catalysts typically feature rutile structures with multiple facets. The authors develop an ammonia-induced method to synthesize single-faceted CuO₂ monolayers with the theoretically optimal (101) facet, resulting in high oxygen evolution activity and stability (>10,000 h) in a water electrolyser. Abstract Both commercial and laboratory-synthesized IrO2 catalysts typically possess rutile-type structures with multiple facets. Theoretical results predict the (101) facet is the most energetically favorable for oxygen evolution reaction owing to its lowest energy barrier. Achieving monolayer thickness while exposing this desired facet is a significant opportunity for IrO2. Herein, we develop an ammonia-induced facet engineering for the synthesis of single-faceted IrO2(101) monolayer. It achieves 230 mV overpotential at 10 mA cmgeo -2 in a three-electrode system and 1.70 V at 2 A cmgeo -2 in a proton exchange membrane (PEM) electrolyzer. Though facet engineering primarily contributes to modulating the intrinsic activity rather than stability, single-faceted IrO2 monolayer performs over 10,000-hour stability at constant 1.5 A cmgeo -2 (3.95 mV kh-1 decay) and 1000-hour stability at 0.2 mgIr cmgeo -2 under fluctuating conditions. This work proposes that ammonia-induced facet engineering of IrO2 monolayer enables facet-dependent oxygen evolution reaction (OER) performance and high stability in industrial-scale PEM electrolysis. |
ArticleNumber | 7236 |
Author | Qin, Yufeng Liu, Jianguo Tan, Aidong Shi, Xiaoyun Zhang, Yipeng Zhang, Chunyang Liu, Yubo Zuo, Shouwei Yang, Deren Yue, Yang Jin, Louyu Hua, Kang An, Xuemin |
Author_xml | – sequence: 1 givenname: Deren orcidid: 0000-0002-2133-8612 surname: Yang fullname: Yang, Deren email: yangderen@ncepu.edu.cn organization: Beijing Laboratory of New Energy Storage Technology, Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road – sequence: 2 givenname: Chunyang surname: Zhang fullname: Zhang, Chunyang organization: Beijing Laboratory of New Energy Storage Technology, Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road – sequence: 3 givenname: Yufeng surname: Qin fullname: Qin, Yufeng organization: Beijing Laboratory of New Energy Storage Technology, Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road – sequence: 4 givenname: Yang surname: Yue fullname: Yue, Yang organization: Beijing Laboratory of New Energy Storage Technology, Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road – sequence: 5 givenname: Yubo surname: Liu fullname: Liu, Yubo organization: Beijing Laboratory of New Energy Storage Technology, Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road – sequence: 6 givenname: Xiaoyun surname: Shi fullname: Shi, Xiaoyun organization: Beijing Laboratory of New Energy Storage Technology, Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road – sequence: 7 givenname: Kang surname: Hua fullname: Hua, Kang organization: Beijing Laboratory of New Energy Storage Technology, Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road – sequence: 8 givenname: Xuemin surname: An fullname: An, Xuemin organization: Beijing Laboratory of New Energy Storage Technology, Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road – sequence: 9 givenname: Louyu surname: Jin fullname: Jin, Louyu organization: Beijing Laboratory of New Energy Storage Technology, Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road – sequence: 10 givenname: Yipeng surname: Zhang fullname: Zhang, Yipeng organization: Beijing Laboratory of New Energy Storage Technology, Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road – sequence: 11 givenname: Shouwei orcidid: 0000-0001-8936-4668 surname: Zuo fullname: Zuo, Shouwei email: zuoshouwei16@mails.ucas.ac.cn organization: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences – sequence: 12 givenname: Aidong orcidid: 0009-0000-0289-5942 surname: Tan fullname: Tan, Aidong email: tanad@ncepu.edu.cn organization: Beijing Laboratory of New Energy Storage Technology, Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road – sequence: 13 givenname: Jianguo orcidid: 0000-0002-9229-4936 surname: Liu fullname: Liu, Jianguo email: jianguoliu@ncepu.edu.cn organization: Beijing Laboratory of New Energy Storage Technology, Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road |
BookMark | eNp9ks-OFCEQxjtmjbuu-wKeSLx4sFcooGlOZrPxzySb7EE9E5qunukJDSP0qHPz6s1n9ElkZjbqepCEAMX3_agU9bg6CTFgVT1l9JJR3r7MgolG1RRk3UDTyBoeVGdABauZAn7y1_60ush5TcvgmrVCPKpOBVWN1m1zVv14P4alx3qwDmfsySLdApliiN7uMBEMtvNFQVbjclVvMA0xTfvzJsU5BoJf3cqGJZIJpy7ZgOSLnfc-j25O0e_ymEmHuxh6wuiLksPPb99XJM-2G_0474idCbuUJXhVpptqeFI9HKzPeHG3nlcf37z-cP2uvrl9u7i-uqkdZwJqpFaJnkpludQDyF5IOwwDUNkx3umWNh1Q0KyxRd7oTgsqWxBAWetaAM7Pq8WR20e7Nps0TjbtTLSjOQRiWhqb5tF5NFpzxVx5yHVKMCWtbalmWkEzaIpWFdarI2uz7SbsHYY5WX8Pev8mjCuzjJ8NAw5tYRbC8ztCip-2mGczjdmh96WkcZsNB66EZILpIn32j3QdtymUWh1UVKuW74FwVLkUc044_M6GUbNvIHNsIFMayBwayEAx8aMpF3H51fQH_R_XLzLKyVM |
Cites_doi | 10.1038/s41467-022-35631-5 10.1021/jacs.5b02772 10.1016/j.ijhydene.2021.04.022 10.1016/j.ijhydene.2013.11.056 10.1021/cs501312v 10.1021/jacs.3c14271 10.1126/science.aaf5050 10.1063/1.3382344 10.1021/acscatal.9b05544 10.1039/D2QM01220K 10.1021/acsami.0c01937 10.1146/annurev-chembioeng-060718-030241 10.1002/anie.201608601 10.1021/acsaem.0c00735 10.1016/0927-0256(96)00008-0 10.1016/j.jpowsour.2020.228390 10.1103/PhysRevB.54.11169 10.1039/D0CS01079K 10.1021/acscatal.3c06243 10.1103/PhysRevLett.77.3865 10.1039/C7NR02899G 10.1039/C5SC01251A 10.1002/adma.201903616 10.1021/jacs.8b05206 10.1021/nn501683f 10.1524/zkri.1901.34.1.449 10.1002/jrs.1655 10.1021/jz2016507 10.1038/s41467-021-22296-9 10.1002/cctc.201000397 10.1002/anie.202112870 10.1007/s11051-010-9917-2 10.1038/s41929-018-0085-6 10.1016/j.cej.2023.146255 10.1039/C6CS00328A 10.1021/acs.jpcc.1c10250 10.1039/D2CS00681B 10.1103/PhysRevB.50.17953 10.1021/jz500610u 10.1021/jacs.1c11241 10.1039/D3QM00010A 10.1149/2.0231915jes 10.1002/anie.201402311 10.1038/s41565-024-01699-x 10.1021/acs.jpcc.7b01990 10.1103/PhysRevB.59.1758 10.1039/D2CS00067A 10.1021/acsanm.3c04697 10.1021/acscatal.2c00570 10.1016/j.joule.2021.10.002 10.1039/D1EE02112E 10.1002/adma.201605473 10.1126/sciadv.adf9144 10.1016/j.jelechem.2016.04.033 10.1039/D1TA10324E 10.1016/j.electacta.2018.04.154 10.1038/nnano.2010.235 10.1002/adma.201900510 10.1002/jcc.21759 10.1002/anie.202016199 10.1103/PhysRevB.47.558 10.1103/PhysRevB.49.14251 10.1039/C6CC03010F 10.1039/C5SC00518C 10.1016/j.jpowsour.2016.11.118 10.1038/s41565-021-00986-1 10.1002/adfm.201704796 10.1039/C9CS00607A 10.1021/acscatal.2c00856 10.1039/C9EE01872G 10.1021/jacs.6b07199 10.1039/C8CS00671G 10.1016/j.elecom.2018.10.021 10.1038/s41563-019-0415-3 10.1016/j.jpowsour.2023.232826 10.1002/pssb.201800518 10.1016/j.apcatb.2020.118762 10.1016/j.chempr.2023.05.044 10.1002/adma.202402643 10.1002/smll.202100121 10.1007/BF02649804 10.1021/jacs.4c05204 10.1039/D3TA04597H 10.1021/ic00245a020 10.1021/acs.jpclett.4c02616 10.1002/anie.202114437 10.1002/adma.202208539 10.1038/s41467-024-54987-4 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025. The Author(s). The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025. The Author(s). – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-025-62665-2 |
DatabaseName | Springer Nature OA/Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Engineering |
EISSN | 2041-1723 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_99371ca35cb74175aa80919726f90ea7 PMC12328741 10_1038_s41467_025_62665_2 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (22205061), Hebei Province Outstanding Youth Fund (B2024502007),the Double First-class University Construction Project of North China Electric Power University (XM2412302) and the Fundamental Research Funds for the Central Universities (JB2024087). – fundername: This work was supported by the National Key R&D Plan of China (2021YFB4000101), the National Natural Science Foundation of China (22205061), Hebei Province Outstanding Youth Fund (B2024502007), Interdisciplinary Innovation Program of North China Electric Power University, the Double First-class University Construction Project of North China Electric Power University (XM2412302) and the Fundamental Research Funds for the Central Universities (JB2024087). |
GroupedDBID | --- 0R~ 39C 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ AARCD AASML ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M48 P64 PKEHL PQEST PQUKI RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c3142-e0a74d057a359f25d45afff205b13b9806b202916a31469b94058242018c82233 |
IEDL.DBID | C6C |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:23:56 EDT 2025 Thu Aug 21 18:22:44 EDT 2025 Thu Aug 07 17:41:15 EDT 2025 Sat Aug 23 12:38:20 EDT 2025 Thu Aug 14 00:09:17 EDT 2025 Thu Aug 07 06:02:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3142-e0a74d057a359f25d45afff205b13b9806b202916a31469b94058242018c82233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8936-4668 0000-0002-9229-4936 0009-0000-0289-5942 0000-0002-2133-8612 |
OpenAccessLink | https://www.nature.com/articles/s41467-025-62665-2 |
PMID | 40769986 |
PQID | 3237097831 |
PQPubID | 546298 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_99371ca35cb74175aa80919726f90ea7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12328741 proquest_miscellaneous_3237451419 proquest_journals_3237097831 crossref_primary_10_1038_s41467_025_62665_2 springer_journals_10_1038_s41467_025_62665_2 |
PublicationCentury | 2000 |
PublicationDate | 20250806 |
PublicationDateYYYYMMDD | 2025-08-06 |
PublicationDate_xml | – month: 8 year: 2025 text: 20250806 day: 6 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | SM Alia (62665_CR16) 2018; 8 C Hu (62665_CR90) 2023; 9 Y Lee (62665_CR20) 2012; 3 K-S Kim (62665_CR35) 2022; 12 Y Chen (62665_CR72) 2023; 475 S Hao (62665_CR50) 2021; 16 J Song (62665_CR2) 2020; 49 J-Y Zhu (62665_CR23) 2020; 12 X Huang (62665_CR44) 2011; 6 Z Fan (62665_CR15) 2021; 5 W Sun (62665_CR48) 2015; 6 AV Korotcov (62665_CR55) 2007; 38 L Yang (62665_CR34) 2023; 35 G Li (62665_CR19) 2017; 9 HS Oh (62665_CR79) 2015; 6 VK Puthiyapura (62665_CR89) 2014; 39 SW Kim (62665_CR42) 2014; 8 H Li (62665_CR64) 2018; 9 Z Li (62665_CR67) 2024; 36 L Li (62665_CR71) 2023; 11 S Albertin (62665_CR60) 2022; 126 G Kresse (62665_CR93) 1996; 6 K Ayers (62665_CR88) 2019; 10 S Grimme (62665_CR100) 2010; 132 Q Wu (62665_CR75) 2023; 7 C Roiron (62665_CR54) 2024; 15 CV Pham (62665_CR74) 2020; 269 F Hegge (62665_CR80) 2020; 3 G Kresse (62665_CR98) 1999; 59 SM Alia (62665_CR85) 2019; 166 S Geiger (62665_CR73) 2018; 1 Q Shi (62665_CR7) 2019; 48 J Shan (62665_CR11) 2019; 31 L Zu (62665_CR24) 2022; 144 S Cherevko (62665_CR84) 2016; 773 JC Cruz (62665_CR92) 2011; 13 J Lim (62665_CR22) 2022; 524 62665_CR77 B Jiang (62665_CR25) 2018; 140 K Hua (62665_CR29) 2024; 14 N-T Suen (62665_CR3) 2017; 46 S Sun (62665_CR38) 2016; 52 O Kasian (62665_CR53) 2019; 12 J Liang (62665_CR63) 2024; 15 Y Wang (62665_CR69) 2023; 9 PE Blöchl (62665_CR97) 1994; 50 W Zhu (62665_CR8) 2023; 14 HG Sanchez Casalongue (62665_CR52) 2014; 53 G Kresse (62665_CR94) 1993; 47 H-S Oh (62665_CR12) 2016; 138 S Stiber (62665_CR78) 2022; 15 J Yang (62665_CR40) 2019; 18 KA Stoerzinger (62665_CR32) 2014; 5 MI Abdullah (62665_CR68) 2024; 15 M Chatenet (62665_CR4) 2022; 51 G Wulff (62665_CR46) 1901; 34 G Kresse (62665_CR96) 1996; 54 HB Tao (62665_CR5) 2024; 19 C Rakousky (62665_CR86) 2018; 278 Q Dang (62665_CR14) 2021; 12 L Zhuang (62665_CR49) 2021; 17 J Knöppel (62665_CR6) 2021; 12 G Meng (62665_CR58) 2019; 31 L Yang (62665_CR70) 2018; 9 C Rakousky (62665_CR81) 2017; 342 J Lim (62665_CR21) 2018; 28 62665_CR18 R-T Liu (62665_CR1) 2023; 52 M Albani (62665_CR45) 2019; 256 A Zagalskaya (62665_CR33) 2020; 10 SP Sasikala (62665_CR39) 2017; 29 M Li (62665_CR36) 2021; 60 JW Cahn (62665_CR47) 1996; 27 S Grimme (62665_CR101) 2011; 32 F Liao (62665_CR26) 2023; 14 A Loncar (62665_CR66) 2022; 61 G Kresse (62665_CR95) 1994; 49 Y-H Fang (62665_CR62) 2014; 4 L Li (62665_CR37) 2022; 51 O Matz (62665_CR59) 2017; 121 C Wang (62665_CR56) 2021; 60 JP Perdew (62665_CR99) 1996; 77 H Yu (62665_CR57) 2024; 146 Y Honsho (62665_CR82) 2023; 564 W Jung (62665_CR43) 2015; 17 TW Hambley (62665_CR41) 1986; 25 BT Jebaslinhepzybai (62665_CR65) 2021; 46 S Kwon (62665_CR51) 2024; 146 D Wu (62665_CR9) 2021; 12 C Liu (62665_CR87) 2018; 97 IC Man (62665_CR102) 2011; 3 RJ Ouimet (62665_CR30) 2022; 12 C Spori (62665_CR76) 2017; 56 K Hua (62665_CR28) 2024; 7 S Siracusano (62665_CR83) 2020; 468 R Li (62665_CR10) 2021; 12 M Retuerto (62665_CR61) 2022; 13 S Lee (62665_CR17) 2022; 13 Y Lee (62665_CR31) 2012; 3 LC Seitz (62665_CR13) 2016; 353 Y Zhu (62665_CR27) 2022; 13 H Wu (62665_CR91) 2022; 10 |
References_xml | – volume: 13 year: 2022 ident: 62665_CR61 publication-title: Nat. Commun. doi: 10.1038/s41467-022-35631-5 – volume: 17 start-page: 7266 year: 2015 ident: 62665_CR43 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b02772 – ident: 62665_CR77 – volume: 46 start-page: 21924 year: 2021 ident: 62665_CR65 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2021.04.022 – volume: 39 start-page: 1905 year: 2014 ident: 62665_CR89 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2013.11.056 – volume: 4 start-page: 4364 year: 2014 ident: 62665_CR62 publication-title: ACS Catal. doi: 10.1021/cs501312v – volume: 146 start-page: 11719 year: 2024 ident: 62665_CR51 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c14271 – volume: 353 start-page: 1011 year: 2016 ident: 62665_CR13 publication-title: Science doi: 10.1126/science.aaf5050 – volume: 132 start-page: 154104 year: 2010 ident: 62665_CR100 publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 10 start-page: 3650 year: 2020 ident: 62665_CR33 publication-title: ACS Catal. doi: 10.1021/acscatal.9b05544 – ident: 62665_CR18 doi: 10.1039/D2QM01220K – volume: 12 start-page: 14064 year: 2020 ident: 62665_CR23 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c01937 – volume: 10 start-page: 219 year: 2019 ident: 62665_CR88 publication-title: Annu. Rev. Chem. Biomol. doi: 10.1146/annurev-chembioeng-060718-030241 – volume: 56 start-page: 5994 year: 2017 ident: 62665_CR76 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201608601 – volume: 3 start-page: 8276 year: 2020 ident: 62665_CR80 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c00735 – volume: 6 start-page: 15 year: 1996 ident: 62665_CR93 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 468 start-page: 228390 year: 2020 ident: 62665_CR83 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228390 – volume: 54 start-page: 11169 year: 1996 ident: 62665_CR96 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 51 start-page: 4583 year: 2022 ident: 62665_CR4 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01079K – volume: 14 start-page: 3712 year: 2024 ident: 62665_CR29 publication-title: ACS Catal. doi: 10.1021/acscatal.3c06243 – volume: 12 year: 2021 ident: 62665_CR9 publication-title: Nat. Commun. – volume: 77 start-page: 3865 year: 1996 ident: 62665_CR99 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 9 start-page: 9291 year: 2017 ident: 62665_CR19 publication-title: Nanoscale doi: 10.1039/C7NR02899G – volume: 6 start-page: 4993 year: 2015 ident: 62665_CR48 publication-title: Chem. Sci. doi: 10.1039/C5SC01251A – volume: 31 start-page: 1903616 year: 2019 ident: 62665_CR58 publication-title: Adv. Mater. doi: 10.1002/adma.201903616 – volume: 140 start-page: 12434 year: 2018 ident: 62665_CR25 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05206 – volume: 8 start-page: 6556 year: 2014 ident: 62665_CR42 publication-title: ACS Nano doi: 10.1021/nn501683f – volume: 34 start-page: 449 year: 1901 ident: 62665_CR46 publication-title: Z. Krist.-cryst. Mater. doi: 10.1524/zkri.1901.34.1.449 – volume: 38 start-page: 737 year: 2007 ident: 62665_CR55 publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.1655 – volume: 3 start-page: 399 year: 2012 ident: 62665_CR20 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz2016507 – volume: 12 year: 2021 ident: 62665_CR6 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22296-9 – volume: 3 start-page: 1159 year: 2011 ident: 62665_CR102 publication-title: ChemCatChem doi: 10.1002/cctc.201000397 – volume: 60 start-page: 27126 year: 2021 ident: 62665_CR56 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202112870 – volume: 13 start-page: 1639 year: 2011 ident: 62665_CR92 publication-title: J. Nanopart. Res. doi: 10.1007/s11051-010-9917-2 – volume: 9 year: 2018 ident: 62665_CR64 publication-title: Nat. Commun. – volume: 1 start-page: 508 year: 2018 ident: 62665_CR73 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0085-6 – volume: 475 start-page: 146255 year: 2023 ident: 62665_CR72 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.146255 – volume: 46 start-page: 337 year: 2017 ident: 62665_CR3 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00328A – volume: 126 start-page: 5244 year: 2022 ident: 62665_CR60 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.1c10250 – volume: 52 start-page: 5652 year: 2023 ident: 62665_CR1 publication-title: Chem. Soc. Rev. doi: 10.1039/D2CS00681B – volume: 50 start-page: 17953 year: 1994 ident: 62665_CR97 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 9 year: 2018 ident: 62665_CR70 publication-title: Nat. Commun. – volume: 5 start-page: 1636 year: 2014 ident: 62665_CR32 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz500610u – volume: 144 start-page: 2208 year: 2022 ident: 62665_CR24 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c11241 – volume: 7 start-page: 1025 year: 2023 ident: 62665_CR75 publication-title: Mater. Chem. Front. doi: 10.1039/D3QM00010A – volume: 166 start-page: F1164 year: 2019 ident: 62665_CR85 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0231915jes – volume: 53 start-page: 7169 year: 2014 ident: 62665_CR52 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201402311 – volume: 19 start-page: 1074 year: 2024 ident: 62665_CR5 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-024-01699-x – volume: 121 start-page: 13135 year: 2017 ident: 62665_CR59 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.7b01990 – volume: 59 start-page: 1758 year: 1999 ident: 62665_CR98 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 13 year: 2022 ident: 62665_CR27 publication-title: Nat. Commun. – volume: 51 start-page: 7327 year: 2022 ident: 62665_CR37 publication-title: Chem. Soc. Rev. doi: 10.1039/D2CS00067A – volume: 7 start-page: 487 year: 2024 ident: 62665_CR28 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.3c04697 – volume: 12 start-page: 6159 year: 2022 ident: 62665_CR30 publication-title: ACS Catal. doi: 10.1021/acscatal.2c00570 – volume: 5 start-page: 3221 year: 2021 ident: 62665_CR15 publication-title: Joule doi: 10.1016/j.joule.2021.10.002 – volume: 15 start-page: 109 year: 2022 ident: 62665_CR78 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE02112E – volume: 29 start-page: 1605473 year: 2017 ident: 62665_CR39 publication-title: Adv. Mater. doi: 10.1002/adma.201605473 – volume: 9 start-page: eadf9144 year: 2023 ident: 62665_CR90 publication-title: Sci. Adv. doi: 10.1126/sciadv.adf9144 – volume: 773 start-page: 69 year: 2016 ident: 62665_CR84 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2016.04.033 – volume: 10 start-page: 13170 year: 2022 ident: 62665_CR91 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA10324E – volume: 278 start-page: 324 year: 2018 ident: 62665_CR86 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.04.154 – volume: 14 year: 2023 ident: 62665_CR26 publication-title: Nat. Commun. – volume: 6 start-page: 28 year: 2011 ident: 62665_CR44 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.235 – volume: 31 start-page: 1900510 year: 2019 ident: 62665_CR11 publication-title: Adv. Mater. doi: 10.1002/adma.201900510 – volume: 32 start-page: 1456 year: 2011 ident: 62665_CR101 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21759 – volume: 60 start-page: 8243 year: 2021 ident: 62665_CR36 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202016199 – volume: 47 start-page: 558 year: 1993 ident: 62665_CR94 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.558 – volume: 14 year: 2023 ident: 62665_CR8 publication-title: Nat. Commun. – volume: 49 start-page: 14251 year: 1994 ident: 62665_CR95 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.49.14251 – volume: 52 start-page: 7036 year: 2016 ident: 62665_CR38 publication-title: Chem. Commun. doi: 10.1039/C6CC03010F – volume: 6 start-page: 3321 year: 2015 ident: 62665_CR79 publication-title: Chem. Sci. doi: 10.1039/C5SC00518C – volume: 342 start-page: 38 year: 2017 ident: 62665_CR81 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.11.118 – volume: 16 start-page: 1371 year: 2021 ident: 62665_CR50 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00986-1 – volume: 28 start-page: 1704796 year: 2018 ident: 62665_CR21 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201704796 – volume: 12 year: 2021 ident: 62665_CR14 publication-title: Nat. Commun. – volume: 49 start-page: 2196 year: 2020 ident: 62665_CR2 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00607A – volume: 12 start-page: 6334 year: 2022 ident: 62665_CR35 publication-title: ACS Catal. doi: 10.1021/acscatal.2c00856 – volume: 12 start-page: 3548 year: 2019 ident: 62665_CR53 publication-title: Energ. Environ. Sci. doi: 10.1039/C9EE01872G – volume: 138 start-page: 12552 year: 2016 ident: 62665_CR12 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b07199 – volume: 48 start-page: 3181 year: 2019 ident: 62665_CR7 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00671G – volume: 97 start-page: 96 year: 2018 ident: 62665_CR87 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2018.10.021 – volume: 8 start-page: 3 year: 2018 ident: 62665_CR16 publication-title: ACS Catal. – volume: 18 start-page: 970 year: 2019 ident: 62665_CR40 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0415-3 – volume: 564 start-page: 232826 year: 2023 ident: 62665_CR82 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2023.232826 – volume: 256 year: 2019 ident: 62665_CR45 publication-title: Phys. Status Solidi B doi: 10.1002/pssb.201800518 – volume: 269 start-page: 118762 year: 2020 ident: 62665_CR74 publication-title: Appl. Catal. doi: 10.1016/j.apcatb.2020.118762 – volume: 524 year: 2022 ident: 62665_CR22 publication-title: J. Power Sources – volume: 9 start-page: 2931 year: 2023 ident: 62665_CR69 publication-title: Chem doi: 10.1016/j.chempr.2023.05.044 – volume: 15 year: 2024 ident: 62665_CR63 publication-title: Nat. Commun. – volume: 36 start-page: 2402643 year: 2024 ident: 62665_CR67 publication-title: Adv. Mater. doi: 10.1002/adma.202402643 – volume: 3 start-page: 399 year: 2012 ident: 62665_CR31 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz2016507 – volume: 17 year: 2021 ident: 62665_CR49 publication-title: Small doi: 10.1002/smll.202100121 – volume: 12 year: 2021 ident: 62665_CR10 publication-title: Nat. Commun. – volume: 27 start-page: 1431 year: 1996 ident: 62665_CR47 publication-title: Metall. Mater. Trans. A doi: 10.1007/BF02649804 – volume: 13 year: 2022 ident: 62665_CR17 publication-title: Nat. Commun. – volume: 146 start-page: 20251 year: 2024 ident: 62665_CR57 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.4c05204 – volume: 11 start-page: 25268 year: 2023 ident: 62665_CR71 publication-title: J. Mater. Chem. A doi: 10.1039/D3TA04597H – volume: 25 start-page: 4553 year: 1986 ident: 62665_CR41 publication-title: Inorg. Chem. doi: 10.1021/ic00245a020 – volume: 15 start-page: 11217 year: 2024 ident: 62665_CR54 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.4c02616 – volume: 61 start-page: e202114437 year: 2022 ident: 62665_CR66 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202114437 – volume: 35 start-page: 2208539 year: 2023 ident: 62665_CR34 publication-title: Adv. Mater. doi: 10.1002/adma.202208539 – volume: 15 year: 2024 ident: 62665_CR68 publication-title: Nat. Commun. doi: 10.1038/s41467-024-54987-4 |
SSID | ssj0000391844 |
Score | 2.4771566 |
Snippet | Both commercial and laboratory-synthesized IrO
2
catalysts typically possess rutile-type structures with multiple facets. Theoretical results predict the (101)... Both commercial and laboratory-synthesized IrO2 catalysts typically possess rutile-type structures with multiple facets. Theoretical results predict the (101)... Abstract Both commercial and laboratory-synthesized IrO2 catalysts typically possess rutile-type structures with multiple facets. Theoretical results predict... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 7236 |
SubjectTerms | 119/118 147/143 639/301/299/886 639/301/357/1018 Ammonia Catalysts Chemical synthesis Electrolysis Energy Engineering Evolution Green hydrogen Humanities and Social Sciences Membranes Monolayers Morphology multidisciplinary Oxidation Oxygen Oxygen evolution reactions Protons Rutile Science Science (multidisciplinary) Stability |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NaxUxFA1SKLgRWxVHq0RwZ8dOPt9kWcVSBXWhhe5CMpNQwTevtK_Y7rrtzt_oL_EkmVc7BXHjYhaTDybJvZl7Qu65l5CXMGGR6cRuZ21TSx1VjV2UnBxD0LF32ofEd_74Se8fyA-H6vBGqq_kE1bCA5eF20n2k3VOqM7D-M2Ucy1MnJlxHU0TXOaRo-DGYSr_g4XB0UWOLJlGtDunMv8TUvZWYPjk2jWxRDlg_wRl3vaRvHVRmu3P3n1ybwSOdLcMeIPcCcMmWS-pJC8ekJ9f0Ot7qKPrAIN7-v7kM6dQMZxcAappSBQptKApPHF9XNgC6T3FaVgMNJwXBjCdhznOz0OgPwBC0a9kyclxS6jPbBfKmm1M_dfl1REFtMzOtRfULSl7rVC4i6eb1_whOdh79_Xtfj1mW6g7wSSvQ-Nmsgd8w1qbyFUvlYsx8kZ5JrxpG-15w4EmHZpr4w2gXgsDDyF3QBlCPCJrw2IIjwlVhslgVPQaxo855oLvOaCmCxAiIGZFXq1W3h6XoBo2X4aL1hY5WcjJZjlZXpE3STjXLVNA7FwANbGjmth_qUlFtlaiteMuPbWCi1nmsWBEL66rsb_SpQmWenFW2kigSmYq0k5UYjKgac3w7ShH6k54tcV4KrK90p4_X__7jJ_8jxk_JXd50vbk3qK3yNry5Cw8A4Ba-ud5r_wGAcIXWA priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BbtQwEB1BERI9ICighhZkJG40NHZsJzmhgqgKEnCASnuz7MSmSN1ku7sV7Y0rN76RL2HGyW5JJThEURJHdjIez7M98wbgOZqwwDVFt_MyS6UOKkUtIidH73VorHae4p0_fNRHx_L9RE2GBbfF4Fa5GhPjQN10Na2R7-ciL2LMAX81O0spaxTtrg4pNG7CLaIuI5euYlKs11iI_byUcoiVyfJyfyHjyEA5XBHJk4PXyB5F2v4R1rzuKXltuzRaocN7cHeAj-ygl_d9uOHbLbjdJ5S83ILNv-gFH8Cvz3g69WmwNULjhr2bfxIMvwNnswi0maewKSzBiLI4nfURBHRN3A1dy_xFHxXMpn6Kc-rWs-8ITPG9PnNO5DJhLkbAMJ7t4Y_4_ePnCUO4GR1uL5ldMv5S4c0DPOppKh7C8eHbL2-O0iEDQ1rnXIrUZ7aQDUI6m6sqCNVIZUMIIlOO564qM-1EJhBhWiyuK1ch_CvR6KPga0Qeef4INtqu9dvAVMWlr1RwGg0it9x61wiEn9bXDudsPIEXKzmYWU-0YeIGeV6aXmoGpWai1IxI4DWJal2SSLLjjW7-1Qw6Zwh68RqbjjVIhEnWloiOqkLoUGXeFgnsrgRtBs1dmKt-lsCz9WPUOdpIwV_dnfdlJCJNXiVQjjrIqEHjJ-23k8jeTRi2xPYksLfqS1e1__uLH_-_sTtwR1CvJmcWvQsby_m5f4JwaemeRp34A2vEFFY priority: 102 providerName: ProQuest |
Title | Single-faceted IrO2 monolayer enabling high-performing proton exchange membrane water electrolysis beyond 10,000 h stability at 1.5 A cm-2 |
URI | https://link.springer.com/article/10.1038/s41467-025-62665-2 https://www.proquest.com/docview/3237097831 https://www.proquest.com/docview/3237451419 https://pubmed.ncbi.nlm.nih.gov/PMC12328741 https://doaj.org/article/99371ca35cb74175aa80919726f90ea7 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLb2Q0hcEOOHKIzKSNxYIHYcJzl21bpRiYEYk3qz7MTekGg6dZ1gN67c-Bv5S_jsJJ0yjQOHNGry3Dh57_V9jt_7TMhrhDDHpK9uZ3kcCenSCF7kkxytla7S0lhf7_zhWB6diuksnW0Q3tXChKT9QGkZ_qa77LB3lyK4tF98FRDcZ2Ztkm1P3e6teizH6_cqnvE8F6Ktj4mT_I6mvRgUqPp7-PJ2duStKdIQeSYPyYMWMtJR08kdsmHrR-Res4jk9WPy-wStvtnI6RIAuKLvlx85hXFhzAo4Ta0vjoIE9cTE0UVTJ-C_e4aGRU3tj6b2l87tHCPn2tLvgJ9o16yPExhLqAl1LpTFe7j1Pz9_nVOAypBWe031irK3KQ6OsJXziD8hp5ODL-OjqF1nISoTJnhkY52JCsBNJ2nheFqJVDvneJwalpgij6XhMQeO1BCXhSkA8nKEdqi3BL5Ikqdkq17U9hmhacGELVJnJMIe00xbU3GATG1Lg5EZG5A33ZNXFw2dhgrT4EmuGj0p6EkFPSk-IPteOWtJT4UdDiyWZ6o1DeUBFivRdVxBAAxpnQMDFRmXroitzgZkt1Otav3zUiU8yUIFC3r0an0anuWnS_CoF1eNjACeZMWA5D2T6HWof6b-eh44uj1ShXni5_c667m5-r_v-Pn_ib8g97m3a5_CInfJ1mp5ZV8CJK3MkGxmswyf-eRwSLZHo-nJFPv9g-NPn4fBY4bh9cNf6eQTgw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH-ahhBwQDBABAYYCU4sLHac1D4gND5Kyz44sEm7eU7iMCSalLbT6I0rN_4S_ij-Et5zko5OgtsOVdXEVRy_r9-z3wfAEzRhJU8pu52rKJRpmYQoRRTk6FxaFjbNHOU77-6lgwP5_jA5XIFfXS4MhVV2OtEr6qLOaY98MxZxz-cc8JfjryF1jaLT1a6FRsMW225-ii7b9MXwDdL3qRD9t_uvB2HbVSDMYy5F6CLbkwXCFBsnuhRJIRNblqWIkozHmVZRmolIIGqyODzVmUZIo9CQ4cvkaE1pAxRV_iUZx5okSvXfLfZ0qNq6krLNzYlitTmVXhNRz1j0HCigbMn--TYBS9j2fGTmueNZb_X6N-B6C1fZVsNfN2HFVWtwuWlgOV-Da3-VM7wFPz_i1xcXljZHKF6w4eSDYLhu6D0jsGeO0rRwBKMSyeG4yVig31Qroq6Y-9ZkIbORG6EPXzl2ikAY_9d06vG1U1jmM24YjzZwIX5__3HMEN76AN85szPGnyd4cQs_-SgUt-HgQmhzB1arunJ3gSWaS6eTMkvRAHPLrcsKgXDXujxDH5EH8Kyjgxk3hT2MP5CPlWmoZpBqxlPNiABeEakWI6kot79QTz6ZVsYNQT2e49TxCRJhmbUK0ZjuibTUkbO9ANY7QptWU0zNGV8H8HhxG2WcDm5wqeuTZoxEZMt1AGqJQZYmtHyn-nzsq4UTZlY4nwA2Ol46e_q_3_je_yf7CK4M9nd3zM5wb_s-XBXE4RRIk67D6mxy4h4gVJtlD718MDi6aIH8A2FeTU4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH-ahkBwQDBABAYYCU4sNHacrwNCg1GtDAYSTOrNcxKbIdGktJ1Gb1y58ffw5_CX8J6TdGQS3Haoqiau4vh9_Z79PgAeoQmzPKbsdp4Gvoxt5KMUUZCjMbEtdZwbynd-ux_vHsjX42i8Br-6XBgKq-x0olPUZV3QHvkgFGHicg74wLZhEe93hs-nX33qIEUnrV07jYZF9szyBN23-bPRDtL6sRDDVx9f7vpthwG_CLkUvgl0IkuELDqMMiuiUkbaWiuCKOdhnqVBnItAIILSODzO8gzhTYpGDV-sQMtKm6Go_i8kYcRJxpJxstrfocrrqZRtnk4QpoO5dFqJ-seiF0HBZT1b6FoG9HDu2SjNM0e1zgIOr8HVFrqy7YbXrsOaqTbgYtPMcrkBV_4qbXgDfn7Ary_Gt7pAWF6y0eydYLhu6EkjyGeGUrZwBKNyyf60yV6g31Q3oq6Y-dZkJLOJmaA_Xxl2gqAY_9d07XF1VFjusm8YD7ZwIX5__3HEEOq6YN8l0wvGn0Z4cRs_xcQXN-HgXGhzC9arujK3gUUZlyaLbB6jMeaaa5OXAqGvNkWO_iL34ElHBzVtinwodzgfpqqhmkKqKUc1JTx4QaRajaQC3e5CPfukWnlXBPt4gVPHJ0iEaFqniMyyRMQ2C4xOPNjsCK1arTFXpzzuwcPVbZR3OsTBpa6PmzESUS7PPEh7DNKbUP9O9fnIVQ4n_JzifDzY6njp9On_fuM7_5_sA7iEoqjejPb37sJlQQxOMTXxJqwvZsfmHqK2RX7fiQeDw_OWxz_t9VF7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-faceted+IrO2+monolayer+enabling+high-performing+proton+exchange+membrane+water+electrolysis+beyond+10%2C000%E2%80%89h+stability+at+1.5%E2%80%89A%E2%80%89cm-2&rft.jtitle=Nature+communications&rft.au=Yang%2C+Deren&rft.au=Zhang%2C+Chunyang&rft.au=Qin%2C+Yufeng&rft.au=Yue%2C+Yang&rft.date=2025-08-06&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=16&rft_id=info:doi/10.1038%2Fs41467-025-62665-2&rft_id=info%3Apmid%2F40769986&rft.externalDocID=PMC12328741 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |