Single-faceted IrO2 monolayer enabling high-performing proton exchange membrane water electrolysis beyond 10,000 h stability at 1.5 A cm-2

Both commercial and laboratory-synthesized IrO 2 catalysts typically possess rutile-type structures with multiple facets. Theoretical results predict the (101) facet is the most energetically favorable for oxygen evolution reaction owing to its lowest energy barrier. Achieving monolayer thickness wh...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 16; no. 1; pp. 7236 - 16
Main Authors Yang, Deren, Zhang, Chunyang, Qin, Yufeng, Yue, Yang, Liu, Yubo, Shi, Xiaoyun, Hua, Kang, An, Xuemin, Jin, Louyu, Zhang, Yipeng, Zuo, Shouwei, Tan, Aidong, Liu, Jianguo
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 06.08.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Both commercial and laboratory-synthesized IrO 2 catalysts typically possess rutile-type structures with multiple facets. Theoretical results predict the (101) facet is the most energetically favorable for oxygen evolution reaction owing to its lowest energy barrier. Achieving monolayer thickness while exposing this desired facet is a significant opportunity for IrO 2 . Herein, we develop an ammonia-induced facet engineering for the synthesis of single-faceted IrO 2 (101) monolayer. It achieves 230 mV overpotential at 10 mA cm geo -2 in a three-electrode system and 1.70 V at 2 A cm geo -2 in a proton exchange membrane (PEM) electrolyzer. Though facet engineering primarily contributes to modulating the intrinsic activity rather than stability, single-faceted IrO 2 monolayer performs over 10,000-hour stability at constant 1.5 A cm geo -2 (3.95 mV kh -1 decay) and 1000-hour stability at 0.2 mg Ir cm geo -2 under fluctuating conditions. This work proposes that ammonia-induced facet engineering of IrO 2 monolayer enables facet-dependent oxygen evolution reaction (OER) performance and high stability in industrial-scale PEM electrolysis. IrO2 catalysts typically feature rutile structures with multiple facets. The authors develop an ammonia-induced method to synthesize single-faceted CuO₂ monolayers with the theoretically optimal (101) facet, resulting in high oxygen evolution activity and stability (>10,000 h) in a water electrolyser.
AbstractList Both commercial and laboratory-synthesized IrO 2 catalysts typically possess rutile-type structures with multiple facets. Theoretical results predict the (101) facet is the most energetically favorable for oxygen evolution reaction owing to its lowest energy barrier. Achieving monolayer thickness while exposing this desired facet is a significant opportunity for IrO 2 . Herein, we develop an ammonia-induced facet engineering for the synthesis of single-faceted IrO 2 (101) monolayer. It achieves 230 mV overpotential at 10 mA cm geo -2 in a three-electrode system and 1.70 V at 2 A cm geo -2 in a proton exchange membrane (PEM) electrolyzer. Though facet engineering primarily contributes to modulating the intrinsic activity rather than stability, single-faceted IrO 2 monolayer performs over 10,000-hour stability at constant 1.5 A cm geo -2 (3.95 mV kh -1 decay) and 1000-hour stability at 0.2 mg Ir cm geo -2 under fluctuating conditions. This work proposes that ammonia-induced facet engineering of IrO 2 monolayer enables facet-dependent oxygen evolution reaction (OER) performance and high stability in industrial-scale PEM electrolysis. IrO2 catalysts typically feature rutile structures with multiple facets. The authors develop an ammonia-induced method to synthesize single-faceted CuO₂ monolayers with the theoretically optimal (101) facet, resulting in high oxygen evolution activity and stability (>10,000 h) in a water electrolyser.
Both commercial and laboratory-synthesized IrO2 catalysts typically possess rutile-type structures with multiple facets. Theoretical results predict the (101) facet is the most energetically favorable for oxygen evolution reaction owing to its lowest energy barrier. Achieving monolayer thickness while exposing this desired facet is a significant opportunity for IrO2. Herein, we develop an ammonia-induced facet engineering for the synthesis of single-faceted IrO2(101) monolayer. It achieves 230 mV overpotential at 10 mA cmgeo-2 in a three-electrode system and 1.70 V at 2 A cmgeo-2 in a proton exchange membrane (PEM) electrolyzer. Though facet engineering primarily contributes to modulating the intrinsic activity rather than stability, single-faceted IrO2 monolayer performs over 10,000-hour stability at constant 1.5 A cmgeo-2 (3.95 mV kh-1 decay) and 1000-hour stability at 0.2 mgIr cmgeo-2 under fluctuating conditions. This work proposes that ammonia-induced facet engineering of IrO2 monolayer enables facet-dependent oxygen evolution reaction (OER) performance and high stability in industrial-scale PEM electrolysis.Both commercial and laboratory-synthesized IrO2 catalysts typically possess rutile-type structures with multiple facets. Theoretical results predict the (101) facet is the most energetically favorable for oxygen evolution reaction owing to its lowest energy barrier. Achieving monolayer thickness while exposing this desired facet is a significant opportunity for IrO2. Herein, we develop an ammonia-induced facet engineering for the synthesis of single-faceted IrO2(101) monolayer. It achieves 230 mV overpotential at 10 mA cmgeo-2 in a three-electrode system and 1.70 V at 2 A cmgeo-2 in a proton exchange membrane (PEM) electrolyzer. Though facet engineering primarily contributes to modulating the intrinsic activity rather than stability, single-faceted IrO2 monolayer performs over 10,000-hour stability at constant 1.5 A cmgeo-2 (3.95 mV kh-1 decay) and 1000-hour stability at 0.2 mgIr cmgeo-2 under fluctuating conditions. This work proposes that ammonia-induced facet engineering of IrO2 monolayer enables facet-dependent oxygen evolution reaction (OER) performance and high stability in industrial-scale PEM electrolysis.
Both commercial and laboratory-synthesized IrO2 catalysts typically possess rutile-type structures with multiple facets. Theoretical results predict the (101) facet is the most energetically favorable for oxygen evolution reaction owing to its lowest energy barrier. Achieving monolayer thickness while exposing this desired facet is a significant opportunity for IrO2. Herein, we develop an ammonia-induced facet engineering for the synthesis of single-faceted IrO2(101) monolayer. It achieves 230 mV overpotential at 10 mA cmgeo-2 in a three-electrode system and 1.70 V at 2 A cmgeo-2 in a proton exchange membrane (PEM) electrolyzer. Though facet engineering primarily contributes to modulating the intrinsic activity rather than stability, single-faceted IrO2 monolayer performs over 10,000-hour stability at constant 1.5 A cmgeo-2 (3.95 mV kh-1 decay) and 1000-hour stability at 0.2 mgIr cmgeo-2 under fluctuating conditions. This work proposes that ammonia-induced facet engineering of IrO2 monolayer enables facet-dependent oxygen evolution reaction (OER) performance and high stability in industrial-scale PEM electrolysis.IrO2 catalysts typically feature rutile structures with multiple facets. The authors develop an ammonia-induced method to synthesize single-faceted CuO₂ monolayers with the theoretically optimal (101) facet, resulting in high oxygen evolution activity and stability (>10,000 h) in a water electrolyser.
Abstract Both commercial and laboratory-synthesized IrO2 catalysts typically possess rutile-type structures with multiple facets. Theoretical results predict the (101) facet is the most energetically favorable for oxygen evolution reaction owing to its lowest energy barrier. Achieving monolayer thickness while exposing this desired facet is a significant opportunity for IrO2. Herein, we develop an ammonia-induced facet engineering for the synthesis of single-faceted IrO2(101) monolayer. It achieves 230 mV overpotential at 10 mA cmgeo -2 in a three-electrode system and 1.70 V at 2 A cmgeo -2 in a proton exchange membrane (PEM) electrolyzer. Though facet engineering primarily contributes to modulating the intrinsic activity rather than stability, single-faceted IrO2 monolayer performs over 10,000-hour stability at constant 1.5 A cmgeo -2 (3.95 mV kh-1 decay) and 1000-hour stability at 0.2 mgIr cmgeo -2 under fluctuating conditions. This work proposes that ammonia-induced facet engineering of IrO2 monolayer enables facet-dependent oxygen evolution reaction (OER) performance and high stability in industrial-scale PEM electrolysis.
ArticleNumber 7236
Author Qin, Yufeng
Liu, Jianguo
Tan, Aidong
Shi, Xiaoyun
Zhang, Yipeng
Zhang, Chunyang
Liu, Yubo
Zuo, Shouwei
Yang, Deren
Yue, Yang
Jin, Louyu
Hua, Kang
An, Xuemin
Author_xml – sequence: 1
  givenname: Deren
  orcidid: 0000-0002-2133-8612
  surname: Yang
  fullname: Yang, Deren
  email: yangderen@ncepu.edu.cn
  organization: Beijing Laboratory of New Energy Storage Technology, Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road
– sequence: 2
  givenname: Chunyang
  surname: Zhang
  fullname: Zhang, Chunyang
  organization: Beijing Laboratory of New Energy Storage Technology, Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road
– sequence: 3
  givenname: Yufeng
  surname: Qin
  fullname: Qin, Yufeng
  organization: Beijing Laboratory of New Energy Storage Technology, Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road
– sequence: 4
  givenname: Yang
  surname: Yue
  fullname: Yue, Yang
  organization: Beijing Laboratory of New Energy Storage Technology, Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road
– sequence: 5
  givenname: Yubo
  surname: Liu
  fullname: Liu, Yubo
  organization: Beijing Laboratory of New Energy Storage Technology, Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road
– sequence: 6
  givenname: Xiaoyun
  surname: Shi
  fullname: Shi, Xiaoyun
  organization: Beijing Laboratory of New Energy Storage Technology, Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road
– sequence: 7
  givenname: Kang
  surname: Hua
  fullname: Hua, Kang
  organization: Beijing Laboratory of New Energy Storage Technology, Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road
– sequence: 8
  givenname: Xuemin
  surname: An
  fullname: An, Xuemin
  organization: Beijing Laboratory of New Energy Storage Technology, Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road
– sequence: 9
  givenname: Louyu
  surname: Jin
  fullname: Jin, Louyu
  organization: Beijing Laboratory of New Energy Storage Technology, Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road
– sequence: 10
  givenname: Yipeng
  surname: Zhang
  fullname: Zhang, Yipeng
  organization: Beijing Laboratory of New Energy Storage Technology, Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road
– sequence: 11
  givenname: Shouwei
  orcidid: 0000-0001-8936-4668
  surname: Zuo
  fullname: Zuo, Shouwei
  email: zuoshouwei16@mails.ucas.ac.cn
  organization: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences
– sequence: 12
  givenname: Aidong
  orcidid: 0009-0000-0289-5942
  surname: Tan
  fullname: Tan, Aidong
  email: tanad@ncepu.edu.cn
  organization: Beijing Laboratory of New Energy Storage Technology, Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road
– sequence: 13
  givenname: Jianguo
  orcidid: 0000-0002-9229-4936
  surname: Liu
  fullname: Liu, Jianguo
  email: jianguoliu@ncepu.edu.cn
  organization: Beijing Laboratory of New Energy Storage Technology, Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road
BookMark eNp9ks-OFCEQxjtmjbuu-wKeSLx4sFcooGlOZrPxzySb7EE9E5qunukJDSP0qHPz6s1n9ElkZjbqepCEAMX3_agU9bg6CTFgVT1l9JJR3r7MgolG1RRk3UDTyBoeVGdABauZAn7y1_60ush5TcvgmrVCPKpOBVWN1m1zVv14P4alx3qwDmfsySLdApliiN7uMBEMtvNFQVbjclVvMA0xTfvzJsU5BoJf3cqGJZIJpy7ZgOSLnfc-j25O0e_ymEmHuxh6wuiLksPPb99XJM-2G_0474idCbuUJXhVpptqeFI9HKzPeHG3nlcf37z-cP2uvrl9u7i-uqkdZwJqpFaJnkpludQDyF5IOwwDUNkx3umWNh1Q0KyxRd7oTgsqWxBAWetaAM7Pq8WR20e7Nps0TjbtTLSjOQRiWhqb5tF5NFpzxVx5yHVKMCWtbalmWkEzaIpWFdarI2uz7SbsHYY5WX8Pev8mjCuzjJ8NAw5tYRbC8ztCip-2mGczjdmh96WkcZsNB66EZILpIn32j3QdtymUWh1UVKuW74FwVLkUc044_M6GUbNvIHNsIFMayBwayEAx8aMpF3H51fQH_R_XLzLKyVM
Cites_doi 10.1038/s41467-022-35631-5
10.1021/jacs.5b02772
10.1016/j.ijhydene.2021.04.022
10.1016/j.ijhydene.2013.11.056
10.1021/cs501312v
10.1021/jacs.3c14271
10.1126/science.aaf5050
10.1063/1.3382344
10.1021/acscatal.9b05544
10.1039/D2QM01220K
10.1021/acsami.0c01937
10.1146/annurev-chembioeng-060718-030241
10.1002/anie.201608601
10.1021/acsaem.0c00735
10.1016/0927-0256(96)00008-0
10.1016/j.jpowsour.2020.228390
10.1103/PhysRevB.54.11169
10.1039/D0CS01079K
10.1021/acscatal.3c06243
10.1103/PhysRevLett.77.3865
10.1039/C7NR02899G
10.1039/C5SC01251A
10.1002/adma.201903616
10.1021/jacs.8b05206
10.1021/nn501683f
10.1524/zkri.1901.34.1.449
10.1002/jrs.1655
10.1021/jz2016507
10.1038/s41467-021-22296-9
10.1002/cctc.201000397
10.1002/anie.202112870
10.1007/s11051-010-9917-2
10.1038/s41929-018-0085-6
10.1016/j.cej.2023.146255
10.1039/C6CS00328A
10.1021/acs.jpcc.1c10250
10.1039/D2CS00681B
10.1103/PhysRevB.50.17953
10.1021/jz500610u
10.1021/jacs.1c11241
10.1039/D3QM00010A
10.1149/2.0231915jes
10.1002/anie.201402311
10.1038/s41565-024-01699-x
10.1021/acs.jpcc.7b01990
10.1103/PhysRevB.59.1758
10.1039/D2CS00067A
10.1021/acsanm.3c04697
10.1021/acscatal.2c00570
10.1016/j.joule.2021.10.002
10.1039/D1EE02112E
10.1002/adma.201605473
10.1126/sciadv.adf9144
10.1016/j.jelechem.2016.04.033
10.1039/D1TA10324E
10.1016/j.electacta.2018.04.154
10.1038/nnano.2010.235
10.1002/adma.201900510
10.1002/jcc.21759
10.1002/anie.202016199
10.1103/PhysRevB.47.558
10.1103/PhysRevB.49.14251
10.1039/C6CC03010F
10.1039/C5SC00518C
10.1016/j.jpowsour.2016.11.118
10.1038/s41565-021-00986-1
10.1002/adfm.201704796
10.1039/C9CS00607A
10.1021/acscatal.2c00856
10.1039/C9EE01872G
10.1021/jacs.6b07199
10.1039/C8CS00671G
10.1016/j.elecom.2018.10.021
10.1038/s41563-019-0415-3
10.1016/j.jpowsour.2023.232826
10.1002/pssb.201800518
10.1016/j.apcatb.2020.118762
10.1016/j.chempr.2023.05.044
10.1002/adma.202402643
10.1002/smll.202100121
10.1007/BF02649804
10.1021/jacs.4c05204
10.1039/D3TA04597H
10.1021/ic00245a020
10.1021/acs.jpclett.4c02616
10.1002/anie.202114437
10.1002/adma.202208539
10.1038/s41467-024-54987-4
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025. The Author(s).
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025. The Author(s).
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-025-62665-2
DatabaseName Springer Nature OA/Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Engineering
EISSN 2041-1723
EndPage 16
ExternalDocumentID oai_doaj_org_article_99371ca35cb74175aa80919726f90ea7
PMC12328741
10_1038_s41467_025_62665_2
GrantInformation_xml – fundername: National Natural Science Foundation of China (22205061), Hebei Province Outstanding Youth Fund (B2024502007),the Double First-class University Construction Project of North China Electric Power University (XM2412302) and the Fundamental Research Funds for the Central Universities (JB2024087).
– fundername: This work was supported by the National Key R&D Plan of China (2021YFB4000101), the National Natural Science Foundation of China (22205061), Hebei Province Outstanding Youth Fund (B2024502007), Interdisciplinary Innovation Program of North China Electric Power University, the Double First-class University Construction Project of North China Electric Power University (XM2412302) and the Fundamental Research Funds for the Central Universities (JB2024087).
GroupedDBID ---
0R~
39C
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
AARCD
AASML
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M48
P64
PKEHL
PQEST
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c3142-e0a74d057a359f25d45afff205b13b9806b202916a31469b94058242018c82233
IEDL.DBID C6C
ISSN 2041-1723
IngestDate Wed Aug 27 01:23:56 EDT 2025
Thu Aug 21 18:22:44 EDT 2025
Thu Aug 07 17:41:15 EDT 2025
Sat Aug 23 12:38:20 EDT 2025
Thu Aug 14 00:09:17 EDT 2025
Thu Aug 07 06:02:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3142-e0a74d057a359f25d45afff205b13b9806b202916a31469b94058242018c82233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8936-4668
0000-0002-9229-4936
0009-0000-0289-5942
0000-0002-2133-8612
OpenAccessLink https://www.nature.com/articles/s41467-025-62665-2
PMID 40769986
PQID 3237097831
PQPubID 546298
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_99371ca35cb74175aa80919726f90ea7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12328741
proquest_miscellaneous_3237451419
proquest_journals_3237097831
crossref_primary_10_1038_s41467_025_62665_2
springer_journals_10_1038_s41467_025_62665_2
PublicationCentury 2000
PublicationDate 20250806
PublicationDateYYYYMMDD 2025-08-06
PublicationDate_xml – month: 8
  year: 2025
  text: 20250806
  day: 6
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References SM Alia (62665_CR16) 2018; 8
C Hu (62665_CR90) 2023; 9
Y Lee (62665_CR20) 2012; 3
K-S Kim (62665_CR35) 2022; 12
Y Chen (62665_CR72) 2023; 475
S Hao (62665_CR50) 2021; 16
J Song (62665_CR2) 2020; 49
J-Y Zhu (62665_CR23) 2020; 12
X Huang (62665_CR44) 2011; 6
Z Fan (62665_CR15) 2021; 5
W Sun (62665_CR48) 2015; 6
AV Korotcov (62665_CR55) 2007; 38
L Yang (62665_CR34) 2023; 35
G Li (62665_CR19) 2017; 9
HS Oh (62665_CR79) 2015; 6
VK Puthiyapura (62665_CR89) 2014; 39
SW Kim (62665_CR42) 2014; 8
H Li (62665_CR64) 2018; 9
Z Li (62665_CR67) 2024; 36
L Li (62665_CR71) 2023; 11
S Albertin (62665_CR60) 2022; 126
G Kresse (62665_CR93) 1996; 6
K Ayers (62665_CR88) 2019; 10
S Grimme (62665_CR100) 2010; 132
Q Wu (62665_CR75) 2023; 7
C Roiron (62665_CR54) 2024; 15
CV Pham (62665_CR74) 2020; 269
F Hegge (62665_CR80) 2020; 3
G Kresse (62665_CR98) 1999; 59
SM Alia (62665_CR85) 2019; 166
S Geiger (62665_CR73) 2018; 1
Q Shi (62665_CR7) 2019; 48
J Shan (62665_CR11) 2019; 31
L Zu (62665_CR24) 2022; 144
S Cherevko (62665_CR84) 2016; 773
JC Cruz (62665_CR92) 2011; 13
J Lim (62665_CR22) 2022; 524
62665_CR77
B Jiang (62665_CR25) 2018; 140
K Hua (62665_CR29) 2024; 14
N-T Suen (62665_CR3) 2017; 46
S Sun (62665_CR38) 2016; 52
O Kasian (62665_CR53) 2019; 12
J Liang (62665_CR63) 2024; 15
Y Wang (62665_CR69) 2023; 9
PE Blöchl (62665_CR97) 1994; 50
W Zhu (62665_CR8) 2023; 14
HG Sanchez Casalongue (62665_CR52) 2014; 53
G Kresse (62665_CR94) 1993; 47
H-S Oh (62665_CR12) 2016; 138
S Stiber (62665_CR78) 2022; 15
J Yang (62665_CR40) 2019; 18
KA Stoerzinger (62665_CR32) 2014; 5
MI Abdullah (62665_CR68) 2024; 15
M Chatenet (62665_CR4) 2022; 51
G Wulff (62665_CR46) 1901; 34
G Kresse (62665_CR96) 1996; 54
HB Tao (62665_CR5) 2024; 19
C Rakousky (62665_CR86) 2018; 278
Q Dang (62665_CR14) 2021; 12
L Zhuang (62665_CR49) 2021; 17
J Knöppel (62665_CR6) 2021; 12
G Meng (62665_CR58) 2019; 31
L Yang (62665_CR70) 2018; 9
C Rakousky (62665_CR81) 2017; 342
J Lim (62665_CR21) 2018; 28
62665_CR18
R-T Liu (62665_CR1) 2023; 52
M Albani (62665_CR45) 2019; 256
A Zagalskaya (62665_CR33) 2020; 10
SP Sasikala (62665_CR39) 2017; 29
M Li (62665_CR36) 2021; 60
JW Cahn (62665_CR47) 1996; 27
S Grimme (62665_CR101) 2011; 32
F Liao (62665_CR26) 2023; 14
A Loncar (62665_CR66) 2022; 61
G Kresse (62665_CR95) 1994; 49
Y-H Fang (62665_CR62) 2014; 4
L Li (62665_CR37) 2022; 51
O Matz (62665_CR59) 2017; 121
C Wang (62665_CR56) 2021; 60
JP Perdew (62665_CR99) 1996; 77
H Yu (62665_CR57) 2024; 146
Y Honsho (62665_CR82) 2023; 564
W Jung (62665_CR43) 2015; 17
TW Hambley (62665_CR41) 1986; 25
BT Jebaslinhepzybai (62665_CR65) 2021; 46
S Kwon (62665_CR51) 2024; 146
D Wu (62665_CR9) 2021; 12
C Liu (62665_CR87) 2018; 97
IC Man (62665_CR102) 2011; 3
RJ Ouimet (62665_CR30) 2022; 12
C Spori (62665_CR76) 2017; 56
K Hua (62665_CR28) 2024; 7
S Siracusano (62665_CR83) 2020; 468
R Li (62665_CR10) 2021; 12
M Retuerto (62665_CR61) 2022; 13
S Lee (62665_CR17) 2022; 13
Y Lee (62665_CR31) 2012; 3
LC Seitz (62665_CR13) 2016; 353
Y Zhu (62665_CR27) 2022; 13
H Wu (62665_CR91) 2022; 10
References_xml – volume: 13
  year: 2022
  ident: 62665_CR61
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-35631-5
– volume: 17
  start-page: 7266
  year: 2015
  ident: 62665_CR43
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b02772
– ident: 62665_CR77
– volume: 46
  start-page: 21924
  year: 2021
  ident: 62665_CR65
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2021.04.022
– volume: 39
  start-page: 1905
  year: 2014
  ident: 62665_CR89
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2013.11.056
– volume: 4
  start-page: 4364
  year: 2014
  ident: 62665_CR62
  publication-title: ACS Catal.
  doi: 10.1021/cs501312v
– volume: 146
  start-page: 11719
  year: 2024
  ident: 62665_CR51
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c14271
– volume: 353
  start-page: 1011
  year: 2016
  ident: 62665_CR13
  publication-title: Science
  doi: 10.1126/science.aaf5050
– volume: 132
  start-page: 154104
  year: 2010
  ident: 62665_CR100
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 10
  start-page: 3650
  year: 2020
  ident: 62665_CR33
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b05544
– ident: 62665_CR18
  doi: 10.1039/D2QM01220K
– volume: 12
  start-page: 14064
  year: 2020
  ident: 62665_CR23
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c01937
– volume: 10
  start-page: 219
  year: 2019
  ident: 62665_CR88
  publication-title: Annu. Rev. Chem. Biomol.
  doi: 10.1146/annurev-chembioeng-060718-030241
– volume: 56
  start-page: 5994
  year: 2017
  ident: 62665_CR76
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201608601
– volume: 3
  start-page: 8276
  year: 2020
  ident: 62665_CR80
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c00735
– volume: 6
  start-page: 15
  year: 1996
  ident: 62665_CR93
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 468
  start-page: 228390
  year: 2020
  ident: 62665_CR83
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228390
– volume: 54
  start-page: 11169
  year: 1996
  ident: 62665_CR96
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 51
  start-page: 4583
  year: 2022
  ident: 62665_CR4
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS01079K
– volume: 14
  start-page: 3712
  year: 2024
  ident: 62665_CR29
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.3c06243
– volume: 12
  year: 2021
  ident: 62665_CR9
  publication-title: Nat. Commun.
– volume: 77
  start-page: 3865
  year: 1996
  ident: 62665_CR99
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 9
  start-page: 9291
  year: 2017
  ident: 62665_CR19
  publication-title: Nanoscale
  doi: 10.1039/C7NR02899G
– volume: 6
  start-page: 4993
  year: 2015
  ident: 62665_CR48
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC01251A
– volume: 31
  start-page: 1903616
  year: 2019
  ident: 62665_CR58
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903616
– volume: 140
  start-page: 12434
  year: 2018
  ident: 62665_CR25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05206
– volume: 8
  start-page: 6556
  year: 2014
  ident: 62665_CR42
  publication-title: ACS Nano
  doi: 10.1021/nn501683f
– volume: 34
  start-page: 449
  year: 1901
  ident: 62665_CR46
  publication-title: Z. Krist.-cryst. Mater.
  doi: 10.1524/zkri.1901.34.1.449
– volume: 38
  start-page: 737
  year: 2007
  ident: 62665_CR55
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.1655
– volume: 3
  start-page: 399
  year: 2012
  ident: 62665_CR20
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz2016507
– volume: 12
  year: 2021
  ident: 62665_CR6
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22296-9
– volume: 3
  start-page: 1159
  year: 2011
  ident: 62665_CR102
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201000397
– volume: 60
  start-page: 27126
  year: 2021
  ident: 62665_CR56
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202112870
– volume: 13
  start-page: 1639
  year: 2011
  ident: 62665_CR92
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-010-9917-2
– volume: 9
  year: 2018
  ident: 62665_CR64
  publication-title: Nat. Commun.
– volume: 1
  start-page: 508
  year: 2018
  ident: 62665_CR73
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0085-6
– volume: 475
  start-page: 146255
  year: 2023
  ident: 62665_CR72
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.146255
– volume: 46
  start-page: 337
  year: 2017
  ident: 62665_CR3
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00328A
– volume: 126
  start-page: 5244
  year: 2022
  ident: 62665_CR60
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.1c10250
– volume: 52
  start-page: 5652
  year: 2023
  ident: 62665_CR1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D2CS00681B
– volume: 50
  start-page: 17953
  year: 1994
  ident: 62665_CR97
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 9
  year: 2018
  ident: 62665_CR70
  publication-title: Nat. Commun.
– volume: 5
  start-page: 1636
  year: 2014
  ident: 62665_CR32
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz500610u
– volume: 144
  start-page: 2208
  year: 2022
  ident: 62665_CR24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c11241
– volume: 7
  start-page: 1025
  year: 2023
  ident: 62665_CR75
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D3QM00010A
– volume: 166
  start-page: F1164
  year: 2019
  ident: 62665_CR85
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0231915jes
– volume: 53
  start-page: 7169
  year: 2014
  ident: 62665_CR52
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201402311
– volume: 19
  start-page: 1074
  year: 2024
  ident: 62665_CR5
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-024-01699-x
– volume: 121
  start-page: 13135
  year: 2017
  ident: 62665_CR59
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.7b01990
– volume: 59
  start-page: 1758
  year: 1999
  ident: 62665_CR98
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 13
  year: 2022
  ident: 62665_CR27
  publication-title: Nat. Commun.
– volume: 51
  start-page: 7327
  year: 2022
  ident: 62665_CR37
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D2CS00067A
– volume: 7
  start-page: 487
  year: 2024
  ident: 62665_CR28
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.3c04697
– volume: 12
  start-page: 6159
  year: 2022
  ident: 62665_CR30
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c00570
– volume: 5
  start-page: 3221
  year: 2021
  ident: 62665_CR15
  publication-title: Joule
  doi: 10.1016/j.joule.2021.10.002
– volume: 15
  start-page: 109
  year: 2022
  ident: 62665_CR78
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE02112E
– volume: 29
  start-page: 1605473
  year: 2017
  ident: 62665_CR39
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605473
– volume: 9
  start-page: eadf9144
  year: 2023
  ident: 62665_CR90
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.adf9144
– volume: 773
  start-page: 69
  year: 2016
  ident: 62665_CR84
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2016.04.033
– volume: 10
  start-page: 13170
  year: 2022
  ident: 62665_CR91
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA10324E
– volume: 278
  start-page: 324
  year: 2018
  ident: 62665_CR86
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.04.154
– volume: 14
  year: 2023
  ident: 62665_CR26
  publication-title: Nat. Commun.
– volume: 6
  start-page: 28
  year: 2011
  ident: 62665_CR44
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.235
– volume: 31
  start-page: 1900510
  year: 2019
  ident: 62665_CR11
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900510
– volume: 32
  start-page: 1456
  year: 2011
  ident: 62665_CR101
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21759
– volume: 60
  start-page: 8243
  year: 2021
  ident: 62665_CR36
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202016199
– volume: 47
  start-page: 558
  year: 1993
  ident: 62665_CR94
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.558
– volume: 14
  year: 2023
  ident: 62665_CR8
  publication-title: Nat. Commun.
– volume: 49
  start-page: 14251
  year: 1994
  ident: 62665_CR95
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.49.14251
– volume: 52
  start-page: 7036
  year: 2016
  ident: 62665_CR38
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC03010F
– volume: 6
  start-page: 3321
  year: 2015
  ident: 62665_CR79
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC00518C
– volume: 342
  start-page: 38
  year: 2017
  ident: 62665_CR81
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.11.118
– volume: 16
  start-page: 1371
  year: 2021
  ident: 62665_CR50
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-021-00986-1
– volume: 28
  start-page: 1704796
  year: 2018
  ident: 62665_CR21
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201704796
– volume: 12
  year: 2021
  ident: 62665_CR14
  publication-title: Nat. Commun.
– volume: 49
  start-page: 2196
  year: 2020
  ident: 62665_CR2
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00607A
– volume: 12
  start-page: 6334
  year: 2022
  ident: 62665_CR35
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c00856
– volume: 12
  start-page: 3548
  year: 2019
  ident: 62665_CR53
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C9EE01872G
– volume: 138
  start-page: 12552
  year: 2016
  ident: 62665_CR12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b07199
– volume: 48
  start-page: 3181
  year: 2019
  ident: 62665_CR7
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00671G
– volume: 97
  start-page: 96
  year: 2018
  ident: 62665_CR87
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2018.10.021
– volume: 8
  start-page: 3
  year: 2018
  ident: 62665_CR16
  publication-title: ACS Catal.
– volume: 18
  start-page: 970
  year: 2019
  ident: 62665_CR40
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0415-3
– volume: 564
  start-page: 232826
  year: 2023
  ident: 62665_CR82
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2023.232826
– volume: 256
  year: 2019
  ident: 62665_CR45
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.201800518
– volume: 269
  start-page: 118762
  year: 2020
  ident: 62665_CR74
  publication-title: Appl. Catal.
  doi: 10.1016/j.apcatb.2020.118762
– volume: 524
  year: 2022
  ident: 62665_CR22
  publication-title: J. Power Sources
– volume: 9
  start-page: 2931
  year: 2023
  ident: 62665_CR69
  publication-title: Chem
  doi: 10.1016/j.chempr.2023.05.044
– volume: 15
  year: 2024
  ident: 62665_CR63
  publication-title: Nat. Commun.
– volume: 36
  start-page: 2402643
  year: 2024
  ident: 62665_CR67
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202402643
– volume: 3
  start-page: 399
  year: 2012
  ident: 62665_CR31
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz2016507
– volume: 17
  year: 2021
  ident: 62665_CR49
  publication-title: Small
  doi: 10.1002/smll.202100121
– volume: 12
  year: 2021
  ident: 62665_CR10
  publication-title: Nat. Commun.
– volume: 27
  start-page: 1431
  year: 1996
  ident: 62665_CR47
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/BF02649804
– volume: 13
  year: 2022
  ident: 62665_CR17
  publication-title: Nat. Commun.
– volume: 146
  start-page: 20251
  year: 2024
  ident: 62665_CR57
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.4c05204
– volume: 11
  start-page: 25268
  year: 2023
  ident: 62665_CR71
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D3TA04597H
– volume: 25
  start-page: 4553
  year: 1986
  ident: 62665_CR41
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00245a020
– volume: 15
  start-page: 11217
  year: 2024
  ident: 62665_CR54
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.4c02616
– volume: 61
  start-page: e202114437
  year: 2022
  ident: 62665_CR66
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202114437
– volume: 35
  start-page: 2208539
  year: 2023
  ident: 62665_CR34
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202208539
– volume: 15
  year: 2024
  ident: 62665_CR68
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-54987-4
SSID ssj0000391844
Score 2.4771566
Snippet Both commercial and laboratory-synthesized IrO 2 catalysts typically possess rutile-type structures with multiple facets. Theoretical results predict the (101)...
Both commercial and laboratory-synthesized IrO2 catalysts typically possess rutile-type structures with multiple facets. Theoretical results predict the (101)...
Abstract Both commercial and laboratory-synthesized IrO2 catalysts typically possess rutile-type structures with multiple facets. Theoretical results predict...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 7236
SubjectTerms 119/118
147/143
639/301/299/886
639/301/357/1018
Ammonia
Catalysts
Chemical synthesis
Electrolysis
Energy
Engineering
Evolution
Green hydrogen
Humanities and Social Sciences
Membranes
Monolayers
Morphology
multidisciplinary
Oxidation
Oxygen
Oxygen evolution reactions
Protons
Rutile
Science
Science (multidisciplinary)
Stability
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NaxUxFA1SKLgRWxVHq0RwZ8dOPt9kWcVSBXWhhe5CMpNQwTevtK_Y7rrtzt_oL_EkmVc7BXHjYhaTDybJvZl7Qu65l5CXMGGR6cRuZ21TSx1VjV2UnBxD0LF32ofEd_74Se8fyA-H6vBGqq_kE1bCA5eF20n2k3VOqM7D-M2Ucy1MnJlxHU0TXOaRo-DGYSr_g4XB0UWOLJlGtDunMv8TUvZWYPjk2jWxRDlg_wRl3vaRvHVRmu3P3n1ybwSOdLcMeIPcCcMmWS-pJC8ekJ9f0Ot7qKPrAIN7-v7kM6dQMZxcAappSBQptKApPHF9XNgC6T3FaVgMNJwXBjCdhznOz0OgPwBC0a9kyclxS6jPbBfKmm1M_dfl1REFtMzOtRfULSl7rVC4i6eb1_whOdh79_Xtfj1mW6g7wSSvQ-Nmsgd8w1qbyFUvlYsx8kZ5JrxpG-15w4EmHZpr4w2gXgsDDyF3QBlCPCJrw2IIjwlVhslgVPQaxo855oLvOaCmCxAiIGZFXq1W3h6XoBo2X4aL1hY5WcjJZjlZXpE3STjXLVNA7FwANbGjmth_qUlFtlaiteMuPbWCi1nmsWBEL66rsb_SpQmWenFW2kigSmYq0k5UYjKgac3w7ShH6k54tcV4KrK90p4_X__7jJ_8jxk_JXd50vbk3qK3yNry5Cw8A4Ba-ud5r_wGAcIXWA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BbtQwEB1BERI9ICighhZkJG40NHZsJzmhgqgKEnCASnuz7MSmSN1ku7sV7Y0rN76RL2HGyW5JJThEURJHdjIez7M98wbgOZqwwDVFt_MyS6UOKkUtIidH73VorHae4p0_fNRHx_L9RE2GBbfF4Fa5GhPjQN10Na2R7-ciL2LMAX81O0spaxTtrg4pNG7CLaIuI5euYlKs11iI_byUcoiVyfJyfyHjyEA5XBHJk4PXyB5F2v4R1rzuKXltuzRaocN7cHeAj-ygl_d9uOHbLbjdJ5S83ILNv-gFH8Cvz3g69WmwNULjhr2bfxIMvwNnswi0maewKSzBiLI4nfURBHRN3A1dy_xFHxXMpn6Kc-rWs-8ITPG9PnNO5DJhLkbAMJ7t4Y_4_ePnCUO4GR1uL5ldMv5S4c0DPOppKh7C8eHbL2-O0iEDQ1rnXIrUZ7aQDUI6m6sqCNVIZUMIIlOO564qM-1EJhBhWiyuK1ch_CvR6KPga0Qeef4INtqu9dvAVMWlr1RwGg0it9x61wiEn9bXDudsPIEXKzmYWU-0YeIGeV6aXmoGpWai1IxI4DWJal2SSLLjjW7-1Qw6Zwh68RqbjjVIhEnWloiOqkLoUGXeFgnsrgRtBs1dmKt-lsCz9WPUOdpIwV_dnfdlJCJNXiVQjjrIqEHjJ-23k8jeTRi2xPYksLfqS1e1__uLH_-_sTtwR1CvJmcWvQsby_m5f4JwaemeRp34A2vEFFY
  priority: 102
  providerName: ProQuest
Title Single-faceted IrO2 monolayer enabling high-performing proton exchange membrane water electrolysis beyond 10,000 h stability at 1.5 A cm-2
URI https://link.springer.com/article/10.1038/s41467-025-62665-2
https://www.proquest.com/docview/3237097831
https://www.proquest.com/docview/3237451419
https://pubmed.ncbi.nlm.nih.gov/PMC12328741
https://doaj.org/article/99371ca35cb74175aa80919726f90ea7
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLb2Q0hcEOOHKIzKSNxYIHYcJzl21bpRiYEYk3qz7MTekGg6dZ1gN67c-Bv5S_jsJJ0yjQOHNGry3Dh57_V9jt_7TMhrhDDHpK9uZ3kcCenSCF7kkxytla7S0lhf7_zhWB6diuksnW0Q3tXChKT9QGkZ_qa77LB3lyK4tF98FRDcZ2Ztkm1P3e6teizH6_cqnvE8F6Ktj4mT_I6mvRgUqPp7-PJ2duStKdIQeSYPyYMWMtJR08kdsmHrR-Res4jk9WPy-wStvtnI6RIAuKLvlx85hXFhzAo4Ta0vjoIE9cTE0UVTJ-C_e4aGRU3tj6b2l87tHCPn2tLvgJ9o16yPExhLqAl1LpTFe7j1Pz9_nVOAypBWe031irK3KQ6OsJXziD8hp5ODL-OjqF1nISoTJnhkY52JCsBNJ2nheFqJVDvneJwalpgij6XhMQeO1BCXhSkA8nKEdqi3BL5Ikqdkq17U9hmhacGELVJnJMIe00xbU3GATG1Lg5EZG5A33ZNXFw2dhgrT4EmuGj0p6EkFPSk-IPteOWtJT4UdDiyWZ6o1DeUBFivRdVxBAAxpnQMDFRmXroitzgZkt1Otav3zUiU8yUIFC3r0an0anuWnS_CoF1eNjACeZMWA5D2T6HWof6b-eh44uj1ShXni5_c667m5-r_v-Pn_ib8g97m3a5_CInfJ1mp5ZV8CJK3MkGxmswyf-eRwSLZHo-nJFPv9g-NPn4fBY4bh9cNf6eQTgw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH-ahhBwQDBABAYYCU4sLHac1D4gND5Kyz44sEm7eU7iMCSalLbT6I0rN_4S_ij-Et5zko5OgtsOVdXEVRy_r9-z3wfAEzRhJU8pu52rKJRpmYQoRRTk6FxaFjbNHOU77-6lgwP5_jA5XIFfXS4MhVV2OtEr6qLOaY98MxZxz-cc8JfjryF1jaLT1a6FRsMW225-ii7b9MXwDdL3qRD9t_uvB2HbVSDMYy5F6CLbkwXCFBsnuhRJIRNblqWIkozHmVZRmolIIGqyODzVmUZIo9CQ4cvkaE1pAxRV_iUZx5okSvXfLfZ0qNq6krLNzYlitTmVXhNRz1j0HCigbMn--TYBS9j2fGTmueNZb_X6N-B6C1fZVsNfN2HFVWtwuWlgOV-Da3-VM7wFPz_i1xcXljZHKF6w4eSDYLhu6D0jsGeO0rRwBKMSyeG4yVig31Qroq6Y-9ZkIbORG6EPXzl2ikAY_9d06vG1U1jmM24YjzZwIX5__3HMEN76AN85szPGnyd4cQs_-SgUt-HgQmhzB1arunJ3gSWaS6eTMkvRAHPLrcsKgXDXujxDH5EH8Kyjgxk3hT2MP5CPlWmoZpBqxlPNiABeEakWI6kot79QTz6ZVsYNQT2e49TxCRJhmbUK0ZjuibTUkbO9ANY7QptWU0zNGV8H8HhxG2WcDm5wqeuTZoxEZMt1AGqJQZYmtHyn-nzsq4UTZlY4nwA2Ol46e_q_3_je_yf7CK4M9nd3zM5wb_s-XBXE4RRIk67D6mxy4h4gVJtlD718MDi6aIH8A2FeTU4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH-ahkBwQDBABAYYCU4sNHacrwNCg1GtDAYSTOrNcxKbIdGktJ1Gb1y58ffw5_CX8J6TdGQS3Haoqiau4vh9_Z79PgAeoQmzPKbsdp4Gvoxt5KMUUZCjMbEtdZwbynd-ux_vHsjX42i8Br-6XBgKq-x0olPUZV3QHvkgFGHicg74wLZhEe93hs-nX33qIEUnrV07jYZF9szyBN23-bPRDtL6sRDDVx9f7vpthwG_CLkUvgl0IkuELDqMMiuiUkbaWiuCKOdhnqVBnItAIILSODzO8gzhTYpGDV-sQMtKm6Go_i8kYcRJxpJxstrfocrrqZRtnk4QpoO5dFqJ-seiF0HBZT1b6FoG9HDu2SjNM0e1zgIOr8HVFrqy7YbXrsOaqTbgYtPMcrkBV_4qbXgDfn7Ary_Gt7pAWF6y0eydYLhu6EkjyGeGUrZwBKNyyf60yV6g31Q3oq6Y-dZkJLOJmaA_Xxl2gqAY_9d07XF1VFjusm8YD7ZwIX5__3HEEOq6YN8l0wvGn0Z4cRs_xcQXN-HgXGhzC9arujK3gUUZlyaLbB6jMeaaa5OXAqGvNkWO_iL34ElHBzVtinwodzgfpqqhmkKqKUc1JTx4QaRajaQC3e5CPfukWnlXBPt4gVPHJ0iEaFqniMyyRMQ2C4xOPNjsCK1arTFXpzzuwcPVbZR3OsTBpa6PmzESUS7PPEh7DNKbUP9O9fnIVQ4n_JzifDzY6njp9On_fuM7_5_sA7iEoqjejPb37sJlQQxOMTXxJqwvZsfmHqK2RX7fiQeDw_OWxz_t9VF7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-faceted+IrO2+monolayer+enabling+high-performing+proton+exchange+membrane+water+electrolysis+beyond+10%2C000%E2%80%89h+stability+at+1.5%E2%80%89A%E2%80%89cm-2&rft.jtitle=Nature+communications&rft.au=Yang%2C+Deren&rft.au=Zhang%2C+Chunyang&rft.au=Qin%2C+Yufeng&rft.au=Yue%2C+Yang&rft.date=2025-08-06&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=16&rft_id=info:doi/10.1038%2Fs41467-025-62665-2&rft_id=info%3Apmid%2F40769986&rft.externalDocID=PMC12328741
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon