Investigating Enzyme Biochemistry by Deep Learning: A Computational Tool for a New Era

Enzymes are protein molecules that play a crucial role in various biological processes in living organisms. They function as catalysts in biological reactions such as digestion, metabolism, DNA replication and other physiological processes. Furthermore, enzymes are widely used in food production, ph...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational biophysics and chemistry Vol. 23; no. 6; pp. 781 - 799
Main Authors Rayka, Milad, Mirzaei, Morteza, Farnoosh, Gholamreza, Latifi, Ali Mohammad
Format Journal Article
LanguageEnglish
Published Singapore World Scientific Publishing Company 01.08.2024
World Scientific Publishing Co. Pte., Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Enzymes are protein molecules that play a crucial role in various biological processes in living organisms. They function as catalysts in biological reactions such as digestion, metabolism, DNA replication and other physiological processes. Furthermore, enzymes are widely used in food production, pharmaceuticals and biofuel production. In these industries, they accelerate desired chemical reactions as biocatalysts. Therefore, applying computational methods and data-driven algorithms to predict enzyme properties is essential. Over the past decade, deep learning has made remarkable advancements in science and technology. Deep learning is a subset of machine learning algorithms that rely on artificial neural networks. These algorithms can be employed for supervised, semi-supervised and unsupervised learning. Here, to provide an update on the current literature, we provide an overview of various deep learning algorithms and recent advancements in their application to enzyme science. These applications can generally be categorized into diverse subjects: function prediction, enzyme kinetic parameters prediction, enzyme-substrate identification, condition optimization, thermophilic property prediction, enzyme catalytic site prediction and enzyme design. In conclusion, we discuss the convergence of enzyme science and deep learning, highlighting the potential opportunities and challenges. Artificial intelligence algorithms have diverse applications in enzyme science. In this review paper, we focus on deep learning algorithms and their implications on various tasks, such as enzyme design, kinetic parameters prediction, etc.
AbstractList Enzymes are protein molecules that play a crucial role in various biological processes in living organisms. They function as catalysts in biological reactions such as digestion, metabolism, DNA replication and other physiological processes. Furthermore, enzymes are widely used in food production, pharmaceuticals and biofuel production. In these industries, they accelerate desired chemical reactions as biocatalysts. Therefore, applying computational methods and data-driven algorithms to predict enzyme properties is essential. Over the past decade, deep learning has made remarkable advancements in science and technology. Deep learning is a subset of machine learning algorithms that rely on artificial neural networks. These algorithms can be employed for supervised, semi-supervised and unsupervised learning. Here, to provide an update on the current literature, we provide an overview of various deep learning algorithms and recent advancements in their application to enzyme science. These applications can generally be categorized into diverse subjects: function prediction, enzyme kinetic parameters prediction, enzyme-substrate identification, condition optimization, thermophilic property prediction, enzyme catalytic site prediction and enzyme design. In conclusion, we discuss the convergence of enzyme science and deep learning, highlighting the potential opportunities and challenges. Artificial intelligence algorithms have diverse applications in enzyme science. In this review paper, we focus on deep learning algorithms and their implications on various tasks, such as enzyme design, kinetic parameters prediction, etc.
Enzymes are protein molecules that play a crucial role in various biological processes in living organisms. They function as catalysts in biological reactions such as digestion, metabolism, DNA replication and other physiological processes. Furthermore, enzymes are widely used in food production, pharmaceuticals and biofuel production. In these industries, they accelerate desired chemical reactions as biocatalysts. Therefore, applying computational methods and data-driven algorithms to predict enzyme properties is essential. Over the past decade, deep learning has made remarkable advancements in science and technology. Deep learning is a subset of machine learning algorithms that rely on artificial neural networks. These algorithms can be employed for supervised, semi-supervised and unsupervised learning. Here, to provide an update on the current literature, we provide an overview of various deep learning algorithms and recent advancements in their application to enzyme science. These applications can generally be categorized into diverse subjects: function prediction, enzyme kinetic parameters prediction, enzyme-substrate identification, condition optimization, thermophilic property prediction, enzyme catalytic site prediction and enzyme design. In conclusion, we discuss the convergence of enzyme science and deep learning, highlighting the potential opportunities and challenges.
Author Latifi, Ali Mohammad
Mirzaei, Morteza
Rayka, Milad
Farnoosh, Gholamreza
Author_xml – sequence: 1
  givenname: Milad
  surname: Rayka
  fullname: Rayka, Milad
– sequence: 2
  givenname: Morteza
  surname: Mirzaei
  fullname: Mirzaei, Morteza
– sequence: 3
  givenname: Gholamreza
  surname: Farnoosh
  fullname: Farnoosh, Gholamreza
– sequence: 4
  givenname: Ali Mohammad
  surname: Latifi
  fullname: Latifi, Ali Mohammad
BookMark eNp9kD1PwzAQhi1UJErpD2CzxFzwV-KErZQClSoYKKyR7TjFVRIHO6UKvx5XQR2oxHSn0_Oc3rtzMKhtrQG4xOgaY0ZuXgmnnOE4IowhhCJyAob70YRhTgeHPo7OwNj7TUBIhCkhdAjeF_WX9q1Zi9bUazivv7tKwztj1YeujG9dB2UH77Vu4FILVwfoFk7hzFbNtg2OrUUJV9aWsLAOCvisd3DuxAU4LUTp9fi3jsDbw3w1e5osXx4Xs-lyomgIPkmJyBOmZEySpGBIEFJwxQlPdaQRkTlDhKVSxlKJhGKMJZWRZlzkLE_jQik6Alf93sbZz204JNvYrQuZfEYxRynDiKNA8Z5SznrvdJEp04dvnTBlhlG2_2N29Mdg4j9m40wlXPevg3pnZ12Ze2V03ZrCqIN6rPwA4vaENw
CitedBy_id crossref_primary_10_1142_S2737416524020010
Cites_doi 10.1038/nature14539
10.1002/pro.4146
10.1021/acs.jcim.2c01436
10.1093/nar/gkw952
10.1109/TNNLS.2021.3084827
10.1016/j.compbiolchem.2021.107558
10.1021/acs.jctc.2c01227
10.2174/1389450119666181002143355
10.1016/S1367-5931(00)00164-2
10.1073/pnas.2016239118
10.1007/978-3-030-77939-9_21
10.1007/s43393-020-00005-9
10.1162/neco.1997.9.8.1735
10.1093/nar/gkab961
10.1093/bioinformatics/btq003
10.1371/journal.pbio.3001402
10.1038/s42256-021-00310-5
10.1609/aaai.v32i1.11872
10.1039/D1SC02362D
10.1109/ICEARS53579.2022.9752250
10.1093/bioinformatics/btaa937
10.1093/bioinformatics/bty287
10.1007/978-3-030-70679-1
10.1016/j.mib.2007.05.004
10.3389/fmicb.2022.790063
10.1016/j.biortech.2021.124771
10.1038/s42256-022-00463-x
10.1016/S0022-2836(05)80360-2
10.1093/bioinformatics/btaa536
10.1093/bib/bbab340
10.1038/s41467-023-39840-4
10.1073/pnas.1514240113
10.1093/nar/gkr1046
10.1093/nar/gkx1012
10.1016/j.cbpa.2017.01.021
10.1093/bioinformatics/btaa003
10.1214/aos/1013203451
10.1146/annurev.biophys.37.092707.153558
10.1038/s41592-019-0598-1
10.1007/s10994-006-6226-1
10.1038/s41467-021-24070-3
10.1093/nar/gkaa892
10.1016/B978-1-78242-285-3.00002-8
10.1021/acs.jcim.2c01407
10.1093/bioinformatics/btaa135
10.1021/acssynbio.9b00099
10.1038/s41586-021-03819-2
10.1093/nar/gkac831
10.1021/acs.jpcb.2c03287
10.1088/1742-6596/1684/1/012007
10.1021/acs.jpca.0c04473
10.1371/journal.pone.0141287
10.1145/3422622
10.1002/prot.26237
10.1109/MSP.2017.2765202
10.1038/s41398-020-0780-3
10.1002/bit.22489
10.1109/ICCUBEA.2018.8697857
10.1021/acs.jcim.9b00266
10.1016/j.jmb.2004.10.024
10.3390/app13052858
10.1093/bib/bbab569
10.3390/ijms20112845
10.3389/fgene.2018.00714
10.1038/s41467-023-38347-2
10.1016/j.cbpa.2009.02.021
10.1093/nar/gkr854
10.1001/jamainternmed.2018.7117
10.1016/j.jtbi.2018.01.023
10.1021/acs.jcim.3c00273
10.1016/S0022-2836(02)00016-5
10.1016/S0958-1669(03)00092-2
10.1016/S0958-1669(02)00328-2
10.1093/nar/28.1.27
10.1038/s41580-019-0163-x
10.1016/j.cbpa.2013.12.003
10.1080/07391102.2020.1754292
10.1002/pro.4480
10.1038/s41929-022-00798-z
10.1007/BF03245829
10.1016/j.aiopen.2021.08.002
10.1093/bioinformatics/btaa881
10.1109/78.650093
10.1093/bioinformatics/btq442
10.1093/nargab/lqac043
10.1093/bioinformatics/bty813
10.1002/jcc.24764
10.1093/bib/bbl004
10.1007/s12038-016-9643-8
10.1063/1.5019779
10.1109/TPAMI.2021.3095381
10.1021/acs.jctc.8b00908
10.1002/cctc.202001107
10.1007/978-3-319-94463-0
10.1109/ACCESS.2020.2992468
10.1093/bioinformatics/btx680
10.1186/1471-2105-12-376
10.1093/nar/25.17.3389
10.1111/febs.16274
10.1093/bioinformatics/btab054
10.1016/B978-0-323-89775-4.00019-5
10.1007/978-981-33-6108-9
10.1073/pnas.1821905116
10.1093/bib/bbad065
10.1016/j.trechm.2022.03.001
10.1126/science.adf2465
10.1038/s41467-021-25976-8
10.1021/acscatal.9b04321
10.1093/bioinformatics/bty140
10.1038/nmeth.2340
10.3390/ijms24032217
10.1038/s41524-021-00554-0
10.1002/prot.25832
10.1016/j.pisc.2014.02.006
10.3724/abbs.2023033
10.1016/bs.mie.2020.05.005
10.33263/BRIAC105.64886497
10.1021/acs.jmedchem.2c00991
ContentType Journal Article
Copyright 2024, World Scientific Publishing Company
2024. World Scientific Publishing Company
Copyright_xml – notice: 2024, World Scientific Publishing Company
– notice: 2024. World Scientific Publishing Company
DBID AAYXX
CITATION
DOI 10.1142/S2737416524400052
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2737-4173
EndPage 799
ExternalDocumentID 10_1142_S2737416524400052
S2737416524400052
GroupedDBID ADSJI
ALMA_UNASSIGNED_HOLDINGS
EBS
RWJ
AAYXX
ADMLS
CITATION
ID FETCH-LOGICAL-c3142-92ad84cb6288f40a22f7c7279e5e02bd40249bb6bca83111b3b5e47ad4d96fcc3
ISSN 2737-4165
IngestDate Wed Aug 13 08:54:35 EDT 2025
Tue Jul 01 02:03:52 EDT 2025
Thu Apr 24 22:56:07 EDT 2025
Fri Aug 23 08:19:11 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords deep learning
Enzyme
artificial intelligence
bioinformatics
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3142-92ad84cb6288f40a22f7c7279e5e02bd40249bb6bca83111b3b5e47ad4d96fcc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4378-9609
0000-0001-8951-892X
0000-0001-5568-2422
0000-0002-8952-5174
PQID 3170941070
PQPubID 2049910
PageCount 19
ParticipantIDs crossref_citationtrail_10_1142_S2737416524400052
crossref_primary_10_1142_S2737416524400052
proquest_journals_3170941070
worldscientific_primary_S2737416524400052
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240800
2024-08-00
20240801
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 20240800
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of computational biophysics and chemistry
PublicationYear 2024
Publisher World Scientific Publishing Company
World Scientific Publishing Co. Pte., Ltd
Publisher_xml – name: World Scientific Publishing Company
– name: World Scientific Publishing Co. Pte., Ltd
References S2737416524400052BIB107
S2737416524400052BIB108
S2737416524400052BIB109
S2737416524400052BIB067
S2737416524400052BIB100
S2737416524400052BIB068
S2737416524400052BIB101
S2737416524400052BIB069
S2737416524400052BIB102
S2737416524400052BIB103
S2737416524400052BIB104
S2737416524400052BIB105
S2737416524400052BIB106
Géron A. (S2737416524400052BIB039) 2022
S2737416524400052BIB060
S2737416524400052BIB061
S2737416524400052BIB062
S2737416524400052BIB063
Goodfellow I. (S2737416524400052BIB021) 2016
Aggarwal A. (S2737416524400052BIB064) 2021; 1
S2737416524400052BIB118
S2737416524400052BIB119
S2737416524400052BIB077
S2737416524400052BIB110
S2737416524400052BIB078
S2737416524400052BIB079
S2737416524400052BIB113
S2737416524400052BIB115
S2737416524400052BIB116
S2737416524400052BIB070
S2737416524400052BIB071
S2737416524400052BIB072
S2737416524400052BIB073
S2737416524400052BIB074
S2737416524400052BIB075
Yu H. (S2737416524400052BIB112) 2023
S2737416524400052BIB076
S2737416524400052BIB090
S2737416524400052BIB008
S2737416524400052BIB129
S2737416524400052BIB009
S2737416524400052BIB088
S2737416524400052BIB121
S2737416524400052BIB001
S2737416524400052BIB089
S2737416524400052BIB122
S2737416524400052BIB123
S2737416524400052BIB124
S2737416524400052BIB004
S2737416524400052BIB125
S2737416524400052BIB005
S2737416524400052BIB126
S2737416524400052BIB006
S2737416524400052BIB127
S2737416524400052BIB007
S2737416524400052BIB128
S2737416524400052BIB080
S2737416524400052BIB081
S2737416524400052BIB082
S2737416524400052BIB083
S2737416524400052BIB085
Meier J. (S2737416524400052BIB120) 2021; 34
S2737416524400052BIB086
S2737416524400052BIB087
S2737416524400052BIB019
Marsland S. (S2737416524400052BIB041) 2015
S2737416524400052BIB011
Radford A. (S2737416524400052BIB051) 2019; 1
S2737416524400052BIB099
S2737416524400052BIB132
S2737416524400052BIB012
S2737416524400052BIB133
S2737416524400052BIB013
S2737416524400052BIB134
S2737416524400052BIB014
S2737416524400052BIB135
S2737416524400052BIB015
S2737416524400052BIB136
S2737416524400052BIB137
S2737416524400052BIB017
S2737416524400052BIB138
S2737416524400052BIB018
S2737416524400052BIB139
S2737416524400052BIB091
S2737416524400052BIB092
S2737416524400052BIB093
S2737416524400052BIB094
S2737416524400052BIB096
S2737416524400052BIB097
S2737416524400052BIB130
S2737416524400052BIB010
S2737416524400052BIB098
S2737416524400052BIB131
Nelson L. (S2737416524400052BIB003) 2017
S2737416524400052BIB143
S2737416524400052BIB144
S2737416524400052BIB024
S2737416524400052BIB145
S2737416524400052BIB146
S2737416524400052BIB026
S2737416524400052BIB147
S2737416524400052BIB027
S2737416524400052BIB148
S2737416524400052BIB028
S2737416524400052BIB029
Zhang H. (S2737416524400052BIB066) 2019
S2737416524400052BIB020
Farnoosh G. (S2737416524400052BIB141) 2014; 1
S2737416524400052BIB142
Berg J. (S2737416524400052BIB002) 2012
Jiang Y. (S2737416524400052BIB065) 2021; 34
S2737416524400052BIB033
S2737416524400052BIB034
Feehan R. (S2737416524400052BIB016) 2021; 34
S2737416524400052BIB036
S2737416524400052BIB037
S2737416524400052BIB038
Zhang S. (S2737416524400052BIB052) 2023; 3
Shah I. (S2737416524400052BIB084) 1997
Paszke A. (S2737416524400052BIB022) 2017
S2737416524400052BIB030
S2737416524400052BIB031
S2737416524400052BIB032
S2737416524400052BIB045
Mirzaei M. (S2737416524400052BIB140) 2020; 10
S2737416524400052BIB046
S2737416524400052BIB048
S2737416524400052BIB042
S2737416524400052BIB043
S2737416524400052BIB055
S2737416524400052BIB056
S2737416524400052BIB057
S2737416524400052BIB058
S2737416524400052BIB059
Vaswani A. (S2737416524400052BIB049) 2017; 30
S2737416524400052BIB053
Todeschini R. (S2737416524400052BIB040) 2008
References_xml – ident: S2737416524400052BIB019
  doi: 10.1038/nature14539
– ident: S2737416524400052BIB101
  doi: 10.1002/pro.4146
– ident: S2737416524400052BIB056
  doi: 10.1021/acs.jcim.2c01436
– volume-title: Hands-on Machine Learning with Scikit-Learn, Keras, and Tensorflow
  year: 2022
  ident: S2737416524400052BIB039
– ident: S2737416524400052BIB090
  doi: 10.1093/nar/gkw952
– ident: S2737416524400052BIB045
  doi: 10.1109/TNNLS.2021.3084827
– ident: S2737416524400052BIB093
  doi: 10.1016/j.compbiolchem.2021.107558
– ident: S2737416524400052BIB145
  doi: 10.1021/acs.jctc.2c01227
– volume: 1
  start-page: 100004
  issue: 1
  year: 2021
  ident: S2737416524400052BIB064
  publication-title: Int. J. Inf. Manage. Data Insights
– ident: S2737416524400052BIB070
  doi: 10.2174/1389450119666181002143355
– start-page: 1
  volume-title: 31st Conf. Neural Information Processing Systems NeurIPS 2017
  year: 2017
  ident: S2737416524400052BIB022
– ident: S2737416524400052BIB027
  doi: 10.1016/S1367-5931(00)00164-2
– ident: S2737416524400052BIB096
  doi: 10.1073/pnas.2016239118
– volume: 10
  start-page: 91
  issue: 39
  year: 2020
  ident: S2737416524400052BIB140
  publication-title: New Cell. Mol. Biotechnol. J.
– ident: S2737416524400052BIB033
  doi: 10.1007/978-3-030-77939-9_21
– ident: S2737416524400052BIB009
  doi: 10.1007/s43393-020-00005-9
– ident: S2737416524400052BIB046
  doi: 10.1162/neco.1997.9.8.1735
– volume-title: Handbook of Molecular Descriptors
  year: 2008
  ident: S2737416524400052BIB040
– volume-title: Lehninger Principles of Biochemistry
  year: 2017
  ident: S2737416524400052BIB003
– ident: S2737416524400052BIB118
  doi: 10.1093/nar/gkab961
– ident: S2737416524400052BIB092
  doi: 10.1093/bioinformatics/btq003
– ident: S2737416524400052BIB103
  doi: 10.1371/journal.pbio.3001402
– ident: S2737416524400052BIB143
  doi: 10.1038/s42256-021-00310-5
– ident: S2737416524400052BIB067
  doi: 10.1609/aaai.v32i1.11872
– ident: S2737416524400052BIB133
  doi: 10.1039/D1SC02362D
– ident: S2737416524400052BIB068
  doi: 10.1109/ICEARS53579.2022.9752250
– ident: S2737416524400052BIB129
  doi: 10.1093/bioinformatics/btaa937
– ident: S2737416524400052BIB137
  doi: 10.1093/bioinformatics/bty287
– ident: S2737416524400052BIB061
  doi: 10.1007/978-3-030-70679-1
– ident: S2737416524400052BIB116
  doi: 10.1016/j.mib.2007.05.004
– volume: 34
  start-page: gzab019
  year: 2021
  ident: S2737416524400052BIB016
  publication-title: Protein Eng. Des. Sel.
– start-page: 7354
  volume-title: Proc. 36th Int. Conf. Machine Learning
  year: 2019
  ident: S2737416524400052BIB066
– ident: S2737416524400052BIB123
  doi: 10.3389/fmicb.2022.790063
– ident: S2737416524400052BIB010
  doi: 10.1016/j.biortech.2021.124771
– ident: S2737416524400052BIB024
  doi: 10.1038/s42256-022-00463-x
– ident: S2737416524400052BIB083
  doi: 10.1016/S0022-2836(05)80360-2
– ident: S2737416524400052BIB100
  doi: 10.1093/bioinformatics/btaa536
– ident: S2737416524400052BIB055
  doi: 10.1093/bib/bbab340
– volume-title: Biochemistry
  year: 2012
  ident: S2737416524400052BIB002
– ident: S2737416524400052BIB107
  doi: 10.1038/s41467-023-39840-4
– ident: S2737416524400052BIB104
  doi: 10.1073/pnas.1514240113
– ident: S2737416524400052BIB108
  doi: 10.1093/nar/gkr1046
– ident: S2737416524400052BIB132
  doi: 10.1093/nar/gkx1012
– ident: S2737416524400052BIB013
  doi: 10.1016/j.cbpa.2017.01.021
– ident: S2737416524400052BIB102
  doi: 10.1093/bioinformatics/btaa003
– ident: S2737416524400052BIB106
  doi: 10.1214/aos/1013203451
– ident: S2737416524400052BIB026
  doi: 10.1146/annurev.biophys.37.092707.153558
– ident: S2737416524400052BIB105
  doi: 10.1038/s41592-019-0598-1
– ident: S2737416524400052BIB115
  doi: 10.1007/s10994-006-6226-1
– ident: S2737416524400052BIB130
  doi: 10.1038/s41467-021-24070-3
– ident: S2737416524400052BIB119
  doi: 10.1093/nar/gkaa892
– ident: S2737416524400052BIB006
  doi: 10.1016/B978-1-78242-285-3.00002-8
– ident: S2737416524400052BIB053
  doi: 10.1021/acs.jcim.2c01407
– ident: S2737416524400052BIB099
  doi: 10.1093/bioinformatics/btaa135
– ident: S2737416524400052BIB126
  doi: 10.1021/acssynbio.9b00099
– ident: S2737416524400052BIB030
  doi: 10.1038/s41586-021-03819-2
– volume: 3
  start-page: vbad001
  issue: 1
  year: 2023
  ident: S2737416524400052BIB052
  publication-title: Bioinf. Adv.
– ident: S2737416524400052BIB110
  doi: 10.1093/nar/gkac831
– ident: S2737416524400052BIB134
  doi: 10.1021/acs.jpcb.2c03287
– ident: S2737416524400052BIB038
  doi: 10.1088/1742-6596/1684/1/012007
– ident: S2737416524400052BIB036
  doi: 10.1021/acs.jpca.0c04473
– ident: S2737416524400052BIB136
  doi: 10.1371/journal.pone.0141287
– ident: S2737416524400052BIB062
  doi: 10.1145/3422622
– ident: S2737416524400052BIB029
  doi: 10.1002/prot.26237
– ident: S2737416524400052BIB063
  doi: 10.1109/MSP.2017.2765202
– ident: S2737416524400052BIB037
  doi: 10.1038/s41398-020-0780-3
– volume: 34
  start-page: 14745
  year: 2021
  ident: S2737416524400052BIB065
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: S2737416524400052BIB076
  doi: 10.1002/bit.22489
– ident: S2737416524400052BIB020
  doi: 10.1109/ICCUBEA.2018.8697857
– ident: S2737416524400052BIB031
  doi: 10.1021/acs.jcim.9b00266
– ident: S2737416524400052BIB080
  doi: 10.1016/j.jmb.2004.10.024
– ident: S2737416524400052BIB125
  doi: 10.3390/app13052858
– ident: S2737416524400052BIB148
  doi: 10.1093/bib/bbab569
– ident: S2737416524400052BIB098
  doi: 10.3390/ijms20112845
– ident: S2737416524400052BIB089
  doi: 10.3389/fgene.2018.00714
– ident: S2737416524400052BIB139
  doi: 10.1038/s41467-023-38347-2
– ident: S2737416524400052BIB015
  doi: 10.1016/j.cbpa.2009.02.021
– ident: S2737416524400052BIB077
  doi: 10.1093/nar/gkr854
– ident: S2737416524400052BIB034
  doi: 10.1001/jamainternmed.2018.7117
– ident: S2737416524400052BIB127
  doi: 10.1016/j.jtbi.2018.01.023
– ident: S2737416524400052BIB131
  doi: 10.1021/acs.jcim.3c00273
– ident: S2737416524400052BIB001
  doi: 10.1016/S0022-2836(02)00016-5
– ident: S2737416524400052BIB008
  doi: 10.1016/S0958-1669(03)00092-2
– ident: S2737416524400052BIB012
  doi: 10.1016/S0958-1669(02)00328-2
– ident: S2737416524400052BIB135
  doi: 10.1093/nar/28.1.27
– ident: S2737416524400052BIB028
  doi: 10.1038/s41580-019-0163-x
– ident: S2737416524400052BIB014
  doi: 10.1016/j.cbpa.2013.12.003
– ident: S2737416524400052BIB097
  doi: 10.1080/07391102.2020.1754292
– ident: S2737416524400052BIB121
  doi: 10.1002/pro.4480
– ident: S2737416524400052BIB109
  doi: 10.1038/s41929-022-00798-z
– ident: S2737416524400052BIB005
  doi: 10.1007/BF03245829
– ident: S2737416524400052BIB147
  doi: 10.1016/j.aiopen.2021.08.002
– ident: S2737416524400052BIB138
  doi: 10.1093/bioinformatics/btaa881
– ident: S2737416524400052BIB048
  doi: 10.1109/78.650093
– ident: S2737416524400052BIB007
  doi: 10.1093/bioinformatics/btq442
– ident: S2737416524400052BIB094
  doi: 10.1093/nargab/lqac043
– ident: S2737416524400052BIB128
  doi: 10.1093/bioinformatics/bty813
– ident: S2737416524400052BIB042
  doi: 10.1002/jcc.24764
– ident: S2737416524400052BIB075
  doi: 10.1093/bib/bbl004
– ident: S2737416524400052BIB142
  doi: 10.1007/s12038-016-9643-8
– ident: S2737416524400052BIB059
  doi: 10.1063/1.5019779
– ident: S2737416524400052BIB113
  doi: 10.1109/TPAMI.2021.3095381
– ident: S2737416524400052BIB060
  doi: 10.1021/acs.jctc.8b00908
– ident: S2737416524400052BIB011
  doi: 10.1002/cctc.202001107
– ident: S2737416524400052BIB043
  doi: 10.1007/978-3-319-94463-0
– ident: S2737416524400052BIB071
  doi: 10.1109/ACCESS.2020.2992468
– ident: S2737416524400052BIB088
  doi: 10.1093/bioinformatics/btx680
– ident: S2737416524400052BIB081
  doi: 10.1186/1471-2105-12-376
– ident: S2737416524400052BIB082
  doi: 10.1093/nar/25.17.3389
– ident: S2737416524400052BIB078
  doi: 10.1111/febs.16274
– ident: S2737416524400052BIB091
  doi: 10.1093/bioinformatics/btab054
– volume: 34
  start-page: 29287
  year: 2021
  ident: S2737416524400052BIB120
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: S2737416524400052BIB146
  doi: 10.1016/B978-0-323-89775-4.00019-5
– volume: 1
  start-page: 9
  issue: 8
  year: 2019
  ident: S2737416524400052BIB051
  publication-title: OpenAI Blog
– ident: S2737416524400052BIB032
  doi: 10.1007/978-981-33-6108-9
– ident: S2737416524400052BIB087
  doi: 10.1073/pnas.1821905116
– volume: 1
  start-page: 1
  issue: 1
  year: 2014
  ident: S2737416524400052BIB141
  publication-title: J. Appl. Biotechnol. Rep.
– ident: S2737416524400052BIB074
  doi: 10.1093/bib/bbad065
– ident: S2737416524400052BIB073
  doi: 10.1016/j.trechm.2022.03.001
– ident: S2737416524400052BIB086
  doi: 10.1126/science.adf2465
– ident: S2737416524400052BIB144
  doi: 10.1038/s41467-021-25976-8
– volume-title: Deep Learning
  year: 2016
  ident: S2737416524400052BIB021
– ident: S2737416524400052BIB018
  doi: 10.1021/acscatal.9b04321
– ident: S2737416524400052BIB124
  doi: 10.1093/bioinformatics/bty140
– start-page: 276
  volume-title: Proc. Int. Conf. Intelligent Systems for Molecular Biology
  year: 1997
  ident: S2737416524400052BIB084
– ident: S2737416524400052BIB085
  doi: 10.1038/nmeth.2340
– year: 2023
  ident: S2737416524400052BIB112
  publication-title: Research Square
– ident: S2737416524400052BIB122
  doi: 10.3390/ijms24032217
– ident: S2737416524400052BIB058
  doi: 10.1038/s41524-021-00554-0
– ident: S2737416524400052BIB069
  doi: 10.1002/prot.25832
– ident: S2737416524400052BIB079
  doi: 10.1016/j.pisc.2014.02.006
– ident: S2737416524400052BIB072
  doi: 10.3724/abbs.2023033
– ident: S2737416524400052BIB017
  doi: 10.1016/bs.mie.2020.05.005
– ident: S2737416524400052BIB004
  doi: 10.33263/BRIAC105.64886497
– ident: S2737416524400052BIB057
  doi: 10.1021/acs.jmedchem.2c00991
– volume-title: Machine Learning: An Algorithmic Perspective
  year: 2015
  ident: S2737416524400052BIB041
– volume: 30
  start-page: 1
  year: 2017
  ident: S2737416524400052BIB049
  publication-title: Adv. Neural Inf. Process. Syst.
SSID ssj0002513223
Score 2.2710247
Snippet Enzymes are protein molecules that play a crucial role in various biological processes in living organisms. They function as catalysts in biological reactions...
SourceID proquest
crossref
worldscientific
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 781
SubjectTerms Algorithms
Artificial neural networks
Biofuels
Biological activity
Catalytic converters
Chemical reactions
Deep learning
Enzyme kinetics
Enzymes
Machine learning
Parameter identification
Software
Unsupervised learning
Title Investigating Enzyme Biochemistry by Deep Learning: A Computational Tool for a New Era
URI http://www.worldscientific.com/doi/abs/10.1142/S2737416524400052
https://www.proquest.com/docview/3170941070
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELbScGgvCGirhgLygUsrLd04TjbbWwQBhKAXAuK2sr12iSAJCuGQ_Kr-xM6sH9kQQMBlFTnrcTbzreezPQ9CdnVujEl0MzJpS0Q8le1IqrqIoBUPhVRqigjvsz-t4wt-ctW8qlT-lbyWHiZyT82ejCt5j1ahDfSKUbJv0GwQCg3wGfQLV9AwXF-l41KSDFjwd4ez6UBjdUnlq7ghuTzQ-s6nUf3rA9GxlIPfBuxhGs7CmbLwduyOxTOMVS10k_2R3RaxWZ7DmPOTo-mNsJ75tyIPiu2PZ0IXLgSFn-8smIVD-IWj0X2xzXOEK-7BuPTtqUCnJhuS04eu12IwcFLdngXjwWPOTW3AmZIIqKA9z9blNlvYxM_NNhbZYbA80Sa20Iuz2YktsrRsDjimlz1H0TgaUJniaHNu-_x5_yOTGBwVbdg2y5ZEfCArDBYmrEpWOgdnp-dhXw_4IsyR6NgQHtIdpoOcX0tyFunQfI2zWiTMtUGx6DNWIj29NbLqdE87FnrrpKKHG-Tjvlf1Z3K5AEFqIUjLEKRyShGC1EPwN-3QBQBSBCAFAFJBAYAUAPiFXBx2e_vHkSvVEakGPFeUMpG3uZJYvNrwWDBmEgXUONVNHTOZc8xMKWVLKtFugHmVDdnUPBE5z9OWUarxlVSHo6H-RihWReMqrsOdAthtG0SnOZe4kjd1KViNxP4fy5TLY4_lVG6zZ5VVIz9DlzubxOWlm7e8GjL3rt9nwLLjlNfBPtbIj0eqCSKXRG2-Zdzv5NP8Vdki1cn4QW8D4Z3IHYex_zyYpaU
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+Enzyme+Biochemistry+by+Deep+Learning%3A+A+Computational+Tool+for+a+New+Era&rft.jtitle=Journal+of+computational+biophysics+and+chemistry&rft.au=Rayka%2C+Milad&rft.au=Mirzaei%2C+Morteza&rft.au=Farnoosh%2C+Gholamreza&rft.au=Latifi%2C+Ali+Mohammad&rft.date=2024-08-01&rft.issn=2737-4165&rft.eissn=2737-4173&rft.volume=23&rft.issue=6&rft.spage=781&rft.epage=799&rft_id=info:doi/10.1142%2FS2737416524400052&rft.externalDBID=n%2Fa&rft.externalDocID=10_1142_S2737416524400052
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2737-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2737-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2737-4165&client=summon