Investigating Enzyme Biochemistry by Deep Learning: A Computational Tool for a New Era
Enzymes are protein molecules that play a crucial role in various biological processes in living organisms. They function as catalysts in biological reactions such as digestion, metabolism, DNA replication and other physiological processes. Furthermore, enzymes are widely used in food production, ph...
Saved in:
Published in | Journal of computational biophysics and chemistry Vol. 23; no. 6; pp. 781 - 799 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
World Scientific Publishing Company
01.08.2024
World Scientific Publishing Co. Pte., Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Enzymes are protein molecules that play a crucial role in various biological processes in living organisms. They function as catalysts in biological reactions such as digestion, metabolism, DNA replication and other physiological processes. Furthermore, enzymes are widely used in food production, pharmaceuticals and biofuel production. In these industries, they accelerate desired chemical reactions as biocatalysts. Therefore, applying computational methods and data-driven algorithms to predict enzyme properties is essential. Over the past decade, deep learning has made remarkable advancements in science and technology. Deep learning is a subset of machine learning algorithms that rely on artificial neural networks. These algorithms can be employed for supervised, semi-supervised and unsupervised learning. Here, to provide an update on the current literature, we provide an overview of various deep learning algorithms and recent advancements in their application to enzyme science. These applications can generally be categorized into diverse subjects: function prediction, enzyme kinetic parameters prediction, enzyme-substrate identification, condition optimization, thermophilic property prediction, enzyme catalytic site prediction and enzyme design. In conclusion, we discuss the convergence of enzyme science and deep learning, highlighting the potential opportunities and challenges.
Artificial intelligence algorithms have diverse applications in enzyme science. In this review paper, we focus on deep learning algorithms and their implications on various tasks, such as enzyme design, kinetic parameters prediction, etc. |
---|---|
AbstractList | Enzymes are protein molecules that play a crucial role in various biological processes in living organisms. They function as catalysts in biological reactions such as digestion, metabolism, DNA replication and other physiological processes. Furthermore, enzymes are widely used in food production, pharmaceuticals and biofuel production. In these industries, they accelerate desired chemical reactions as biocatalysts. Therefore, applying computational methods and data-driven algorithms to predict enzyme properties is essential. Over the past decade, deep learning has made remarkable advancements in science and technology. Deep learning is a subset of machine learning algorithms that rely on artificial neural networks. These algorithms can be employed for supervised, semi-supervised and unsupervised learning. Here, to provide an update on the current literature, we provide an overview of various deep learning algorithms and recent advancements in their application to enzyme science. These applications can generally be categorized into diverse subjects: function prediction, enzyme kinetic parameters prediction, enzyme-substrate identification, condition optimization, thermophilic property prediction, enzyme catalytic site prediction and enzyme design. In conclusion, we discuss the convergence of enzyme science and deep learning, highlighting the potential opportunities and challenges.
Artificial intelligence algorithms have diverse applications in enzyme science. In this review paper, we focus on deep learning algorithms and their implications on various tasks, such as enzyme design, kinetic parameters prediction, etc. Enzymes are protein molecules that play a crucial role in various biological processes in living organisms. They function as catalysts in biological reactions such as digestion, metabolism, DNA replication and other physiological processes. Furthermore, enzymes are widely used in food production, pharmaceuticals and biofuel production. In these industries, they accelerate desired chemical reactions as biocatalysts. Therefore, applying computational methods and data-driven algorithms to predict enzyme properties is essential. Over the past decade, deep learning has made remarkable advancements in science and technology. Deep learning is a subset of machine learning algorithms that rely on artificial neural networks. These algorithms can be employed for supervised, semi-supervised and unsupervised learning. Here, to provide an update on the current literature, we provide an overview of various deep learning algorithms and recent advancements in their application to enzyme science. These applications can generally be categorized into diverse subjects: function prediction, enzyme kinetic parameters prediction, enzyme-substrate identification, condition optimization, thermophilic property prediction, enzyme catalytic site prediction and enzyme design. In conclusion, we discuss the convergence of enzyme science and deep learning, highlighting the potential opportunities and challenges. |
Author | Latifi, Ali Mohammad Mirzaei, Morteza Rayka, Milad Farnoosh, Gholamreza |
Author_xml | – sequence: 1 givenname: Milad surname: Rayka fullname: Rayka, Milad – sequence: 2 givenname: Morteza surname: Mirzaei fullname: Mirzaei, Morteza – sequence: 3 givenname: Gholamreza surname: Farnoosh fullname: Farnoosh, Gholamreza – sequence: 4 givenname: Ali Mohammad surname: Latifi fullname: Latifi, Ali Mohammad |
BookMark | eNp9kD1PwzAQhi1UJErpD2CzxFzwV-KErZQClSoYKKyR7TjFVRIHO6UKvx5XQR2oxHSn0_Oc3rtzMKhtrQG4xOgaY0ZuXgmnnOE4IowhhCJyAob70YRhTgeHPo7OwNj7TUBIhCkhdAjeF_WX9q1Zi9bUazivv7tKwztj1YeujG9dB2UH77Vu4FILVwfoFk7hzFbNtg2OrUUJV9aWsLAOCvisd3DuxAU4LUTp9fi3jsDbw3w1e5osXx4Xs-lyomgIPkmJyBOmZEySpGBIEFJwxQlPdaQRkTlDhKVSxlKJhGKMJZWRZlzkLE_jQik6Alf93sbZz204JNvYrQuZfEYxRynDiKNA8Z5SznrvdJEp04dvnTBlhlG2_2N29Mdg4j9m40wlXPevg3pnZ12Ze2V03ZrCqIN6rPwA4vaENw |
CitedBy_id | crossref_primary_10_1142_S2737416524020010 |
Cites_doi | 10.1038/nature14539 10.1002/pro.4146 10.1021/acs.jcim.2c01436 10.1093/nar/gkw952 10.1109/TNNLS.2021.3084827 10.1016/j.compbiolchem.2021.107558 10.1021/acs.jctc.2c01227 10.2174/1389450119666181002143355 10.1016/S1367-5931(00)00164-2 10.1073/pnas.2016239118 10.1007/978-3-030-77939-9_21 10.1007/s43393-020-00005-9 10.1162/neco.1997.9.8.1735 10.1093/nar/gkab961 10.1093/bioinformatics/btq003 10.1371/journal.pbio.3001402 10.1038/s42256-021-00310-5 10.1609/aaai.v32i1.11872 10.1039/D1SC02362D 10.1109/ICEARS53579.2022.9752250 10.1093/bioinformatics/btaa937 10.1093/bioinformatics/bty287 10.1007/978-3-030-70679-1 10.1016/j.mib.2007.05.004 10.3389/fmicb.2022.790063 10.1016/j.biortech.2021.124771 10.1038/s42256-022-00463-x 10.1016/S0022-2836(05)80360-2 10.1093/bioinformatics/btaa536 10.1093/bib/bbab340 10.1038/s41467-023-39840-4 10.1073/pnas.1514240113 10.1093/nar/gkr1046 10.1093/nar/gkx1012 10.1016/j.cbpa.2017.01.021 10.1093/bioinformatics/btaa003 10.1214/aos/1013203451 10.1146/annurev.biophys.37.092707.153558 10.1038/s41592-019-0598-1 10.1007/s10994-006-6226-1 10.1038/s41467-021-24070-3 10.1093/nar/gkaa892 10.1016/B978-1-78242-285-3.00002-8 10.1021/acs.jcim.2c01407 10.1093/bioinformatics/btaa135 10.1021/acssynbio.9b00099 10.1038/s41586-021-03819-2 10.1093/nar/gkac831 10.1021/acs.jpcb.2c03287 10.1088/1742-6596/1684/1/012007 10.1021/acs.jpca.0c04473 10.1371/journal.pone.0141287 10.1145/3422622 10.1002/prot.26237 10.1109/MSP.2017.2765202 10.1038/s41398-020-0780-3 10.1002/bit.22489 10.1109/ICCUBEA.2018.8697857 10.1021/acs.jcim.9b00266 10.1016/j.jmb.2004.10.024 10.3390/app13052858 10.1093/bib/bbab569 10.3390/ijms20112845 10.3389/fgene.2018.00714 10.1038/s41467-023-38347-2 10.1016/j.cbpa.2009.02.021 10.1093/nar/gkr854 10.1001/jamainternmed.2018.7117 10.1016/j.jtbi.2018.01.023 10.1021/acs.jcim.3c00273 10.1016/S0022-2836(02)00016-5 10.1016/S0958-1669(03)00092-2 10.1016/S0958-1669(02)00328-2 10.1093/nar/28.1.27 10.1038/s41580-019-0163-x 10.1016/j.cbpa.2013.12.003 10.1080/07391102.2020.1754292 10.1002/pro.4480 10.1038/s41929-022-00798-z 10.1007/BF03245829 10.1016/j.aiopen.2021.08.002 10.1093/bioinformatics/btaa881 10.1109/78.650093 10.1093/bioinformatics/btq442 10.1093/nargab/lqac043 10.1093/bioinformatics/bty813 10.1002/jcc.24764 10.1093/bib/bbl004 10.1007/s12038-016-9643-8 10.1063/1.5019779 10.1109/TPAMI.2021.3095381 10.1021/acs.jctc.8b00908 10.1002/cctc.202001107 10.1007/978-3-319-94463-0 10.1109/ACCESS.2020.2992468 10.1093/bioinformatics/btx680 10.1186/1471-2105-12-376 10.1093/nar/25.17.3389 10.1111/febs.16274 10.1093/bioinformatics/btab054 10.1016/B978-0-323-89775-4.00019-5 10.1007/978-981-33-6108-9 10.1073/pnas.1821905116 10.1093/bib/bbad065 10.1016/j.trechm.2022.03.001 10.1126/science.adf2465 10.1038/s41467-021-25976-8 10.1021/acscatal.9b04321 10.1093/bioinformatics/bty140 10.1038/nmeth.2340 10.3390/ijms24032217 10.1038/s41524-021-00554-0 10.1002/prot.25832 10.1016/j.pisc.2014.02.006 10.3724/abbs.2023033 10.1016/bs.mie.2020.05.005 10.33263/BRIAC105.64886497 10.1021/acs.jmedchem.2c00991 |
ContentType | Journal Article |
Copyright | 2024, World Scientific Publishing Company 2024. World Scientific Publishing Company |
Copyright_xml | – notice: 2024, World Scientific Publishing Company – notice: 2024. World Scientific Publishing Company |
DBID | AAYXX CITATION |
DOI | 10.1142/S2737416524400052 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2737-4173 |
EndPage | 799 |
ExternalDocumentID | 10_1142_S2737416524400052 S2737416524400052 |
GroupedDBID | ADSJI ALMA_UNASSIGNED_HOLDINGS EBS RWJ AAYXX ADMLS CITATION |
ID | FETCH-LOGICAL-c3142-92ad84cb6288f40a22f7c7279e5e02bd40249bb6bca83111b3b5e47ad4d96fcc3 |
ISSN | 2737-4165 |
IngestDate | Wed Aug 13 08:54:35 EDT 2025 Tue Jul 01 02:03:52 EDT 2025 Thu Apr 24 22:56:07 EDT 2025 Fri Aug 23 08:19:11 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | deep learning Enzyme artificial intelligence bioinformatics |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3142-92ad84cb6288f40a22f7c7279e5e02bd40249bb6bca83111b3b5e47ad4d96fcc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4378-9609 0000-0001-8951-892X 0000-0001-5568-2422 0000-0002-8952-5174 |
PQID | 3170941070 |
PQPubID | 2049910 |
PageCount | 19 |
ParticipantIDs | crossref_citationtrail_10_1142_S2737416524400052 crossref_primary_10_1142_S2737416524400052 proquest_journals_3170941070 worldscientific_primary_S2737416524400052 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240800 2024-08-00 20240801 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 20240800 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Journal of computational biophysics and chemistry |
PublicationYear | 2024 |
Publisher | World Scientific Publishing Company World Scientific Publishing Co. Pte., Ltd |
Publisher_xml | – name: World Scientific Publishing Company – name: World Scientific Publishing Co. Pte., Ltd |
References | S2737416524400052BIB107 S2737416524400052BIB108 S2737416524400052BIB109 S2737416524400052BIB067 S2737416524400052BIB100 S2737416524400052BIB068 S2737416524400052BIB101 S2737416524400052BIB069 S2737416524400052BIB102 S2737416524400052BIB103 S2737416524400052BIB104 S2737416524400052BIB105 S2737416524400052BIB106 Géron A. (S2737416524400052BIB039) 2022 S2737416524400052BIB060 S2737416524400052BIB061 S2737416524400052BIB062 S2737416524400052BIB063 Goodfellow I. (S2737416524400052BIB021) 2016 Aggarwal A. (S2737416524400052BIB064) 2021; 1 S2737416524400052BIB118 S2737416524400052BIB119 S2737416524400052BIB077 S2737416524400052BIB110 S2737416524400052BIB078 S2737416524400052BIB079 S2737416524400052BIB113 S2737416524400052BIB115 S2737416524400052BIB116 S2737416524400052BIB070 S2737416524400052BIB071 S2737416524400052BIB072 S2737416524400052BIB073 S2737416524400052BIB074 S2737416524400052BIB075 Yu H. (S2737416524400052BIB112) 2023 S2737416524400052BIB076 S2737416524400052BIB090 S2737416524400052BIB008 S2737416524400052BIB129 S2737416524400052BIB009 S2737416524400052BIB088 S2737416524400052BIB121 S2737416524400052BIB001 S2737416524400052BIB089 S2737416524400052BIB122 S2737416524400052BIB123 S2737416524400052BIB124 S2737416524400052BIB004 S2737416524400052BIB125 S2737416524400052BIB005 S2737416524400052BIB126 S2737416524400052BIB006 S2737416524400052BIB127 S2737416524400052BIB007 S2737416524400052BIB128 S2737416524400052BIB080 S2737416524400052BIB081 S2737416524400052BIB082 S2737416524400052BIB083 S2737416524400052BIB085 Meier J. (S2737416524400052BIB120) 2021; 34 S2737416524400052BIB086 S2737416524400052BIB087 S2737416524400052BIB019 Marsland S. (S2737416524400052BIB041) 2015 S2737416524400052BIB011 Radford A. (S2737416524400052BIB051) 2019; 1 S2737416524400052BIB099 S2737416524400052BIB132 S2737416524400052BIB012 S2737416524400052BIB133 S2737416524400052BIB013 S2737416524400052BIB134 S2737416524400052BIB014 S2737416524400052BIB135 S2737416524400052BIB015 S2737416524400052BIB136 S2737416524400052BIB137 S2737416524400052BIB017 S2737416524400052BIB138 S2737416524400052BIB018 S2737416524400052BIB139 S2737416524400052BIB091 S2737416524400052BIB092 S2737416524400052BIB093 S2737416524400052BIB094 S2737416524400052BIB096 S2737416524400052BIB097 S2737416524400052BIB130 S2737416524400052BIB010 S2737416524400052BIB098 S2737416524400052BIB131 Nelson L. (S2737416524400052BIB003) 2017 S2737416524400052BIB143 S2737416524400052BIB144 S2737416524400052BIB024 S2737416524400052BIB145 S2737416524400052BIB146 S2737416524400052BIB026 S2737416524400052BIB147 S2737416524400052BIB027 S2737416524400052BIB148 S2737416524400052BIB028 S2737416524400052BIB029 Zhang H. (S2737416524400052BIB066) 2019 S2737416524400052BIB020 Farnoosh G. (S2737416524400052BIB141) 2014; 1 S2737416524400052BIB142 Berg J. (S2737416524400052BIB002) 2012 Jiang Y. (S2737416524400052BIB065) 2021; 34 S2737416524400052BIB033 S2737416524400052BIB034 Feehan R. (S2737416524400052BIB016) 2021; 34 S2737416524400052BIB036 S2737416524400052BIB037 S2737416524400052BIB038 Zhang S. (S2737416524400052BIB052) 2023; 3 Shah I. (S2737416524400052BIB084) 1997 Paszke A. (S2737416524400052BIB022) 2017 S2737416524400052BIB030 S2737416524400052BIB031 S2737416524400052BIB032 S2737416524400052BIB045 Mirzaei M. (S2737416524400052BIB140) 2020; 10 S2737416524400052BIB046 S2737416524400052BIB048 S2737416524400052BIB042 S2737416524400052BIB043 S2737416524400052BIB055 S2737416524400052BIB056 S2737416524400052BIB057 S2737416524400052BIB058 S2737416524400052BIB059 Vaswani A. (S2737416524400052BIB049) 2017; 30 S2737416524400052BIB053 Todeschini R. (S2737416524400052BIB040) 2008 |
References_xml | – ident: S2737416524400052BIB019 doi: 10.1038/nature14539 – ident: S2737416524400052BIB101 doi: 10.1002/pro.4146 – ident: S2737416524400052BIB056 doi: 10.1021/acs.jcim.2c01436 – volume-title: Hands-on Machine Learning with Scikit-Learn, Keras, and Tensorflow year: 2022 ident: S2737416524400052BIB039 – ident: S2737416524400052BIB090 doi: 10.1093/nar/gkw952 – ident: S2737416524400052BIB045 doi: 10.1109/TNNLS.2021.3084827 – ident: S2737416524400052BIB093 doi: 10.1016/j.compbiolchem.2021.107558 – ident: S2737416524400052BIB145 doi: 10.1021/acs.jctc.2c01227 – volume: 1 start-page: 100004 issue: 1 year: 2021 ident: S2737416524400052BIB064 publication-title: Int. J. Inf. Manage. Data Insights – ident: S2737416524400052BIB070 doi: 10.2174/1389450119666181002143355 – start-page: 1 volume-title: 31st Conf. Neural Information Processing Systems NeurIPS 2017 year: 2017 ident: S2737416524400052BIB022 – ident: S2737416524400052BIB027 doi: 10.1016/S1367-5931(00)00164-2 – ident: S2737416524400052BIB096 doi: 10.1073/pnas.2016239118 – volume: 10 start-page: 91 issue: 39 year: 2020 ident: S2737416524400052BIB140 publication-title: New Cell. Mol. Biotechnol. J. – ident: S2737416524400052BIB033 doi: 10.1007/978-3-030-77939-9_21 – ident: S2737416524400052BIB009 doi: 10.1007/s43393-020-00005-9 – ident: S2737416524400052BIB046 doi: 10.1162/neco.1997.9.8.1735 – volume-title: Handbook of Molecular Descriptors year: 2008 ident: S2737416524400052BIB040 – volume-title: Lehninger Principles of Biochemistry year: 2017 ident: S2737416524400052BIB003 – ident: S2737416524400052BIB118 doi: 10.1093/nar/gkab961 – ident: S2737416524400052BIB092 doi: 10.1093/bioinformatics/btq003 – ident: S2737416524400052BIB103 doi: 10.1371/journal.pbio.3001402 – ident: S2737416524400052BIB143 doi: 10.1038/s42256-021-00310-5 – ident: S2737416524400052BIB067 doi: 10.1609/aaai.v32i1.11872 – ident: S2737416524400052BIB133 doi: 10.1039/D1SC02362D – ident: S2737416524400052BIB068 doi: 10.1109/ICEARS53579.2022.9752250 – ident: S2737416524400052BIB129 doi: 10.1093/bioinformatics/btaa937 – ident: S2737416524400052BIB137 doi: 10.1093/bioinformatics/bty287 – ident: S2737416524400052BIB061 doi: 10.1007/978-3-030-70679-1 – ident: S2737416524400052BIB116 doi: 10.1016/j.mib.2007.05.004 – volume: 34 start-page: gzab019 year: 2021 ident: S2737416524400052BIB016 publication-title: Protein Eng. Des. Sel. – start-page: 7354 volume-title: Proc. 36th Int. Conf. Machine Learning year: 2019 ident: S2737416524400052BIB066 – ident: S2737416524400052BIB123 doi: 10.3389/fmicb.2022.790063 – ident: S2737416524400052BIB010 doi: 10.1016/j.biortech.2021.124771 – ident: S2737416524400052BIB024 doi: 10.1038/s42256-022-00463-x – ident: S2737416524400052BIB083 doi: 10.1016/S0022-2836(05)80360-2 – ident: S2737416524400052BIB100 doi: 10.1093/bioinformatics/btaa536 – ident: S2737416524400052BIB055 doi: 10.1093/bib/bbab340 – volume-title: Biochemistry year: 2012 ident: S2737416524400052BIB002 – ident: S2737416524400052BIB107 doi: 10.1038/s41467-023-39840-4 – ident: S2737416524400052BIB104 doi: 10.1073/pnas.1514240113 – ident: S2737416524400052BIB108 doi: 10.1093/nar/gkr1046 – ident: S2737416524400052BIB132 doi: 10.1093/nar/gkx1012 – ident: S2737416524400052BIB013 doi: 10.1016/j.cbpa.2017.01.021 – ident: S2737416524400052BIB102 doi: 10.1093/bioinformatics/btaa003 – ident: S2737416524400052BIB106 doi: 10.1214/aos/1013203451 – ident: S2737416524400052BIB026 doi: 10.1146/annurev.biophys.37.092707.153558 – ident: S2737416524400052BIB105 doi: 10.1038/s41592-019-0598-1 – ident: S2737416524400052BIB115 doi: 10.1007/s10994-006-6226-1 – ident: S2737416524400052BIB130 doi: 10.1038/s41467-021-24070-3 – ident: S2737416524400052BIB119 doi: 10.1093/nar/gkaa892 – ident: S2737416524400052BIB006 doi: 10.1016/B978-1-78242-285-3.00002-8 – ident: S2737416524400052BIB053 doi: 10.1021/acs.jcim.2c01407 – ident: S2737416524400052BIB099 doi: 10.1093/bioinformatics/btaa135 – ident: S2737416524400052BIB126 doi: 10.1021/acssynbio.9b00099 – ident: S2737416524400052BIB030 doi: 10.1038/s41586-021-03819-2 – volume: 3 start-page: vbad001 issue: 1 year: 2023 ident: S2737416524400052BIB052 publication-title: Bioinf. Adv. – ident: S2737416524400052BIB110 doi: 10.1093/nar/gkac831 – ident: S2737416524400052BIB134 doi: 10.1021/acs.jpcb.2c03287 – ident: S2737416524400052BIB038 doi: 10.1088/1742-6596/1684/1/012007 – ident: S2737416524400052BIB036 doi: 10.1021/acs.jpca.0c04473 – ident: S2737416524400052BIB136 doi: 10.1371/journal.pone.0141287 – ident: S2737416524400052BIB062 doi: 10.1145/3422622 – ident: S2737416524400052BIB029 doi: 10.1002/prot.26237 – ident: S2737416524400052BIB063 doi: 10.1109/MSP.2017.2765202 – ident: S2737416524400052BIB037 doi: 10.1038/s41398-020-0780-3 – volume: 34 start-page: 14745 year: 2021 ident: S2737416524400052BIB065 publication-title: Adv. Neural Inf. Process. Syst. – ident: S2737416524400052BIB076 doi: 10.1002/bit.22489 – ident: S2737416524400052BIB020 doi: 10.1109/ICCUBEA.2018.8697857 – ident: S2737416524400052BIB031 doi: 10.1021/acs.jcim.9b00266 – ident: S2737416524400052BIB080 doi: 10.1016/j.jmb.2004.10.024 – ident: S2737416524400052BIB125 doi: 10.3390/app13052858 – ident: S2737416524400052BIB148 doi: 10.1093/bib/bbab569 – ident: S2737416524400052BIB098 doi: 10.3390/ijms20112845 – ident: S2737416524400052BIB089 doi: 10.3389/fgene.2018.00714 – ident: S2737416524400052BIB139 doi: 10.1038/s41467-023-38347-2 – ident: S2737416524400052BIB015 doi: 10.1016/j.cbpa.2009.02.021 – ident: S2737416524400052BIB077 doi: 10.1093/nar/gkr854 – ident: S2737416524400052BIB034 doi: 10.1001/jamainternmed.2018.7117 – ident: S2737416524400052BIB127 doi: 10.1016/j.jtbi.2018.01.023 – ident: S2737416524400052BIB131 doi: 10.1021/acs.jcim.3c00273 – ident: S2737416524400052BIB001 doi: 10.1016/S0022-2836(02)00016-5 – ident: S2737416524400052BIB008 doi: 10.1016/S0958-1669(03)00092-2 – ident: S2737416524400052BIB012 doi: 10.1016/S0958-1669(02)00328-2 – ident: S2737416524400052BIB135 doi: 10.1093/nar/28.1.27 – ident: S2737416524400052BIB028 doi: 10.1038/s41580-019-0163-x – ident: S2737416524400052BIB014 doi: 10.1016/j.cbpa.2013.12.003 – ident: S2737416524400052BIB097 doi: 10.1080/07391102.2020.1754292 – ident: S2737416524400052BIB121 doi: 10.1002/pro.4480 – ident: S2737416524400052BIB109 doi: 10.1038/s41929-022-00798-z – ident: S2737416524400052BIB005 doi: 10.1007/BF03245829 – ident: S2737416524400052BIB147 doi: 10.1016/j.aiopen.2021.08.002 – ident: S2737416524400052BIB138 doi: 10.1093/bioinformatics/btaa881 – ident: S2737416524400052BIB048 doi: 10.1109/78.650093 – ident: S2737416524400052BIB007 doi: 10.1093/bioinformatics/btq442 – ident: S2737416524400052BIB094 doi: 10.1093/nargab/lqac043 – ident: S2737416524400052BIB128 doi: 10.1093/bioinformatics/bty813 – ident: S2737416524400052BIB042 doi: 10.1002/jcc.24764 – ident: S2737416524400052BIB075 doi: 10.1093/bib/bbl004 – ident: S2737416524400052BIB142 doi: 10.1007/s12038-016-9643-8 – ident: S2737416524400052BIB059 doi: 10.1063/1.5019779 – ident: S2737416524400052BIB113 doi: 10.1109/TPAMI.2021.3095381 – ident: S2737416524400052BIB060 doi: 10.1021/acs.jctc.8b00908 – ident: S2737416524400052BIB011 doi: 10.1002/cctc.202001107 – ident: S2737416524400052BIB043 doi: 10.1007/978-3-319-94463-0 – ident: S2737416524400052BIB071 doi: 10.1109/ACCESS.2020.2992468 – ident: S2737416524400052BIB088 doi: 10.1093/bioinformatics/btx680 – ident: S2737416524400052BIB081 doi: 10.1186/1471-2105-12-376 – ident: S2737416524400052BIB082 doi: 10.1093/nar/25.17.3389 – ident: S2737416524400052BIB078 doi: 10.1111/febs.16274 – ident: S2737416524400052BIB091 doi: 10.1093/bioinformatics/btab054 – volume: 34 start-page: 29287 year: 2021 ident: S2737416524400052BIB120 publication-title: Adv. Neural Inf. Process. Syst. – ident: S2737416524400052BIB146 doi: 10.1016/B978-0-323-89775-4.00019-5 – volume: 1 start-page: 9 issue: 8 year: 2019 ident: S2737416524400052BIB051 publication-title: OpenAI Blog – ident: S2737416524400052BIB032 doi: 10.1007/978-981-33-6108-9 – ident: S2737416524400052BIB087 doi: 10.1073/pnas.1821905116 – volume: 1 start-page: 1 issue: 1 year: 2014 ident: S2737416524400052BIB141 publication-title: J. Appl. Biotechnol. Rep. – ident: S2737416524400052BIB074 doi: 10.1093/bib/bbad065 – ident: S2737416524400052BIB073 doi: 10.1016/j.trechm.2022.03.001 – ident: S2737416524400052BIB086 doi: 10.1126/science.adf2465 – ident: S2737416524400052BIB144 doi: 10.1038/s41467-021-25976-8 – volume-title: Deep Learning year: 2016 ident: S2737416524400052BIB021 – ident: S2737416524400052BIB018 doi: 10.1021/acscatal.9b04321 – ident: S2737416524400052BIB124 doi: 10.1093/bioinformatics/bty140 – start-page: 276 volume-title: Proc. Int. Conf. Intelligent Systems for Molecular Biology year: 1997 ident: S2737416524400052BIB084 – ident: S2737416524400052BIB085 doi: 10.1038/nmeth.2340 – year: 2023 ident: S2737416524400052BIB112 publication-title: Research Square – ident: S2737416524400052BIB122 doi: 10.3390/ijms24032217 – ident: S2737416524400052BIB058 doi: 10.1038/s41524-021-00554-0 – ident: S2737416524400052BIB069 doi: 10.1002/prot.25832 – ident: S2737416524400052BIB079 doi: 10.1016/j.pisc.2014.02.006 – ident: S2737416524400052BIB072 doi: 10.3724/abbs.2023033 – ident: S2737416524400052BIB017 doi: 10.1016/bs.mie.2020.05.005 – ident: S2737416524400052BIB004 doi: 10.33263/BRIAC105.64886497 – ident: S2737416524400052BIB057 doi: 10.1021/acs.jmedchem.2c00991 – volume-title: Machine Learning: An Algorithmic Perspective year: 2015 ident: S2737416524400052BIB041 – volume: 30 start-page: 1 year: 2017 ident: S2737416524400052BIB049 publication-title: Adv. Neural Inf. Process. Syst. |
SSID | ssj0002513223 |
Score | 2.2710247 |
Snippet | Enzymes are protein molecules that play a crucial role in various biological processes in living organisms. They function as catalysts in biological reactions... |
SourceID | proquest crossref worldscientific |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 781 |
SubjectTerms | Algorithms Artificial neural networks Biofuels Biological activity Catalytic converters Chemical reactions Deep learning Enzyme kinetics Enzymes Machine learning Parameter identification Software Unsupervised learning |
Title | Investigating Enzyme Biochemistry by Deep Learning: A Computational Tool for a New Era |
URI | http://www.worldscientific.com/doi/abs/10.1142/S2737416524400052 https://www.proquest.com/docview/3170941070 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELbScGgvCGirhgLygUsrLd04TjbbWwQBhKAXAuK2sr12iSAJCuGQ_Kr-xM6sH9kQQMBlFTnrcTbzreezPQ9CdnVujEl0MzJpS0Q8le1IqrqIoBUPhVRqigjvsz-t4wt-ctW8qlT-lbyWHiZyT82ejCt5j1ahDfSKUbJv0GwQCg3wGfQLV9AwXF-l41KSDFjwd4ez6UBjdUnlq7ghuTzQ-s6nUf3rA9GxlIPfBuxhGs7CmbLwduyOxTOMVS10k_2R3RaxWZ7DmPOTo-mNsJ75tyIPiu2PZ0IXLgSFn-8smIVD-IWj0X2xzXOEK-7BuPTtqUCnJhuS04eu12IwcFLdngXjwWPOTW3AmZIIqKA9z9blNlvYxM_NNhbZYbA80Sa20Iuz2YktsrRsDjimlz1H0TgaUJniaHNu-_x5_yOTGBwVbdg2y5ZEfCArDBYmrEpWOgdnp-dhXw_4IsyR6NgQHtIdpoOcX0tyFunQfI2zWiTMtUGx6DNWIj29NbLqdE87FnrrpKKHG-Tjvlf1Z3K5AEFqIUjLEKRyShGC1EPwN-3QBQBSBCAFAFJBAYAUAPiFXBx2e_vHkSvVEakGPFeUMpG3uZJYvNrwWDBmEgXUONVNHTOZc8xMKWVLKtFugHmVDdnUPBE5z9OWUarxlVSHo6H-RihWReMqrsOdAthtG0SnOZe4kjd1KViNxP4fy5TLY4_lVG6zZ5VVIz9DlzubxOWlm7e8GjL3rt9nwLLjlNfBPtbIj0eqCSKXRG2-Zdzv5NP8Vdki1cn4QW8D4Z3IHYex_zyYpaU |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+Enzyme+Biochemistry+by+Deep+Learning%3A+A+Computational+Tool+for+a+New+Era&rft.jtitle=Journal+of+computational+biophysics+and+chemistry&rft.au=Rayka%2C+Milad&rft.au=Mirzaei%2C+Morteza&rft.au=Farnoosh%2C+Gholamreza&rft.au=Latifi%2C+Ali+Mohammad&rft.date=2024-08-01&rft.issn=2737-4165&rft.eissn=2737-4173&rft.volume=23&rft.issue=6&rft.spage=781&rft.epage=799&rft_id=info:doi/10.1142%2FS2737416524400052&rft.externalDBID=n%2Fa&rft.externalDocID=10_1142_S2737416524400052 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2737-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2737-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2737-4165&client=summon |