Computational study of the nonlinear bistability in a relativistic wave equation with anomalous diffusion

In this work, we investigate computationally the dynamics of a nonlinear partial differential equation with anomalous diffusion that extends the well-known double sine–Gordon equation from relativistic quantum mechanics. The problem under consideration includes the presence of constant damping along...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of modern physics. C, Computational physics, physical computation Vol. 29; no. 7; p. 1850057
Main Author Macías-Díaz, Jorge E.
Format Journal Article
LanguageEnglish
Published Singapore World Scientific Publishing Company 01.07.2018
World Scientific Publishing Co. Pte., Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, we investigate computationally the dynamics of a nonlinear partial differential equation with anomalous diffusion that extends the well-known double sine–Gordon equation from relativistic quantum mechanics. The problem under consideration includes the presence of constant damping along with anomalous spatial derivatives. The model is defined on a close and bounded interval of the real line, and it is at rest at the initial time. One end of the interval is subject to sinusoidal driving, and the other considers the presence of an absorbing boundary in order to simulate a semi-infinite medium. The simulation of this system is carried out using a numerical method that resembles the energy properties of the continuous medium. The computational results shown in this work establish the presence of the nonlinear phenomenon of bistability in the system considered. We obtain hysteresis cycles for some particular scenarios, and employ the bistability of the system to simulate the transmission of binary signals from the driving boundary to the opposite end.
AbstractList In this work, we investigate computationally the dynamics of a nonlinear partial differential equation with anomalous diffusion that extends the well-known double sine–Gordon equation from relativistic quantum mechanics. The problem under consideration includes the presence of constant damping along with anomalous spatial derivatives. The model is defined on a close and bounded interval of the real line, and it is at rest at the initial time. One end of the interval is subject to sinusoidal driving, and the other considers the presence of an absorbing boundary in order to simulate a semi-infinite medium. The simulation of this system is carried out using a numerical method that resembles the energy properties of the continuous medium. The computational results shown in this work establish the presence of the nonlinear phenomenon of bistability in the system considered. We obtain hysteresis cycles for some particular scenarios, and employ the bistability of the system to simulate the transmission of binary signals from the driving boundary to the opposite end.
Author Macías-Díaz, Jorge E.
Author_xml – sequence: 1
  givenname: Jorge E.
  surname: Macías-Díaz
  fullname: Macías-Díaz, Jorge E.
BookMark eNp9kF1LwzAUhoNMcJv-AO8CXlfz0TTtpQy_YOCFel3SNGFndM2WpBv792ZWvFCQBMLJe573cN4ZmvSuNwhdU3JLac7u3ghlFS05paUgREh2hqZUVjwrRFlM0PQkZyf9As1CWBNCGBNkimDhNtshqgiuVx0OcWiP2FkcVwanER30RnncQIiqgQ7iEUOPFfamS8g-fYPGB7U32OyGLxN8gLjCqncb1bkh4BasHUISLtG5VV0wV9_vHH08PrwvnrPl69PL4n6ZaZ4WySQr06lySmlrtMwbpqzRgqVSCimUKTS3Mm95JRvdqEo1reBC05xbki7hc3Qz-m692w0mxHrtBp-WC3UyKSipRMlTFx27tHcheGPrrYeN8seakvqUaP0n0cTIX4yGMbnoFXT_kmQkD853bdBg-ggW9M_Qv8gnOkiMiA
CitedBy_id crossref_primary_10_1080_17455030_2020_1859166
crossref_primary_10_1016_j_cam_2018_10_059
crossref_primary_10_1115_1_4048714
crossref_primary_10_1142_S0129183121500108
Cites_doi 10.1049/el.2010.3200
10.1103/PhysRevLett.113.100602
10.1016/j.wavemoti.2016.04.002
10.1016/j.cpc.2017.11.008
10.1142/S012918310901428X
10.1142/S0129183116500741
10.1142/S0129183109014837
10.1103/PhysRevB.73.214516
10.1088/0953-8984/15/17/341
10.1103/PhysRevE.70.066626
10.1016/j.cnsns.2012.09.005
10.1103/PhysRevE.75.036211
10.1016/j.cnsns.2017.02.001
10.1088/1742-5468/2009/01/P01026
10.1103/PhysRevE.66.056108
10.1103/PhysRevLett.89.134102
10.1016/j.cnsns.2007.05.017
10.1142/S0129183109014813
10.1016/j.cnsns.2008.01.013
10.1088/0305-4470/39/48/005
10.1016/j.physrep.2009.07.001
10.1103/PhysRevE.71.056620
10.1039/b803580f
10.1016/j.physleta.2004.05.054
10.1016/j.cnsns.2017.04.031
10.1016/j.cpc.2010.07.007
10.1103/PhysRevB.25.5737
10.1103/PhysRevE.88.040901
10.1142/S0129183116500844
ContentType Journal Article
Copyright 2018, World Scientific Publishing Company
2018. World Scientific Publishing Company
Copyright_xml – notice: 2018, World Scientific Publishing Company
– notice: 2018. World Scientific Publishing Company
DBID AAYXX
CITATION
DOI 10.1142/S0129183118500572
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1793-6586
ExternalDocumentID 10_1142_S0129183118500572
S0129183118500572
GroupedDBID -~X
.DC
0R~
4.4
5GY
ADSJI
AENEX
AFFNX
ALMA_UNASSIGNED_HOLDINGS
CAG
COF
CS3
DU5
EBS
EJD
ESX
HZ~
O9-
P71
RNS
RWJ
TN5
WSP
AAYXX
ADMLS
CITATION
ID FETCH-LOGICAL-c3142-72828294111dec74b2afec5211d7575ae6c3f74d397bcba9abd535c143f03f003
ISSN 0129-1831
IngestDate Sun Jun 29 13:12:50 EDT 2025
Thu Apr 24 23:11:29 EDT 2025
Tue Jul 01 01:50:47 EDT 2025
Fri Aug 23 08:19:53 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords anomalous diffusion
nonlinear wave equation
double sine–Gordon regime
Computational simulation
nonlinear bistability
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3142-72828294111dec74b2afec5211d7575ae6c3f74d397bcba9abd535c143f03f003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2116109583
PQPubID 2049855
ParticipantIDs proquest_journals_2116109583
crossref_primary_10_1142_S0129183118500572
worldscientific_primary_S0129183118500572
crossref_citationtrail_10_1142_S0129183118500572
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180700
2018-07-00
20180701
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 20180700
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle International journal of modern physics. C, Computational physics, physical computation
PublicationYear 2018
Publisher World Scientific Publishing Company
World Scientific Publishing Co. Pte., Ltd
Publisher_xml – name: World Scientific Publishing Company
– name: World Scientific Publishing Co. Pte., Ltd
References Remoissenet M. (S0129183118500572BIB001) 2013
S0129183118500572BIB008
S0129183118500572BIB007
S0129183118500572BIB029
S0129183118500572BIB006
S0129183118500572BIB028
S0129183118500572BIB005
Friedman A. (S0129183118500572BIB025) 1970
S0129183118500572BIB004
S0129183118500572BIB026
S0129183118500572BIB002
S0129183118500572BIB024
S0129183118500572BIB023
S0129183118500572BIB022
S0129183118500572BIB021
S0129183118500572BIB020
S0129183118500572BIB009
S0129183118500572BIB019
S0129183118500572BIB018
S0129183118500572BIB017
S0129183118500572BIB016
S0129183118500572BIB015
S0129183118500572BIB013
S0129183118500572BIB012
Alfimov G. (S0129183118500572BIB027) 2004; 4
S0129183118500572BIB034
S0129183118500572BIB011
S0129183118500572BIB033
S0129183118500572BIB010
S0129183118500572BIB032
Bishop A. R. (S0129183118500572BIB003) 1995
S0129183118500572BIB031
Morfu S. (S0129183118500572BIB014) 2017
S0129183118500572BIB030
References_xml – volume-title: Nonlinear Evolution Equations And Dynamical Systems Needs’ 94
  year: 1995
  ident: S0129183118500572BIB003
– ident: S0129183118500572BIB013
  doi: 10.1049/el.2010.3200
– ident: S0129183118500572BIB020
  doi: 10.1103/PhysRevLett.113.100602
– ident: S0129183118500572BIB015
  doi: 10.1016/j.wavemoti.2016.04.002
– ident: S0129183118500572BIB024
  doi: 10.1016/j.cpc.2017.11.008
– ident: S0129183118500572BIB011
  doi: 10.1142/S012918310901428X
– ident: S0129183118500572BIB019
  doi: 10.1142/S0129183116500741
– ident: S0129183118500572BIB012
  doi: 10.1142/S0129183109014837
– ident: S0129183118500572BIB005
  doi: 10.1103/PhysRevB.73.214516
– ident: S0129183118500572BIB006
  doi: 10.1088/0953-8984/15/17/341
– ident: S0129183118500572BIB007
  doi: 10.1103/PhysRevE.70.066626
– ident: S0129183118500572BIB032
  doi: 10.1016/j.cnsns.2012.09.005
– volume-title: Waves Called Solitons: Concepts and Experiments
  year: 2013
  ident: S0129183118500572BIB001
– ident: S0129183118500572BIB034
  doi: 10.1103/PhysRevE.75.036211
– ident: S0129183118500572BIB016
  doi: 10.1016/j.cnsns.2017.02.001
– ident: S0129183118500572BIB033
  doi: 10.1088/1742-5468/2009/01/P01026
– volume-title: Foundations of Modern Analysis
  year: 1970
  ident: S0129183118500572BIB025
– volume-title: Rencontre du Non Linéaire
  year: 2017
  ident: S0129183118500572BIB014
– ident: S0129183118500572BIB026
  doi: 10.1103/PhysRevE.66.056108
– ident: S0129183118500572BIB004
  doi: 10.1103/PhysRevLett.89.134102
– ident: S0129183118500572BIB028
  doi: 10.1016/j.cnsns.2007.05.017
– volume: 4
  start-page: 153
  volume-title: Fractional Differentiation and its Applications
  year: 2004
  ident: S0129183118500572BIB027
– ident: S0129183118500572BIB010
  doi: 10.1142/S0129183109014813
– ident: S0129183118500572BIB029
  doi: 10.1016/j.cnsns.2008.01.013
– ident: S0129183118500572BIB023
  doi: 10.1088/0305-4470/39/48/005
– ident: S0129183118500572BIB021
  doi: 10.1016/j.physrep.2009.07.001
– ident: S0129183118500572BIB009
  doi: 10.1103/PhysRevE.71.056620
– ident: S0129183118500572BIB022
  doi: 10.1039/b803580f
– ident: S0129183118500572BIB008
  doi: 10.1016/j.physleta.2004.05.054
– ident: S0129183118500572BIB017
  doi: 10.1016/j.cnsns.2017.04.031
– ident: S0129183118500572BIB030
  doi: 10.1016/j.cpc.2010.07.007
– ident: S0129183118500572BIB002
  doi: 10.1103/PhysRevB.25.5737
– ident: S0129183118500572BIB031
  doi: 10.1103/PhysRevE.88.040901
– ident: S0129183118500572BIB018
  doi: 10.1142/S0129183116500844
SSID ssj0002250
Score 2.1879637
Snippet In this work, we investigate computationally the dynamics of a nonlinear partial differential equation with anomalous diffusion that extends the well-known...
SourceID proquest
crossref
worldscientific
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1850057
SubjectTerms Bistability
Computation
Computer simulation
Damping
Mathematical models
Nonlinear differential equations
Nonlinear phenomena
Numerical methods
Partial differential equations
Quantum mechanics
Relativism
Relativistic effects
Wave equations
Title Computational study of the nonlinear bistability in a relativistic wave equation with anomalous diffusion
URI http://www.worldscientific.com/doi/abs/10.1142/S0129183118500572
https://www.proquest.com/docview/2116109583
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLY60KS9IMY2rYNNfuBlq9ylubaPiDKhaaBJA4m3yHacCQSFNS1I_Bh-K-f4FpeyaSBVUZSkdpLz5fjz8bkQsj3Ic6WKSjCgqjlLZVWzoSyAyAGVzeKoKqTAAOeDw3z_OP1-kp10OneB19J8Jvry9tG4kudIFY6BXDFK9gmS9Y3CAdgH-cIWJAzb_5KxKcngzHmNyw-NXHJiUmDwaU8gQ9QusDrEj9vwlWudobl3g9WH1B-T8NtFul1e8HN0jcXqKfPGSe6sdXpvbYhB5okLU1bN2Eqafm9XG2EXbtGewxNXDiCyvSIwj-sF_DFv2Nju3Rpb__S36u31Q1vFYOj9Wr35Mh4xUCLmkDIqFzQEAx6UhzrZWkEM9opAwQK9wPjZx5V_GuvlZ-gE-7CXxu1I51b3HwyA3i3RBGnH5VITL8hqDNMQ0KOrO-ODH7_8WA_aUFvx3HPZdXNo5OtSI4vMp53OrOncuCb-Fd3DAn5ztE7W7MSE7hiUvSYdNdkgL38agb0hpwuCpBpr9LKmgDXqsUYDrNHTCeU0xBpFrFGHNYpYox5r1GPtLTn-tne0u89smQ4mE3hQVuCsPR6lMGpWShapiHmtJNDCQVXAZICrXCZ1kVbAfIUUfMRFlSWZBKJeR_CLkndkBW5UvScU1BpaOXmdyDrNlBgJ4E5KCqzxEFW56pLIvcJS2hz2WErlvPyr6Lrki__LlUng8q-Lt5xcSvv9NCU8CNYkyIZJl3x-ICvf5FJTH57S7yZ51X4uW2RlNp2rj0B2Z-KTRdw9YYmndg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+study+of+the+nonlinear+bistability+in+a+relativistic+wave+equation+with+anomalous+diffusion&rft.jtitle=International+journal+of+modern+physics.+C%2C+Computational+physics%2C+physical+computation&rft.au=Mac%C3%ADas-D%C3%ADaz%2C+Jorge+E.&rft.date=2018-07-01&rft.issn=0129-1831&rft.eissn=1793-6586&rft.volume=29&rft.issue=7&rft.spage=1850057&rft_id=info:doi/10.1142%2FS0129183118500572&rft.externalDBID=n%2Fa&rft.externalDocID=10_1142_S0129183118500572
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0129-1831&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0129-1831&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0129-1831&client=summon