Computational study of the nonlinear bistability in a relativistic wave equation with anomalous diffusion
In this work, we investigate computationally the dynamics of a nonlinear partial differential equation with anomalous diffusion that extends the well-known double sine–Gordon equation from relativistic quantum mechanics. The problem under consideration includes the presence of constant damping along...
Saved in:
Published in | International journal of modern physics. C, Computational physics, physical computation Vol. 29; no. 7; p. 1850057 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Singapore
World Scientific Publishing Company
01.07.2018
World Scientific Publishing Co. Pte., Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, we investigate computationally the dynamics of a nonlinear partial differential equation with anomalous diffusion that extends the well-known double sine–Gordon equation from relativistic quantum mechanics. The problem under consideration includes the presence of constant damping along with anomalous spatial derivatives. The model is defined on a close and bounded interval of the real line, and it is at rest at the initial time. One end of the interval is subject to sinusoidal driving, and the other considers the presence of an absorbing boundary in order to simulate a semi-infinite medium. The simulation of this system is carried out using a numerical method that resembles the energy properties of the continuous medium. The computational results shown in this work establish the presence of the nonlinear phenomenon of bistability in the system considered. We obtain hysteresis cycles for some particular scenarios, and employ the bistability of the system to simulate the transmission of binary signals from the driving boundary to the opposite end. |
---|---|
AbstractList | In this work, we investigate computationally the dynamics of a nonlinear partial differential equation with anomalous diffusion that extends the well-known double sine–Gordon equation from relativistic quantum mechanics. The problem under consideration includes the presence of constant damping along with anomalous spatial derivatives. The model is defined on a close and bounded interval of the real line, and it is at rest at the initial time. One end of the interval is subject to sinusoidal driving, and the other considers the presence of an absorbing boundary in order to simulate a semi-infinite medium. The simulation of this system is carried out using a numerical method that resembles the energy properties of the continuous medium. The computational results shown in this work establish the presence of the nonlinear phenomenon of bistability in the system considered. We obtain hysteresis cycles for some particular scenarios, and employ the bistability of the system to simulate the transmission of binary signals from the driving boundary to the opposite end. |
Author | Macías-Díaz, Jorge E. |
Author_xml | – sequence: 1 givenname: Jorge E. surname: Macías-Díaz fullname: Macías-Díaz, Jorge E. |
BookMark | eNp9kF1LwzAUhoNMcJv-AO8CXlfz0TTtpQy_YOCFel3SNGFndM2WpBv792ZWvFCQBMLJe573cN4ZmvSuNwhdU3JLac7u3ghlFS05paUgREh2hqZUVjwrRFlM0PQkZyf9As1CWBNCGBNkimDhNtshqgiuVx0OcWiP2FkcVwanER30RnncQIiqgQ7iEUOPFfamS8g-fYPGB7U32OyGLxN8gLjCqncb1bkh4BasHUISLtG5VV0wV9_vHH08PrwvnrPl69PL4n6ZaZ4WySQr06lySmlrtMwbpqzRgqVSCimUKTS3Mm95JRvdqEo1reBC05xbki7hc3Qz-m692w0mxHrtBp-WC3UyKSipRMlTFx27tHcheGPrrYeN8seakvqUaP0n0cTIX4yGMbnoFXT_kmQkD853bdBg-ggW9M_Qv8gnOkiMiA |
CitedBy_id | crossref_primary_10_1080_17455030_2020_1859166 crossref_primary_10_1016_j_cam_2018_10_059 crossref_primary_10_1115_1_4048714 crossref_primary_10_1142_S0129183121500108 |
Cites_doi | 10.1049/el.2010.3200 10.1103/PhysRevLett.113.100602 10.1016/j.wavemoti.2016.04.002 10.1016/j.cpc.2017.11.008 10.1142/S012918310901428X 10.1142/S0129183116500741 10.1142/S0129183109014837 10.1103/PhysRevB.73.214516 10.1088/0953-8984/15/17/341 10.1103/PhysRevE.70.066626 10.1016/j.cnsns.2012.09.005 10.1103/PhysRevE.75.036211 10.1016/j.cnsns.2017.02.001 10.1088/1742-5468/2009/01/P01026 10.1103/PhysRevE.66.056108 10.1103/PhysRevLett.89.134102 10.1016/j.cnsns.2007.05.017 10.1142/S0129183109014813 10.1016/j.cnsns.2008.01.013 10.1088/0305-4470/39/48/005 10.1016/j.physrep.2009.07.001 10.1103/PhysRevE.71.056620 10.1039/b803580f 10.1016/j.physleta.2004.05.054 10.1016/j.cnsns.2017.04.031 10.1016/j.cpc.2010.07.007 10.1103/PhysRevB.25.5737 10.1103/PhysRevE.88.040901 10.1142/S0129183116500844 |
ContentType | Journal Article |
Copyright | 2018, World Scientific Publishing Company 2018. World Scientific Publishing Company |
Copyright_xml | – notice: 2018, World Scientific Publishing Company – notice: 2018. World Scientific Publishing Company |
DBID | AAYXX CITATION |
DOI | 10.1142/S0129183118500572 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1793-6586 |
ExternalDocumentID | 10_1142_S0129183118500572 S0129183118500572 |
GroupedDBID | -~X .DC 0R~ 4.4 5GY ADSJI AENEX AFFNX ALMA_UNASSIGNED_HOLDINGS CAG COF CS3 DU5 EBS EJD ESX HZ~ O9- P71 RNS RWJ TN5 WSP AAYXX ADMLS CITATION |
ID | FETCH-LOGICAL-c3142-72828294111dec74b2afec5211d7575ae6c3f74d397bcba9abd535c143f03f003 |
ISSN | 0129-1831 |
IngestDate | Sun Jun 29 13:12:50 EDT 2025 Thu Apr 24 23:11:29 EDT 2025 Tue Jul 01 01:50:47 EDT 2025 Fri Aug 23 08:19:53 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | anomalous diffusion nonlinear wave equation double sine–Gordon regime Computational simulation nonlinear bistability |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3142-72828294111dec74b2afec5211d7575ae6c3f74d397bcba9abd535c143f03f003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2116109583 |
PQPubID | 2049855 |
ParticipantIDs | proquest_journals_2116109583 crossref_primary_10_1142_S0129183118500572 worldscientific_primary_S0129183118500572 crossref_citationtrail_10_1142_S0129183118500572 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180700 2018-07-00 20180701 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: 20180700 |
PublicationDecade | 2010 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | International journal of modern physics. C, Computational physics, physical computation |
PublicationYear | 2018 |
Publisher | World Scientific Publishing Company World Scientific Publishing Co. Pte., Ltd |
Publisher_xml | – name: World Scientific Publishing Company – name: World Scientific Publishing Co. Pte., Ltd |
References | Remoissenet M. (S0129183118500572BIB001) 2013 S0129183118500572BIB008 S0129183118500572BIB007 S0129183118500572BIB029 S0129183118500572BIB006 S0129183118500572BIB028 S0129183118500572BIB005 Friedman A. (S0129183118500572BIB025) 1970 S0129183118500572BIB004 S0129183118500572BIB026 S0129183118500572BIB002 S0129183118500572BIB024 S0129183118500572BIB023 S0129183118500572BIB022 S0129183118500572BIB021 S0129183118500572BIB020 S0129183118500572BIB009 S0129183118500572BIB019 S0129183118500572BIB018 S0129183118500572BIB017 S0129183118500572BIB016 S0129183118500572BIB015 S0129183118500572BIB013 S0129183118500572BIB012 Alfimov G. (S0129183118500572BIB027) 2004; 4 S0129183118500572BIB034 S0129183118500572BIB011 S0129183118500572BIB033 S0129183118500572BIB010 S0129183118500572BIB032 Bishop A. R. (S0129183118500572BIB003) 1995 S0129183118500572BIB031 Morfu S. (S0129183118500572BIB014) 2017 S0129183118500572BIB030 |
References_xml | – volume-title: Nonlinear Evolution Equations And Dynamical Systems Needs’ 94 year: 1995 ident: S0129183118500572BIB003 – ident: S0129183118500572BIB013 doi: 10.1049/el.2010.3200 – ident: S0129183118500572BIB020 doi: 10.1103/PhysRevLett.113.100602 – ident: S0129183118500572BIB015 doi: 10.1016/j.wavemoti.2016.04.002 – ident: S0129183118500572BIB024 doi: 10.1016/j.cpc.2017.11.008 – ident: S0129183118500572BIB011 doi: 10.1142/S012918310901428X – ident: S0129183118500572BIB019 doi: 10.1142/S0129183116500741 – ident: S0129183118500572BIB012 doi: 10.1142/S0129183109014837 – ident: S0129183118500572BIB005 doi: 10.1103/PhysRevB.73.214516 – ident: S0129183118500572BIB006 doi: 10.1088/0953-8984/15/17/341 – ident: S0129183118500572BIB007 doi: 10.1103/PhysRevE.70.066626 – ident: S0129183118500572BIB032 doi: 10.1016/j.cnsns.2012.09.005 – volume-title: Waves Called Solitons: Concepts and Experiments year: 2013 ident: S0129183118500572BIB001 – ident: S0129183118500572BIB034 doi: 10.1103/PhysRevE.75.036211 – ident: S0129183118500572BIB016 doi: 10.1016/j.cnsns.2017.02.001 – ident: S0129183118500572BIB033 doi: 10.1088/1742-5468/2009/01/P01026 – volume-title: Foundations of Modern Analysis year: 1970 ident: S0129183118500572BIB025 – volume-title: Rencontre du Non Linéaire year: 2017 ident: S0129183118500572BIB014 – ident: S0129183118500572BIB026 doi: 10.1103/PhysRevE.66.056108 – ident: S0129183118500572BIB004 doi: 10.1103/PhysRevLett.89.134102 – ident: S0129183118500572BIB028 doi: 10.1016/j.cnsns.2007.05.017 – volume: 4 start-page: 153 volume-title: Fractional Differentiation and its Applications year: 2004 ident: S0129183118500572BIB027 – ident: S0129183118500572BIB010 doi: 10.1142/S0129183109014813 – ident: S0129183118500572BIB029 doi: 10.1016/j.cnsns.2008.01.013 – ident: S0129183118500572BIB023 doi: 10.1088/0305-4470/39/48/005 – ident: S0129183118500572BIB021 doi: 10.1016/j.physrep.2009.07.001 – ident: S0129183118500572BIB009 doi: 10.1103/PhysRevE.71.056620 – ident: S0129183118500572BIB022 doi: 10.1039/b803580f – ident: S0129183118500572BIB008 doi: 10.1016/j.physleta.2004.05.054 – ident: S0129183118500572BIB017 doi: 10.1016/j.cnsns.2017.04.031 – ident: S0129183118500572BIB030 doi: 10.1016/j.cpc.2010.07.007 – ident: S0129183118500572BIB002 doi: 10.1103/PhysRevB.25.5737 – ident: S0129183118500572BIB031 doi: 10.1103/PhysRevE.88.040901 – ident: S0129183118500572BIB018 doi: 10.1142/S0129183116500844 |
SSID | ssj0002250 |
Score | 2.1879637 |
Snippet | In this work, we investigate computationally the dynamics of a nonlinear partial differential equation with anomalous diffusion that extends the well-known... |
SourceID | proquest crossref worldscientific |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1850057 |
SubjectTerms | Bistability Computation Computer simulation Damping Mathematical models Nonlinear differential equations Nonlinear phenomena Numerical methods Partial differential equations Quantum mechanics Relativism Relativistic effects Wave equations |
Title | Computational study of the nonlinear bistability in a relativistic wave equation with anomalous diffusion |
URI | http://www.worldscientific.com/doi/abs/10.1142/S0129183118500572 https://www.proquest.com/docview/2116109583 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLY60KS9IMY2rYNNfuBlq9ylubaPiDKhaaBJA4m3yHacCQSFNS1I_Bh-K-f4FpeyaSBVUZSkdpLz5fjz8bkQsj3Ic6WKSjCgqjlLZVWzoSyAyAGVzeKoKqTAAOeDw3z_OP1-kp10OneB19J8Jvry9tG4kudIFY6BXDFK9gmS9Y3CAdgH-cIWJAzb_5KxKcngzHmNyw-NXHJiUmDwaU8gQ9QusDrEj9vwlWudobl3g9WH1B-T8NtFul1e8HN0jcXqKfPGSe6sdXpvbYhB5okLU1bN2Eqafm9XG2EXbtGewxNXDiCyvSIwj-sF_DFv2Nju3Rpb__S36u31Q1vFYOj9Wr35Mh4xUCLmkDIqFzQEAx6UhzrZWkEM9opAwQK9wPjZx5V_GuvlZ-gE-7CXxu1I51b3HwyA3i3RBGnH5VITL8hqDNMQ0KOrO-ODH7_8WA_aUFvx3HPZdXNo5OtSI4vMp53OrOncuCb-Fd3DAn5ztE7W7MSE7hiUvSYdNdkgL38agb0hpwuCpBpr9LKmgDXqsUYDrNHTCeU0xBpFrFGHNYpYox5r1GPtLTn-tne0u89smQ4mE3hQVuCsPR6lMGpWShapiHmtJNDCQVXAZICrXCZ1kVbAfIUUfMRFlSWZBKJeR_CLkndkBW5UvScU1BpaOXmdyDrNlBgJ4E5KCqzxEFW56pLIvcJS2hz2WErlvPyr6Lrki__LlUng8q-Lt5xcSvv9NCU8CNYkyIZJl3x-ICvf5FJTH57S7yZ51X4uW2RlNp2rj0B2Z-KTRdw9YYmndg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+study+of+the+nonlinear+bistability+in+a+relativistic+wave+equation+with+anomalous+diffusion&rft.jtitle=International+journal+of+modern+physics.+C%2C+Computational+physics%2C+physical+computation&rft.au=Mac%C3%ADas-D%C3%ADaz%2C+Jorge+E.&rft.date=2018-07-01&rft.issn=0129-1831&rft.eissn=1793-6586&rft.volume=29&rft.issue=7&rft.spage=1850057&rft_id=info:doi/10.1142%2FS0129183118500572&rft.externalDBID=n%2Fa&rft.externalDocID=10_1142_S0129183118500572 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0129-1831&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0129-1831&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0129-1831&client=summon |