Message Transmission Strategy Based on Recurrent Neural Network and Attention Mechanism in Iot System

With the popularization of the Internet of Things technology and the improvement of 5G communication technology, the influence of mobile devices on the network structure is increasing. The devices in the network are usually regarded as social users that transmit information. Because the movement of...

Full description

Saved in:
Bibliographic Details
Published inJournal of circuits, systems, and computers Vol. 31; no. 7
Main Authors Gou, Fangfang, Wu, Jia
Format Journal Article
LanguageEnglish
Published Singapore World Scientific Publishing Company 15.05.2022
World Scientific Publishing Co. Pte., Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the popularization of the Internet of Things technology and the improvement of 5G communication technology, the influence of mobile devices on the network structure is increasing. The devices in the network are usually regarded as social users that transmit information. Because the movement of users is dynamic and random, it is more difficult for complex networks to grasp the changing rules of their topological structure. The data transmission model established by considering only the historical behavior of users can no longer meet the demand for fast transmission of large-capacity data. Based on this, this paper proposes a dynamic personalized data transmission model (GRDPS) that considers the recurrent neural network and attention mechanism. First, it uses a recurrent neural network to build users’ personalized preferences and model the user’s historical behavior. Then, GRDPS introduces an attention mechanism to dynamically weight historical user behaviors based on the user’s current message transmission. It is different from the previous methods of modeling user historical behaviors. Based on the requirements of user dynamics, GRDPS effectively considers the temporal characteristics of user historical behaviors and automatically learns the evolution law of user behaviors. Based on the demand of user randomness, GRDPS fully considers the characteristic correlation between the user’s historical behavior and current transmission demand. Finally, GRDPS combines these two points to obtain a personalized ranking of users. The simulation results show that the delivery rate of GRDPS is up to 0.95. Moreover, its data transmission delay and network overhead are better than other methods in the experiment.
AbstractList With the popularization of the Internet of Things technology and the improvement of 5G communication technology, the influence of mobile devices on the network structure is increasing. The devices in the network are usually regarded as social users that transmit information. Because the movement of users is dynamic and random, it is more difficult for complex networks to grasp the changing rules of their topological structure. The data transmission model established by considering only the historical behavior of users can no longer meet the demand for fast transmission of large-capacity data. Based on this, this paper proposes a dynamic personalized data transmission model (GRDPS) that considers the recurrent neural network and attention mechanism. First, it uses a recurrent neural network to build users’ personalized preferences and model the user’s historical behavior. Then, GRDPS introduces an attention mechanism to dynamically weight historical user behaviors based on the user’s current message transmission. It is different from the previous methods of modeling user historical behaviors. Based on the requirements of user dynamics, GRDPS effectively considers the temporal characteristics of user historical behaviors and automatically learns the evolution law of user behaviors. Based on the demand of user randomness, GRDPS fully considers the characteristic correlation between the user’s historical behavior and current transmission demand. Finally, GRDPS combines these two points to obtain a personalized ranking of users. The simulation results show that the delivery rate of GRDPS is up to 0.95. Moreover, its data transmission delay and network overhead are better than other methods in the experiment.
Author Wu, Jia
Gou, Fangfang
Author_xml – sequence: 1
  givenname: Fangfang
  surname: Gou
  fullname: Gou, Fangfang
– sequence: 2
  givenname: Jia
  surname: Wu
  fullname: Wu, Jia
BookMark eNp9kEtLAzEUhYNUsK3-AHcB16NJJpnHshYfhVbB1vWQZm5q6jRTkwzSf2-GigsFVwfuud99nBEa2NYCQpeUXFPK2c2SMFpQlmWMCRKVnaAhzcs0ybjgAzTs7aT3z9DI-y0hhIuCDBEswHu5Abxy0vqd8d60Fi-DkwE2B3wrPdQ4Vl5Adc6BDfgJOiebKOGzde9Y2hpPQohODy5AvUlr_A4bi2dtwMuDD7A7R6daNh4uvnWMXu_vVtPHZP78MJtO5olK4xMJh1yvS6FTrqAumBKirus1FcAyrmjOMsGJpmKtCwmq4FSxgpRUSwpFUWpZpmN0dZy7d-1HBz5U27ZzNq6sIpxmGU_Lvis_dinXeu9AV8oE2d8f3zZNRUnVZ1r9yTSS9Be5d2Yn3eFfhhyZGFdTe2X6qLRRP-hf5At9FIoh
CitedBy_id crossref_primary_10_1007_s12083_024_01739_2
crossref_primary_10_1155_int_9987190
crossref_primary_10_3390_math10071090
crossref_primary_10_1155_2022_3881833
crossref_primary_10_1155_2022_9990092
crossref_primary_10_3390_healthcare10112313
crossref_primary_10_1016_j_comcom_2023_05_021
crossref_primary_10_1155_2022_3749482
crossref_primary_10_1016_j_heliyon_2024_e31237
crossref_primary_10_1142_S0218126624500166
crossref_primary_10_3390_healthcare10081468
crossref_primary_10_1142_S0218126623502183
crossref_primary_10_3390_math10122099
crossref_primary_10_3390_healthcare10112189
crossref_primary_10_1049_cmu2_12628
crossref_primary_10_1155_2022_4879557
crossref_primary_10_3390_biomedicines11102740
crossref_primary_10_3390_s23125447
crossref_primary_10_1007_s11277_022_09820_w
crossref_primary_10_1007_s12083_022_01309_4
crossref_primary_10_1007_s12083_022_01365_w
crossref_primary_10_3390_diagnostics13020223
crossref_primary_10_1007_s11227_024_05993_2
crossref_primary_10_1016_j_bspc_2024_106439
crossref_primary_10_3233_JIFS_232264
crossref_primary_10_3390_math10101669
crossref_primary_10_1049_cmu2_12437
crossref_primary_10_1007_s12083_022_01430_4
crossref_primary_10_3390_diagnostics14141472
crossref_primary_10_3390_math10101665
crossref_primary_10_1155_2022_5067849
Cites_doi 10.1016/j.ipm.2019.102185
10.1016/j.ipm.2021.102602
10.1016/j.jss.2020.110587
10.1007/s12083-020-00954-x
10.1016/j.ipm.2019.102125
10.1155/2021/9928771
10.1016/j.ipm.2017.12.003
10.1007/s12083-019-00833-0
10.1016/j.ipm.2019.102178
10.1142/S0218126620502278
10.3233/JIFS-210807
10.1007/s12083-021-01205-3
10.3390/a11080125
10.1109/TCAD.2021.3110743
10.1007/s12652-019-01480-2
10.1109/LCOMM.2020.3017889
10.1049/iet-net.2019.0077
10.1016/j.ipm.2019.05.001
10.1109/JIOT.2021.3102421
10.3390/electronics10091128
10.1109/LCOMM.2019.2900892
10.1109/TVT.2017.2740218
10.1007/s12083-020-01060-8
10.1109/JSEN.2021.3102683
10.1155/2020/3576542
10.1109/ACCESS.2021.3069992
10.3390/electronics10101138
10.1142/S0218126620502497
10.3390/electronics10131595
10.1007/s00607-020-00843-4
10.1049/cmu2.12254
10.1142/S0218126621501589
10.1142/S0218126620502552
10.1016/j.comcom.2021.10.009
ContentType Journal Article
Copyright 2022, World Scientific Publishing Company
2022. World Scientific Publishing Company
Copyright_xml – notice: 2022, World Scientific Publishing Company
– notice: 2022. World Scientific Publishing Company
DBID AAYXX
CITATION
DOI 10.1142/S0218126622501262
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1793-6454
ExternalDocumentID 10_1142_S0218126622501262
S0218126622501262
GroupedDBID .DC
0R~
4.4
5GY
ADSJI
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
HZ~
O9-
P2P
P71
RWJ
WSC
AAYXX
ADMLS
CITATION
ID FETCH-LOGICAL-c3142-4e7fb95f34ced82c55dddb15e264c1726540f15bf8aec841c28091fa1e889fa93
ISSN 0218-1266
IngestDate Mon Jun 30 13:00:38 EDT 2025
Thu Apr 24 23:04:35 EDT 2025
Tue Jul 01 03:09:45 EDT 2025
Fri Aug 23 08:19:30 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords personalized ranking
delivery ratio
historical behavior
Internet of Things
attention mechanism
recursive network
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3142-4e7fb95f34ced82c55dddb15e264c1726540f15bf8aec841c28091fa1e889fa93
Notes This paper was recommended by Regional Editor Tongquan Wei.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2653664399
PQPubID 2049873
ParticipantIDs crossref_citationtrail_10_1142_S0218126622501262
worldscientific_primary_S0218126622501262
crossref_primary_10_1142_S0218126622501262
proquest_journals_2653664399
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220515
2022-05-15
PublicationDateYYYYMMDD 2022-05-15
PublicationDate_xml – month: 05
  year: 2022
  text: 20220515
  day: 15
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of circuits, systems, and computers
PublicationYear 2022
Publisher World Scientific Publishing Company
World Scientific Publishing Co. Pte., Ltd
Publisher_xml – name: World Scientific Publishing Company
– name: World Scientific Publishing Co. Pte., Ltd
References S0218126622501262BIB030
S0218126622501262BIB014
Yang W. (S0218126622501262BIB011) 2020; 2020
S0218126622501262BIB035
S0218126622501262BIB016
Dou C. (S0218126622501262BIB031) 2018; 2018
S0218126622501262BIB038
S0218126622501262BIB015
S0218126622501262BIB037
S0218126622501262BIB010
S0218126622501262BIB032
S0218126622501262BIB012
S0218126622501262BIB034
S0218126622501262BIB033
S0218126622501262BIB018
S0218126622501262BIB017
S0218126622501262BIB019
Priya R. K. (S0218126622501262BIB036) 2021; 30
Wu J. (S0218126622501262BIB013) 2020
S0218126622501262BIB003
S0218126622501262BIB025
S0218126622501262BIB002
S0218126622501262BIB024
S0218126622501262BIB005
S0218126622501262BIB027
S0218126622501262BIB004
S0218126622501262BIB026
S0218126622501262BIB021
S0218126622501262BIB020
S0218126622501262BIB001
S0218126622501262BIB023
S0218126622501262BIB022
S0218126622501262BIB007
S0218126622501262BIB029
S0218126622501262BIB006
S0218126622501262BIB028
S0218126622501262BIB009
S0218126622501262BIB008
References_xml – ident: S0218126622501262BIB034
  doi: 10.1016/j.ipm.2019.102185
– ident: S0218126622501262BIB001
  doi: 10.1016/j.ipm.2021.102602
– year: 2020
  ident: S0218126622501262BIB013
  publication-title: IEEE Syst. J.
– ident: S0218126622501262BIB038
  doi: 10.1016/j.jss.2020.110587
– ident: S0218126622501262BIB006
  doi: 10.1007/s12083-020-00954-x
– ident: S0218126622501262BIB002
  doi: 10.1016/j.ipm.2019.102125
– volume: 30
  start-page: 2130002:1
  year: 2021
  ident: S0218126622501262BIB036
  publication-title: J. Circuits Syst. Comput.
– ident: S0218126622501262BIB014
  doi: 10.1155/2021/9928771
– volume: 2018
  start-page: 69
  year: 2018
  ident: S0218126622501262BIB031
  publication-title: Comput. Technol. Dev.
– ident: S0218126622501262BIB035
  doi: 10.1016/j.ipm.2017.12.003
– ident: S0218126622501262BIB005
  doi: 10.1007/s12083-019-00833-0
– ident: S0218126622501262BIB037
  doi: 10.1016/j.ipm.2019.102178
– ident: S0218126622501262BIB032
  doi: 10.1142/S0218126620502278
– ident: S0218126622501262BIB024
  doi: 10.3233/JIFS-210807
– ident: S0218126622501262BIB008
  doi: 10.1007/s12083-021-01205-3
– ident: S0218126622501262BIB028
  doi: 10.3390/a11080125
– ident: S0218126622501262BIB030
  doi: 10.1109/TCAD.2021.3110743
– ident: S0218126622501262BIB004
  doi: 10.1007/s12652-019-01480-2
– ident: S0218126622501262BIB015
  doi: 10.1109/LCOMM.2020.3017889
– ident: S0218126622501262BIB020
  doi: 10.1049/iet-net.2019.0077
– ident: S0218126622501262BIB033
  doi: 10.1016/j.ipm.2019.05.001
– volume: 2020
  start-page: 3721579
  year: 2020
  ident: S0218126622501262BIB011
  publication-title: Complexity
– ident: S0218126622501262BIB010
  doi: 10.1109/JIOT.2021.3102421
– ident: S0218126622501262BIB009
  doi: 10.3390/electronics10091128
– ident: S0218126622501262BIB026
  doi: 10.1109/LCOMM.2019.2900892
– ident: S0218126622501262BIB029
  doi: 10.1109/TVT.2017.2740218
– ident: S0218126622501262BIB016
  doi: 10.1007/s12083-020-01060-8
– ident: S0218126622501262BIB017
  doi: 10.1109/JSEN.2021.3102683
– ident: S0218126622501262BIB022
  doi: 10.1155/2020/3576542
– ident: S0218126622501262BIB027
  doi: 10.1109/ACCESS.2021.3069992
– ident: S0218126622501262BIB025
  doi: 10.3390/electronics10101138
– ident: S0218126622501262BIB021
  doi: 10.1142/S0218126620502497
– ident: S0218126622501262BIB023
  doi: 10.3390/electronics10131595
– ident: S0218126622501262BIB019
  doi: 10.1007/s00607-020-00843-4
– ident: S0218126622501262BIB018
  doi: 10.1049/cmu2.12254
– ident: S0218126622501262BIB003
  doi: 10.1142/S0218126621501589
– ident: S0218126622501262BIB012
  doi: 10.1142/S0218126620502552
– ident: S0218126622501262BIB007
  doi: 10.1016/j.comcom.2021.10.009
SSID ssj0004580
Score 2.402892
Snippet With the popularization of the Internet of Things technology and the improvement of 5G communication technology, the influence of mobile devices on the network...
SourceID proquest
crossref
worldscientific
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Customization
Data transmission
Demand
Electronic devices
Internet of Things
Neural networks
Recurrent neural networks
User behavior
Title Message Transmission Strategy Based on Recurrent Neural Network and Attention Mechanism in Iot System
URI http://www.worldscientific.com/doi/abs/10.1142/S0218126622501262
https://www.proquest.com/docview/2653664399
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdGd4HDxAaIwph82GVMgcW1U_tYYJ-iO8Am7RY5z84UCaVoTQ_w1_P80TQjG2K7RJXluo3fz-_9_PF-JmSXZQpKLk1itZIJt4olhUt2F9pwzpWVYFxy8vQ8O7nkZ1fiarWg77NLmuID_L4zr-QxVsUytKvLkn2AZdtGsQA_o33xiRbG53_ZeOruL8FZvw84aLC5H_1Bb_bX_icMUMZtBnxza-pehclJcaBNzsPZb79xMGmaeOJxal0WsLs0o6r3T2dNVDO_h75CdQOLqvEwCHLQ8-VJUIg3RbR0_Xi28CRZ19eljqHSBQJfelbp7tIDzlqdaqlYOTh_3Mf7IH-uqbty1vdmyCWSlGVR9zp4W3QOiZMU67rjGBQC7MZ3e3nO_D6zpydZhi4Jw2x06rfFs3t1npB1hhMKNiDrky_Tr987yvIyrMfFvxl3wPGnPvYauc1hVhOTDa9yO287pMNULp6TjWgjOgl42SRrtt4izzrCky-IjcihXeTQJXKoRw7FkhY5NCCHRuRQNDNtkUNb5NCqpogcGpDzklweHV58PknihRsJjPBFcaiOy0KJcsTBGslACGNMkQqLrBmQ6WZI78tUFKXUFiRPgUmkm6VOrZSq1Gr0igzqWW1fEwoaRMalAJwg80KOtT5ghqVQcMAyxYbkYNmFOUQ1encpyo88ZMqzvNfrQ_K-_crPIMXyr8rbS7vkccTOc3yBUeYouBqSvb9s1TbZa-rNA-q-JU9XA2WbDJqbhX2HrLUpdiLg_gAWZZX5
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Message+Transmission+Strategy+Based+on+Recurrent+Neural+Network+and+Attention+Mechanism+in+Iot+System&rft.jtitle=Journal+of+circuits%2C+systems%2C+and+computers&rft.au=Gou%2C+Fangfang&rft.au=Wu%2C+Jia&rft.date=2022-05-15&rft.pub=World+Scientific+Publishing+Company&rft.issn=0218-1266&rft.eissn=1793-6454&rft.volume=31&rft.issue=7&rft_id=info:doi/10.1142%2FS0218126622501262&rft.externalDocID=S0218126622501262
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0218-1266&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0218-1266&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0218-1266&client=summon