Message Transmission Strategy Based on Recurrent Neural Network and Attention Mechanism in Iot System
With the popularization of the Internet of Things technology and the improvement of 5G communication technology, the influence of mobile devices on the network structure is increasing. The devices in the network are usually regarded as social users that transmit information. Because the movement of...
Saved in:
Published in | Journal of circuits, systems, and computers Vol. 31; no. 7 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Singapore
World Scientific Publishing Company
15.05.2022
World Scientific Publishing Co. Pte., Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the popularization of the Internet of Things technology and the improvement of 5G communication technology, the influence of mobile devices on the network structure is increasing. The devices in the network are usually regarded as social users that transmit information. Because the movement of users is dynamic and random, it is more difficult for complex networks to grasp the changing rules of their topological structure. The data transmission model established by considering only the historical behavior of users can no longer meet the demand for fast transmission of large-capacity data. Based on this, this paper proposes a dynamic personalized data transmission model (GRDPS) that considers the recurrent neural network and attention mechanism. First, it uses a recurrent neural network to build users’ personalized preferences and model the user’s historical behavior. Then, GRDPS introduces an attention mechanism to dynamically weight historical user behaviors based on the user’s current message transmission. It is different from the previous methods of modeling user historical behaviors. Based on the requirements of user dynamics, GRDPS effectively considers the temporal characteristics of user historical behaviors and automatically learns the evolution law of user behaviors. Based on the demand of user randomness, GRDPS fully considers the characteristic correlation between the user’s historical behavior and current transmission demand. Finally, GRDPS combines these two points to obtain a personalized ranking of users. The simulation results show that the delivery rate of GRDPS is up to 0.95. Moreover, its data transmission delay and network overhead are better than other methods in the experiment. |
---|---|
AbstractList | With the popularization of the Internet of Things technology and the improvement of 5G communication technology, the influence of mobile devices on the network structure is increasing. The devices in the network are usually regarded as social users that transmit information. Because the movement of users is dynamic and random, it is more difficult for complex networks to grasp the changing rules of their topological structure. The data transmission model established by considering only the historical behavior of users can no longer meet the demand for fast transmission of large-capacity data. Based on this, this paper proposes a dynamic personalized data transmission model (GRDPS) that considers the recurrent neural network and attention mechanism. First, it uses a recurrent neural network to build users’ personalized preferences and model the user’s historical behavior. Then, GRDPS introduces an attention mechanism to dynamically weight historical user behaviors based on the user’s current message transmission. It is different from the previous methods of modeling user historical behaviors. Based on the requirements of user dynamics, GRDPS effectively considers the temporal characteristics of user historical behaviors and automatically learns the evolution law of user behaviors. Based on the demand of user randomness, GRDPS fully considers the characteristic correlation between the user’s historical behavior and current transmission demand. Finally, GRDPS combines these two points to obtain a personalized ranking of users. The simulation results show that the delivery rate of GRDPS is up to 0.95. Moreover, its data transmission delay and network overhead are better than other methods in the experiment. |
Author | Wu, Jia Gou, Fangfang |
Author_xml | – sequence: 1 givenname: Fangfang surname: Gou fullname: Gou, Fangfang – sequence: 2 givenname: Jia surname: Wu fullname: Wu, Jia |
BookMark | eNp9kEtLAzEUhYNUsK3-AHcB16NJJpnHshYfhVbB1vWQZm5q6jRTkwzSf2-GigsFVwfuud99nBEa2NYCQpeUXFPK2c2SMFpQlmWMCRKVnaAhzcs0ybjgAzTs7aT3z9DI-y0hhIuCDBEswHu5Abxy0vqd8d60Fi-DkwE2B3wrPdQ4Vl5Adc6BDfgJOiebKOGzde9Y2hpPQohODy5AvUlr_A4bi2dtwMuDD7A7R6daNh4uvnWMXu_vVtPHZP78MJtO5olK4xMJh1yvS6FTrqAumBKirus1FcAyrmjOMsGJpmKtCwmq4FSxgpRUSwpFUWpZpmN0dZy7d-1HBz5U27ZzNq6sIpxmGU_Lvis_dinXeu9AV8oE2d8f3zZNRUnVZ1r9yTSS9Be5d2Yn3eFfhhyZGFdTe2X6qLRRP-hf5At9FIoh |
CitedBy_id | crossref_primary_10_1007_s12083_024_01739_2 crossref_primary_10_1155_int_9987190 crossref_primary_10_3390_math10071090 crossref_primary_10_1155_2022_3881833 crossref_primary_10_1155_2022_9990092 crossref_primary_10_3390_healthcare10112313 crossref_primary_10_1016_j_comcom_2023_05_021 crossref_primary_10_1155_2022_3749482 crossref_primary_10_1016_j_heliyon_2024_e31237 crossref_primary_10_1142_S0218126624500166 crossref_primary_10_3390_healthcare10081468 crossref_primary_10_1142_S0218126623502183 crossref_primary_10_3390_math10122099 crossref_primary_10_3390_healthcare10112189 crossref_primary_10_1049_cmu2_12628 crossref_primary_10_1155_2022_4879557 crossref_primary_10_3390_biomedicines11102740 crossref_primary_10_3390_s23125447 crossref_primary_10_1007_s11277_022_09820_w crossref_primary_10_1007_s12083_022_01309_4 crossref_primary_10_1007_s12083_022_01365_w crossref_primary_10_3390_diagnostics13020223 crossref_primary_10_1007_s11227_024_05993_2 crossref_primary_10_1016_j_bspc_2024_106439 crossref_primary_10_3233_JIFS_232264 crossref_primary_10_3390_math10101669 crossref_primary_10_1049_cmu2_12437 crossref_primary_10_1007_s12083_022_01430_4 crossref_primary_10_3390_diagnostics14141472 crossref_primary_10_3390_math10101665 crossref_primary_10_1155_2022_5067849 |
Cites_doi | 10.1016/j.ipm.2019.102185 10.1016/j.ipm.2021.102602 10.1016/j.jss.2020.110587 10.1007/s12083-020-00954-x 10.1016/j.ipm.2019.102125 10.1155/2021/9928771 10.1016/j.ipm.2017.12.003 10.1007/s12083-019-00833-0 10.1016/j.ipm.2019.102178 10.1142/S0218126620502278 10.3233/JIFS-210807 10.1007/s12083-021-01205-3 10.3390/a11080125 10.1109/TCAD.2021.3110743 10.1007/s12652-019-01480-2 10.1109/LCOMM.2020.3017889 10.1049/iet-net.2019.0077 10.1016/j.ipm.2019.05.001 10.1109/JIOT.2021.3102421 10.3390/electronics10091128 10.1109/LCOMM.2019.2900892 10.1109/TVT.2017.2740218 10.1007/s12083-020-01060-8 10.1109/JSEN.2021.3102683 10.1155/2020/3576542 10.1109/ACCESS.2021.3069992 10.3390/electronics10101138 10.1142/S0218126620502497 10.3390/electronics10131595 10.1007/s00607-020-00843-4 10.1049/cmu2.12254 10.1142/S0218126621501589 10.1142/S0218126620502552 10.1016/j.comcom.2021.10.009 |
ContentType | Journal Article |
Copyright | 2022, World Scientific Publishing Company 2022. World Scientific Publishing Company |
Copyright_xml | – notice: 2022, World Scientific Publishing Company – notice: 2022. World Scientific Publishing Company |
DBID | AAYXX CITATION |
DOI | 10.1142/S0218126622501262 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1793-6454 |
ExternalDocumentID | 10_1142_S0218126622501262 S0218126622501262 |
GroupedDBID | .DC 0R~ 4.4 5GY ADSJI AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS HZ~ O9- P2P P71 RWJ WSC AAYXX ADMLS CITATION |
ID | FETCH-LOGICAL-c3142-4e7fb95f34ced82c55dddb15e264c1726540f15bf8aec841c28091fa1e889fa93 |
ISSN | 0218-1266 |
IngestDate | Mon Jun 30 13:00:38 EDT 2025 Thu Apr 24 23:04:35 EDT 2025 Tue Jul 01 03:09:45 EDT 2025 Fri Aug 23 08:19:30 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | personalized ranking delivery ratio historical behavior Internet of Things attention mechanism recursive network |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3142-4e7fb95f34ced82c55dddb15e264c1726540f15bf8aec841c28091fa1e889fa93 |
Notes | This paper was recommended by Regional Editor Tongquan Wei. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2653664399 |
PQPubID | 2049873 |
ParticipantIDs | crossref_citationtrail_10_1142_S0218126622501262 worldscientific_primary_S0218126622501262 crossref_primary_10_1142_S0218126622501262 proquest_journals_2653664399 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220515 2022-05-15 |
PublicationDateYYYYMMDD | 2022-05-15 |
PublicationDate_xml | – month: 05 year: 2022 text: 20220515 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Journal of circuits, systems, and computers |
PublicationYear | 2022 |
Publisher | World Scientific Publishing Company World Scientific Publishing Co. Pte., Ltd |
Publisher_xml | – name: World Scientific Publishing Company – name: World Scientific Publishing Co. Pte., Ltd |
References | S0218126622501262BIB030 S0218126622501262BIB014 Yang W. (S0218126622501262BIB011) 2020; 2020 S0218126622501262BIB035 S0218126622501262BIB016 Dou C. (S0218126622501262BIB031) 2018; 2018 S0218126622501262BIB038 S0218126622501262BIB015 S0218126622501262BIB037 S0218126622501262BIB010 S0218126622501262BIB032 S0218126622501262BIB012 S0218126622501262BIB034 S0218126622501262BIB033 S0218126622501262BIB018 S0218126622501262BIB017 S0218126622501262BIB019 Priya R. K. (S0218126622501262BIB036) 2021; 30 Wu J. (S0218126622501262BIB013) 2020 S0218126622501262BIB003 S0218126622501262BIB025 S0218126622501262BIB002 S0218126622501262BIB024 S0218126622501262BIB005 S0218126622501262BIB027 S0218126622501262BIB004 S0218126622501262BIB026 S0218126622501262BIB021 S0218126622501262BIB020 S0218126622501262BIB001 S0218126622501262BIB023 S0218126622501262BIB022 S0218126622501262BIB007 S0218126622501262BIB029 S0218126622501262BIB006 S0218126622501262BIB028 S0218126622501262BIB009 S0218126622501262BIB008 |
References_xml | – ident: S0218126622501262BIB034 doi: 10.1016/j.ipm.2019.102185 – ident: S0218126622501262BIB001 doi: 10.1016/j.ipm.2021.102602 – year: 2020 ident: S0218126622501262BIB013 publication-title: IEEE Syst. J. – ident: S0218126622501262BIB038 doi: 10.1016/j.jss.2020.110587 – ident: S0218126622501262BIB006 doi: 10.1007/s12083-020-00954-x – ident: S0218126622501262BIB002 doi: 10.1016/j.ipm.2019.102125 – volume: 30 start-page: 2130002:1 year: 2021 ident: S0218126622501262BIB036 publication-title: J. Circuits Syst. Comput. – ident: S0218126622501262BIB014 doi: 10.1155/2021/9928771 – volume: 2018 start-page: 69 year: 2018 ident: S0218126622501262BIB031 publication-title: Comput. Technol. Dev. – ident: S0218126622501262BIB035 doi: 10.1016/j.ipm.2017.12.003 – ident: S0218126622501262BIB005 doi: 10.1007/s12083-019-00833-0 – ident: S0218126622501262BIB037 doi: 10.1016/j.ipm.2019.102178 – ident: S0218126622501262BIB032 doi: 10.1142/S0218126620502278 – ident: S0218126622501262BIB024 doi: 10.3233/JIFS-210807 – ident: S0218126622501262BIB008 doi: 10.1007/s12083-021-01205-3 – ident: S0218126622501262BIB028 doi: 10.3390/a11080125 – ident: S0218126622501262BIB030 doi: 10.1109/TCAD.2021.3110743 – ident: S0218126622501262BIB004 doi: 10.1007/s12652-019-01480-2 – ident: S0218126622501262BIB015 doi: 10.1109/LCOMM.2020.3017889 – ident: S0218126622501262BIB020 doi: 10.1049/iet-net.2019.0077 – ident: S0218126622501262BIB033 doi: 10.1016/j.ipm.2019.05.001 – volume: 2020 start-page: 3721579 year: 2020 ident: S0218126622501262BIB011 publication-title: Complexity – ident: S0218126622501262BIB010 doi: 10.1109/JIOT.2021.3102421 – ident: S0218126622501262BIB009 doi: 10.3390/electronics10091128 – ident: S0218126622501262BIB026 doi: 10.1109/LCOMM.2019.2900892 – ident: S0218126622501262BIB029 doi: 10.1109/TVT.2017.2740218 – ident: S0218126622501262BIB016 doi: 10.1007/s12083-020-01060-8 – ident: S0218126622501262BIB017 doi: 10.1109/JSEN.2021.3102683 – ident: S0218126622501262BIB022 doi: 10.1155/2020/3576542 – ident: S0218126622501262BIB027 doi: 10.1109/ACCESS.2021.3069992 – ident: S0218126622501262BIB025 doi: 10.3390/electronics10101138 – ident: S0218126622501262BIB021 doi: 10.1142/S0218126620502497 – ident: S0218126622501262BIB023 doi: 10.3390/electronics10131595 – ident: S0218126622501262BIB019 doi: 10.1007/s00607-020-00843-4 – ident: S0218126622501262BIB018 doi: 10.1049/cmu2.12254 – ident: S0218126622501262BIB003 doi: 10.1142/S0218126621501589 – ident: S0218126622501262BIB012 doi: 10.1142/S0218126620502552 – ident: S0218126622501262BIB007 doi: 10.1016/j.comcom.2021.10.009 |
SSID | ssj0004580 |
Score | 2.402892 |
Snippet | With the popularization of the Internet of Things technology and the improvement of 5G communication technology, the influence of mobile devices on the network... |
SourceID | proquest crossref worldscientific |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Customization Data transmission Demand Electronic devices Internet of Things Neural networks Recurrent neural networks User behavior |
Title | Message Transmission Strategy Based on Recurrent Neural Network and Attention Mechanism in Iot System |
URI | http://www.worldscientific.com/doi/abs/10.1142/S0218126622501262 https://www.proquest.com/docview/2653664399 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdGd4HDxAaIwph82GVMgcW1U_tYYJ-iO8Am7RY5z84UCaVoTQ_w1_P80TQjG2K7RJXluo3fz-_9_PF-JmSXZQpKLk1itZIJt4olhUt2F9pwzpWVYFxy8vQ8O7nkZ1fiarWg77NLmuID_L4zr-QxVsUytKvLkn2AZdtGsQA_o33xiRbG53_ZeOruL8FZvw84aLC5H_1Bb_bX_icMUMZtBnxza-pehclJcaBNzsPZb79xMGmaeOJxal0WsLs0o6r3T2dNVDO_h75CdQOLqvEwCHLQ8-VJUIg3RbR0_Xi28CRZ19eljqHSBQJfelbp7tIDzlqdaqlYOTh_3Mf7IH-uqbty1vdmyCWSlGVR9zp4W3QOiZMU67rjGBQC7MZ3e3nO_D6zpydZhi4Jw2x06rfFs3t1npB1hhMKNiDrky_Tr987yvIyrMfFvxl3wPGnPvYauc1hVhOTDa9yO287pMNULp6TjWgjOgl42SRrtt4izzrCky-IjcihXeTQJXKoRw7FkhY5NCCHRuRQNDNtkUNb5NCqpogcGpDzklweHV58PknihRsJjPBFcaiOy0KJcsTBGslACGNMkQqLrBmQ6WZI78tUFKXUFiRPgUmkm6VOrZSq1Gr0igzqWW1fEwoaRMalAJwg80KOtT5ghqVQcMAyxYbkYNmFOUQ1encpyo88ZMqzvNfrQ_K-_crPIMXyr8rbS7vkccTOc3yBUeYouBqSvb9s1TbZa-rNA-q-JU9XA2WbDJqbhX2HrLUpdiLg_gAWZZX5 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Message+Transmission+Strategy+Based+on+Recurrent+Neural+Network+and+Attention+Mechanism+in+Iot+System&rft.jtitle=Journal+of+circuits%2C+systems%2C+and+computers&rft.au=Gou%2C+Fangfang&rft.au=Wu%2C+Jia&rft.date=2022-05-15&rft.pub=World+Scientific+Publishing+Company&rft.issn=0218-1266&rft.eissn=1793-6454&rft.volume=31&rft.issue=7&rft_id=info:doi/10.1142%2FS0218126622501262&rft.externalDocID=S0218126622501262 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0218-1266&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0218-1266&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0218-1266&client=summon |