Thermal performance analysis of Sutterby nanoliquid subject to melting heat transportation
In the recent years, nanotechnology has been widely used in several fields regarding its rapid developments which create a lot of prospects for researchers and engineers. More specifically, replacement of conventional liquid with nanofluid is considered as an innovative solution to heat transfer pro...
Saved in:
Published in | International journal of modern physics. B, Condensed matter physics, statistical physics, applied physics Vol. 37; no. 19 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
World Scientific Publishing Company
30.07.2023
World Scientific Publishing Co. Pte., Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the recent years, nanotechnology has been widely used in several fields regarding its rapid developments which create a lot of prospects for researchers and engineers. More specifically, replacement of conventional liquid with nanofluid is considered as an innovative solution to heat transfer problems. Keeping aforesaid pragmatism of nanofluid in view, we considered a time-dependent mathematical model to formulate the heat sink-source based Sutterby nanofluid model under thermophoretic and Brownian movements. New mass flux and melting boundary conditions are used for heat/ mass transfer analyses. Moreover, Prandtl’s boundary-layer idea is employed for mathematical formulation. The leading nonlinear set of partial differential equations is transformed to nonlinear set of ordinary differential equations. Numeric outcomes are acquired through bvp4c algorithm, graphical results are found via MATLAB technique. Acquired numerical data shows that temperature of nanofluid boosts for greater thermophoretic and unsteady parameters. Intensification is measured in concentration distribution. |
---|---|
AbstractList | In the recent years, nanotechnology has been widely used in several fields regarding its rapid developments which create a lot of prospects for researchers and engineers. More specifically, replacement of conventional liquid with nanofluid is considered as an innovative solution to heat transfer problems. Keeping aforesaid pragmatism of nanofluid in view, we considered a time-dependent mathematical model to formulate the heat sink-source based Sutterby nanofluid model under thermophoretic and Brownian movements. New mass flux and melting boundary conditions are used for heat/ mass transfer analyses. Moreover, Prandtl’s boundary-layer idea is employed for mathematical formulation. The leading nonlinear set of partial differential equations is transformed to nonlinear set of ordinary differential equations. Numeric outcomes are acquired through bvp4c algorithm, graphical results are found via MATLAB technique. Acquired numerical data shows that temperature of nanofluid boosts for greater thermophoretic and unsteady parameters. Intensification is measured in concentration distribution. |
Author | Hussain, I. Irfan, M. Khan, W. A. Anjum, Nazash Waqas, M. Ali, M. |
Author_xml | – sequence: 1 givenname: Nazash surname: Anjum fullname: Anjum, Nazash – sequence: 2 givenname: W. A. surname: Khan fullname: Khan, W. A. – sequence: 3 givenname: M. surname: Ali fullname: Ali, M. – sequence: 4 givenname: I. surname: Hussain fullname: Hussain, I. – sequence: 5 givenname: M. surname: Waqas fullname: Waqas, M. – sequence: 6 givenname: M. surname: Irfan fullname: Irfan, M. |
BookMark | eNp9kE9LwzAYxoNMcJt-AG8Bz9UkTZr0KEOdMPCwefFS0jRxGV3SJSmyb29HxYMDT--_5_fyvs8MTJx3GoBbjO4xpuRhjQjmJS8JyRnCgqELMB0aeVYwLiZgehpnp_kVmMW4QwgVhKMp-NhsddjLFnY6GD9kTmkonWyP0UboDVz3KelQH6GTzrf20NsGxr7eaZVg8nCv22TdJ9xqOdRButj5kGSy3l2DSyPbqG9-4hy8Pz9tFsts9fbyunhcZSrHFGXG0FxhKpBUmBWGNJQ3uaSaIlbyBrOmZoQrVYuiMIKXha6pkkRggYhB0rB8Du7GvV3wh17HVO18H4YXYkVETgVjZVkMKj6qVPAxBm0qZcc7h6ttW2FUnYyszowcSPyH7ILdy3D8l0Ej8-VD20RltUvWWPWLniPfE6iHRA |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2023_e21910 crossref_primary_10_1016_j_jrras_2024_101249 crossref_primary_10_1142_S021798492341018X crossref_primary_10_1142_S0217984923410178 crossref_primary_10_1155_2024_4133538 crossref_primary_10_1080_10407790_2023_2215917 crossref_primary_10_1080_10407790_2023_2235886 crossref_primary_10_1007_s40571_023_00579_w crossref_primary_10_1016_j_jmmm_2023_170955 crossref_primary_10_1016_j_tsep_2023_102314 crossref_primary_10_1142_S021798492450146X crossref_primary_10_1002_zamm_202300163 crossref_primary_10_1016_j_jrras_2024_101270 crossref_primary_10_1016_j_jrras_2024_101140 crossref_primary_10_1016_j_jrras_2024_101272 crossref_primary_10_1080_17455030_2023_2262049 |
Cites_doi | 10.1016/j.ijheatmasstransfer.2017.05.042 10.1088/1402-4896/abb7a9 10.1016/j.net.2017.08.015 10.1080/15502287.2021.1900451 10.1115/1.2150834 10.1140/epjs/s11734-021-00054-8 10.1002/htj.21972 10.1140/epjp/i2017-11803-3 10.1016/j.physleta.2018.05.008 10.1016/j.applthermaleng.2015.12.138 10.1016/j.energy.2017.05.004 10.1088/1402-4896/abe324 10.1016/j.surfin.2020.100864 10.1016/j.cjph.2021.06.004 10.1016/j.icheatmasstransfer.2008.08.003 10.1007/BF00113830 10.1088/1402-4896/abf57d 10.1016/j.ijheatmasstransfer.2006.12.018 10.1038/446718a 10.1007/s12648-019-01678-2 10.1016/j.rinp.2017.06.030 10.1016/j.applthermaleng.2016.08.208 10.1016/j.jhazmat.2014.03.055 10.1016/j.icheatmasstransfer.2020.104858 10.1007/s10973-019-08957-4 10.1016/j.rinp.2017.08.029 10.1016/j.ijheatmasstransfer.2016.05.056 10.1016/j.cma.2017.06.012 10.1016/j.icheatmasstransfer.2020.104674 10.1016/j.physa.2019.124012 10.1615/JPorMedia.v17.i3.30 10.1016/j.chaos.2021.110774 10.1016/j.ijhydene.2017.07.116 10.1007/s00500-021-06575-7 10.1016/0017-9310(77)90080-1 10.1016/j.rinp.2020.102972 10.1007/s40430-019-1950-1 10.3390/app8050736 10.1142/S021798492150202X 10.1016/j.asej.2021.01.028 10.1016/j.icheatmasstransfer.2020.105011 10.1140/epjp/s13360-021-01294-2 10.1134/S0021894417020043 10.1016/j.physleta.2010.08.032 10.1016/j.surfin.2020.100749 10.1016/0735-1933(87)90015-7 10.1016/j.aej.2021.02.010 10.1016/j.aej.2021.01.050 10.3390/pr9040702 |
ContentType | Journal Article |
Copyright | 2023, World Scientific Publishing Company 2023. World Scientific Publishing Company |
Copyright_xml | – notice: 2023, World Scientific Publishing Company – notice: 2023. World Scientific Publishing Company |
DBID | AAYXX CITATION |
DOI | 10.1142/S0217979223501850 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1793-6578 |
ExternalDocumentID | 10_1142_S0217979223501850 S0217979223501850 |
GroupedDBID | -~X 0R~ 4.4 5GY ADSJI AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS HZ~ O9- P2P P71 RNS RWJ TN5 WSP AAYXX ADMLS CITATION |
ID | FETCH-LOGICAL-c3140-ff43c1480ac156f2d47d3a4e40597d15db527ccb866f8796eb4ca281802f0af53 |
ISSN | 0217-9792 |
IngestDate | Mon Jun 30 02:07:38 EDT 2025 Tue Jul 01 02:05:45 EDT 2025 Thu Apr 24 23:10:06 EDT 2025 Fri Aug 23 08:19:28 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | Falkner–Skan flow melting mechanism Sutterby liquid nanofluid heat sink-source |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3140-ff43c1480ac156f2d47d3a4e40597d15db527ccb866f8796eb4ca281802f0af53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9444-2170 |
PQID | 2834855996 |
PQPubID | 2049856 |
ParticipantIDs | proquest_journals_2834855996 worldscientific_primary_S0217979223501850 crossref_citationtrail_10_1142_S0217979223501850 crossref_primary_10_1142_S0217979223501850 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230730 2023-07-30 |
PublicationDateYYYYMMDD | 2023-07-30 |
PublicationDate_xml | – month: 07 year: 2023 text: 20230730 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | International journal of modern physics. B, Condensed matter physics, statistical physics, applied physics |
PublicationYear | 2023 |
Publisher | World Scientific Publishing Company World Scientific Publishing Co. Pte., Ltd |
Publisher_xml | – name: World Scientific Publishing Company – name: World Scientific Publishing Co. Pte., Ltd |
References | Buongiorno J. (S0217979223501850BIB001) 2006; 128 Xiong P.-Y. (S0217979223501850BIB006) 2021; 136 Hayat T. (S0217979223501850BIB020) 2017; 58 Waqas M. (S0217979223501850BIB014) 2017; 324 Khan M. (S0217979223501850BIB017) 2017; 42 Khan M. (S0217979223501850BIB049) 2016; 101 Nayak M. K. (S0217979223501850BIB041) 2021; 60 Sultan F. (S0217979223501850BIB047) 2019; 41 Ramesh K. (S0217979223501850BIB044) 2020; 21 Ijaz Khan M. (S0217979223501850BIB010) 2021; 12 Khan W. A. (S0217979223501850BIB058) 2014; 17 Punith Gowda R. J. (S0217979223501850BIB004) 2021; 145 Naveen Kumar R. (S0217979223501850BIB031) 2021; 96 Hassanien I. A. (S0217979223501850BIB054) 1999; 52 Chamkha A. J. (S0217979223501850BIB056) 2010; 5 Cho D. H. (S0217979223501850BIB051) 1977; 20 Chu Y.-M. (S0217979223501850BIB043) 2021; 120 Li Y.-X. (S0217979223501850BIB003) 2021; 73 Farooq U. (S0217979223501850BIB036) 2021; 60 Bachok N. (S0217979223501850BIB057) 2010; 347 Khan M. (S0217979223501850BIB019) 2017; 132 Radhika M. (S0217979223501850BIB005) 2020; 50 Cheng W. T. (S0217979223501850BIB050) 2008; 35 Ali M. (S0217979223501850BIB022) 2020; 11 Abbas S. Z. (S0217979223501850BIB035) 2022; 26 Jamshed W. (S0217979223501850BIB030) 2021; 96 Walker G. A. (S0217979223501850BIB052) 2007; 446 Ali M. (S0217979223501850BIB016) 2020; 550 Kazmierczak M. (S0217979223501850BIB053) 1987; 14 Khan W. A. (S0217979223501850BIB018) 2021; 95 Raslan K. (S0217979223501850BIB008) 2018; 8 Chu Y.-M. (S0217979223501850BIB045) 2022; 419 Irfan M. (S0217979223501850BIB015) 2017; 7 Hsiao K.-L. (S0217979223501850BIB024) 2017; 112 Sultan F. (S0217979223501850BIB032) 2020; 140 Nazeer M. (S0217979223501850BIB046) 2022; 420 Chu Y.-M. (S0217979223501850BIB040) 2020; 118 Ali M. (S0217979223501850BIB013) 2020; 116 Khan W. A. (S0217979223501850BIB037) 2020; 95 Ijaz Khan M. (S0217979223501850BIB042) 2021; 12 Hsiao K.-L. (S0217979223501850BIB026) 2017; 112 Chu Y.-M. (S0217979223501850BIB039) 2020; 95 Cheng W. T. (S0217979223501850BIB055) 2007; 50 Hsiao K.-L. (S0217979223501850BIB025) 2016; 98 Mahanthesh B. (S0217979223501850BIB033) 2017; 49 Ijaz Khan M. (S0217979223501850BIB038) 2020; 135 Khan M. I. (S0217979223501850BIB034) 2021; 35 Punith Gowda R. J. (S0217979223501850BIB029) 2021; 22 Irfan M. (S0217979223501850BIB021) 2018; 382 Waqas M. (S0217979223501850BIB012) 2017; 7 Khan W. A. (S0217979223501850BIB048) 2014; 9 Nine M. J. (S0217979223501850BIB002) 2014; 273 Gowda R. J. P. (S0217979223501850BIB027) 2021; 11 Naveen Kumar R. (S0217979223501850BIB007) 2021; 230 Shahzad M. (S0217979223501850BIB011) 2020; 16 Gowda P. (S0217979223501850BIB028) 2021; 9 Hsiao K.-L. (S0217979223501850BIB023) 2017; 130 Kumar R. S. V. (S0217979223501850BIB009) 2022; 23 |
References_xml | – volume: 112 start-page: 983 year: 2017 ident: S0217979223501850BIB024 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.05.042 – volume: 95 start-page: 105007 issue: 10 year: 2020 ident: S0217979223501850BIB039 publication-title: Phys. Scr. doi: 10.1088/1402-4896/abb7a9 – volume: 49 start-page: 1660 issue: 8 year: 2017 ident: S0217979223501850BIB033 publication-title: Nucl. Eng. Technol. doi: 10.1016/j.net.2017.08.015 – volume: 23 start-page: 12 year: 2022 ident: S0217979223501850BIB009 publication-title: Int. J. Comput. Methods Eng. Sci. Mech. doi: 10.1080/15502287.2021.1900451 – volume: 128 start-page: 240 year: 2006 ident: S0217979223501850BIB001 publication-title: ASME J. Heat. Transf. doi: 10.1115/1.2150834 – volume: 230 start-page: 1227 year: 2021 ident: S0217979223501850BIB007 publication-title: Eur. Phys. J. Spec. Top. doi: 10.1140/epjs/s11734-021-00054-8 – volume: 419 start-page: 126883 year: 2022 ident: S0217979223501850BIB045 publication-title: Appl. Math. Comput. – volume: 50 start-page: 2150 issue: 3 year: 2020 ident: S0217979223501850BIB005 publication-title: Heat Transfer doi: 10.1002/htj.21972 – volume: 132 start-page: 517 year: 2017 ident: S0217979223501850BIB019 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2017-11803-3 – volume: 382 start-page: 1992 issue: 30 year: 2018 ident: S0217979223501850BIB021 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2018.05.008 – volume: 98 start-page: 850 year: 2016 ident: S0217979223501850BIB025 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.12.138 – volume: 130 start-page: 486 year: 2017 ident: S0217979223501850BIB023 publication-title: Energy doi: 10.1016/j.energy.2017.05.004 – volume: 96 start-page: 045215 issue: 4 year: 2021 ident: S0217979223501850BIB031 publication-title: Phys. Scr. doi: 10.1088/1402-4896/abe324 – volume: 22 start-page: 100864 year: 2021 ident: S0217979223501850BIB029 publication-title: Surf. Interf. doi: 10.1016/j.surfin.2020.100864 – volume: 73 start-page: 275 year: 2021 ident: S0217979223501850BIB003 publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2021.06.004 – volume: 35 start-page: 1350 year: 2008 ident: S0217979223501850BIB050 publication-title: Int. Commun. Heat. Mass Transf. doi: 10.1016/j.icheatmasstransfer.2008.08.003 – volume: 52 start-page: 51 year: 1999 ident: S0217979223501850BIB054 publication-title: Earth Moon Planets doi: 10.1007/BF00113830 – volume: 135 start-page: 1 issue: 6 year: 2020 ident: S0217979223501850BIB038 publication-title: Eur. Phys. J. Plus – volume: 96 start-page: 064006 issue: 6 year: 2021 ident: S0217979223501850BIB030 publication-title: Phys. Scr. doi: 10.1088/1402-4896/abf57d – volume: 50 start-page: 3026 year: 2007 ident: S0217979223501850BIB055 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2006.12.018 – volume: 420 start-page: 126868 year: 2022 ident: S0217979223501850BIB046 publication-title: Appl. Math. Comput. – volume: 446 start-page: 718 year: 2007 ident: S0217979223501850BIB052 publication-title: Nature doi: 10.1038/446718a – volume: 95 start-page: 89 year: 2020 ident: S0217979223501850BIB037 publication-title: Indian J. Phys. doi: 10.1007/s12648-019-01678-2 – volume: 7 start-page: 2489 year: 2017 ident: S0217979223501850BIB012 publication-title: Results Phys. doi: 10.1016/j.rinp.2017.06.030 – volume: 112 start-page: 1281 year: 2017 ident: S0217979223501850BIB026 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.08.208 – volume: 273 start-page: 183 year: 2014 ident: S0217979223501850BIB002 publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2014.03.055 – volume: 118 start-page: 104858 year: 2020 ident: S0217979223501850BIB040 publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2020.104858 – volume: 140 start-page: 1069 issue: 3 year: 2020 ident: S0217979223501850BIB032 publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-019-08957-4 – volume: 7 start-page: 3315 year: 2017 ident: S0217979223501850BIB015 publication-title: Results Phys. doi: 10.1016/j.rinp.2017.08.029 – volume: 101 start-page: 570 year: 2016 ident: S0217979223501850BIB049 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.05.056 – volume: 324 start-page: 640 year: 2017 ident: S0217979223501850BIB014 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2017.06.012 – volume: 116 start-page: 104674 year: 2020 ident: S0217979223501850BIB013 publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2020.104674 – volume: 550 start-page: 124012 year: 2020 ident: S0217979223501850BIB016 publication-title: Physica A doi: 10.1016/j.physa.2019.124012 – volume: 17 start-page: 211 year: 2014 ident: S0217979223501850BIB058 publication-title: J. Porous Med. doi: 10.1615/JPorMedia.v17.i3.30 – volume: 145 start-page: 110774 year: 2021 ident: S0217979223501850BIB004 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2021.110774 – volume: 42 start-page: 22054 issue: 34 year: 2017 ident: S0217979223501850BIB017 publication-title: Int. J. Hydro. Energy doi: 10.1016/j.ijhydene.2017.07.116 – volume: 26 start-page: 1033 issue: 3 year: 2022 ident: S0217979223501850BIB035 publication-title: Soft Comput. doi: 10.1007/s00500-021-06575-7 – volume: 20 start-page: 23 year: 1977 ident: S0217979223501850BIB051 publication-title: Int. J. Heat. Mass Transf. doi: 10.1016/0017-9310(77)90080-1 – volume: 16 start-page: 102972 year: 2020 ident: S0217979223501850BIB011 publication-title: Results Phys. doi: 10.1016/j.rinp.2020.102972 – volume: 41 start-page: 439 year: 2019 ident: S0217979223501850BIB047 publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-019-1950-1 – volume: 8 start-page: 736 year: 2018 ident: S0217979223501850BIB008 publication-title: Appl. Sci. doi: 10.3390/app8050736 – volume: 35 start-page: 2150202 issue: 12 year: 2021 ident: S0217979223501850BIB034 publication-title: Mod. Phys. Lett. B doi: 10.1142/S021798492150202X – volume: 12 start-page: 3931 issue: 4 year: 2021 ident: S0217979223501850BIB042 publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2021.01.028 – volume: 12 start-page: 3931 issue: 4 year: 2021 ident: S0217979223501850BIB010 publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2021.01.028 – volume: 120 start-page: 105011 year: 2021 ident: S0217979223501850BIB043 publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2020.105011 – volume: 136 start-page: 315 year: 2021 ident: S0217979223501850BIB006 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-021-01294-2 – volume: 95 start-page: 89 year: 2021 ident: S0217979223501850BIB018 publication-title: Indian J. Phys. doi: 10.1007/s12648-019-01678-2 – volume: 5 start-page: 1212 year: 2010 ident: S0217979223501850BIB056 publication-title: Int. J. Phys. Sci. – volume: 11 start-page: 3304 year: 2020 ident: S0217979223501850BIB022 publication-title: Int. J. Numer. Methods Heat Fluid Flow – volume: 58 start-page: 214 issue: 2 year: 2017 ident: S0217979223501850BIB020 publication-title: J. Appl. Mech. Tech. Phys. doi: 10.1134/S0021894417020043 – volume: 347 start-page: 4075 year: 2010 ident: S0217979223501850BIB057 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2010.08.032 – volume: 21 start-page: 100749 year: 2020 ident: S0217979223501850BIB044 publication-title: Surf. Interf. doi: 10.1016/j.surfin.2020.100749 – volume: 11 start-page: 1 year: 2021 ident: S0217979223501850BIB027 publication-title: Appl. Nanosci. – volume: 14 start-page: 507 year: 1987 ident: S0217979223501850BIB053 publication-title: Int. Commun. Heat. Mass Transf. doi: 10.1016/0735-1933(87)90015-7 – volume: 9 start-page: 10510 issue: 8 year: 2014 ident: S0217979223501850BIB048 publication-title: PLoS One – volume: 60 start-page: 4067 issue: 4 year: 2021 ident: S0217979223501850BIB041 publication-title: Alexandria Eng. J. doi: 10.1016/j.aej.2021.02.010 – volume: 60 start-page: 3073 issue: 3 year: 2021 ident: S0217979223501850BIB036 publication-title: Alexandria Eng. J. doi: 10.1016/j.aej.2021.01.050 – volume: 9 start-page: 702 issue: 4 year: 2021 ident: S0217979223501850BIB028 publication-title: Processes doi: 10.3390/pr9040702 |
SSID | ssj0006270 |
Score | 2.4805388 |
Snippet | In the recent years, nanotechnology has been widely used in several fields regarding its rapid developments which create a lot of prospects for researchers and... |
SourceID | proquest crossref worldscientific |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Algorithms Boundary conditions Data acquisition Heat sinks Mass transfer Mathematical models Nanofluids Partial differential equations |
Title | Thermal performance analysis of Sutterby nanoliquid subject to melting heat transportation |
URI | http://www.worldscientific.com/doi/abs/10.1142/S0217979223501850 https://www.proquest.com/docview/2834855996 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FVEhcKp4iUNAeuEDk4OyuX8dQWhWUlkpNRMTFWq_XaqvEBpxc-vv4Ycw-7HVIVQEXK1o7a8vzeTzzefYbhN6wOBfg9mNP5gH3GCXgB-mYeZA7U5plMiKFIvRPz8KTOfu8CBa93q9O1dJmnY3Eza3rSv7HqjAGdlWrZP_Bsu2kMAC_wb6wBQvD9m9tDH51qbSHO9X_TmXkQnehhgCz5GW1vPqxucqH9SZT1IuKOVdyqYuelT9WvSKMyrkz1bWrcnekYUdqYmX6qBlypB4NP2jWtVI9dWuIY1daurPZrfap1UtaGFpdsxvmNhK2Qy0_zW94fTmclNdWLkK9Fy4NYfvVcbATs8DbsbqbuuZGGeFTl9MgVJOlvvOcuo5IOzddMNWl5A6r0fB8LbXrdIVPyl1CcuUlkemsN5LGnYP3UcU9cdffG5GZBtfJ7e8RRvSXbJhTTUm07qFRyN3W7D77kh7Pp9N0drSY3UN7BJIV0kd7k4-n04s2IghJZLg-e4X26zqc5P3OKbbjI5f07GsF3bq9J50oaPYQ7dv0BU8MFh-hniwfo_vnxnBP0DeLSNxBJG4QiasCN4jEDpHYIhKvK2wRiRUi8TYin6L58dHs8MSz3Ts8QVXNcFEwKiDZ9rkYB2FBchbllDMJGUIS5eMgzwISCZHFYVjEURLKjAmutMl8Uvi8COgz1C-rUj5HmGW-pAKCdUg-mJQk4ZRlMRxT-KKQRA6Q39yzVFhpe9VhZZmaZfck3bnNA_Su_ct3o-ty18EHjSFS-5TVKcTlSlgpScIBevuHcdopd6Z6cfdUL9ED9zwcoP7650a-gqh3nb22oPoNlvKwAw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+performance+analysis+of+Sutterby+nanoliquid+subject+to+melting+heat+transportation&rft.jtitle=International+journal+of+modern+physics.+B%2C+Condensed+matter+physics%2C+statistical+physics%2C+applied+physics&rft.au=Nazash+Anjum&rft.au=Khan%2C+W+A&rft.au=Ali%2C+M&rft.au=Hussain%2C+I&rft.date=2023-07-30&rft.pub=World+Scientific+Publishing+Co.+Pte.%2C+Ltd&rft.issn=0217-9792&rft.eissn=1793-6578&rft.volume=37&rft.issue=19&rft_id=info:doi/10.1142%2FS0217979223501850&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0217-9792&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0217-9792&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0217-9792&client=summon |