A parallel recursive framework for modelling time series

Time series modelling is of significance to several scientific fields. Several approaches based on statistics, machine learning or combinations have been utilized. In order to model and forecast time series a novel parallel framework based on recursive pseudoinverse matrices is proposed. This framew...

Full description

Saved in:
Bibliographic Details
Published inIMA journal of applied mathematics Vol. 89; no. 4; pp. 776 - 805
Main Authors Filelis-Papadopoulos, Christos, Morrison, John P, O’Reilly, Philip
Format Journal Article
LanguageEnglish
Published Oxford University Press 11.12.2024
Subjects
Online AccessGet full text
ISSN0272-4960
1464-3634
DOI10.1093/imamat/hxae027

Cover

Loading…
Abstract Time series modelling is of significance to several scientific fields. Several approaches based on statistics, machine learning or combinations have been utilized. In order to model and forecast time series a novel parallel framework based on recursive pseudoinverse matrices is proposed. This framework enables the design of arbitrary statistical and machine learning models, adaptively, from a set of potential basis functions. This unification enables compact definition of existing and new models as well as easy implementation for new massively parallel architectures. The choice of appropriate basis functions is analysed and the fitting accuracy, termination criteria and model update operations are presented. A block variant for multivariate time series is also proposed. Parallel GPU implementation and performance optimization of the framework are provided, based on mixed precision arithmetic and matrix operations. The use of different basis functions is showcased with respect to various model univariate and multivariate time series for applications such as regression, frequency estimation and automatic trend detection. Discussions on limitations and future directions of research are also provided.
AbstractList Time series modelling is of significance to several scientific fields. Several approaches based on statistics, machine learning or combinations have been utilized. In order to model and forecast time series a novel parallel framework based on recursive pseudoinverse matrices is proposed. This framework enables the design of arbitrary statistical and machine learning models, adaptively, from a set of potential basis functions. This unification enables compact definition of existing and new models as well as easy implementation for new massively parallel architectures. The choice of appropriate basis functions is analysed and the fitting accuracy, termination criteria and model update operations are presented. A block variant for multivariate time series is also proposed. Parallel GPU implementation and performance optimization of the framework are provided, based on mixed precision arithmetic and matrix operations. The use of different basis functions is showcased with respect to various model univariate and multivariate time series for applications such as regression, frequency estimation and automatic trend detection. Discussions on limitations and future directions of research are also provided.
Author O’Reilly, Philip
Morrison, John P
Filelis-Papadopoulos, Christos
Author_xml – sequence: 1
  givenname: Christos
  surname: Filelis-Papadopoulos
  fullname: Filelis-Papadopoulos, Christos
  email: cpapad@ee.duth.gr
– sequence: 2
  givenname: John P
  surname: Morrison
  fullname: Morrison, John P
– sequence: 3
  givenname: Philip
  surname: O’Reilly
  fullname: O’Reilly, Philip
BookMark eNotzztPwzAUBWALFYm0ZWX2yhB67evEzlhVvKRKLHSOnOQaAs5Ddsrj3xPUTufoDEf6lmzRDz0xdiPgTkCBm7aznZ027z-WQOoLlgiVqxRzVAuWzItMVZHDFVvG-AEAItOQMLPlow3We_I8UH0Msf0i7oLt6HsIn9wNgXdDQ963_Ruf2o54pNBSXLNLZ32k63Ou2OHh_nX3lO5fHp93231ao8ApdbbWGskoWYN0SjqZZQgGVZ6JgnJb6UZKKopKqMopMzejnW6ozqhCIIMrdnv6HY5jOYYZGX5LAeU_uTyRyzMZ_wBLZE31
CitedBy_id crossref_primary_10_1016_j_matcom_2024_12_004
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2024
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2024
DBID TOX
DOI 10.1093/imamat/hxae027
DatabaseName Oxford Journals Open Access (Activated by CARLI)
DatabaseTitleList
Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access (Activated by CARLI)
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1464-3634
EndPage 805
ExternalDocumentID 10.1093/imamat/hxae027
GroupedDBID -E4
-~X
.2P
.I3
0R~
18M
1TH
29I
4.4
482
48X
5GY
5VS
5WA
6TJ
70D
8WZ
A6W
AAIJN
AAJKP
AAJQQ
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWDT
ABAZT
ABDBF
ABDFA
ABDPE
ABDTM
ABEFU
ABEJV
ABEUO
ABGNP
ABIME
ABIXL
ABJNI
ABNGD
ABNKS
ABPIB
ABPQP
ABPTD
ABQLI
ABSMQ
ABVGC
ABVLG
ABWST
ABXVV
ABZBJ
ABZEO
ACFRR
ACGFO
ACGFS
ACGOD
ACIWK
ACPQN
ACUFI
ACUHS
ACUKT
ACUTJ
ACUXJ
ACVCV
ACYTK
ACZBC
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYJX
ADYVW
ADZXQ
AECKG
AEGPL
AEGXH
AEHUL
AEJOX
AEKKA
AEKPW
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFIYH
AFOFC
AFSHK
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGORE
AGQPQ
AGQXC
AGSYK
AHGBF
AHXPO
AI.
AIAGR
AIJHB
AJBYB
AJDVS
AJEEA
AJEUX
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMVHM
ANAKG
ANFBD
APIBT
APJGH
APWMN
AQDSO
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DILTD
DU5
D~K
EBS
EE~
EJD
ELUNK
ESX
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HVGLF
HW0
HZ~
I-F
IOX
J21
JAVBF
JXSIZ
KAQDR
KBUDW
KOP
KSI
KSN
M-Z
M43
MBTAY
N9A
NGC
NMDNZ
NOMLY
NU-
NVLIB
O0~
O9-
OCL
ODMLO
OJQWA
OJZSN
OXVGQ
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
T9H
TCN
TJP
TN5
TOX
TUS
UPT
UQL
VH1
WH7
X7H
XOL
YAYTL
YKOAZ
YXANX
ZCG
ZKX
ZY4
~91
ID FETCH-LOGICAL-c313t-fac773e842c02f42f255308346519e6ab7d22e99b14bf48e9987f7dec5eb30e83
IEDL.DBID TOX
ISSN 0272-4960
IngestDate Mon Jun 30 08:34:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords recursive pseudoinverse matrix
modelling
GPU
forecasting
frequency estimation
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-fac773e842c02f42f255308346519e6ab7d22e99b14bf48e9987f7dec5eb30e83
OpenAccessLink https://dx.doi.org/10.1093/imamat/hxae027
PageCount 30
ParticipantIDs oup_primary_10_1093_imamat_hxae027
PublicationCentury 2000
PublicationDate 2024-12-11
PublicationDateYYYYMMDD 2024-12-11
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-11
  day: 11
PublicationDecade 2020
PublicationTitle IMA journal of applied mathematics
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
SSID ssj0001570
Score 2.346694
Snippet Time series modelling is of significance to several scientific fields. Several approaches based on statistics, machine learning or combinations have been...
SourceID oup
SourceType Publisher
StartPage 776
Title A parallel recursive framework for modelling time series
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA3Skx7ET_wmiNfQJpndJMciliJULy30tmSzExS0SruCP9_J7rqIePCWQ3LIJMybmUzeY-ymikZGyHNBaAICIhjhgweBdD08OlmGpqY7e8inC7hfZsuOLHrzxxO-08PnV0_B2_Dp0yPlUORtCYETS_78cdn7XJmZtppilAAKynt6xt_L239sPyBkssd2u9iPj9vD2mdbuDpgO7OeOHVzyOyYJzJuSuZf-DqVwlN3OY_fHVScQkzeiNekX-Q8CcPzdIdwc8QWk7v57VR04gYiaKlrEX0wRqMFFUYqgooqCfhYnbTJHea-NJVS6FwpoYxgaWRNNBWGjNLfEVp9zAartxWeMG6qCqKJFjOLYD24UOWuBCRHF4PKs1N2TXsu3lv6iqJ9dtZFa5iiM8zZfyads21FoJ7aOaS8YIN6_YGXBMp1edWcxxd1AIuT
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+parallel+recursive+framework+for+modelling+time+series&rft.jtitle=IMA+journal+of+applied+mathematics&rft.au=Filelis-Papadopoulos%2C+Christos&rft.au=Morrison%2C+John+P&rft.au=O%E2%80%99Reilly%2C+Philip&rft.date=2024-12-11&rft.pub=Oxford+University+Press&rft.issn=0272-4960&rft.eissn=1464-3634&rft.volume=89&rft.issue=4&rft.spage=776&rft.epage=805&rft_id=info:doi/10.1093%2Fimamat%2Fhxae027&rft.externalDocID=10.1093%2Fimamat%2Fhxae027
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-4960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-4960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-4960&client=summon