A parallel recursive framework for modelling time series
Time series modelling is of significance to several scientific fields. Several approaches based on statistics, machine learning or combinations have been utilized. In order to model and forecast time series a novel parallel framework based on recursive pseudoinverse matrices is proposed. This framew...
Saved in:
Published in | IMA journal of applied mathematics Vol. 89; no. 4; pp. 776 - 805 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
11.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0272-4960 1464-3634 |
DOI | 10.1093/imamat/hxae027 |
Cover
Loading…
Abstract | Time series modelling is of significance to several scientific fields. Several approaches based on statistics, machine learning or combinations have been utilized. In order to model and forecast time series a novel parallel framework based on recursive pseudoinverse matrices is proposed. This framework enables the design of arbitrary statistical and machine learning models, adaptively, from a set of potential basis functions. This unification enables compact definition of existing and new models as well as easy implementation for new massively parallel architectures. The choice of appropriate basis functions is analysed and the fitting accuracy, termination criteria and model update operations are presented. A block variant for multivariate time series is also proposed. Parallel GPU implementation and performance optimization of the framework are provided, based on mixed precision arithmetic and matrix operations. The use of different basis functions is showcased with respect to various model univariate and multivariate time series for applications such as regression, frequency estimation and automatic trend detection. Discussions on limitations and future directions of research are also provided. |
---|---|
AbstractList | Time series modelling is of significance to several scientific fields. Several approaches based on statistics, machine learning or combinations have been utilized. In order to model and forecast time series a novel parallel framework based on recursive pseudoinverse matrices is proposed. This framework enables the design of arbitrary statistical and machine learning models, adaptively, from a set of potential basis functions. This unification enables compact definition of existing and new models as well as easy implementation for new massively parallel architectures. The choice of appropriate basis functions is analysed and the fitting accuracy, termination criteria and model update operations are presented. A block variant for multivariate time series is also proposed. Parallel GPU implementation and performance optimization of the framework are provided, based on mixed precision arithmetic and matrix operations. The use of different basis functions is showcased with respect to various model univariate and multivariate time series for applications such as regression, frequency estimation and automatic trend detection. Discussions on limitations and future directions of research are also provided. |
Author | O’Reilly, Philip Morrison, John P Filelis-Papadopoulos, Christos |
Author_xml | – sequence: 1 givenname: Christos surname: Filelis-Papadopoulos fullname: Filelis-Papadopoulos, Christos email: cpapad@ee.duth.gr – sequence: 2 givenname: John P surname: Morrison fullname: Morrison, John P – sequence: 3 givenname: Philip surname: O’Reilly fullname: O’Reilly, Philip |
BookMark | eNotzztPwzAUBWALFYm0ZWX2yhB67evEzlhVvKRKLHSOnOQaAs5Ddsrj3xPUTufoDEf6lmzRDz0xdiPgTkCBm7aznZ027z-WQOoLlgiVqxRzVAuWzItMVZHDFVvG-AEAItOQMLPlow3We_I8UH0Msf0i7oLt6HsIn9wNgXdDQ963_Ruf2o54pNBSXLNLZ32k63Ou2OHh_nX3lO5fHp93231ao8ApdbbWGskoWYN0SjqZZQgGVZ6JgnJb6UZKKopKqMopMzejnW6ozqhCIIMrdnv6HY5jOYYZGX5LAeU_uTyRyzMZ_wBLZE31 |
CitedBy_id | crossref_primary_10_1016_j_matcom_2024_12_004 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2024 |
Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2024 |
DBID | TOX |
DOI | 10.1093/imamat/hxae027 |
DatabaseName | Oxford Journals Open Access (Activated by CARLI) |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access (Activated by CARLI) url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1464-3634 |
EndPage | 805 |
ExternalDocumentID | 10.1093/imamat/hxae027 |
GroupedDBID | -E4 -~X .2P .I3 0R~ 18M 1TH 29I 4.4 482 48X 5GY 5VS 5WA 6TJ 70D 8WZ A6W AAIJN AAJKP AAJQQ AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAWDT ABAZT ABDBF ABDFA ABDPE ABDTM ABEFU ABEJV ABEUO ABGNP ABIME ABIXL ABJNI ABNGD ABNKS ABPIB ABPQP ABPTD ABQLI ABSMQ ABVGC ABVLG ABWST ABXVV ABZBJ ABZEO ACFRR ACGFO ACGFS ACGOD ACIWK ACPQN ACUFI ACUHS ACUKT ACUTJ ACUXJ ACVCV ACYTK ACZBC ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRDM ADRTK ADVEK ADYJX ADYVW ADZXQ AECKG AEGPL AEGXH AEHUL AEJOX AEKKA AEKPW AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFIYH AFOFC AFSHK AFYAG AGINJ AGKEF AGKRT AGMDO AGORE AGQPQ AGQXC AGSYK AHGBF AHXPO AI. AIAGR AIJHB AJBYB AJDVS AJEEA AJEUX AJNCP ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMVHM ANAKG ANFBD APIBT APJGH APWMN AQDSO ASAOO ASPBG ATDFG ATGXG ATTQO AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DILTD DU5 D~K EBS EE~ EJD ELUNK ESX F9B FEDTE FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC H13 H5~ HAR HVGLF HW0 HZ~ I-F IOX J21 JAVBF JXSIZ KAQDR KBUDW KOP KSI KSN M-Z M43 MBTAY N9A NGC NMDNZ NOMLY NU- NVLIB O0~ O9- OCL ODMLO OJQWA OJZSN OXVGQ O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO T9H TCN TJP TN5 TOX TUS UPT UQL VH1 WH7 X7H XOL YAYTL YKOAZ YXANX ZCG ZKX ZY4 ~91 |
ID | FETCH-LOGICAL-c313t-fac773e842c02f42f255308346519e6ab7d22e99b14bf48e9987f7dec5eb30e83 |
IEDL.DBID | TOX |
ISSN | 0272-4960 |
IngestDate | Mon Jun 30 08:34:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | recursive pseudoinverse matrix modelling GPU forecasting frequency estimation |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c313t-fac773e842c02f42f255308346519e6ab7d22e99b14bf48e9987f7dec5eb30e83 |
OpenAccessLink | https://dx.doi.org/10.1093/imamat/hxae027 |
PageCount | 30 |
ParticipantIDs | oup_primary_10_1093_imamat_hxae027 |
PublicationCentury | 2000 |
PublicationDate | 2024-12-11 |
PublicationDateYYYYMMDD | 2024-12-11 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-11 day: 11 |
PublicationDecade | 2020 |
PublicationTitle | IMA journal of applied mathematics |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
SSID | ssj0001570 |
Score | 2.346694 |
Snippet | Time series modelling is of significance to several scientific fields. Several approaches based on statistics, machine learning or combinations have been... |
SourceID | oup |
SourceType | Publisher |
StartPage | 776 |
Title | A parallel recursive framework for modelling time series |
Volume | 89 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA3Skx7ET_wmiNfQJpndJMciliJULy30tmSzExS0SruCP9_J7rqIePCWQ3LIJMybmUzeY-ymikZGyHNBaAICIhjhgweBdD08OlmGpqY7e8inC7hfZsuOLHrzxxO-08PnV0_B2_Dp0yPlUORtCYETS_78cdn7XJmZtppilAAKynt6xt_L239sPyBkssd2u9iPj9vD2mdbuDpgO7OeOHVzyOyYJzJuSuZf-DqVwlN3OY_fHVScQkzeiNekX-Q8CcPzdIdwc8QWk7v57VR04gYiaKlrEX0wRqMFFUYqgooqCfhYnbTJHea-NJVS6FwpoYxgaWRNNBWGjNLfEVp9zAartxWeMG6qCqKJFjOLYD24UOWuBCRHF4PKs1N2TXsu3lv6iqJ9dtZFa5iiM8zZfyads21FoJ7aOaS8YIN6_YGXBMp1edWcxxd1AIuT |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+parallel+recursive+framework+for+modelling+time+series&rft.jtitle=IMA+journal+of+applied+mathematics&rft.au=Filelis-Papadopoulos%2C+Christos&rft.au=Morrison%2C+John+P&rft.au=O%E2%80%99Reilly%2C+Philip&rft.date=2024-12-11&rft.pub=Oxford+University+Press&rft.issn=0272-4960&rft.eissn=1464-3634&rft.volume=89&rft.issue=4&rft.spage=776&rft.epage=805&rft_id=info:doi/10.1093%2Fimamat%2Fhxae027&rft.externalDocID=10.1093%2Fimamat%2Fhxae027 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-4960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-4960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-4960&client=summon |