Automated Video-Based Face Detection Using Harris Hawks Optimization with Deep Learning

Face recognition technology automatically identifies an individual from image or video sources. The detection process can be done by attaining facial characteristics from the image of a subject face. Recent developments in deep learning (DL) and computer vision (CV) techniques enable the design of a...

Full description

Saved in:
Bibliographic Details
Published inComputers, materials & continua Vol. 75; no. 3; pp. 4917 - 4933
Main Authors Almuqren, Latifah, Ahmed Hamza, Manar, Mohamed, Abdullah, Atta Abdelmageed, Amgad
Format Journal Article
LanguageEnglish
Published Henderson Tech Science Press 2023
Subjects
Online AccessGet full text
ISSN1546-2226
1546-2218
1546-2226
DOI10.32604/cmc.2023.037738

Cover

Loading…
Abstract Face recognition technology automatically identifies an individual from image or video sources. The detection process can be done by attaining facial characteristics from the image of a subject face. Recent developments in deep learning (DL) and computer vision (CV) techniques enable the design of automated face recognition and tracking methods. This study presents a novel Harris Hawks Optimization with deep learning-empowered automated face detection and tracking (HHODL-AFDT) method. The proposed HHODL-AFDT model involves a Faster region based convolution neural network (RCNN)-based face detection model and HHO-based hyperparameter optimization process. The presented optimal Faster RCNN model precisely recognizes the face and is passed into the face-tracking model using a regression network (REGN). The face tracking using the REGN model uses the features from neighboring frames and foresees the location of the target face in succeeding frames. The application of the HHO algorithm for optimal hyperparameter selection shows the novelty of the work. The experimental validation of the presented HHODL-AFDT algorithm is conducted using two datasets and the experiment outcomes highlighted the superior performance of the HHODL-AFDT model over current methodologies with maximum accuracy of 90.60% and 88.08% under PICS and VTB datasets, respectively.
AbstractList Face recognition technology automatically identifies an individual from image or video sources. The detection process can be done by attaining facial characteristics from the image of a subject face. Recent developments in deep learning (DL) and computer vision (CV) techniques enable the design of automated face recognition and tracking methods. This study presents a novel Harris Hawks Optimization with deep learning-empowered automated face detection and tracking (HHODL-AFDT) method. The proposed HHODL-AFDT model involves a Faster region based convolution neural network (RCNN)-based face detection model and HHO-based hyperparameter optimization process. The presented optimal Faster RCNN model precisely recognizes the face and is passed into the face-tracking model using a regression network (REGN). The face tracking using the REGN model uses the features from neighboring frames and foresees the location of the target face in succeeding frames. The application of the HHO algorithm for optimal hyperparameter selection shows the novelty of the work. The experimental validation of the presented HHODL-AFDT algorithm is conducted using two datasets and the experiment outcomes highlighted the superior performance of the HHODL-AFDT model over current methodologies with maximum accuracy of 90.60% and 88.08% under PICS and VTB datasets, respectively.
Author Ahmed Hamza, Manar
Almuqren, Latifah
Mohamed, Abdullah
Atta Abdelmageed, Amgad
Author_xml – sequence: 1
  givenname: Latifah
  surname: Almuqren
  fullname: Almuqren, Latifah
– sequence: 2
  givenname: Manar
  surname: Ahmed Hamza
  fullname: Ahmed Hamza, Manar
– sequence: 3
  givenname: Abdullah
  surname: Mohamed
  fullname: Mohamed, Abdullah
– sequence: 4
  givenname: Amgad
  surname: Atta Abdelmageed
  fullname: Atta Abdelmageed, Amgad
BookMark eNp1kEFPAjEQhRuDiYDePW7iebHtdLvtEVHEhISL6LEp3a4W2V1sS4j-eit4MCae3kvmezOTN0C9tmstQpcEj4ByzK5NY0YUUxhhKEsQJ6hPCsZzSinv_fJnaBDCGmPgIHEfPY93sWt0tFX25Crb5Tc6JD_Vxma3NloTXddmy-Dal2ymvXchyf4tZIttdI371If53sXXhNttNrfatwk-R6e13gR78aNDtJzePU5m-Xxx_zAZz3MDBGJec0lXXAtBmBaMMW1WmJSMrgiIUnDOqkpCxbmQALKQpqgqMMC5rSStCbUwRFfHvVvfve9siGrd7XybTiogUgoooGCJ4kfK-C4Eb2tlXDy8Hr12G0WwOpSoUonqu0R1LDEF8Z_g1rtG-4__I1_Pu3VW
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3365501
Cites_doi 27295650
10.1016/j.compchemeng.2019.106656
10.1016/j.ins.2021.03.027
10.1155/2020/3189691
10.1007/s11263-020-01309-y
10.1007/978-981-16-7220-0_11
10.1080/17517575.2019.1668964
31517043
ContentType Journal Article
Copyright 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
8BQ
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
JG9
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.32604/cmc.2023.037738
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1546-2226
EndPage 4933
ExternalDocumentID 10_32604_cmc_2023_037738
GroupedDBID AAFWJ
AAYXX
ACIWK
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
J9A
OK1
P2P
PHGZM
PHGZT
PIMPY
PUEGO
RTS
TUS
7SC
7SR
8BQ
8FD
ABUWG
AZQEC
COVID
DWQXO
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c313t-f692b6a8814a8444acb01742b13878664dd93d668933959c5dd3c366ed92f12e3
IEDL.DBID BENPR
ISSN 1546-2226
1546-2218
IngestDate Mon Jun 30 07:45:27 EDT 2025
Mon Sep 01 05:05:05 EDT 2025
Thu Apr 24 22:50:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-f692b6a8814a8444acb01742b13878664dd93d668933959c5dd3c366ed92f12e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3199835354?pq-origsite=%requestingapplication%
PQID 3199835354
PQPubID 2048737
PageCount 17
ParticipantIDs proquest_journals_3199835354
crossref_citationtrail_10_32604_cmc_2023_037738
crossref_primary_10_32604_cmc_2023_037738
PublicationCentury 2000
PublicationDate 2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computers, materials & continua
PublicationYear 2023
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Cárdenas (ref14) 2019; 2
Li (ref20) 2020; 128
Arulkumar (ref7) 2021
Das (ref2) 2015
ref22
Goyal (ref3) 2017; 1
Chowdhury (ref9) 2022; 998
ref21
Lei (ref12) 2020; 14
Asif (ref11) 2021
Zheng (ref1) 2021; 568
Girshick (ref17) 2015
GÜney (ref13) 2020
Ren (ref18) 2017; 39
Houssein (ref19) 2020; 133
Nguyen (ref16) 2020; 2020
Wang (ref10) 2017
Saypadith (ref15) 2018
Dong (ref8) 2021
Kwaśniewska (ref6) 2017
Prabakaran (ref5) 2022; 18
Schofield (ref4) 2019; 5
References_xml – volume: 39
  start-page: 1137
  year: 2017
  ident: ref18
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 27295650
– volume: 133
  start-page: 106656
  year: 2020
  ident: ref19
  article-title: A novel hybrid harris hawks optimization and support vector machines for drug design and discovery
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2019.106656
– volume: 568
  start-page: 265
  year: 2021
  ident: ref1
  article-title: Efficient face detection and tracking in video sequences based on deep learning
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2021.03.027
– volume: 18
  start-page: 541
  year: 2022
  ident: ref5
  article-title: A deep learning based social distance analyzer with person detection and tracking using region based convolutional neural networks for novel coronavirus
  publication-title: Journal of Mobile Multimedia
– volume: 2
  start-page: 14
  year: 2019
  ident: ref14
  article-title: Small face detection using deep learning on surveillance videos
  publication-title: Environment
– ident: ref21
– ident: ref22
– volume: 2020
  start-page: 1
  year: 2020
  ident: ref16
  article-title: An evaluation of deep learning methods for small object detection
  publication-title: Journal of Electrical and Computer Engineering
  doi: 10.1155/2020/3189691
– start-page: 1
  year: 2021
  ident: ref8
  article-title: Visually maintained image disturbance against deepfake face swapping
– start-page: 1
  year: 2020
  ident: ref13
  article-title: Toddler tracking system with face recognition and object tracking using deep neural network
– start-page: 70
  year: 2021
  ident: ref11
  article-title: Real time face mask detection system using transfer learning with machine learning method in the era of COVID-19 pandemic
– volume: 128
  start-page: 2763
  year: 2020
  ident: ref20
  article-title: Cr-net: A deep classification-regression network for multimodal apparent personality analysis
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-020-01309-y
– volume: 1
  start-page: 474
  year: 2017
  ident: ref3
  article-title: Face detection and tracking: Using OpenCV
– volume: 998
  start-page: 177
  year: 2022
  ident: ref9
  publication-title: Advances in Augmented Reality and Virtual Reality, Studies in Computational Intelligence Book Series
  doi: 10.1007/978-981-16-7220-0_11
– start-page: 1440
  year: 2015
  ident: ref17
  article-title: Fast R-CNN
– volume: 14
  start-page: 1379
  year: 2020
  ident: ref12
  article-title: RFR-DLVT: A hybrid method for real-time face recognition using deep learning and visual tracking
  publication-title: Enterprise Information Systems
  doi: 10.1080/17517575.2019.1668964
– start-page: 981
  year: 2015
  ident: ref2
  article-title: Real-time robust face detection and tracking using extended haar functions and improved boosting algorithm
– start-page: 239
  year: 2017
  ident: ref10
  article-title: Face recognition in real-world surveillance videos with deep learning method
– volume: 5
  start-page: eaaw0736
  year: 2019
  ident: ref4
  article-title: Chimpanzee face recognition from videos in the wild using deep learning
  publication-title: Science Advances
  doi: 31517043
– start-page: 1556
  year: 2021
  ident: ref7
  article-title: An intelligent face detection by corner detection using special morphological masking system and fast algorithm
– start-page: 41
  year: 2017
  ident: ref6
  article-title: Deep features class activation map for thermal face detection and tracking
– start-page: 1318
  year: 2018
  ident: ref15
  article-title: Real-time multiple face recognition using deep learning on embedded GPU system
SSID ssj0036390
Score 2.2694783
Snippet Face recognition technology automatically identifies an individual from image or video sources. The detection process can be done by attaining facial...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 4917
SubjectTerms Algorithms
Artificial neural networks
Automation
Computer vision
Datasets
Deep learning
Face recognition
Frames (data processing)
Machine learning
Optimization
Tracking
Title Automated Video-Based Face Detection Using Harris Hawks Optimization with Deep Learning
URI https://www.proquest.com/docview/3199835354
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV25TsNAEF0BaWi4EeHSFjQUJvaedoU4EkVIBIS4OmsvEILYgTji95m11xwNlQuPXbzdeTM7OwdCB0JIqa2WoOLSwQElSyNlMhURLbnSVKi0bqR9ORLDO3bxyB9DwG0a0ipbTqyJ2pbGx8h71BeDUU45O568R35qlL9dDSM05lEHKDiFHd457Y-ub1oupmB_65JIzkREwJo1F5XgssSsZ8a-hSGhRzGVdX3Kb8P0l5drYzNYQUvBS8QnzbKuojlXrKHldgIDDgq5jh5OZlUJPqez-P7FujI6BaNk8UAZh89dVadZFbhOC8BD9QEKDY_P1ym-AqYYhxJM7GOxIO4mOHRbfd5Ad4P-7dkwCqMSIkMTWkVPIiMagE0TBugypowGVWNEJzSVqRDM2oxaIcA7oRnPDLeWGiqEsxl5Soijm2ihKAu3hbCSsZbWMc6UZpIxEEiJMpzEQlsW2y7qtTjlJvQR9-Ms3nI4T9TI5oBs7pHNG2S76PD7i0nTQ-Mf2d0W-jxo0zT_Wfvt_1_voEX_ryZEsosWqo-Z2wOnodL7YWd8AfoIvkg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT9tAFH6CcIBLoS2oQKBzoIceTJxZ7UNVQSEKW0CI7WZmC0JAEhIj1D_V39g3XqC9cOPkg59Ho89v3jZvAdiQUinjjMIjrjw6KGkSaZvqiBoltGFSJ0Uj7aOe7J7z_StxNQV_6lqYkFZZy8RCULuhDTHyFgvFYEwwwX-OHqMwNSrcrtYjNEq2OPC_n9Flm_zY28H_-43Szu7Zr25UTRWILGuzPOrLlBrcQ9LmuBHOtTXIlZyaNktUIiV3LmVOyjCHPhWpFc4xy6T0LqX9NvUM152GGc7QVGjAzPZu7-S0lv0M9X1Rgim4jChqz_JiFE2kmLfsQ2iZSNlmzFRRD_OvIvxfDxTKrbMAHyqrlGyVbPQRpvzgE8zXEx9IJQA-w-XWUz5EG9c7cnHr_DDaRiXoSEdbT3Z8XqR1DUiRhkC6eowCBB_PdxNyjJLpoSr5JCH2i-R-RKrurjeLcP4uIC5BYzAc-C9AtIqNcp4Lrg1XnCNBQrUVNJbG8dgtQ6vGKbNV3_IwPuM-Q_-lQDZDZLOAbFYiuwzfX74YlT073qBt1tBn1emdZK-8tvL2668w2z07OswO93oHqzAX1i3DM01o5OMnv4YGS27WKy4hcP3ejPkX-Mn5Pw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Video-Based+Face+Detection+Using+Harris+Hawks+Optimization+with+Deep+Learning&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Almuqren%2C+Latifah&rft.au=Ahmed+Hamza%2C+Manar&rft.au=Mohamed%2C+Abdullah&rft.au=Atta+Abdelmageed%2C+Amgad&rft.date=2023&rft.issn=1546-2226&rft.volume=75&rft.issue=3&rft.spage=4917&rft.epage=4933&rft_id=info:doi/10.32604%2Fcmc.2023.037738&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2023_037738
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon