Automated Video-Based Face Detection Using Harris Hawks Optimization with Deep Learning
Face recognition technology automatically identifies an individual from image or video sources. The detection process can be done by attaining facial characteristics from the image of a subject face. Recent developments in deep learning (DL) and computer vision (CV) techniques enable the design of a...
Saved in:
Published in | Computers, materials & continua Vol. 75; no. 3; pp. 4917 - 4933 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Henderson
Tech Science Press
2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1546-2226 1546-2218 1546-2226 |
DOI | 10.32604/cmc.2023.037738 |
Cover
Loading…
Abstract | Face recognition technology automatically identifies an individual from image or video sources. The detection process can be done by attaining facial characteristics from the image of a subject face. Recent developments in deep learning (DL) and computer vision (CV) techniques enable the design of automated face recognition and tracking methods. This study presents a novel Harris Hawks Optimization with deep learning-empowered automated face detection and tracking (HHODL-AFDT) method. The proposed HHODL-AFDT model involves a Faster region based convolution neural network (RCNN)-based face detection model and HHO-based hyperparameter optimization process. The presented optimal Faster RCNN model precisely recognizes the face and is passed into the face-tracking model using a regression network (REGN). The face tracking using the REGN model uses the features from neighboring frames and foresees the location of the target face in succeeding frames. The application of the HHO algorithm for optimal hyperparameter selection shows the novelty of the work. The experimental validation of the presented HHODL-AFDT algorithm is conducted using two datasets and the experiment outcomes highlighted the superior performance of the HHODL-AFDT model over current methodologies with maximum accuracy of 90.60% and 88.08% under PICS and VTB datasets, respectively. |
---|---|
AbstractList | Face recognition technology automatically identifies an individual from image or video sources. The detection process can be done by attaining facial characteristics from the image of a subject face. Recent developments in deep learning (DL) and computer vision (CV) techniques enable the design of automated face recognition and tracking methods. This study presents a novel Harris Hawks Optimization with deep learning-empowered automated face detection and tracking (HHODL-AFDT) method. The proposed HHODL-AFDT model involves a Faster region based convolution neural network (RCNN)-based face detection model and HHO-based hyperparameter optimization process. The presented optimal Faster RCNN model precisely recognizes the face and is passed into the face-tracking model using a regression network (REGN). The face tracking using the REGN model uses the features from neighboring frames and foresees the location of the target face in succeeding frames. The application of the HHO algorithm for optimal hyperparameter selection shows the novelty of the work. The experimental validation of the presented HHODL-AFDT algorithm is conducted using two datasets and the experiment outcomes highlighted the superior performance of the HHODL-AFDT model over current methodologies with maximum accuracy of 90.60% and 88.08% under PICS and VTB datasets, respectively. |
Author | Ahmed Hamza, Manar Almuqren, Latifah Mohamed, Abdullah Atta Abdelmageed, Amgad |
Author_xml | – sequence: 1 givenname: Latifah surname: Almuqren fullname: Almuqren, Latifah – sequence: 2 givenname: Manar surname: Ahmed Hamza fullname: Ahmed Hamza, Manar – sequence: 3 givenname: Abdullah surname: Mohamed fullname: Mohamed, Abdullah – sequence: 4 givenname: Amgad surname: Atta Abdelmageed fullname: Atta Abdelmageed, Amgad |
BookMark | eNp1kEFPAjEQhRuDiYDePW7iebHtdLvtEVHEhISL6LEp3a4W2V1sS4j-eit4MCae3kvmezOTN0C9tmstQpcEj4ByzK5NY0YUUxhhKEsQJ6hPCsZzSinv_fJnaBDCGmPgIHEfPY93sWt0tFX25Crb5Tc6JD_Vxma3NloTXddmy-Dal2ymvXchyf4tZIttdI371If53sXXhNttNrfatwk-R6e13gR78aNDtJzePU5m-Xxx_zAZz3MDBGJec0lXXAtBmBaMMW1WmJSMrgiIUnDOqkpCxbmQALKQpqgqMMC5rSStCbUwRFfHvVvfve9siGrd7XybTiogUgoooGCJ4kfK-C4Eb2tlXDy8Hr12G0WwOpSoUonqu0R1LDEF8Z_g1rtG-4__I1_Pu3VW |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3365501 |
Cites_doi | 27295650 10.1016/j.compchemeng.2019.106656 10.1016/j.ins.2021.03.027 10.1155/2020/3189691 10.1007/s11263-020-01309-y 10.1007/978-981-16-7220-0_11 10.1080/17517575.2019.1668964 31517043 |
ContentType | Journal Article |
Copyright | 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SC 7SR 8BQ 8FD ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO JG9 JQ2 L7M L~C L~D PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
DOI | 10.32604/cmc.2023.037738 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Computer Science Collection Computer and Information Systems Abstracts Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China METADEX Computer and Information Systems Abstracts Professional ProQuest Central Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1546-2226 |
EndPage | 4933 |
ExternalDocumentID | 10_32604_cmc_2023_037738 |
GroupedDBID | AAFWJ AAYXX ACIWK ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR CCPQU CITATION EBS EJD J9A OK1 P2P PHGZM PHGZT PIMPY PUEGO RTS TUS 7SC 7SR 8BQ 8FD ABUWG AZQEC COVID DWQXO JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c313t-f692b6a8814a8444acb01742b13878664dd93d668933959c5dd3c366ed92f12e3 |
IEDL.DBID | BENPR |
ISSN | 1546-2226 1546-2218 |
IngestDate | Mon Jun 30 07:45:27 EDT 2025 Mon Sep 01 05:05:05 EDT 2025 Thu Apr 24 22:50:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c313t-f692b6a8814a8444acb01742b13878664dd93d668933959c5dd3c366ed92f12e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3199835354?pq-origsite=%requestingapplication% |
PQID | 3199835354 |
PQPubID | 2048737 |
PageCount | 17 |
ParticipantIDs | proquest_journals_3199835354 crossref_citationtrail_10_32604_cmc_2023_037738 crossref_primary_10_32604_cmc_2023_037738 |
PublicationCentury | 2000 |
PublicationDate | 2023-00-00 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 2023-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Henderson |
PublicationPlace_xml | – name: Henderson |
PublicationTitle | Computers, materials & continua |
PublicationYear | 2023 |
Publisher | Tech Science Press |
Publisher_xml | – name: Tech Science Press |
References | Cárdenas (ref14) 2019; 2 Li (ref20) 2020; 128 Arulkumar (ref7) 2021 Das (ref2) 2015 ref22 Goyal (ref3) 2017; 1 Chowdhury (ref9) 2022; 998 ref21 Lei (ref12) 2020; 14 Asif (ref11) 2021 Zheng (ref1) 2021; 568 Girshick (ref17) 2015 GÜney (ref13) 2020 Ren (ref18) 2017; 39 Houssein (ref19) 2020; 133 Nguyen (ref16) 2020; 2020 Wang (ref10) 2017 Saypadith (ref15) 2018 Dong (ref8) 2021 Kwaśniewska (ref6) 2017 Prabakaran (ref5) 2022; 18 Schofield (ref4) 2019; 5 |
References_xml | – volume: 39 start-page: 1137 year: 2017 ident: ref18 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 27295650 – volume: 133 start-page: 106656 year: 2020 ident: ref19 article-title: A novel hybrid harris hawks optimization and support vector machines for drug design and discovery publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2019.106656 – volume: 568 start-page: 265 year: 2021 ident: ref1 article-title: Efficient face detection and tracking in video sequences based on deep learning publication-title: Information Sciences doi: 10.1016/j.ins.2021.03.027 – volume: 18 start-page: 541 year: 2022 ident: ref5 article-title: A deep learning based social distance analyzer with person detection and tracking using region based convolutional neural networks for novel coronavirus publication-title: Journal of Mobile Multimedia – volume: 2 start-page: 14 year: 2019 ident: ref14 article-title: Small face detection using deep learning on surveillance videos publication-title: Environment – ident: ref21 – ident: ref22 – volume: 2020 start-page: 1 year: 2020 ident: ref16 article-title: An evaluation of deep learning methods for small object detection publication-title: Journal of Electrical and Computer Engineering doi: 10.1155/2020/3189691 – start-page: 1 year: 2021 ident: ref8 article-title: Visually maintained image disturbance against deepfake face swapping – start-page: 1 year: 2020 ident: ref13 article-title: Toddler tracking system with face recognition and object tracking using deep neural network – start-page: 70 year: 2021 ident: ref11 article-title: Real time face mask detection system using transfer learning with machine learning method in the era of COVID-19 pandemic – volume: 128 start-page: 2763 year: 2020 ident: ref20 article-title: Cr-net: A deep classification-regression network for multimodal apparent personality analysis publication-title: International Journal of Computer Vision doi: 10.1007/s11263-020-01309-y – volume: 1 start-page: 474 year: 2017 ident: ref3 article-title: Face detection and tracking: Using OpenCV – volume: 998 start-page: 177 year: 2022 ident: ref9 publication-title: Advances in Augmented Reality and Virtual Reality, Studies in Computational Intelligence Book Series doi: 10.1007/978-981-16-7220-0_11 – start-page: 1440 year: 2015 ident: ref17 article-title: Fast R-CNN – volume: 14 start-page: 1379 year: 2020 ident: ref12 article-title: RFR-DLVT: A hybrid method for real-time face recognition using deep learning and visual tracking publication-title: Enterprise Information Systems doi: 10.1080/17517575.2019.1668964 – start-page: 981 year: 2015 ident: ref2 article-title: Real-time robust face detection and tracking using extended haar functions and improved boosting algorithm – start-page: 239 year: 2017 ident: ref10 article-title: Face recognition in real-world surveillance videos with deep learning method – volume: 5 start-page: eaaw0736 year: 2019 ident: ref4 article-title: Chimpanzee face recognition from videos in the wild using deep learning publication-title: Science Advances doi: 31517043 – start-page: 1556 year: 2021 ident: ref7 article-title: An intelligent face detection by corner detection using special morphological masking system and fast algorithm – start-page: 41 year: 2017 ident: ref6 article-title: Deep features class activation map for thermal face detection and tracking – start-page: 1318 year: 2018 ident: ref15 article-title: Real-time multiple face recognition using deep learning on embedded GPU system |
SSID | ssj0036390 |
Score | 2.2694783 |
Snippet | Face recognition technology automatically identifies an individual from image or video sources. The detection process can be done by attaining facial... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 4917 |
SubjectTerms | Algorithms Artificial neural networks Automation Computer vision Datasets Deep learning Face recognition Frames (data processing) Machine learning Optimization Tracking |
Title | Automated Video-Based Face Detection Using Harris Hawks Optimization with Deep Learning |
URI | https://www.proquest.com/docview/3199835354 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV25TsNAEF0BaWi4EeHSFjQUJvaedoU4EkVIBIS4OmsvEILYgTji95m11xwNlQuPXbzdeTM7OwdCB0JIqa2WoOLSwQElSyNlMhURLbnSVKi0bqR9ORLDO3bxyB9DwG0a0ipbTqyJ2pbGx8h71BeDUU45O568R35qlL9dDSM05lEHKDiFHd457Y-ub1oupmB_65JIzkREwJo1F5XgssSsZ8a-hSGhRzGVdX3Kb8P0l5drYzNYQUvBS8QnzbKuojlXrKHldgIDDgq5jh5OZlUJPqez-P7FujI6BaNk8UAZh89dVadZFbhOC8BD9QEKDY_P1ym-AqYYhxJM7GOxIO4mOHRbfd5Ad4P-7dkwCqMSIkMTWkVPIiMagE0TBugypowGVWNEJzSVqRDM2oxaIcA7oRnPDLeWGiqEsxl5Soijm2ihKAu3hbCSsZbWMc6UZpIxEEiJMpzEQlsW2y7qtTjlJvQR9-Ms3nI4T9TI5oBs7pHNG2S76PD7i0nTQ-Mf2d0W-jxo0zT_Wfvt_1_voEX_ryZEsosWqo-Z2wOnodL7YWd8AfoIvkg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT9tAFH6CcIBLoS2oQKBzoIceTJxZ7UNVQSEKW0CI7WZmC0JAEhIj1D_V39g3XqC9cOPkg59Ho89v3jZvAdiQUinjjMIjrjw6KGkSaZvqiBoltGFSJ0Uj7aOe7J7z_StxNQV_6lqYkFZZy8RCULuhDTHyFgvFYEwwwX-OHqMwNSrcrtYjNEq2OPC_n9Flm_zY28H_-43Szu7Zr25UTRWILGuzPOrLlBrcQ9LmuBHOtTXIlZyaNktUIiV3LmVOyjCHPhWpFc4xy6T0LqX9NvUM152GGc7QVGjAzPZu7-S0lv0M9X1Rgim4jChqz_JiFE2kmLfsQ2iZSNlmzFRRD_OvIvxfDxTKrbMAHyqrlGyVbPQRpvzgE8zXEx9IJQA-w-XWUz5EG9c7cnHr_DDaRiXoSEdbT3Z8XqR1DUiRhkC6eowCBB_PdxNyjJLpoSr5JCH2i-R-RKrurjeLcP4uIC5BYzAc-C9AtIqNcp4Lrg1XnCNBQrUVNJbG8dgtQ6vGKbNV3_IwPuM-Q_-lQDZDZLOAbFYiuwzfX74YlT073qBt1tBn1emdZK-8tvL2668w2z07OswO93oHqzAX1i3DM01o5OMnv4YGS27WKy4hcP3ejPkX-Mn5Pw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Video-Based+Face+Detection+Using+Harris+Hawks+Optimization+with+Deep+Learning&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Almuqren%2C+Latifah&rft.au=Ahmed+Hamza%2C+Manar&rft.au=Mohamed%2C+Abdullah&rft.au=Atta+Abdelmageed%2C+Amgad&rft.date=2023&rft.issn=1546-2226&rft.volume=75&rft.issue=3&rft.spage=4917&rft.epage=4933&rft_id=info:doi/10.32604%2Fcmc.2023.037738&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2023_037738 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon |