EP300-mediated H3K18la regulation of METTL3 promotes macrophage ferroptosis and atherosclerosis through the m6A modification of SLC7A11
Macrophages, as the primary immune cell population in atherosclerosis (AS), exhibit complex pathogenic mechanisms that are not fully elucidated. This study aims to explore the interplay between histone lactylation and methyltransferase-like protein 3 (METTL3)-mediated m6A modification and their pote...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1869; no. 9; p. 130838 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.08.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4165 1872-8006 1872-8006 |
DOI | 10.1016/j.bbagen.2025.130838 |
Cover
Loading…
Abstract | Macrophages, as the primary immune cell population in atherosclerosis (AS), exhibit complex pathogenic mechanisms that are not fully elucidated. This study aims to explore the interplay between histone lactylation and methyltransferase-like protein 3 (METTL3)-mediated m6A modification and their potential mechanisms in AS. We demonstrate that METTL3 is highly expressed in macrophages in both in vivo and in vitro models of atherosclerosis, and myeloid cell-specific deletion of METTL3 attenuates the progression of atherosclerosis. Furthermore, the accumulation of lactate levels in macrophages promotes METTL3 expression through EP300-mediated histone H3 lysine 18 lactylation (H3K18la) binding to the METTL3 promoter site. We found that METTL3-mediated m6A modifications are enriched in solute carrier family 7 member 11 (SLC7A11) and accelerate its mRNA degradation in a YTH domain family member 2 (YTHDF2)-dependent manner, thereby promoting ferroptosis in macrophages. Additionally, lactate stimulation downregulates SLC7A11 through the METTL3/YTHDF2 pathway, further promoting ferroptosis. Overall, during AS, lipid peroxidation induces an increase in lactate levels within macrophages, which enhances METTL3 expression through EP300-mediated H3K18la. This further accelerates the degradation of SLC7A11 mRNA via the YTHDF2-dependent m6A modification pathway, inducing ferroptosis in macrophages. This discovery provides new insights into the mechanisms of macrophage function in AS and offers a theoretical basis for the development of therapies for AS.
•In AS, METTL3 expression is elevated in macrophages, and its myeloid-specific deletion slows atherosclerosis progression.•In AS, elevated lactate levels in macrophages promote METTL3 expression by enabling EP300-mediated H3K18la binding to the METTL3 promoter.•METTL3-mediated m6A modifications enrich in SLC7A11 and accelerate its mRNA degradation via YTHDF2, promoting macrophage ferroptosis. |
---|---|
AbstractList | Macrophages, as the primary immune cell population in atherosclerosis (AS), exhibit complex pathogenic mechanisms that are not fully elucidated. This study aims to explore the interplay between histone lactylation and methyltransferase-like protein 3 (METTL3)-mediated m6A modification and their potential mechanisms in AS. We demonstrate that METTL3 is highly expressed in macrophages in both in vivo and in vitro models of atherosclerosis, and myeloid cell-specific deletion of METTL3 attenuates the progression of atherosclerosis. Furthermore, the accumulation of lactate levels in macrophages promotes METTL3 expression through EP300-mediated histone H3 lysine 18 lactylation (H3K18la) binding to the METTL3 promoter site. We found that METTL3-mediated m6A modifications are enriched in solute carrier family 7 member 11 (SLC7A11) and accelerate its mRNA degradation in a YTH domain family member 2 (YTHDF2)-dependent manner, thereby promoting ferroptosis in macrophages. Additionally, lactate stimulation downregulates SLC7A11 through the METTL3/YTHDF2 pathway, further promoting ferroptosis. Overall, during AS, lipid peroxidation induces an increase in lactate levels within macrophages, which enhances METTL3 expression through EP300-mediated H3K18la. This further accelerates the degradation of SLC7A11 mRNA via the YTHDF2-dependent m6A modification pathway, inducing ferroptosis in macrophages. This discovery provides new insights into the mechanisms of macrophage function in AS and offers a theoretical basis for the development of therapies for AS.
•In AS, METTL3 expression is elevated in macrophages, and its myeloid-specific deletion slows atherosclerosis progression.•In AS, elevated lactate levels in macrophages promote METTL3 expression by enabling EP300-mediated H3K18la binding to the METTL3 promoter.•METTL3-mediated m6A modifications enrich in SLC7A11 and accelerate its mRNA degradation via YTHDF2, promoting macrophage ferroptosis. Macrophages, as the primary immune cell population in atherosclerosis (AS), exhibit complex pathogenic mechanisms that are not fully elucidated. This study aims to explore the interplay between histone lactylation and methyltransferase-like protein 3 (METTL3)-mediated m6A modification and their potential mechanisms in AS. We demonstrate that METTL3 is highly expressed in macrophages in both in vivo and in vitro models of atherosclerosis, and myeloid cell-specific deletion of METTL3 attenuates the progression of atherosclerosis. Furthermore, the accumulation of lactate levels in macrophages promotes METTL3 expression through EP300-mediated histone H3 lysine 18 lactylation (H3K18la) binding to the METTL3 promoter site. We found that METTL3-mediated m6A modifications are enriched in solute carrier family 7 member 11 (SLC7A11) and accelerate its mRNA degradation in a YTH domain family member 2 (YTHDF2)-dependent manner, thereby promoting ferroptosis in macrophages. Additionally, lactate stimulation downregulates SLC7A11 through the METTL3/YTHDF2 pathway, further promoting ferroptosis. Overall, during AS, lipid peroxidation induces an increase in lactate levels within macrophages, which enhances METTL3 expression through EP300-mediated H3K18la. This further accelerates the degradation of SLC7A11 mRNA via the YTHDF2-dependent m6A modification pathway, inducing ferroptosis in macrophages. This discovery provides new insights into the mechanisms of macrophage function in AS and offers a theoretical basis for the development of therapies for AS. Macrophages, as the primary immune cell population in atherosclerosis (AS), exhibit complex pathogenic mechanisms that are not fully elucidated. This study aims to explore the interplay between histone lactylation and methyltransferase-like protein 3 (METTL3)-mediated m6A modification and their potential mechanisms in AS. We demonstrate that METTL3 is highly expressed in macrophages in both in vivo and in vitro models of atherosclerosis, and myeloid cell-specific deletion of METTL3 attenuates the progression of atherosclerosis. Furthermore, the accumulation of lactate levels in macrophages promotes METTL3 expression through EP300-mediated histone H3 lysine 18 lactylation (H3K18la) binding to the METTL3 promoter site. We found that METTL3-mediated m6A modifications are enriched in solute carrier family 7 member 11 (SLC7A11) and accelerate its mRNA degradation in a YTH domain family member 2 (YTHDF2)-dependent manner, thereby promoting ferroptosis in macrophages. Additionally, lactate stimulation downregulates SLC7A11 through the METTL3/YTHDF2 pathway, further promoting ferroptosis. Overall, during AS, lipid peroxidation induces an increase in lactate levels within macrophages, which enhances METTL3 expression through EP300-mediated H3K18la. This further accelerates the degradation of SLC7A11 mRNA via the YTHDF2-dependent m6A modification pathway, inducing ferroptosis in macrophages. This discovery provides new insights into the mechanisms of macrophage function in AS and offers a theoretical basis for the development of therapies for AS.Macrophages, as the primary immune cell population in atherosclerosis (AS), exhibit complex pathogenic mechanisms that are not fully elucidated. This study aims to explore the interplay between histone lactylation and methyltransferase-like protein 3 (METTL3)-mediated m6A modification and their potential mechanisms in AS. We demonstrate that METTL3 is highly expressed in macrophages in both in vivo and in vitro models of atherosclerosis, and myeloid cell-specific deletion of METTL3 attenuates the progression of atherosclerosis. Furthermore, the accumulation of lactate levels in macrophages promotes METTL3 expression through EP300-mediated histone H3 lysine 18 lactylation (H3K18la) binding to the METTL3 promoter site. We found that METTL3-mediated m6A modifications are enriched in solute carrier family 7 member 11 (SLC7A11) and accelerate its mRNA degradation in a YTH domain family member 2 (YTHDF2)-dependent manner, thereby promoting ferroptosis in macrophages. Additionally, lactate stimulation downregulates SLC7A11 through the METTL3/YTHDF2 pathway, further promoting ferroptosis. Overall, during AS, lipid peroxidation induces an increase in lactate levels within macrophages, which enhances METTL3 expression through EP300-mediated H3K18la. This further accelerates the degradation of SLC7A11 mRNA via the YTHDF2-dependent m6A modification pathway, inducing ferroptosis in macrophages. This discovery provides new insights into the mechanisms of macrophage function in AS and offers a theoretical basis for the development of therapies for AS. |
ArticleNumber | 130838 |
Author | Tan, Qiang Chen, Jingquan Zheng, Jianghua Zhu, Yanbing Liu, Zongrong Yin, Hongshun Yue, Zhujun Wang, Haifei Chen, Zhilong |
Author_xml | – sequence: 1 givenname: Jingquan surname: Chen fullname: Chen, Jingquan organization: Department of Vascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China – sequence: 2 givenname: Zongrong surname: Liu fullname: Liu, Zongrong organization: Department of Vascular Surgery, North Sichuan Medical College, Nanchong 637000, China – sequence: 3 givenname: Zhujun surname: Yue fullname: Yue, Zhujun organization: Department of Vascular Surgery, North Sichuan Medical College, Nanchong 637000, China – sequence: 4 givenname: Qiang surname: Tan fullname: Tan, Qiang organization: Department of Vascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China – sequence: 5 givenname: Hongshun surname: Yin fullname: Yin, Hongshun organization: Department of Vascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China – sequence: 6 givenname: Haifei surname: Wang fullname: Wang, Haifei organization: Department of Vascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China – sequence: 7 givenname: Zhilong surname: Chen fullname: Chen, Zhilong organization: Department of Vascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China – sequence: 8 givenname: Yanbing surname: Zhu fullname: Zhu, Yanbing organization: Department of Vascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China – sequence: 9 givenname: Jianghua surname: Zheng fullname: Zheng, Jianghua email: zhengjianghua@nsmc.edu.cn organization: Department of Vascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40588140$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UcGO0zAQtdCu2O7CHyDkI5eUcSZOnAtSVXVZRFcgUc6W60xaV0lc7ASJL9jfxlWWPTKHGct680bvvVt2NfiBGHsnYClAlB9Py_3eHGhY5pDLpUBQqF6xhVBVnimA8ootAKHIClHKG3Yb4wlSyVq-ZjcFSKVEAQv2tPmOAFlPjTMjNfwBvwrVGR7oMHVmdH7gvuWPm91ui_wcfO9Hirw3NvjzMZ3nLYX0HH10kZuh4WY8UvDRdpee_sZj8NPhmCbxvlzx3jeudfaF-sd2Xa2EeMOuW9NFevs879jP-81u_ZBtv33-sl5tM4sCx6zNZYkSQEmBoiwqkGglKgGlsXKfEzZkbdUm_YAF5NjWRllVNDXaZEYNeMc-zLxJy6-J4qh7Fy11nRnIT1FjnktVSSzrBH3_DJ32yR99Dq434Y_-Z14CFDMgmRFjoPYFIkBfMtInPWekLxnpOaO09mleo6Tzt6Ogo3U02BRBIDvqxrv_E_wFNDaYsA |
Cites_doi | 10.1016/j.redox.2024.103194 10.3389/fphar.2022.820593 10.1038/nature23450 10.1038/s41569-019-0265-3 10.1038/s41569-021-00629-x 10.1016/j.molcel.2022.02.033 10.1002/hep.29683 10.1073/pnas.2025070118 10.1016/j.stem.2015.09.005 10.1016/j.arr.2023.101993 10.1038/s41392-022-00955-7 10.1080/15548627.2023.2249762 10.1016/j.jep.2023.116766 10.1161/CIRCRESAHA.115.306256 10.1016/j.ymthe.2021.01.019 10.3389/fcell.2021.731810 10.1016/j.metabol.2024.155957 10.1126/scitranslmed.abk2709 10.1038/nature11112 10.3390/biom12111702 10.1007/s10557-022-07348-6 10.1038/s41586-019-1678-1 10.1016/j.cell.2012.05.003 10.1016/j.cell.2015.05.014 10.1038/s41586-021-03536-w 10.1038/s41580-020-00324-8 10.1016/j.canlet.2024.216896 10.1016/j.molcel.2022.03.022 10.1016/j.apsb.2024.03.008 10.1016/j.molcel.2023.01.006 10.1038/s41531-024-00858-0 10.1186/s12964-023-01350-7 10.1038/s41572-019-0106-z 10.1038/nchembio.1432 10.1038/s41392-020-00450-x 10.1016/j.cell.2011.04.005 10.1016/j.arr.2024.102452 10.1016/j.celrep.2024.114180 10.1038/nature12730 |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. Copyright © 2025 Elsevier B.V. All rights reserved. Copyright © 2024. Published by Elsevier B.V. |
Copyright_xml | – notice: 2025 Elsevier B.V. – notice: Copyright © 2025 Elsevier B.V. All rights reserved. – notice: Copyright © 2024. Published by Elsevier B.V. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.bbagen.2025.130838 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
ExternalDocumentID | 40588140 10_1016_j_bbagen_2025_130838 S0304416525000832 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABEFU ABFNM ABGSF ABMAC ABUDA ABWVN ABXDB ACDAQ ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAYXX AGRNS BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c313t-f256350085131647053c538106ac5b2e3decc7f800034023f9a8c84d93c030903 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Wed Jul 02 01:49:26 EDT 2025 Wed Jul 23 01:40:39 EDT 2025 Thu Jul 24 02:15:34 EDT 2025 Sat Aug 16 17:00:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Ferroptosis Macrophages METTL3 Histone lactylation Atherosclerosis |
Language | English |
License | Copyright © 2025 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c313t-f256350085131647053c538106ac5b2e3decc7f800034023f9a8c84d93c030903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 40588140 |
PQID | 3225875369 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3225875369 pubmed_primary_40588140 crossref_primary_10_1016_j_bbagen_2025_130838 elsevier_sciencedirect_doi_10_1016_j_bbagen_2025_130838 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-01 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ouyang, Wang, Huang (bb0095) 2023; 21 Wang, Zhao, Roundtree, Lu, Han, Ma (bb0210) 2015; 161 Li, Zhou, Yu, Hou, Liu, Kong (bb0115) 2024; 20 Kuznetsova, Prange, Glass, de Winther (bb0155) 2020; 17 Liang, Minikes, Jiang (bb0200) 2022; 82 Zhang, Wang, Tan, Wu, Hu, Diao (bb0140) 2023; 317 Wu, Spencer, Ortoga, Zhang, Miao (bb0175) 2024; 74 Yin, Lin, Fang, Zhang, Wei, Hu (bb0080) 2022; 13 He, Zhou, Yin, Wan, Chu, Jia (bb0190) 2021; 29 Aguilo, Zhang, Sancho, Fidalgo, Di Cecilia, Vashisht (bb0055) 2015; 17 Luo, Wang, Zhu, Chen, Xu, Bai (bb0130) 2024; 69 Zhang, Tang, Huang, Zhou, Cui, Weng (bb0075) 2019; 574 Jiang, Stockwell, Conrad (bb0125) 2021; 22 Dominissini, Moshitch-Moshkovitz, Schwartz, Salmon-Divon, Ungar, Osenberg (bb0035) 2012; 485 Sendinc, Shi (bb0145) 2023; 83 Dong, Zhang, Chen, Tan, Min, He (bb0120) 2024; 14 Chen, Schilperoort, Cao, Shi, Tabas, Tao (bb0025) 2022; 19 Jiang, Liu, Nie, Duan, Xiong, Jin (bb0050) 2021; 6 Back, Yurdagul, Tabas, Oorni, Kovanen (bb0010) 2019; 16 Cheng, Huang, Chen, Wu (bb0015) 2023; 10 Meyer, Saletore, Zumbo, Elemento, Mason, Jaffrey (bb0040) 2012; 149 Chien, Li, Chien, Wang, Yarmishyn, Tsai (bb0215) 2021; 118 Xiong, He, Zhu, Pan, Liao, Ye (bb0100) 2022; 82 Chen, Wei, Law, Tsang, Shen, Cheng (bb0185) 2018; 67 Moore, Tabas (bb0030) 2011; 145 Liu, Yue, Han, Wang, Fu, Zhang (bb0045) 2014; 10 Wang, Lu, Gomez, Hon, Yue, Han (bb0135) 2014; 505 Kong, Cui, Huang, Zhang, Guo, Han (bb0020) 2022; 7 Zhang, Jiang, Dong, Min, He, Tan (bb0110) 2024; 43 Chen, Lai, Yong, Yin, Chen, Wang (bb0070) 2023; 37 Dai, Wang, Li, Ye, Li (bb0170) 2024; 591 Yankova, Blackaby, Albertella, Rak, De Braekeleer, Tsagkogeorga (bb0160) 2021; 593 Zeng, Nijiati, Tang, Ye, Zhou, Chen (bb0195) 2023; 62 Xue, Su, Liu (bb0105) 2023; 90 Libby, Buring, Badimon, Hansson, Deanfield, Bittencourt (bb0005) 2019; 5 Zhu, Guo, Sun, Zhao, Liu (bb0085) 2024; 158 Ma, Zhang, Chen, Liu, Tian, Shen (bb0205) 2022; 12 Wang, Wang, Ke, Li, Xu, Yang (bb0165) 2022; 14 Tabas, Bornfeldt (bb0150) 2016; 118 Qin, Wang, Qu, Li, An, Mao (bb0180) 2025; 11 Dong, Yu, Shan, Su, Yu, Yang (bb0065) 2021; 9 Li, Tong, Zhu, Batista, Duffy, Zhao (bb0060) 2017; 548 Wang, Zhou, Li, Zhu, Liu (bb0090) 2024; 101 Zeng (10.1016/j.bbagen.2025.130838_bb0195) 2023; 62 Tabas (10.1016/j.bbagen.2025.130838_bb0150) 2016; 118 Ma (10.1016/j.bbagen.2025.130838_bb0205) 2022; 12 Wang (10.1016/j.bbagen.2025.130838_bb0210) 2015; 161 Dong (10.1016/j.bbagen.2025.130838_bb0120) 2024; 14 Back (10.1016/j.bbagen.2025.130838_bb0010) 2019; 16 He (10.1016/j.bbagen.2025.130838_bb0190) 2021; 29 Jiang (10.1016/j.bbagen.2025.130838_bb0125) 2021; 22 Moore (10.1016/j.bbagen.2025.130838_bb0030) 2011; 145 Cheng (10.1016/j.bbagen.2025.130838_bb0015) 2023; 10 Dai (10.1016/j.bbagen.2025.130838_bb0170) 2024; 591 Chen (10.1016/j.bbagen.2025.130838_bb0070) 2023; 37 Kuznetsova (10.1016/j.bbagen.2025.130838_bb0155) 2020; 17 Xiong (10.1016/j.bbagen.2025.130838_bb0100) 2022; 82 Xue (10.1016/j.bbagen.2025.130838_bb0105) 2023; 90 Sendinc (10.1016/j.bbagen.2025.130838_bb0145) 2023; 83 Yin (10.1016/j.bbagen.2025.130838_bb0080) 2022; 13 Li (10.1016/j.bbagen.2025.130838_bb0115) 2024; 20 Dominissini (10.1016/j.bbagen.2025.130838_bb0035) 2012; 485 Wu (10.1016/j.bbagen.2025.130838_bb0175) 2024; 74 Libby (10.1016/j.bbagen.2025.130838_bb0005) 2019; 5 Liang (10.1016/j.bbagen.2025.130838_bb0200) 2022; 82 Dong (10.1016/j.bbagen.2025.130838_bb0065) 2021; 9 Zhang (10.1016/j.bbagen.2025.130838_bb0110) 2024; 43 Luo (10.1016/j.bbagen.2025.130838_bb0130) 2024; 69 Wang (10.1016/j.bbagen.2025.130838_bb0090) 2024; 101 Liu (10.1016/j.bbagen.2025.130838_bb0045) 2014; 10 Aguilo (10.1016/j.bbagen.2025.130838_bb0055) 2015; 17 Li (10.1016/j.bbagen.2025.130838_bb0060) 2017; 548 Meyer (10.1016/j.bbagen.2025.130838_bb0040) 2012; 149 Jiang (10.1016/j.bbagen.2025.130838_bb0050) 2021; 6 Zhang (10.1016/j.bbagen.2025.130838_bb0140) 2023; 317 Chien (10.1016/j.bbagen.2025.130838_bb0215) 2021; 118 Zhu (10.1016/j.bbagen.2025.130838_bb0085) 2024; 158 Chen (10.1016/j.bbagen.2025.130838_bb0185) 2018; 67 Yankova (10.1016/j.bbagen.2025.130838_bb0160) 2021; 593 Kong (10.1016/j.bbagen.2025.130838_bb0020) 2022; 7 Wang (10.1016/j.bbagen.2025.130838_bb0165) 2022; 14 Qin (10.1016/j.bbagen.2025.130838_bb0180) 2025; 11 Ouyang (10.1016/j.bbagen.2025.130838_bb0095) 2023; 21 Wang (10.1016/j.bbagen.2025.130838_bb0135) 2014; 505 Chen (10.1016/j.bbagen.2025.130838_bb0025) 2022; 19 Zhang (10.1016/j.bbagen.2025.130838_bb0075) 2019; 574 |
References_xml | – volume: 17 start-page: 216 year: 2020 end-page: 228 ident: bb0155 article-title: Transcriptional and epigenetic regulation of macrophages in atherosclerosis publication-title: Nat. Rev. Cardiol. – volume: 74 year: 2024 ident: bb0175 article-title: Histone lactylation-regulated METTL3 promotes ferroptosis via m6A-modification on ACSL4 in sepsis-associated lung injury publication-title: Redox Biol. – volume: 82 start-page: 2215 year: 2022 end-page: 2227 ident: bb0200 article-title: Ferroptosis at the intersection of lipid metabolism and cellular signaling publication-title: Mol. Cell – volume: 7 start-page: 131 year: 2022 ident: bb0020 article-title: Inflammation and atherosclerosis: signaling pathways and therapeutic intervention publication-title: Signal Transduct. Target. Ther. – volume: 10 start-page: 93 year: 2014 end-page: 95 ident: bb0045 article-title: A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation publication-title: Nat. Chem. Biol. – volume: 149 start-page: 1635 year: 2012 end-page: 1646 ident: bb0040 article-title: Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons publication-title: Cell – volume: 101 year: 2024 ident: bb0090 article-title: Friend or foe: lactate in neurodegenerative diseases publication-title: Ageing Res. Rev. – volume: 29 start-page: 1821 year: 2021 end-page: 1837 ident: bb0190 article-title: METTL3 restrains papillary thyroid cancer progression via m(6)a/c-Rel/IL-8-mediated neutrophil infiltration publication-title: Mol. Ther. – volume: 317 year: 2023 ident: bb0140 article-title: Fufang Zhenzhu Tiaozhi (FTZ) capsule ameliorates diabetes-accelerated atherosclerosis via suppressing YTHDF2-mediated m(6)a modification of SIRT3 mRNA publication-title: J. Ethnopharmacol. – volume: 17 start-page: 689 year: 2015 end-page: 704 ident: bb0055 article-title: Coordination of m(6)a mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming publication-title: Cell Stem Cell – volume: 43 year: 2024 ident: bb0110 article-title: Macrophage MCT4 inhibition activates reparative genes and protects from atherosclerosis by histone H3 lysine 18 lactylation publication-title: Cell Rep. – volume: 19 start-page: 228 year: 2022 end-page: 249 ident: bb0025 article-title: Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis publication-title: Nat. Rev. Cardiol. – volume: 13 year: 2022 ident: bb0080 article-title: Tetrandrine citrate suppresses breast cancer via depletion of glutathione peroxidase 4 and activation of nuclear receptor coactivator 4-mediated ferritinophagy publication-title: Front. Pharmacol. – volume: 69 year: 2024 ident: bb0130 article-title: MCL attenuates atherosclerosis by suppressing macrophage ferroptosis via targeting KEAP1/NRF2 interaction publication-title: Redox Biol. – volume: 118 start-page: 653 year: 2016 end-page: 667 ident: bb0150 article-title: Macrophage phenotype and function in different stages of atherosclerosis publication-title: Circ. Res. – volume: 67 start-page: 2254 year: 2018 end-page: 2270 ident: bb0185 article-title: RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2 publication-title: Hepatology – volume: 5 start-page: 56 year: 2019 ident: bb0005 article-title: Atherosclerosis publication-title: Nat. Rev. Dis. Primers – volume: 12 year: 2022 ident: bb0205 article-title: The role of macrophage Iron overload and ferroptosis in atherosclerosis publication-title: Biomolecules – volume: 20 start-page: 114 year: 2024 end-page: 130 ident: bb0115 article-title: Tumor-derived lactate promotes resistance to bevacizumab treatment by facilitating autophagy enhancer protein RUBCNL expression through histone H3 lysine 18 lactylation (H3K18la) in colorectal cancer publication-title: Autophagy – volume: 574 start-page: 575 year: 2019 end-page: 580 ident: bb0075 article-title: Metabolic regulation of gene expression by histone lactylation publication-title: Nature – volume: 9 year: 2021 ident: bb0065 article-title: N6-Methyladenosine methyltransferase METTL3 promotes angiogenesis and atherosclerosis by upregulating the JAK2/STAT3 pathway via m6A reader IGF2BP1 publication-title: Front. Cell Dev. Biol. – volume: 10 year: 2023 ident: bb0015 article-title: Nanomedicine for diagnosis and treatment of atherosclerosis publication-title: Adv. Sci. (Weinh) – volume: 6 start-page: 74 year: 2021 ident: bb0050 article-title: The role of m6A modification in the biological functions and diseases publication-title: Signal Transduct. Target. Ther. – volume: 82 start-page: 1660 year: 2022 end-page: 77 e10 ident: bb0100 article-title: Lactylation-driven METTL3-mediated RNA m(6)a modification promotes immunosuppression of tumor-infiltrating myeloid cells publication-title: Mol. Cell – volume: 14 start-page: 3027 year: 2024 end-page: 3048 ident: bb0120 article-title: ASF1A-dependent P300-mediated histone H3 lysine 18 lactylation promotes atherosclerosis by regulating EndMT publication-title: Acta Pharm. Sin. B – volume: 83 start-page: 428 year: 2023 end-page: 441 ident: bb0145 article-title: RNA m6A methylation across the transcriptome publication-title: Mol. Cell – volume: 145 start-page: 341 year: 2011 end-page: 355 ident: bb0030 article-title: Macrophages in the pathogenesis of atherosclerosis publication-title: Cell – volume: 591 year: 2024 ident: bb0170 article-title: Lactate and lactylation: behind the development of tumors publication-title: Cancer Lett. – volume: 485 start-page: 201 year: 2012 end-page: 206 ident: bb0035 article-title: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq publication-title: Nature – volume: 37 start-page: 471 year: 2023 end-page: 486 ident: bb0070 article-title: Silencing METTL3 stabilizes atherosclerotic plaques by regulating the phenotypic transformation of vascular smooth muscle cells via the miR-375-3p/PDK1 Axis publication-title: Cardiovasc. Drugs Ther. – volume: 90 year: 2023 ident: bb0105 article-title: Immunometabolism and immune response regulate macrophage function in atherosclerosis publication-title: Ageing Res. Rev. – volume: 16 start-page: 389 year: 2019 end-page: 406 ident: bb0010 article-title: Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities publication-title: Nat. Rev. Cardiol. – volume: 548 start-page: 338 year: 2017 end-page: 342 ident: bb0060 article-title: M(6)a mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways publication-title: Nature – volume: 14 year: 2022 ident: bb0165 article-title: Inhibition of METTL3 attenuates renal injury and inflammation by alleviating TAB3 m6A modifications via IGF2BP2-dependent mechanisms publication-title: Sci. Transl. Med. – volume: 505 start-page: 117 year: 2014 end-page: 120 ident: bb0135 article-title: N6-methyladenosine-dependent regulation of messenger RNA stability publication-title: Nature – volume: 118 year: 2021 ident: bb0215 article-title: METTL3-dependent N(6)-methyladenosine RNA modification mediates the atherogenic inflammatory cascades in vascular endothelium publication-title: Proc. Natl. Acad. Sci. USA – volume: 22 start-page: 266 year: 2021 end-page: 282 ident: bb0125 article-title: Ferroptosis: mechanisms, biology and role in disease publication-title: Nat. Rev. Mol. Cell Biol. – volume: 11 start-page: 3 year: 2025 ident: bb0180 article-title: Enhanced glycolysis-derived lactate promotes microglial activation in Parkinson’s disease via histone lactylation publication-title: NPJ Parkinsons Dis. – volume: 62 year: 2023 ident: bb0195 article-title: Ferroptosis detection: from approaches to applications publication-title: Angew. Chem. Int. Ed. Eng. – volume: 158 year: 2024 ident: bb0085 article-title: Lactate and lactylation in cardiovascular diseases: current progress and future perspectives publication-title: Metabolism – volume: 161 start-page: 1388 year: 2015 end-page: 1399 ident: bb0210 article-title: N(6)-methyladenosine modulates messenger RNA translation efficiency publication-title: Cell – volume: 593 start-page: 597 year: 2021 end-page: 601 ident: bb0160 article-title: Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia publication-title: Nature – volume: 21 start-page: 317 year: 2023 ident: bb0095 article-title: The role of lactate in cardiovascular diseases publication-title: Cell Commun. Signal. – volume: 16 start-page: 389 issue: 7 year: 2019 ident: 10.1016/j.bbagen.2025.130838_bb0010 article-title: Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities publication-title: Nat. Rev. Cardiol. – volume: 74 year: 2024 ident: 10.1016/j.bbagen.2025.130838_bb0175 article-title: Histone lactylation-regulated METTL3 promotes ferroptosis via m6A-modification on ACSL4 in sepsis-associated lung injury publication-title: Redox Biol. doi: 10.1016/j.redox.2024.103194 – volume: 69 year: 2024 ident: 10.1016/j.bbagen.2025.130838_bb0130 article-title: MCL attenuates atherosclerosis by suppressing macrophage ferroptosis via targeting KEAP1/NRF2 interaction publication-title: Redox Biol. – volume: 13 year: 2022 ident: 10.1016/j.bbagen.2025.130838_bb0080 article-title: Tetrandrine citrate suppresses breast cancer via depletion of glutathione peroxidase 4 and activation of nuclear receptor coactivator 4-mediated ferritinophagy publication-title: Front. Pharmacol. doi: 10.3389/fphar.2022.820593 – volume: 548 start-page: 338 issue: 7667 year: 2017 ident: 10.1016/j.bbagen.2025.130838_bb0060 article-title: M(6)a mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways publication-title: Nature doi: 10.1038/nature23450 – volume: 17 start-page: 216 issue: 4 year: 2020 ident: 10.1016/j.bbagen.2025.130838_bb0155 article-title: Transcriptional and epigenetic regulation of macrophages in atherosclerosis publication-title: Nat. Rev. Cardiol. doi: 10.1038/s41569-019-0265-3 – volume: 19 start-page: 228 issue: 4 year: 2022 ident: 10.1016/j.bbagen.2025.130838_bb0025 article-title: Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis publication-title: Nat. Rev. Cardiol. doi: 10.1038/s41569-021-00629-x – volume: 82 start-page: 1660 issue: 9 year: 2022 ident: 10.1016/j.bbagen.2025.130838_bb0100 article-title: Lactylation-driven METTL3-mediated RNA m(6)a modification promotes immunosuppression of tumor-infiltrating myeloid cells publication-title: Mol. Cell doi: 10.1016/j.molcel.2022.02.033 – volume: 67 start-page: 2254 issue: 6 year: 2018 ident: 10.1016/j.bbagen.2025.130838_bb0185 article-title: RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2 publication-title: Hepatology doi: 10.1002/hep.29683 – volume: 118 issue: 7 year: 2021 ident: 10.1016/j.bbagen.2025.130838_bb0215 article-title: METTL3-dependent N(6)-methyladenosine RNA modification mediates the atherogenic inflammatory cascades in vascular endothelium publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2025070118 – volume: 17 start-page: 689 issue: 6 year: 2015 ident: 10.1016/j.bbagen.2025.130838_bb0055 article-title: Coordination of m(6)a mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.09.005 – volume: 90 year: 2023 ident: 10.1016/j.bbagen.2025.130838_bb0105 article-title: Immunometabolism and immune response regulate macrophage function in atherosclerosis publication-title: Ageing Res. Rev. doi: 10.1016/j.arr.2023.101993 – volume: 7 start-page: 131 issue: 1 year: 2022 ident: 10.1016/j.bbagen.2025.130838_bb0020 article-title: Inflammation and atherosclerosis: signaling pathways and therapeutic intervention publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-022-00955-7 – volume: 20 start-page: 114 issue: 1 year: 2024 ident: 10.1016/j.bbagen.2025.130838_bb0115 article-title: Tumor-derived lactate promotes resistance to bevacizumab treatment by facilitating autophagy enhancer protein RUBCNL expression through histone H3 lysine 18 lactylation (H3K18la) in colorectal cancer publication-title: Autophagy doi: 10.1080/15548627.2023.2249762 – volume: 317 year: 2023 ident: 10.1016/j.bbagen.2025.130838_bb0140 article-title: Fufang Zhenzhu Tiaozhi (FTZ) capsule ameliorates diabetes-accelerated atherosclerosis via suppressing YTHDF2-mediated m(6)a modification of SIRT3 mRNA publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2023.116766 – volume: 118 start-page: 653 issue: 4 year: 2016 ident: 10.1016/j.bbagen.2025.130838_bb0150 article-title: Macrophage phenotype and function in different stages of atherosclerosis publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.115.306256 – volume: 29 start-page: 1821 issue: 5 year: 2021 ident: 10.1016/j.bbagen.2025.130838_bb0190 article-title: METTL3 restrains papillary thyroid cancer progression via m(6)a/c-Rel/IL-8-mediated neutrophil infiltration publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2021.01.019 – volume: 62 issue: 35 year: 2023 ident: 10.1016/j.bbagen.2025.130838_bb0195 article-title: Ferroptosis detection: from approaches to applications publication-title: Angew. Chem. Int. Ed. Eng. – volume: 9 year: 2021 ident: 10.1016/j.bbagen.2025.130838_bb0065 article-title: N6-Methyladenosine methyltransferase METTL3 promotes angiogenesis and atherosclerosis by upregulating the JAK2/STAT3 pathway via m6A reader IGF2BP1 publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2021.731810 – volume: 158 year: 2024 ident: 10.1016/j.bbagen.2025.130838_bb0085 article-title: Lactate and lactylation in cardiovascular diseases: current progress and future perspectives publication-title: Metabolism doi: 10.1016/j.metabol.2024.155957 – volume: 14 issue: 640 year: 2022 ident: 10.1016/j.bbagen.2025.130838_bb0165 article-title: Inhibition of METTL3 attenuates renal injury and inflammation by alleviating TAB3 m6A modifications via IGF2BP2-dependent mechanisms publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abk2709 – volume: 485 start-page: 201 issue: 7397 year: 2012 ident: 10.1016/j.bbagen.2025.130838_bb0035 article-title: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq publication-title: Nature doi: 10.1038/nature11112 – volume: 12 issue: 11 year: 2022 ident: 10.1016/j.bbagen.2025.130838_bb0205 article-title: The role of macrophage Iron overload and ferroptosis in atherosclerosis publication-title: Biomolecules doi: 10.3390/biom12111702 – volume: 37 start-page: 471 issue: 3 year: 2023 ident: 10.1016/j.bbagen.2025.130838_bb0070 article-title: Silencing METTL3 stabilizes atherosclerotic plaques by regulating the phenotypic transformation of vascular smooth muscle cells via the miR-375-3p/PDK1 Axis publication-title: Cardiovasc. Drugs Ther. doi: 10.1007/s10557-022-07348-6 – volume: 574 start-page: 575 issue: 7779 year: 2019 ident: 10.1016/j.bbagen.2025.130838_bb0075 article-title: Metabolic regulation of gene expression by histone lactylation publication-title: Nature doi: 10.1038/s41586-019-1678-1 – volume: 149 start-page: 1635 issue: 7 year: 2012 ident: 10.1016/j.bbagen.2025.130838_bb0040 article-title: Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons publication-title: Cell doi: 10.1016/j.cell.2012.05.003 – volume: 161 start-page: 1388 issue: 6 year: 2015 ident: 10.1016/j.bbagen.2025.130838_bb0210 article-title: N(6)-methyladenosine modulates messenger RNA translation efficiency publication-title: Cell doi: 10.1016/j.cell.2015.05.014 – volume: 593 start-page: 597 issue: 7860 year: 2021 ident: 10.1016/j.bbagen.2025.130838_bb0160 article-title: Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia publication-title: Nature doi: 10.1038/s41586-021-03536-w – volume: 22 start-page: 266 issue: 4 year: 2021 ident: 10.1016/j.bbagen.2025.130838_bb0125 article-title: Ferroptosis: mechanisms, biology and role in disease publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-020-00324-8 – volume: 591 year: 2024 ident: 10.1016/j.bbagen.2025.130838_bb0170 article-title: Lactate and lactylation: behind the development of tumors publication-title: Cancer Lett. doi: 10.1016/j.canlet.2024.216896 – volume: 82 start-page: 2215 issue: 12 year: 2022 ident: 10.1016/j.bbagen.2025.130838_bb0200 article-title: Ferroptosis at the intersection of lipid metabolism and cellular signaling publication-title: Mol. Cell doi: 10.1016/j.molcel.2022.03.022 – volume: 10 issue: 36 year: 2023 ident: 10.1016/j.bbagen.2025.130838_bb0015 article-title: Nanomedicine for diagnosis and treatment of atherosclerosis publication-title: Adv. Sci. (Weinh) – volume: 14 start-page: 3027 issue: 7 year: 2024 ident: 10.1016/j.bbagen.2025.130838_bb0120 article-title: ASF1A-dependent P300-mediated histone H3 lysine 18 lactylation promotes atherosclerosis by regulating EndMT publication-title: Acta Pharm. Sin. B doi: 10.1016/j.apsb.2024.03.008 – volume: 83 start-page: 428 issue: 3 year: 2023 ident: 10.1016/j.bbagen.2025.130838_bb0145 article-title: RNA m6A methylation across the transcriptome publication-title: Mol. Cell doi: 10.1016/j.molcel.2023.01.006 – volume: 11 start-page: 3 issue: 1 year: 2025 ident: 10.1016/j.bbagen.2025.130838_bb0180 article-title: Enhanced glycolysis-derived lactate promotes microglial activation in Parkinson’s disease via histone lactylation publication-title: NPJ Parkinsons Dis. doi: 10.1038/s41531-024-00858-0 – volume: 21 start-page: 317 issue: 1 year: 2023 ident: 10.1016/j.bbagen.2025.130838_bb0095 article-title: The role of lactate in cardiovascular diseases publication-title: Cell Commun. Signal. doi: 10.1186/s12964-023-01350-7 – volume: 5 start-page: 56 issue: 1 year: 2019 ident: 10.1016/j.bbagen.2025.130838_bb0005 article-title: Atherosclerosis publication-title: Nat. Rev. Dis. Primers doi: 10.1038/s41572-019-0106-z – volume: 10 start-page: 93 issue: 2 year: 2014 ident: 10.1016/j.bbagen.2025.130838_bb0045 article-title: A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1432 – volume: 6 start-page: 74 issue: 1 year: 2021 ident: 10.1016/j.bbagen.2025.130838_bb0050 article-title: The role of m6A modification in the biological functions and diseases publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-020-00450-x – volume: 145 start-page: 341 issue: 3 year: 2011 ident: 10.1016/j.bbagen.2025.130838_bb0030 article-title: Macrophages in the pathogenesis of atherosclerosis publication-title: Cell doi: 10.1016/j.cell.2011.04.005 – volume: 101 year: 2024 ident: 10.1016/j.bbagen.2025.130838_bb0090 article-title: Friend or foe: lactate in neurodegenerative diseases publication-title: Ageing Res. Rev. doi: 10.1016/j.arr.2024.102452 – volume: 43 issue: 5 year: 2024 ident: 10.1016/j.bbagen.2025.130838_bb0110 article-title: Macrophage MCT4 inhibition activates reparative genes and protects from atherosclerosis by histone H3 lysine 18 lactylation publication-title: Cell Rep. doi: 10.1016/j.celrep.2024.114180 – volume: 505 start-page: 117 issue: 7481 year: 2014 ident: 10.1016/j.bbagen.2025.130838_bb0135 article-title: N6-methyladenosine-dependent regulation of messenger RNA stability publication-title: Nature doi: 10.1038/nature12730 |
SSID | ssj0000595 |
Score | 2.4662714 |
Snippet | Macrophages, as the primary immune cell population in atherosclerosis (AS), exhibit complex pathogenic mechanisms that are not fully elucidated. This study... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 130838 |
SubjectTerms | Adenosine - analogs & derivatives Adenosine - metabolism Amino Acid Transport System y+ - genetics Amino Acid Transport System y+ - metabolism Animals Atherosclerosis Atherosclerosis - genetics Atherosclerosis - metabolism Atherosclerosis - pathology E1A-Associated p300 Protein - genetics E1A-Associated p300 Protein - metabolism Ferroptosis Histone lactylation Histones - genetics Histones - metabolism Humans Macrophages Macrophages - metabolism Macrophages - pathology Male Methyltransferases - genetics Methyltransferases - metabolism METTL3 Mice Mice, Inbred C57BL |
Title | EP300-mediated H3K18la regulation of METTL3 promotes macrophage ferroptosis and atherosclerosis through the m6A modification of SLC7A11 |
URI | https://dx.doi.org/10.1016/j.bbagen.2025.130838 https://www.ncbi.nlm.nih.gov/pubmed/40588140 https://www.proquest.com/docview/3225875369 |
Volume | 1869 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFH-UjrFeytZtXbqtaLCrFieSbekYQkr6kTBoCr0J2ZZZymKHODn00uv-7b0n2R2DjUJPtoVtCf2k937ifQF81doOXV5GfOjijEtdaq4yEXEtrSylKqSWFI08myfTG3lxG9_uwbiLhSG3ylb2B5nupXXb0m9ns79eLvvXZNRDOkF2OSISJIcpex2u6W8Pf9w8kD7EwZIgOb3dhc95H68sw01LWVCHMZVFVhSl8m_19D_66dXQ2Ws4bPkjG4UhvoE9Vx3By1BR8v4IXo27Am5v4dfku4gi7mNDkFeyqbgcqJ-WbUL5eQSE1SWbTRaLK8HW3i3PNWxlqajXDxwxK90Gb7d1s2yYrQrmyWLdYL8b39bW-MGrY6tkxFZ1QY5Hj7--vhqno8HgHdycTRbjKW_rLvBcDMSWl0iDROzJmKB0Y7hP85gygSU2j7OhEwXinpbKJ7dBnV9qq3IlCy1yMthE4j3sV3XlPgCLpBNEKVNttSzS3NpCFYmzlg4qUqQ94N10m3VIr2E6v7M7E-AxBI8J8PQg7TAxfy0TgxrgiS-_dBAaxIHMIrZy9a4xJNLo1JboHhwHbB_HgnRWUU6wk2f3-xEO6Cn4DH6C_e1m5z4jj9lmp36hnsKL0fnldP4bK6HuQg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFD6UlNG9jK27pbtpsFcRJ5Jt6TGEFHe5MGgKfROyLbOMxQ5x-rBfsL_dcyS7Y7Ax2JONbVlCn3TOJ84N4JPWduKKKuITF-dc6kpzlYuIa2llJVUptaRo5NU6yW7k59v49gRmfSwMuVV2sj_IdC-tuyejbjZH--12dE1GPaQTZJcjIoFy-JSyU8kBnE6vFtn6l0COffEV-p5Tgz6Czrt55TnuW0qEOompMrKiQJU_a6i_MVCviS6fwpOOQrJpGOUzOHH1OTwKRSV_nMPZrK_h9hx-zr-IKOI-PASpJcvEYqy-W3YIFegRE9ZUbDXfbJaC7b1nnmvZzlJdr684Yla5A94em3bbMluXzPPFpsV-D_5ZV-YHr47tkinbNSX5Hj38-no5S6fj8Qu4uZxvZhnvSi_wQozFkVfIhETs-ZigjGO4VYuYkoEltojziRMlQp9Wyue3QbVfaasKJUstCrLZROIlDOqmdq-BRdIJYpWptlqWaWFtqcrEWUtnFSnSIfB-us0-ZNgwvevZNxPgMQSPCfAMIe0xMb-tFINK4B8tP_YQGsSBLCO2ds1da0iq0cEt0UN4FbB9GAsyWkVpwS7-u98PcJZtVkuzvFov3sBjehNcCN_C4Hi4c--Q1hzz992yvQdhq_Dz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EP300-mediated+H3K18la+regulation+of+METTL3+promotes+macrophage+ferroptosis+and+atherosclerosis+through+the+m6A+modification+of+SLC7A11&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Chen%2C+Jingquan&rft.au=Liu%2C+Zongrong&rft.au=Yue%2C+Zhujun&rft.au=Tan%2C+Qiang&rft.date=2025-08-01&rft.pub=Elsevier+B.V&rft.issn=0304-4165&rft.volume=1869&rft.issue=9&rft_id=info:doi/10.1016%2Fj.bbagen.2025.130838&rft.externalDocID=S0304416525000832 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |