EP300-mediated H3K18la regulation of METTL3 promotes macrophage ferroptosis and atherosclerosis through the m6A modification of SLC7A11

Macrophages, as the primary immune cell population in atherosclerosis (AS), exhibit complex pathogenic mechanisms that are not fully elucidated. This study aims to explore the interplay between histone lactylation and methyltransferase-like protein 3 (METTL3)-mediated m6A modification and their pote...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1869; no. 9; p. 130838
Main Authors Chen, Jingquan, Liu, Zongrong, Yue, Zhujun, Tan, Qiang, Yin, Hongshun, Wang, Haifei, Chen, Zhilong, Zhu, Yanbing, Zheng, Jianghua
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.08.2025
Subjects
Online AccessGet full text
ISSN0304-4165
1872-8006
1872-8006
DOI10.1016/j.bbagen.2025.130838

Cover

Loading…
Abstract Macrophages, as the primary immune cell population in atherosclerosis (AS), exhibit complex pathogenic mechanisms that are not fully elucidated. This study aims to explore the interplay between histone lactylation and methyltransferase-like protein 3 (METTL3)-mediated m6A modification and their potential mechanisms in AS. We demonstrate that METTL3 is highly expressed in macrophages in both in vivo and in vitro models of atherosclerosis, and myeloid cell-specific deletion of METTL3 attenuates the progression of atherosclerosis. Furthermore, the accumulation of lactate levels in macrophages promotes METTL3 expression through EP300-mediated histone H3 lysine 18 lactylation (H3K18la) binding to the METTL3 promoter site. We found that METTL3-mediated m6A modifications are enriched in solute carrier family 7 member 11 (SLC7A11) and accelerate its mRNA degradation in a YTH domain family member 2 (YTHDF2)-dependent manner, thereby promoting ferroptosis in macrophages. Additionally, lactate stimulation downregulates SLC7A11 through the METTL3/YTHDF2 pathway, further promoting ferroptosis. Overall, during AS, lipid peroxidation induces an increase in lactate levels within macrophages, which enhances METTL3 expression through EP300-mediated H3K18la. This further accelerates the degradation of SLC7A11 mRNA via the YTHDF2-dependent m6A modification pathway, inducing ferroptosis in macrophages. This discovery provides new insights into the mechanisms of macrophage function in AS and offers a theoretical basis for the development of therapies for AS. •In AS, METTL3 expression is elevated in macrophages, and its myeloid-specific deletion slows atherosclerosis progression.•In AS, elevated lactate levels in macrophages promote METTL3 expression by enabling EP300-mediated H3K18la binding to the METTL3 promoter.•METTL3-mediated m6A modifications enrich in SLC7A11 and accelerate its mRNA degradation via YTHDF2, promoting macrophage ferroptosis.
AbstractList Macrophages, as the primary immune cell population in atherosclerosis (AS), exhibit complex pathogenic mechanisms that are not fully elucidated. This study aims to explore the interplay between histone lactylation and methyltransferase-like protein 3 (METTL3)-mediated m6A modification and their potential mechanisms in AS. We demonstrate that METTL3 is highly expressed in macrophages in both in vivo and in vitro models of atherosclerosis, and myeloid cell-specific deletion of METTL3 attenuates the progression of atherosclerosis. Furthermore, the accumulation of lactate levels in macrophages promotes METTL3 expression through EP300-mediated histone H3 lysine 18 lactylation (H3K18la) binding to the METTL3 promoter site. We found that METTL3-mediated m6A modifications are enriched in solute carrier family 7 member 11 (SLC7A11) and accelerate its mRNA degradation in a YTH domain family member 2 (YTHDF2)-dependent manner, thereby promoting ferroptosis in macrophages. Additionally, lactate stimulation downregulates SLC7A11 through the METTL3/YTHDF2 pathway, further promoting ferroptosis. Overall, during AS, lipid peroxidation induces an increase in lactate levels within macrophages, which enhances METTL3 expression through EP300-mediated H3K18la. This further accelerates the degradation of SLC7A11 mRNA via the YTHDF2-dependent m6A modification pathway, inducing ferroptosis in macrophages. This discovery provides new insights into the mechanisms of macrophage function in AS and offers a theoretical basis for the development of therapies for AS. •In AS, METTL3 expression is elevated in macrophages, and its myeloid-specific deletion slows atherosclerosis progression.•In AS, elevated lactate levels in macrophages promote METTL3 expression by enabling EP300-mediated H3K18la binding to the METTL3 promoter.•METTL3-mediated m6A modifications enrich in SLC7A11 and accelerate its mRNA degradation via YTHDF2, promoting macrophage ferroptosis.
Macrophages, as the primary immune cell population in atherosclerosis (AS), exhibit complex pathogenic mechanisms that are not fully elucidated. This study aims to explore the interplay between histone lactylation and methyltransferase-like protein 3 (METTL3)-mediated m6A modification and their potential mechanisms in AS. We demonstrate that METTL3 is highly expressed in macrophages in both in vivo and in vitro models of atherosclerosis, and myeloid cell-specific deletion of METTL3 attenuates the progression of atherosclerosis. Furthermore, the accumulation of lactate levels in macrophages promotes METTL3 expression through EP300-mediated histone H3 lysine 18 lactylation (H3K18la) binding to the METTL3 promoter site. We found that METTL3-mediated m6A modifications are enriched in solute carrier family 7 member 11 (SLC7A11) and accelerate its mRNA degradation in a YTH domain family member 2 (YTHDF2)-dependent manner, thereby promoting ferroptosis in macrophages. Additionally, lactate stimulation downregulates SLC7A11 through the METTL3/YTHDF2 pathway, further promoting ferroptosis. Overall, during AS, lipid peroxidation induces an increase in lactate levels within macrophages, which enhances METTL3 expression through EP300-mediated H3K18la. This further accelerates the degradation of SLC7A11 mRNA via the YTHDF2-dependent m6A modification pathway, inducing ferroptosis in macrophages. This discovery provides new insights into the mechanisms of macrophage function in AS and offers a theoretical basis for the development of therapies for AS.
Macrophages, as the primary immune cell population in atherosclerosis (AS), exhibit complex pathogenic mechanisms that are not fully elucidated. This study aims to explore the interplay between histone lactylation and methyltransferase-like protein 3 (METTL3)-mediated m6A modification and their potential mechanisms in AS. We demonstrate that METTL3 is highly expressed in macrophages in both in vivo and in vitro models of atherosclerosis, and myeloid cell-specific deletion of METTL3 attenuates the progression of atherosclerosis. Furthermore, the accumulation of lactate levels in macrophages promotes METTL3 expression through EP300-mediated histone H3 lysine 18 lactylation (H3K18la) binding to the METTL3 promoter site. We found that METTL3-mediated m6A modifications are enriched in solute carrier family 7 member 11 (SLC7A11) and accelerate its mRNA degradation in a YTH domain family member 2 (YTHDF2)-dependent manner, thereby promoting ferroptosis in macrophages. Additionally, lactate stimulation downregulates SLC7A11 through the METTL3/YTHDF2 pathway, further promoting ferroptosis. Overall, during AS, lipid peroxidation induces an increase in lactate levels within macrophages, which enhances METTL3 expression through EP300-mediated H3K18la. This further accelerates the degradation of SLC7A11 mRNA via the YTHDF2-dependent m6A modification pathway, inducing ferroptosis in macrophages. This discovery provides new insights into the mechanisms of macrophage function in AS and offers a theoretical basis for the development of therapies for AS.Macrophages, as the primary immune cell population in atherosclerosis (AS), exhibit complex pathogenic mechanisms that are not fully elucidated. This study aims to explore the interplay between histone lactylation and methyltransferase-like protein 3 (METTL3)-mediated m6A modification and their potential mechanisms in AS. We demonstrate that METTL3 is highly expressed in macrophages in both in vivo and in vitro models of atherosclerosis, and myeloid cell-specific deletion of METTL3 attenuates the progression of atherosclerosis. Furthermore, the accumulation of lactate levels in macrophages promotes METTL3 expression through EP300-mediated histone H3 lysine 18 lactylation (H3K18la) binding to the METTL3 promoter site. We found that METTL3-mediated m6A modifications are enriched in solute carrier family 7 member 11 (SLC7A11) and accelerate its mRNA degradation in a YTH domain family member 2 (YTHDF2)-dependent manner, thereby promoting ferroptosis in macrophages. Additionally, lactate stimulation downregulates SLC7A11 through the METTL3/YTHDF2 pathway, further promoting ferroptosis. Overall, during AS, lipid peroxidation induces an increase in lactate levels within macrophages, which enhances METTL3 expression through EP300-mediated H3K18la. This further accelerates the degradation of SLC7A11 mRNA via the YTHDF2-dependent m6A modification pathway, inducing ferroptosis in macrophages. This discovery provides new insights into the mechanisms of macrophage function in AS and offers a theoretical basis for the development of therapies for AS.
ArticleNumber 130838
Author Tan, Qiang
Chen, Jingquan
Zheng, Jianghua
Zhu, Yanbing
Liu, Zongrong
Yin, Hongshun
Yue, Zhujun
Wang, Haifei
Chen, Zhilong
Author_xml – sequence: 1
  givenname: Jingquan
  surname: Chen
  fullname: Chen, Jingquan
  organization: Department of Vascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
– sequence: 2
  givenname: Zongrong
  surname: Liu
  fullname: Liu, Zongrong
  organization: Department of Vascular Surgery, North Sichuan Medical College, Nanchong 637000, China
– sequence: 3
  givenname: Zhujun
  surname: Yue
  fullname: Yue, Zhujun
  organization: Department of Vascular Surgery, North Sichuan Medical College, Nanchong 637000, China
– sequence: 4
  givenname: Qiang
  surname: Tan
  fullname: Tan, Qiang
  organization: Department of Vascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
– sequence: 5
  givenname: Hongshun
  surname: Yin
  fullname: Yin, Hongshun
  organization: Department of Vascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
– sequence: 6
  givenname: Haifei
  surname: Wang
  fullname: Wang, Haifei
  organization: Department of Vascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
– sequence: 7
  givenname: Zhilong
  surname: Chen
  fullname: Chen, Zhilong
  organization: Department of Vascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
– sequence: 8
  givenname: Yanbing
  surname: Zhu
  fullname: Zhu, Yanbing
  organization: Department of Vascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
– sequence: 9
  givenname: Jianghua
  surname: Zheng
  fullname: Zheng, Jianghua
  email: zhengjianghua@nsmc.edu.cn
  organization: Department of Vascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40588140$$D View this record in MEDLINE/PubMed
BookMark eNp9UcGO0zAQtdCu2O7CHyDkI5eUcSZOnAtSVXVZRFcgUc6W60xaV0lc7ASJL9jfxlWWPTKHGct680bvvVt2NfiBGHsnYClAlB9Py_3eHGhY5pDLpUBQqF6xhVBVnimA8ootAKHIClHKG3Yb4wlSyVq-ZjcFSKVEAQv2tPmOAFlPjTMjNfwBvwrVGR7oMHVmdH7gvuWPm91ui_wcfO9Hirw3NvjzMZ3nLYX0HH10kZuh4WY8UvDRdpee_sZj8NPhmCbxvlzx3jeudfaF-sd2Xa2EeMOuW9NFevs879jP-81u_ZBtv33-sl5tM4sCx6zNZYkSQEmBoiwqkGglKgGlsXKfEzZkbdUm_YAF5NjWRllVNDXaZEYNeMc-zLxJy6-J4qh7Fy11nRnIT1FjnktVSSzrBH3_DJ32yR99Dq434Y_-Z14CFDMgmRFjoPYFIkBfMtInPWekLxnpOaO09mleo6Tzt6Ogo3U02BRBIDvqxrv_E_wFNDaYsA
Cites_doi 10.1016/j.redox.2024.103194
10.3389/fphar.2022.820593
10.1038/nature23450
10.1038/s41569-019-0265-3
10.1038/s41569-021-00629-x
10.1016/j.molcel.2022.02.033
10.1002/hep.29683
10.1073/pnas.2025070118
10.1016/j.stem.2015.09.005
10.1016/j.arr.2023.101993
10.1038/s41392-022-00955-7
10.1080/15548627.2023.2249762
10.1016/j.jep.2023.116766
10.1161/CIRCRESAHA.115.306256
10.1016/j.ymthe.2021.01.019
10.3389/fcell.2021.731810
10.1016/j.metabol.2024.155957
10.1126/scitranslmed.abk2709
10.1038/nature11112
10.3390/biom12111702
10.1007/s10557-022-07348-6
10.1038/s41586-019-1678-1
10.1016/j.cell.2012.05.003
10.1016/j.cell.2015.05.014
10.1038/s41586-021-03536-w
10.1038/s41580-020-00324-8
10.1016/j.canlet.2024.216896
10.1016/j.molcel.2022.03.022
10.1016/j.apsb.2024.03.008
10.1016/j.molcel.2023.01.006
10.1038/s41531-024-00858-0
10.1186/s12964-023-01350-7
10.1038/s41572-019-0106-z
10.1038/nchembio.1432
10.1038/s41392-020-00450-x
10.1016/j.cell.2011.04.005
10.1016/j.arr.2024.102452
10.1016/j.celrep.2024.114180
10.1038/nature12730
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright © 2025 Elsevier B.V. All rights reserved.
Copyright © 2024. Published by Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
– notice: Copyright © 2025 Elsevier B.V. All rights reserved.
– notice: Copyright © 2024. Published by Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.bbagen.2025.130838
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
ExternalDocumentID 40588140
10_1016_j_bbagen_2025_130838
S0304416525000832
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABWVN
ABXDB
ACDAQ
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAYXX
AGRNS
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c313t-f256350085131647053c538106ac5b2e3decc7f800034023f9a8c84d93c030903
IEDL.DBID .~1
ISSN 0304-4165
1872-8006
IngestDate Wed Jul 02 01:49:26 EDT 2025
Wed Jul 23 01:40:39 EDT 2025
Thu Jul 24 02:15:34 EDT 2025
Sat Aug 16 17:00:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Ferroptosis
Macrophages
METTL3
Histone lactylation
Atherosclerosis
Language English
License Copyright © 2025 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-f256350085131647053c538106ac5b2e3decc7f800034023f9a8c84d93c030903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 40588140
PQID 3225875369
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3225875369
pubmed_primary_40588140
crossref_primary_10_1016_j_bbagen_2025_130838
elsevier_sciencedirect_doi_10_1016_j_bbagen_2025_130838
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ouyang, Wang, Huang (bb0095) 2023; 21
Wang, Zhao, Roundtree, Lu, Han, Ma (bb0210) 2015; 161
Li, Zhou, Yu, Hou, Liu, Kong (bb0115) 2024; 20
Kuznetsova, Prange, Glass, de Winther (bb0155) 2020; 17
Liang, Minikes, Jiang (bb0200) 2022; 82
Zhang, Wang, Tan, Wu, Hu, Diao (bb0140) 2023; 317
Wu, Spencer, Ortoga, Zhang, Miao (bb0175) 2024; 74
Yin, Lin, Fang, Zhang, Wei, Hu (bb0080) 2022; 13
He, Zhou, Yin, Wan, Chu, Jia (bb0190) 2021; 29
Aguilo, Zhang, Sancho, Fidalgo, Di Cecilia, Vashisht (bb0055) 2015; 17
Luo, Wang, Zhu, Chen, Xu, Bai (bb0130) 2024; 69
Zhang, Tang, Huang, Zhou, Cui, Weng (bb0075) 2019; 574
Jiang, Stockwell, Conrad (bb0125) 2021; 22
Dominissini, Moshitch-Moshkovitz, Schwartz, Salmon-Divon, Ungar, Osenberg (bb0035) 2012; 485
Sendinc, Shi (bb0145) 2023; 83
Dong, Zhang, Chen, Tan, Min, He (bb0120) 2024; 14
Chen, Schilperoort, Cao, Shi, Tabas, Tao (bb0025) 2022; 19
Jiang, Liu, Nie, Duan, Xiong, Jin (bb0050) 2021; 6
Back, Yurdagul, Tabas, Oorni, Kovanen (bb0010) 2019; 16
Cheng, Huang, Chen, Wu (bb0015) 2023; 10
Meyer, Saletore, Zumbo, Elemento, Mason, Jaffrey (bb0040) 2012; 149
Chien, Li, Chien, Wang, Yarmishyn, Tsai (bb0215) 2021; 118
Xiong, He, Zhu, Pan, Liao, Ye (bb0100) 2022; 82
Chen, Wei, Law, Tsang, Shen, Cheng (bb0185) 2018; 67
Moore, Tabas (bb0030) 2011; 145
Liu, Yue, Han, Wang, Fu, Zhang (bb0045) 2014; 10
Wang, Lu, Gomez, Hon, Yue, Han (bb0135) 2014; 505
Kong, Cui, Huang, Zhang, Guo, Han (bb0020) 2022; 7
Zhang, Jiang, Dong, Min, He, Tan (bb0110) 2024; 43
Chen, Lai, Yong, Yin, Chen, Wang (bb0070) 2023; 37
Dai, Wang, Li, Ye, Li (bb0170) 2024; 591
Yankova, Blackaby, Albertella, Rak, De Braekeleer, Tsagkogeorga (bb0160) 2021; 593
Zeng, Nijiati, Tang, Ye, Zhou, Chen (bb0195) 2023; 62
Xue, Su, Liu (bb0105) 2023; 90
Libby, Buring, Badimon, Hansson, Deanfield, Bittencourt (bb0005) 2019; 5
Zhu, Guo, Sun, Zhao, Liu (bb0085) 2024; 158
Ma, Zhang, Chen, Liu, Tian, Shen (bb0205) 2022; 12
Wang, Wang, Ke, Li, Xu, Yang (bb0165) 2022; 14
Tabas, Bornfeldt (bb0150) 2016; 118
Qin, Wang, Qu, Li, An, Mao (bb0180) 2025; 11
Dong, Yu, Shan, Su, Yu, Yang (bb0065) 2021; 9
Li, Tong, Zhu, Batista, Duffy, Zhao (bb0060) 2017; 548
Wang, Zhou, Li, Zhu, Liu (bb0090) 2024; 101
Zeng (10.1016/j.bbagen.2025.130838_bb0195) 2023; 62
Tabas (10.1016/j.bbagen.2025.130838_bb0150) 2016; 118
Ma (10.1016/j.bbagen.2025.130838_bb0205) 2022; 12
Wang (10.1016/j.bbagen.2025.130838_bb0210) 2015; 161
Dong (10.1016/j.bbagen.2025.130838_bb0120) 2024; 14
Back (10.1016/j.bbagen.2025.130838_bb0010) 2019; 16
He (10.1016/j.bbagen.2025.130838_bb0190) 2021; 29
Jiang (10.1016/j.bbagen.2025.130838_bb0125) 2021; 22
Moore (10.1016/j.bbagen.2025.130838_bb0030) 2011; 145
Cheng (10.1016/j.bbagen.2025.130838_bb0015) 2023; 10
Dai (10.1016/j.bbagen.2025.130838_bb0170) 2024; 591
Chen (10.1016/j.bbagen.2025.130838_bb0070) 2023; 37
Kuznetsova (10.1016/j.bbagen.2025.130838_bb0155) 2020; 17
Xiong (10.1016/j.bbagen.2025.130838_bb0100) 2022; 82
Xue (10.1016/j.bbagen.2025.130838_bb0105) 2023; 90
Sendinc (10.1016/j.bbagen.2025.130838_bb0145) 2023; 83
Yin (10.1016/j.bbagen.2025.130838_bb0080) 2022; 13
Li (10.1016/j.bbagen.2025.130838_bb0115) 2024; 20
Dominissini (10.1016/j.bbagen.2025.130838_bb0035) 2012; 485
Wu (10.1016/j.bbagen.2025.130838_bb0175) 2024; 74
Libby (10.1016/j.bbagen.2025.130838_bb0005) 2019; 5
Liang (10.1016/j.bbagen.2025.130838_bb0200) 2022; 82
Dong (10.1016/j.bbagen.2025.130838_bb0065) 2021; 9
Zhang (10.1016/j.bbagen.2025.130838_bb0110) 2024; 43
Luo (10.1016/j.bbagen.2025.130838_bb0130) 2024; 69
Wang (10.1016/j.bbagen.2025.130838_bb0090) 2024; 101
Liu (10.1016/j.bbagen.2025.130838_bb0045) 2014; 10
Aguilo (10.1016/j.bbagen.2025.130838_bb0055) 2015; 17
Li (10.1016/j.bbagen.2025.130838_bb0060) 2017; 548
Meyer (10.1016/j.bbagen.2025.130838_bb0040) 2012; 149
Jiang (10.1016/j.bbagen.2025.130838_bb0050) 2021; 6
Zhang (10.1016/j.bbagen.2025.130838_bb0140) 2023; 317
Chien (10.1016/j.bbagen.2025.130838_bb0215) 2021; 118
Zhu (10.1016/j.bbagen.2025.130838_bb0085) 2024; 158
Chen (10.1016/j.bbagen.2025.130838_bb0185) 2018; 67
Yankova (10.1016/j.bbagen.2025.130838_bb0160) 2021; 593
Kong (10.1016/j.bbagen.2025.130838_bb0020) 2022; 7
Wang (10.1016/j.bbagen.2025.130838_bb0165) 2022; 14
Qin (10.1016/j.bbagen.2025.130838_bb0180) 2025; 11
Ouyang (10.1016/j.bbagen.2025.130838_bb0095) 2023; 21
Wang (10.1016/j.bbagen.2025.130838_bb0135) 2014; 505
Chen (10.1016/j.bbagen.2025.130838_bb0025) 2022; 19
Zhang (10.1016/j.bbagen.2025.130838_bb0075) 2019; 574
References_xml – volume: 17
  start-page: 216
  year: 2020
  end-page: 228
  ident: bb0155
  article-title: Transcriptional and epigenetic regulation of macrophages in atherosclerosis
  publication-title: Nat. Rev. Cardiol.
– volume: 74
  year: 2024
  ident: bb0175
  article-title: Histone lactylation-regulated METTL3 promotes ferroptosis via m6A-modification on ACSL4 in sepsis-associated lung injury
  publication-title: Redox Biol.
– volume: 82
  start-page: 2215
  year: 2022
  end-page: 2227
  ident: bb0200
  article-title: Ferroptosis at the intersection of lipid metabolism and cellular signaling
  publication-title: Mol. Cell
– volume: 7
  start-page: 131
  year: 2022
  ident: bb0020
  article-title: Inflammation and atherosclerosis: signaling pathways and therapeutic intervention
  publication-title: Signal Transduct. Target. Ther.
– volume: 10
  start-page: 93
  year: 2014
  end-page: 95
  ident: bb0045
  article-title: A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation
  publication-title: Nat. Chem. Biol.
– volume: 149
  start-page: 1635
  year: 2012
  end-page: 1646
  ident: bb0040
  article-title: Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons
  publication-title: Cell
– volume: 101
  year: 2024
  ident: bb0090
  article-title: Friend or foe: lactate in neurodegenerative diseases
  publication-title: Ageing Res. Rev.
– volume: 29
  start-page: 1821
  year: 2021
  end-page: 1837
  ident: bb0190
  article-title: METTL3 restrains papillary thyroid cancer progression via m(6)a/c-Rel/IL-8-mediated neutrophil infiltration
  publication-title: Mol. Ther.
– volume: 317
  year: 2023
  ident: bb0140
  article-title: Fufang Zhenzhu Tiaozhi (FTZ) capsule ameliorates diabetes-accelerated atherosclerosis via suppressing YTHDF2-mediated m(6)a modification of SIRT3 mRNA
  publication-title: J. Ethnopharmacol.
– volume: 17
  start-page: 689
  year: 2015
  end-page: 704
  ident: bb0055
  article-title: Coordination of m(6)a mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming
  publication-title: Cell Stem Cell
– volume: 43
  year: 2024
  ident: bb0110
  article-title: Macrophage MCT4 inhibition activates reparative genes and protects from atherosclerosis by histone H3 lysine 18 lactylation
  publication-title: Cell Rep.
– volume: 19
  start-page: 228
  year: 2022
  end-page: 249
  ident: bb0025
  article-title: Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis
  publication-title: Nat. Rev. Cardiol.
– volume: 13
  year: 2022
  ident: bb0080
  article-title: Tetrandrine citrate suppresses breast cancer via depletion of glutathione peroxidase 4 and activation of nuclear receptor coactivator 4-mediated ferritinophagy
  publication-title: Front. Pharmacol.
– volume: 69
  year: 2024
  ident: bb0130
  article-title: MCL attenuates atherosclerosis by suppressing macrophage ferroptosis via targeting KEAP1/NRF2 interaction
  publication-title: Redox Biol.
– volume: 118
  start-page: 653
  year: 2016
  end-page: 667
  ident: bb0150
  article-title: Macrophage phenotype and function in different stages of atherosclerosis
  publication-title: Circ. Res.
– volume: 67
  start-page: 2254
  year: 2018
  end-page: 2270
  ident: bb0185
  article-title: RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2
  publication-title: Hepatology
– volume: 5
  start-page: 56
  year: 2019
  ident: bb0005
  article-title: Atherosclerosis
  publication-title: Nat. Rev. Dis. Primers
– volume: 12
  year: 2022
  ident: bb0205
  article-title: The role of macrophage Iron overload and ferroptosis in atherosclerosis
  publication-title: Biomolecules
– volume: 20
  start-page: 114
  year: 2024
  end-page: 130
  ident: bb0115
  article-title: Tumor-derived lactate promotes resistance to bevacizumab treatment by facilitating autophagy enhancer protein RUBCNL expression through histone H3 lysine 18 lactylation (H3K18la) in colorectal cancer
  publication-title: Autophagy
– volume: 574
  start-page: 575
  year: 2019
  end-page: 580
  ident: bb0075
  article-title: Metabolic regulation of gene expression by histone lactylation
  publication-title: Nature
– volume: 9
  year: 2021
  ident: bb0065
  article-title: N6-Methyladenosine methyltransferase METTL3 promotes angiogenesis and atherosclerosis by upregulating the JAK2/STAT3 pathway via m6A reader IGF2BP1
  publication-title: Front. Cell Dev. Biol.
– volume: 10
  year: 2023
  ident: bb0015
  article-title: Nanomedicine for diagnosis and treatment of atherosclerosis
  publication-title: Adv. Sci. (Weinh)
– volume: 6
  start-page: 74
  year: 2021
  ident: bb0050
  article-title: The role of m6A modification in the biological functions and diseases
  publication-title: Signal Transduct. Target. Ther.
– volume: 82
  start-page: 1660
  year: 2022
  end-page: 77 e10
  ident: bb0100
  article-title: Lactylation-driven METTL3-mediated RNA m(6)a modification promotes immunosuppression of tumor-infiltrating myeloid cells
  publication-title: Mol. Cell
– volume: 14
  start-page: 3027
  year: 2024
  end-page: 3048
  ident: bb0120
  article-title: ASF1A-dependent P300-mediated histone H3 lysine 18 lactylation promotes atherosclerosis by regulating EndMT
  publication-title: Acta Pharm. Sin. B
– volume: 83
  start-page: 428
  year: 2023
  end-page: 441
  ident: bb0145
  article-title: RNA m6A methylation across the transcriptome
  publication-title: Mol. Cell
– volume: 145
  start-page: 341
  year: 2011
  end-page: 355
  ident: bb0030
  article-title: Macrophages in the pathogenesis of atherosclerosis
  publication-title: Cell
– volume: 591
  year: 2024
  ident: bb0170
  article-title: Lactate and lactylation: behind the development of tumors
  publication-title: Cancer Lett.
– volume: 485
  start-page: 201
  year: 2012
  end-page: 206
  ident: bb0035
  article-title: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq
  publication-title: Nature
– volume: 37
  start-page: 471
  year: 2023
  end-page: 486
  ident: bb0070
  article-title: Silencing METTL3 stabilizes atherosclerotic plaques by regulating the phenotypic transformation of vascular smooth muscle cells via the miR-375-3p/PDK1 Axis
  publication-title: Cardiovasc. Drugs Ther.
– volume: 90
  year: 2023
  ident: bb0105
  article-title: Immunometabolism and immune response regulate macrophage function in atherosclerosis
  publication-title: Ageing Res. Rev.
– volume: 16
  start-page: 389
  year: 2019
  end-page: 406
  ident: bb0010
  article-title: Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities
  publication-title: Nat. Rev. Cardiol.
– volume: 548
  start-page: 338
  year: 2017
  end-page: 342
  ident: bb0060
  article-title: M(6)a mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways
  publication-title: Nature
– volume: 14
  year: 2022
  ident: bb0165
  article-title: Inhibition of METTL3 attenuates renal injury and inflammation by alleviating TAB3 m6A modifications via IGF2BP2-dependent mechanisms
  publication-title: Sci. Transl. Med.
– volume: 505
  start-page: 117
  year: 2014
  end-page: 120
  ident: bb0135
  article-title: N6-methyladenosine-dependent regulation of messenger RNA stability
  publication-title: Nature
– volume: 118
  year: 2021
  ident: bb0215
  article-title: METTL3-dependent N(6)-methyladenosine RNA modification mediates the atherogenic inflammatory cascades in vascular endothelium
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 22
  start-page: 266
  year: 2021
  end-page: 282
  ident: bb0125
  article-title: Ferroptosis: mechanisms, biology and role in disease
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 11
  start-page: 3
  year: 2025
  ident: bb0180
  article-title: Enhanced glycolysis-derived lactate promotes microglial activation in Parkinson’s disease via histone lactylation
  publication-title: NPJ Parkinsons Dis.
– volume: 62
  year: 2023
  ident: bb0195
  article-title: Ferroptosis detection: from approaches to applications
  publication-title: Angew. Chem. Int. Ed. Eng.
– volume: 158
  year: 2024
  ident: bb0085
  article-title: Lactate and lactylation in cardiovascular diseases: current progress and future perspectives
  publication-title: Metabolism
– volume: 161
  start-page: 1388
  year: 2015
  end-page: 1399
  ident: bb0210
  article-title: N(6)-methyladenosine modulates messenger RNA translation efficiency
  publication-title: Cell
– volume: 593
  start-page: 597
  year: 2021
  end-page: 601
  ident: bb0160
  article-title: Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia
  publication-title: Nature
– volume: 21
  start-page: 317
  year: 2023
  ident: bb0095
  article-title: The role of lactate in cardiovascular diseases
  publication-title: Cell Commun. Signal.
– volume: 16
  start-page: 389
  issue: 7
  year: 2019
  ident: 10.1016/j.bbagen.2025.130838_bb0010
  article-title: Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities
  publication-title: Nat. Rev. Cardiol.
– volume: 74
  year: 2024
  ident: 10.1016/j.bbagen.2025.130838_bb0175
  article-title: Histone lactylation-regulated METTL3 promotes ferroptosis via m6A-modification on ACSL4 in sepsis-associated lung injury
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2024.103194
– volume: 69
  year: 2024
  ident: 10.1016/j.bbagen.2025.130838_bb0130
  article-title: MCL attenuates atherosclerosis by suppressing macrophage ferroptosis via targeting KEAP1/NRF2 interaction
  publication-title: Redox Biol.
– volume: 13
  year: 2022
  ident: 10.1016/j.bbagen.2025.130838_bb0080
  article-title: Tetrandrine citrate suppresses breast cancer via depletion of glutathione peroxidase 4 and activation of nuclear receptor coactivator 4-mediated ferritinophagy
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2022.820593
– volume: 548
  start-page: 338
  issue: 7667
  year: 2017
  ident: 10.1016/j.bbagen.2025.130838_bb0060
  article-title: M(6)a mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways
  publication-title: Nature
  doi: 10.1038/nature23450
– volume: 17
  start-page: 216
  issue: 4
  year: 2020
  ident: 10.1016/j.bbagen.2025.130838_bb0155
  article-title: Transcriptional and epigenetic regulation of macrophages in atherosclerosis
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/s41569-019-0265-3
– volume: 19
  start-page: 228
  issue: 4
  year: 2022
  ident: 10.1016/j.bbagen.2025.130838_bb0025
  article-title: Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/s41569-021-00629-x
– volume: 82
  start-page: 1660
  issue: 9
  year: 2022
  ident: 10.1016/j.bbagen.2025.130838_bb0100
  article-title: Lactylation-driven METTL3-mediated RNA m(6)a modification promotes immunosuppression of tumor-infiltrating myeloid cells
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2022.02.033
– volume: 67
  start-page: 2254
  issue: 6
  year: 2018
  ident: 10.1016/j.bbagen.2025.130838_bb0185
  article-title: RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2
  publication-title: Hepatology
  doi: 10.1002/hep.29683
– volume: 118
  issue: 7
  year: 2021
  ident: 10.1016/j.bbagen.2025.130838_bb0215
  article-title: METTL3-dependent N(6)-methyladenosine RNA modification mediates the atherogenic inflammatory cascades in vascular endothelium
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2025070118
– volume: 17
  start-page: 689
  issue: 6
  year: 2015
  ident: 10.1016/j.bbagen.2025.130838_bb0055
  article-title: Coordination of m(6)a mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.09.005
– volume: 90
  year: 2023
  ident: 10.1016/j.bbagen.2025.130838_bb0105
  article-title: Immunometabolism and immune response regulate macrophage function in atherosclerosis
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2023.101993
– volume: 7
  start-page: 131
  issue: 1
  year: 2022
  ident: 10.1016/j.bbagen.2025.130838_bb0020
  article-title: Inflammation and atherosclerosis: signaling pathways and therapeutic intervention
  publication-title: Signal Transduct. Target. Ther.
  doi: 10.1038/s41392-022-00955-7
– volume: 20
  start-page: 114
  issue: 1
  year: 2024
  ident: 10.1016/j.bbagen.2025.130838_bb0115
  article-title: Tumor-derived lactate promotes resistance to bevacizumab treatment by facilitating autophagy enhancer protein RUBCNL expression through histone H3 lysine 18 lactylation (H3K18la) in colorectal cancer
  publication-title: Autophagy
  doi: 10.1080/15548627.2023.2249762
– volume: 317
  year: 2023
  ident: 10.1016/j.bbagen.2025.130838_bb0140
  article-title: Fufang Zhenzhu Tiaozhi (FTZ) capsule ameliorates diabetes-accelerated atherosclerosis via suppressing YTHDF2-mediated m(6)a modification of SIRT3 mRNA
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2023.116766
– volume: 118
  start-page: 653
  issue: 4
  year: 2016
  ident: 10.1016/j.bbagen.2025.130838_bb0150
  article-title: Macrophage phenotype and function in different stages of atherosclerosis
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.115.306256
– volume: 29
  start-page: 1821
  issue: 5
  year: 2021
  ident: 10.1016/j.bbagen.2025.130838_bb0190
  article-title: METTL3 restrains papillary thyroid cancer progression via m(6)a/c-Rel/IL-8-mediated neutrophil infiltration
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2021.01.019
– volume: 62
  issue: 35
  year: 2023
  ident: 10.1016/j.bbagen.2025.130838_bb0195
  article-title: Ferroptosis detection: from approaches to applications
  publication-title: Angew. Chem. Int. Ed. Eng.
– volume: 9
  year: 2021
  ident: 10.1016/j.bbagen.2025.130838_bb0065
  article-title: N6-Methyladenosine methyltransferase METTL3 promotes angiogenesis and atherosclerosis by upregulating the JAK2/STAT3 pathway via m6A reader IGF2BP1
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2021.731810
– volume: 158
  year: 2024
  ident: 10.1016/j.bbagen.2025.130838_bb0085
  article-title: Lactate and lactylation in cardiovascular diseases: current progress and future perspectives
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2024.155957
– volume: 14
  issue: 640
  year: 2022
  ident: 10.1016/j.bbagen.2025.130838_bb0165
  article-title: Inhibition of METTL3 attenuates renal injury and inflammation by alleviating TAB3 m6A modifications via IGF2BP2-dependent mechanisms
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.abk2709
– volume: 485
  start-page: 201
  issue: 7397
  year: 2012
  ident: 10.1016/j.bbagen.2025.130838_bb0035
  article-title: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq
  publication-title: Nature
  doi: 10.1038/nature11112
– volume: 12
  issue: 11
  year: 2022
  ident: 10.1016/j.bbagen.2025.130838_bb0205
  article-title: The role of macrophage Iron overload and ferroptosis in atherosclerosis
  publication-title: Biomolecules
  doi: 10.3390/biom12111702
– volume: 37
  start-page: 471
  issue: 3
  year: 2023
  ident: 10.1016/j.bbagen.2025.130838_bb0070
  article-title: Silencing METTL3 stabilizes atherosclerotic plaques by regulating the phenotypic transformation of vascular smooth muscle cells via the miR-375-3p/PDK1 Axis
  publication-title: Cardiovasc. Drugs Ther.
  doi: 10.1007/s10557-022-07348-6
– volume: 574
  start-page: 575
  issue: 7779
  year: 2019
  ident: 10.1016/j.bbagen.2025.130838_bb0075
  article-title: Metabolic regulation of gene expression by histone lactylation
  publication-title: Nature
  doi: 10.1038/s41586-019-1678-1
– volume: 149
  start-page: 1635
  issue: 7
  year: 2012
  ident: 10.1016/j.bbagen.2025.130838_bb0040
  article-title: Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons
  publication-title: Cell
  doi: 10.1016/j.cell.2012.05.003
– volume: 161
  start-page: 1388
  issue: 6
  year: 2015
  ident: 10.1016/j.bbagen.2025.130838_bb0210
  article-title: N(6)-methyladenosine modulates messenger RNA translation efficiency
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.014
– volume: 593
  start-page: 597
  issue: 7860
  year: 2021
  ident: 10.1016/j.bbagen.2025.130838_bb0160
  article-title: Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia
  publication-title: Nature
  doi: 10.1038/s41586-021-03536-w
– volume: 22
  start-page: 266
  issue: 4
  year: 2021
  ident: 10.1016/j.bbagen.2025.130838_bb0125
  article-title: Ferroptosis: mechanisms, biology and role in disease
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-020-00324-8
– volume: 591
  year: 2024
  ident: 10.1016/j.bbagen.2025.130838_bb0170
  article-title: Lactate and lactylation: behind the development of tumors
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2024.216896
– volume: 82
  start-page: 2215
  issue: 12
  year: 2022
  ident: 10.1016/j.bbagen.2025.130838_bb0200
  article-title: Ferroptosis at the intersection of lipid metabolism and cellular signaling
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2022.03.022
– volume: 10
  issue: 36
  year: 2023
  ident: 10.1016/j.bbagen.2025.130838_bb0015
  article-title: Nanomedicine for diagnosis and treatment of atherosclerosis
  publication-title: Adv. Sci. (Weinh)
– volume: 14
  start-page: 3027
  issue: 7
  year: 2024
  ident: 10.1016/j.bbagen.2025.130838_bb0120
  article-title: ASF1A-dependent P300-mediated histone H3 lysine 18 lactylation promotes atherosclerosis by regulating EndMT
  publication-title: Acta Pharm. Sin. B
  doi: 10.1016/j.apsb.2024.03.008
– volume: 83
  start-page: 428
  issue: 3
  year: 2023
  ident: 10.1016/j.bbagen.2025.130838_bb0145
  article-title: RNA m6A methylation across the transcriptome
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2023.01.006
– volume: 11
  start-page: 3
  issue: 1
  year: 2025
  ident: 10.1016/j.bbagen.2025.130838_bb0180
  article-title: Enhanced glycolysis-derived lactate promotes microglial activation in Parkinson’s disease via histone lactylation
  publication-title: NPJ Parkinsons Dis.
  doi: 10.1038/s41531-024-00858-0
– volume: 21
  start-page: 317
  issue: 1
  year: 2023
  ident: 10.1016/j.bbagen.2025.130838_bb0095
  article-title: The role of lactate in cardiovascular diseases
  publication-title: Cell Commun. Signal.
  doi: 10.1186/s12964-023-01350-7
– volume: 5
  start-page: 56
  issue: 1
  year: 2019
  ident: 10.1016/j.bbagen.2025.130838_bb0005
  article-title: Atherosclerosis
  publication-title: Nat. Rev. Dis. Primers
  doi: 10.1038/s41572-019-0106-z
– volume: 10
  start-page: 93
  issue: 2
  year: 2014
  ident: 10.1016/j.bbagen.2025.130838_bb0045
  article-title: A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1432
– volume: 6
  start-page: 74
  issue: 1
  year: 2021
  ident: 10.1016/j.bbagen.2025.130838_bb0050
  article-title: The role of m6A modification in the biological functions and diseases
  publication-title: Signal Transduct. Target. Ther.
  doi: 10.1038/s41392-020-00450-x
– volume: 145
  start-page: 341
  issue: 3
  year: 2011
  ident: 10.1016/j.bbagen.2025.130838_bb0030
  article-title: Macrophages in the pathogenesis of atherosclerosis
  publication-title: Cell
  doi: 10.1016/j.cell.2011.04.005
– volume: 101
  year: 2024
  ident: 10.1016/j.bbagen.2025.130838_bb0090
  article-title: Friend or foe: lactate in neurodegenerative diseases
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2024.102452
– volume: 43
  issue: 5
  year: 2024
  ident: 10.1016/j.bbagen.2025.130838_bb0110
  article-title: Macrophage MCT4 inhibition activates reparative genes and protects from atherosclerosis by histone H3 lysine 18 lactylation
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2024.114180
– volume: 505
  start-page: 117
  issue: 7481
  year: 2014
  ident: 10.1016/j.bbagen.2025.130838_bb0135
  article-title: N6-methyladenosine-dependent regulation of messenger RNA stability
  publication-title: Nature
  doi: 10.1038/nature12730
SSID ssj0000595
Score 2.4662714
Snippet Macrophages, as the primary immune cell population in atherosclerosis (AS), exhibit complex pathogenic mechanisms that are not fully elucidated. This study...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 130838
SubjectTerms Adenosine - analogs & derivatives
Adenosine - metabolism
Amino Acid Transport System y+ - genetics
Amino Acid Transport System y+ - metabolism
Animals
Atherosclerosis
Atherosclerosis - genetics
Atherosclerosis - metabolism
Atherosclerosis - pathology
E1A-Associated p300 Protein - genetics
E1A-Associated p300 Protein - metabolism
Ferroptosis
Histone lactylation
Histones - genetics
Histones - metabolism
Humans
Macrophages
Macrophages - metabolism
Macrophages - pathology
Male
Methyltransferases - genetics
Methyltransferases - metabolism
METTL3
Mice
Mice, Inbred C57BL
Title EP300-mediated H3K18la regulation of METTL3 promotes macrophage ferroptosis and atherosclerosis through the m6A modification of SLC7A11
URI https://dx.doi.org/10.1016/j.bbagen.2025.130838
https://www.ncbi.nlm.nih.gov/pubmed/40588140
https://www.proquest.com/docview/3225875369
Volume 1869
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFH-UjrFeytZtXbqtaLCrFieSbekYQkr6kTBoCr0J2ZZZymKHODn00uv-7b0n2R2DjUJPtoVtCf2k937ifQF81doOXV5GfOjijEtdaq4yEXEtrSylKqSWFI08myfTG3lxG9_uwbiLhSG3ylb2B5nupXXb0m9ns79eLvvXZNRDOkF2OSISJIcpex2u6W8Pf9w8kD7EwZIgOb3dhc95H68sw01LWVCHMZVFVhSl8m_19D_66dXQ2Ws4bPkjG4UhvoE9Vx3By1BR8v4IXo27Am5v4dfku4gi7mNDkFeyqbgcqJ-WbUL5eQSE1SWbTRaLK8HW3i3PNWxlqajXDxwxK90Gb7d1s2yYrQrmyWLdYL8b39bW-MGrY6tkxFZ1QY5Hj7--vhqno8HgHdycTRbjKW_rLvBcDMSWl0iDROzJmKB0Y7hP85gygSU2j7OhEwXinpbKJ7dBnV9qq3IlCy1yMthE4j3sV3XlPgCLpBNEKVNttSzS3NpCFYmzlg4qUqQ94N10m3VIr2E6v7M7E-AxBI8J8PQg7TAxfy0TgxrgiS-_dBAaxIHMIrZy9a4xJNLo1JboHhwHbB_HgnRWUU6wk2f3-xEO6Cn4DH6C_e1m5z4jj9lmp36hnsKL0fnldP4bK6HuQg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFD6UlNG9jK27pbtpsFcRJ5Jt6TGEFHe5MGgKfROyLbOMxQ5x-rBfsL_dcyS7Y7Ax2JONbVlCn3TOJ84N4JPWduKKKuITF-dc6kpzlYuIa2llJVUptaRo5NU6yW7k59v49gRmfSwMuVV2sj_IdC-tuyejbjZH--12dE1GPaQTZJcjIoFy-JSyU8kBnE6vFtn6l0COffEV-p5Tgz6Czrt55TnuW0qEOompMrKiQJU_a6i_MVCviS6fwpOOQrJpGOUzOHH1OTwKRSV_nMPZrK_h9hx-zr-IKOI-PASpJcvEYqy-W3YIFegRE9ZUbDXfbJaC7b1nnmvZzlJdr684Yla5A94em3bbMluXzPPFpsV-D_5ZV-YHr47tkinbNSX5Hj38-no5S6fj8Qu4uZxvZhnvSi_wQozFkVfIhETs-ZigjGO4VYuYkoEltojziRMlQp9Wyue3QbVfaasKJUstCrLZROIlDOqmdq-BRdIJYpWptlqWaWFtqcrEWUtnFSnSIfB-us0-ZNgwvevZNxPgMQSPCfAMIe0xMb-tFINK4B8tP_YQGsSBLCO2ds1da0iq0cEt0UN4FbB9GAsyWkVpwS7-u98PcJZtVkuzvFov3sBjehNcCN_C4Hi4c--Q1hzz992yvQdhq_Dz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EP300-mediated+H3K18la+regulation+of+METTL3+promotes+macrophage+ferroptosis+and+atherosclerosis+through+the+m6A+modification+of+SLC7A11&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Chen%2C+Jingquan&rft.au=Liu%2C+Zongrong&rft.au=Yue%2C+Zhujun&rft.au=Tan%2C+Qiang&rft.date=2025-08-01&rft.pub=Elsevier+B.V&rft.issn=0304-4165&rft.volume=1869&rft.issue=9&rft_id=info:doi/10.1016%2Fj.bbagen.2025.130838&rft.externalDocID=S0304416525000832
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon