An Efficient Sleep Spindle Detection Algorithm Based on MP and LSBoost
Sleep spindles are an electroencephalogram (EEG) biomarker of non-rapid eye movement (NREM) sleep and have important implications for clinical diagnosis and prognosis. However, it is challenging to accurately detect sleep spindles due to the complexity of the human brain and the uncertainty of neura...
Saved in:
Published in | Computers, materials & continua Vol. 76; no. 2; pp. 2301 - 2316 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Henderson
Tech Science Press
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1546-2226 1546-2218 1546-2226 |
DOI | 10.32604/cmc.2023.037727 |
Cover
Loading…
Abstract | Sleep spindles are an electroencephalogram (EEG) biomarker of non-rapid eye movement (NREM) sleep and have important implications for clinical diagnosis and prognosis. However, it is challenging to accurately detect sleep spindles due to the complexity of the human brain and the uncertainty of neural mechanisms. To improve the reliability and objectivity of sleep spindle detection and to compensate for the limitations of manual annotation, this study proposes a new automatic detection algorithm based on Matching Pursuit (MP) and Least Squares Boosting (LSBoost), where the automatic sleep spindle detection algorithm can help reduce the visual annotation workload of sleep clinicians. Specifically, MP is a time-frequency analysis method suitable for extracting spindle wave characteristics, which can accurately locate spindle waves on a time-frequency plane. LSBoost is an ensemble learning classification method to deal with unbalanced data. Initially, the MP method is used to search for EEG segments that are possible spindle waves from the filtered raw EEG data. Then, the designed feature segments are thrown into the LSBoost classifier to further identify the real spindles from all candidates and output the final results. The proposed method is verified on the common public dataset DREAMS. The experiment results show that the sensitivity and F1-scores based on the sample-based assessments achieve 68.2% and 55.4%, respectively. Furthermore, the Recall and F1-score based on the event assessments are 83.8% and 70.8%, respectively. These results show that the proposed algorithm is robust to the subject changes in the DREAMS dataset. In addition, it improves the quality of sleep spindle detection, which is expected to assist the manual marking of experts. |
---|---|
AbstractList | Sleep spindles are an electroencephalogram (EEG) biomarker of non-rapid eye movement (NREM) sleep and have important implications for clinical diagnosis and prognosis. However, it is challenging to accurately detect sleep spindles due to the complexity of the human brain and the uncertainty of neural mechanisms. To improve the reliability and objectivity of sleep spindle detection and to compensate for the limitations of manual annotation, this study proposes a new automatic detection algorithm based on Matching Pursuit (MP) and Least Squares Boosting (LSBoost), where the automatic sleep spindle detection algorithm can help reduce the visual annotation workload of sleep clinicians. Specifically, MP is a time-frequency analysis method suitable for extracting spindle wave characteristics, which can accurately locate spindle waves on a time-frequency plane. LSBoost is an ensemble learning classification method to deal with unbalanced data. Initially, the MP method is used to search for EEG segments that are possible spindle waves from the filtered raw EEG data. Then, the designed feature segments are thrown into the LSBoost classifier to further identify the real spindles from all candidates and output the final results. The proposed method is verified on the common public dataset DREAMS. The experiment results show that the sensitivity and F1-scores based on the sample-based assessments achieve 68.2% and 55.4%, respectively. Furthermore, the Recall and F1-score based on the event assessments are 83.8% and 70.8%, respectively. These results show that the proposed algorithm is robust to the subject changes in the DREAMS dataset. In addition, it improves the quality of sleep spindle detection, which is expected to assist the manual marking of experts. |
Author | Pan, Jiahui Li, Li Wang, Fei Luo, Lixian Wen, Zhenfu Huang, Haiyun Wan, Yinxing Li, Zhuorong Hu, Bangshun |
Author_xml | – sequence: 1 givenname: Fei surname: Wang fullname: Wang, Fei – sequence: 2 givenname: Li surname: Li fullname: Li, Li – sequence: 3 givenname: Yinxing surname: Wan fullname: Wan, Yinxing – sequence: 4 givenname: Zhuorong surname: Li fullname: Li, Zhuorong – sequence: 5 givenname: Lixian surname: Luo fullname: Luo, Lixian – sequence: 6 givenname: Bangshun surname: Hu fullname: Hu, Bangshun – sequence: 7 givenname: Jiahui surname: Pan fullname: Pan, Jiahui – sequence: 8 givenname: Zhenfu surname: Wen fullname: Wen, Zhenfu – sequence: 9 givenname: Haiyun surname: Huang fullname: Huang, Haiyun |
BookMark | eNp1kM1PAjEQxRuDiYDePTbxvNhtd9vuERDUBKMJem5KP7Rkade2HPzvWcSDMfE0k8l7M29-IzDwwRsArks0IZii6lbt1AQjTCaIMIbZGRiWdUULjDEd_OovwCilLUKEkgYNwXLq4cJap5zxGa5bYzq47pzXrYF3JhuVXfBw2r6H6PLHDs5kMhr2o6cXKL2Gq_UshJQvwbmVbTJXP3UM3paL1_lDsXq-f5xPV4UiJcmFLRmxslaYK0yZ0cbymqsGE20p5xtuKqkrU6GKacaZ1BJjohpbck43Fe8jj8HNaW8Xw-fepCy2YR99f1KQsmk4IbTGvYqeVCqGlKKxQrksj5_kKF0rSiS-mYmemTgyEydmvRH9MXbR7WT8-t9yAKj6byA |
CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3532536 crossref_primary_10_31083_j_jin2307134 |
Cites_doi | 10.32604/cmc.2021.016467 10.1109/78.258082 25442116 29291925 20550978 16911026 19238800 8174288 30622387 10.1088/1741-2552/abd463 15705609 23121471 24562424 27478648 30786245 31944960 10.32604/cmc.2022.020318 21967958 10.1109/ACCESS.2020.3028182 30132445 27119026 11422885 27066274 25434753 27647451 26115480 25956566 10.1016/j.bspc.2021.103026 10.32604/cmc.2021.018239 23370313 10.1007/s00477-017-1394-z 28416048 10.32604/cmc.2021.015976 28600157 25983685 25926784 10.32604/csse.2022.018300 30137521 30853050 26005412 10.1186/s13024-019-0309-5 |
ContentType | Journal Article |
Copyright | 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SC 7SR 8BQ 8FD ABUWG AFKRA AZQEC BENPR CCPQU DWQXO JG9 JQ2 L7M L~C L~D PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
DOI | 10.32604/cmc.2023.037727 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China METADEX Computer and Information Systems Abstracts Professional ProQuest Central Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1546-2226 |
EndPage | 2316 |
ExternalDocumentID | 10_32604_cmc_2023_037727 |
GroupedDBID | AAFWJ AAYXX ACIWK ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR CCPQU CITATION EBS EJD J9A OK1 P2P PHGZM PHGZT PIMPY RTS TUS 7SC 7SR 8BQ 8FD ABUWG AZQEC DWQXO JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c313t-f173fa5c28c267edef858c923df688b8e4ad4e4047d787ada223c9f1886b48363 |
IEDL.DBID | BENPR |
ISSN | 1546-2226 1546-2218 |
IngestDate | Mon Jun 30 11:08:05 EDT 2025 Thu Apr 24 23:01:33 EDT 2025 Tue Jul 01 05:19:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c313t-f173fa5c28c267edef858c923df688b8e4ad4e4047d787ada223c9f1886b48363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3199833652?pq-origsite=%requestingapplication% |
PQID | 3199833652 |
PQPubID | 2048737 |
PageCount | 16 |
ParticipantIDs | proquest_journals_3199833652 crossref_citationtrail_10_32604_cmc_2023_037727 crossref_primary_10_32604_cmc_2023_037727 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Henderson |
PublicationPlace_xml | – name: Henderson |
PublicationTitle | Computers, materials & continua |
PublicationYear | 2023 |
Publisher | Tech Science Press |
Publisher_xml | – name: Tech Science Press |
References | Abbasi (ref39) 2019 Fogel (ref5) 2006; 15 Ulrich (ref7) 2016; 2016 Latreille (ref10) 2015; 36 Hori (ref18) 2001; 55 Tsanas (ref30) 2015; 9 Nonclercq (ref32) 2013; 214 Berry (ref20) 2017; 13 Wendt (ref21) 2015; 126 Normand (ref6) 2016; 2016 Causa (ref36) 2010; 57 Kinoshita (ref26) 2020; 28 Chen (ref44) 2021; 70 Limoges (ref13) 2005; 128 Abbasi (ref22) 2022; 70 Wamsley (ref34) 2012; 71 Hassan (ref41) 2021; 68 Merikanto (ref14) 2019; 15 Alotaibi (ref17) 2021; 68 Imtiaz (ref27) 2013 Christensen (ref3) 2015; 9 Serdaroğlu (ref16) 2018; 55 Parekh (ref37) 2017; 288 St-Onge (ref2) 2016; 134 Warby (ref43) 2014; 11 Jiang (ref25) 2021; 18 Barzegar (ref42) 2018; 32 Manoach (ref15) 2019; 15 LaRocco (ref23) 2018; 15 Durka (ref24) 2015; 9 Laventure (ref8) 2018; 41 Cologan (ref9) 2013; 30 Devuyst (ref38) 2011; 2011 Schimicek (ref28) 1994; 25 Mallat (ref33) 1993; 41 Lachner-Piza (ref35) 2018; 297 Abbasi (ref1) 2020; 8 Spustek (ref40) 2015; 10 Naseem (ref31) 2021; 69 Gorgoni (ref11) 2016; 2016 Wendt (ref29) 2012; 2012 Moser (ref19) 2009; 32 Parekh (ref4) 2015; 251 Kam (ref12) 2019; 14 Hasnain (ref45) 2022; 40 |
References_xml | – volume: 68 start-page: 1637 year: 2021 ident: ref41 article-title: Face recognition based on gabor feature extraction followed by fastica and lda publication-title: Computers, Materials & Continua doi: 10.32604/cmc.2021.016467 – volume: 41 start-page: 3397 year: 1993 ident: ref33 article-title: Matching pursuits with time-frequency dictionaries publication-title: IEEE Transactions on Signal Processing doi: 10.1109/78.258082 – volume: 2011 start-page: 1713 year: 2011 ident: ref38 article-title: Automatic sleep spindles detection–overview and development of a standard proposal assessment method – volume: 36 start-page: 1083 year: 2015 ident: ref10 article-title: Sleep spindles in Parkinson’s disease may predict the development of dementia publication-title: Neurobiology of Aging doi: 25442116 – volume: 297 start-page: 31 year: 2018 ident: ref35 article-title: A single channel sleep-spindle detector based on multivariate classification of EEG epochs: MUSSDET publication-title: Journal of Neuroscience Methods doi: 29291925 – volume: 57 start-page: 2135 year: 2010 ident: ref36 article-title: Automated sleep-spindle detection in healthy children polysomnograms publication-title: IEEE Transactions on Biomedical Engineering doi: 20550978 – volume: 15 start-page: 250 year: 2006 ident: ref5 article-title: Learning-dependent changes in sleep spindles and stage 2 sleep publication-title: Journal of Sleep Research doi: 16911026 – volume: 32 start-page: 139 year: 2009 ident: ref19 article-title: Sleep classification according to AASM and Rechtschaffen & Kales: Effects on sleep scoring parameters publication-title: Sleep doi: 19238800 – volume: 25 start-page: 26 year: 1994 ident: ref28 article-title: Automatic sleep-spindle detection procedure: Aspects of reliability and validity publication-title: Clinical Electroencephalography doi: 8174288 – volume: 55 start-page: 320 year: 2018 ident: ref16 article-title: Autoimmune epilepsy and/or limbic encephalitis can lead to changes in sleep spindles publication-title: Archives of Neuropsychiatry doi: 30622387 – volume: 18 start-page: 026026 year: 2021 ident: ref25 article-title: A robust two-stage sleep spindle detection approach using single-channel EEG publication-title: Journal of Neural Engineering doi: 10.1088/1741-2552/abd463 – volume: 128 start-page: 1049 year: 2005 ident: ref13 article-title: Atypical sleep architecture and the autism phenotype publication-title: Brain doi: 15705609 – volume: 30 start-page: 339 year: 2013 ident: ref9 article-title: Sleep in the unresponsive wakefulness syndrome and minimally conscious state publication-title: Journal of Neurotrauma doi: 23121471 – volume: 11 start-page: 385 year: 2014 ident: ref43 article-title: Sleep-spindle detection: Crowdsourcing and evaluating performance of experts, non-experts and automated methods publication-title: Nature Methods doi: 24562424 – volume: 2016 start-page: 6413473 year: 2016 ident: ref6 article-title: Sleep spindles characteristics in insomnia sufferers and their relationship with sleep misperception publication-title: Neural Plasticity doi: 27478648 – volume: 15 start-page: 451 year: 2019 ident: ref15 article-title: Abnormal sleep spindles, memory monsolidation, and schizophrenia publication-title: Annual Review of Clinical Psychology doi: 30786245 – volume: 28 start-page: 390 year: 2020 ident: ref26 article-title: Sleep spindle detection using RUSBoost and synchrosqueezed wavelet transform publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 31944960 – volume: 70 start-page: 4619 year: 2022 ident: ref22 article-title: EEG-based neonatal sleep stage classification using ensemble learning publication-title: Computers, Materials & Continua doi: 10.32604/cmc.2022.020318 – volume: 71 start-page: 154 year: 2012 ident: ref34 article-title: Reduced sleep spindles and spindle coherence in schizophrenia: Mechanisms of impaired memory consolidation? publication-title: Biological Psychiatry doi: 21967958 – volume: 8 start-page: 183025 year: 2020 ident: ref1 article-title: EEG-based neonatal sleep-wake classification using multilayer perceptron neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3028182 – volume: 15 start-page: 066015 year: 2018 ident: ref23 article-title: Spindler: A framework for parametric analysis and detection of spindles in EEG with application to sleep spindle publication-title: Journal of Neural Engineering doi: 30132445 – volume: 2016 start-page: 1796715 year: 2016 ident: ref7 article-title: Sleep spindles as facilitators of memory formation and learning publication-title: Neural Plasticity doi: 27119026 – volume: 55 start-page: 305 year: 2001 ident: ref18 article-title: Proposed supplements and amendments to ‘A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects’, the Rechtschaffen & Kales (1968) standard publication-title: Psychiatry and Clinical Neurosciences doi: 11422885 – volume: 2016 start-page: 8376108 year: 2016 ident: ref11 article-title: Parietal fast sleep spindle density decrease in Alzheimer’s disease and amnesic mild cognitive impairment publication-title: Neural Plasticity doi: 27066274 – volume: 126 start-page: 1548 year: 2015 ident: ref21 article-title: Inter-expert and intra-expert reliability in sleep spindle scoring publication-title: Clinical Neurophysiology doi: 25434753 – volume: 2012 start-page: 4250 year: 2012 ident: ref29 article-title: Validation of a novel automatic sleep spindle detector with high performance during sleep-in middle-aged subjects – start-page: 1 year: 2019 ident: ref39 article-title: Automatic denoising and artifact removal from neonatal EEG – volume: 134 start-page: e367 year: 2016 ident: ref2 article-title: Sleep duration and quality: Impact on lifestyle behaviors and cardiometabolic health: A scientific statement from the American Heart Association publication-title: Circulation doi: 27647451 – volume: 10 start-page: e0131007 year: 2015 ident: ref40 article-title: Matching pursuit with asymmetric functions for signal decomposition and parameterization publication-title: PLoS One doi: 26115480 – volume: 251 start-page: 37 year: 2015 ident: ref4 article-title: Detection of K-complexes and sleep spindles (DETOKS) using sparse optimization publication-title: Journal of Neuroscience Methods doi: 25956566 – volume: 70 start-page: 103026 year: 2021 ident: ref44 article-title: Automated sleep spindle detection with mixed EEG features publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2021.103026 – volume: 69 start-page: 471 year: 2021 ident: ref31 article-title: Integrated cwt-cnn for epilepsy detection using multiclass EEG dataset publication-title: Computers, Materials & Continua doi: 10.32604/cmc.2021.018239 – volume: 214 start-page: 192 year: 2013 ident: ref32 article-title: Sleep spindle detection through amplitude-frequency normal modelling publication-title: Journal of Neuroscience Methods doi: 23370313 – volume: 32 start-page: 799 year: 2018 ident: ref42 article-title: Multi-step water quality forecasting using a boosting ensemble multi-wavelet extreme learning machine model publication-title: Stochastic Environmental Research and Risk Assessment doi: 10.1007/s00477-017-1394-z – volume: 13 start-page: 665 year: 2017 ident: ref20 article-title: AASM scoring manual updates for 2017 (Version 2.4) publication-title: Journal of Clinical Sleep Medicine doi: 28416048 – volume: 68 start-page: 149 year: 2021 ident: ref17 article-title: Ensemble machine learning based identification of pediatric epilepsy publication-title: Computers, Materials & Continua doi: 10.32604/cmc.2021.015976 – start-page: 262 year: 2013 ident: ref27 article-title: Automatic detection of sleep spindles using Teager energy and spectral edge frequency – volume: 288 start-page: 1 year: 2017 ident: ref37 article-title: Multichannel sleep spindle detection using sparse low-rank optimization publication-title: Journal of Neuroscience Methods doi: 28600157 – volume: 9 start-page: 233 year: 2015 ident: ref3 article-title: Sleep spindle alterations in patients with Parkinson’s disease publication-title: Frontiers in Human Neuroscience doi: 25983685 – volume: 9 start-page: 181 year: 2015 ident: ref30 article-title: Stage-independent, single lead EEG sleep spindle detection using the continuous wavelet transform and local weighted smoothing publication-title: Frontiers in Human Neuroscience doi: 25926784 – volume: 40 start-page: 327 year: 2022 ident: ref45 article-title: Ensemble learning models for classification and selection of web services: A review publication-title: Computer Systems Science and Engineering doi: 10.32604/csse.2022.018300 – volume: 41 start-page: zsy142 year: 2018 ident: ref8 article-title: Beyond spindles: Interactions between sleep spindles and boundary frequencies during cued reactivation of motor memory representations publication-title: Sleep doi: 30137521 – volume: 15 start-page: 401 year: 2019 ident: ref14 article-title: Autistic traits are associated with decreased activity of fast sleep spindles during adolescence publication-title: Journal of Clinical Sleep Medicine doi: 30853050 – volume: 9 start-page: 258 year: 2015 ident: ref24 article-title: Spindles in svarog: Framework and software for parametrization of EEG transients publication-title: Frontiers in Human Neuroscience doi: 26005412 – volume: 14 start-page: 1 year: 2019 ident: ref12 article-title: Sleep oscillation-specific associations with Alzheimer’s disease CSF biomarkers: Novel roles for sleep spindles and tau publication-title: Molecular Neurodegeneration doi: 10.1186/s13024-019-0309-5 |
SSID | ssj0036390 |
Score | 2.2760968 |
Snippet | Sleep spindles are an electroencephalogram (EEG) biomarker of non-rapid eye movement (NREM) sleep and have important implications for clinical diagnosis and... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 2301 |
SubjectTerms | Algorithms Annotations Assessments Biomarkers Datasets Electroencephalography Ensemble learning Machine learning Matched pursuit Segments Sleep Time-frequency analysis |
Title | An Efficient Sleep Spindle Detection Algorithm Based on MP and LSBoost |
URI | https://www.proquest.com/docview/3199833652 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgXVj4RhQK8sDCYJrYTuJOqIVWFaJVRanULXJsB5DapNDw_zknDoila76kvPPdez7bdwjdKMmEZ6gknuYR4TxRREpJScg4yAFP-qa09HgSjub8aREsXMJt47ZV1jGxDNQ6VzZH3mH2MBhjYUDv15_Edo2yq6uuhcYuakIIFjD5avYHk-lLHYsZ8G95JDLgIaHAZtVCJUgWj3fUypYwpOzOYyAxo__E9D8ul2QzPET7TiXiXmXWI7RjsmN0UHdgwM4hT9Cwl-FBWQQCuAPPlsas8Wz9YQsn4EdTlNusMtxbvsGfFO8r3AfO0hgujadYZho_z_p5vilO0Xw4eH0YEdcZgSjms4KkfsRSGSgqFA0jo00qAqFAq-k0FCIRhkvNDfd4pMEhpZYgAlQ39YUIEy4AlTPUyPLMnCMcJpJTnqQ-N0DmoBe5ZAwcnVIVdbXyW6hTwxIrVzbcdq9YxjB9KIGMAcjYAhlXQLbQ7e8b66pkxpZn2zXSsXOeTfxn6ovtty_Rnv1WlRFpo0bx9W2uQCMUybUbCD8pabeD |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7RcKAXHoWKZ_GBHjiY7NqO1xyqKimJAiQRIiBx23ptLyCFTSCLqv6p_saO9wHiwo3reteHz7PzfTO2ZwAOjOYqcEzTwIqICpEYqrVmVHKBciDQoStWejiS_WtxdtO6WYB_9V0Yf6yy9omFo7ZT43PkTe4vg3EuW-zn7JH6rlF-d7VuoVGaxbn7-wdDtvmP0xNc3--M9bpXv_q06ipADQ95TtMw4qluGaYMk5GzLlUtZVDn2FQqlSgntBVOBCKyaMzaaiRQc5yGSslEKC45zvsJFgXHUKYBi53u6OKy9v04WmR1UJdIypA9y41RlEiBaJoHXzKR8aOAo6SN3hLhWx4oyK23CsuVKiXt0ozWYMFlX2Cl7vhAKgewDr12RrpF0QnkKjKeODcj49m9L9RATlxeHOvKSHtyi8jldw-kgxxpCT4aXhCdWTIYd6bTeb4B1x-C2VdoZNPMbQKRiRZMJGkoHIoH1KdCc46OhTETHVsTbkGzhiU2VZly3y1jEmO4UgAZI5CxBzIugdyCw5cvZmWJjnfe3a2RjqufdR6_mtb2-8P7sNS_Gg7iwenofAc--3nLbMwuNPKnZ7eH-iRPvlVGQeD3R9vhfxPx9Gw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Sleep+Spindle+Detection+Algorithm+Based+on+MP+and+LSBoost&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Wang%2C+Fei&rft.au=Li%2C+Li&rft.au=Wan%2C+Yinxing&rft.au=Li%2C+Zhuorong&rft.date=2023-01-01&rft.pub=Tech+Science+Press&rft.issn=1546-2218&rft.eissn=1546-2226&rft.volume=76&rft.issue=2&rft.spage=2301&rft_id=info:doi/10.32604%2Fcmc.2023.037727 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon |