An Efficient Sleep Spindle Detection Algorithm Based on MP and LSBoost

Sleep spindles are an electroencephalogram (EEG) biomarker of non-rapid eye movement (NREM) sleep and have important implications for clinical diagnosis and prognosis. However, it is challenging to accurately detect sleep spindles due to the complexity of the human brain and the uncertainty of neura...

Full description

Saved in:
Bibliographic Details
Published inComputers, materials & continua Vol. 76; no. 2; pp. 2301 - 2316
Main Authors Wang, Fei, Li, Li, Wan, Yinxing, Li, Zhuorong, Luo, Lixian, Hu, Bangshun, Pan, Jiahui, Wen, Zhenfu, Huang, Haiyun
Format Journal Article
LanguageEnglish
Published Henderson Tech Science Press 01.01.2023
Subjects
Online AccessGet full text
ISSN1546-2226
1546-2218
1546-2226
DOI10.32604/cmc.2023.037727

Cover

Loading…
Abstract Sleep spindles are an electroencephalogram (EEG) biomarker of non-rapid eye movement (NREM) sleep and have important implications for clinical diagnosis and prognosis. However, it is challenging to accurately detect sleep spindles due to the complexity of the human brain and the uncertainty of neural mechanisms. To improve the reliability and objectivity of sleep spindle detection and to compensate for the limitations of manual annotation, this study proposes a new automatic detection algorithm based on Matching Pursuit (MP) and Least Squares Boosting (LSBoost), where the automatic sleep spindle detection algorithm can help reduce the visual annotation workload of sleep clinicians. Specifically, MP is a time-frequency analysis method suitable for extracting spindle wave characteristics, which can accurately locate spindle waves on a time-frequency plane. LSBoost is an ensemble learning classification method to deal with unbalanced data. Initially, the MP method is used to search for EEG segments that are possible spindle waves from the filtered raw EEG data. Then, the designed feature segments are thrown into the LSBoost classifier to further identify the real spindles from all candidates and output the final results. The proposed method is verified on the common public dataset DREAMS. The experiment results show that the sensitivity and F1-scores based on the sample-based assessments achieve 68.2% and 55.4%, respectively. Furthermore, the Recall and F1-score based on the event assessments are 83.8% and 70.8%, respectively. These results show that the proposed algorithm is robust to the subject changes in the DREAMS dataset. In addition, it improves the quality of sleep spindle detection, which is expected to assist the manual marking of experts.
AbstractList Sleep spindles are an electroencephalogram (EEG) biomarker of non-rapid eye movement (NREM) sleep and have important implications for clinical diagnosis and prognosis. However, it is challenging to accurately detect sleep spindles due to the complexity of the human brain and the uncertainty of neural mechanisms. To improve the reliability and objectivity of sleep spindle detection and to compensate for the limitations of manual annotation, this study proposes a new automatic detection algorithm based on Matching Pursuit (MP) and Least Squares Boosting (LSBoost), where the automatic sleep spindle detection algorithm can help reduce the visual annotation workload of sleep clinicians. Specifically, MP is a time-frequency analysis method suitable for extracting spindle wave characteristics, which can accurately locate spindle waves on a time-frequency plane. LSBoost is an ensemble learning classification method to deal with unbalanced data. Initially, the MP method is used to search for EEG segments that are possible spindle waves from the filtered raw EEG data. Then, the designed feature segments are thrown into the LSBoost classifier to further identify the real spindles from all candidates and output the final results. The proposed method is verified on the common public dataset DREAMS. The experiment results show that the sensitivity and F1-scores based on the sample-based assessments achieve 68.2% and 55.4%, respectively. Furthermore, the Recall and F1-score based on the event assessments are 83.8% and 70.8%, respectively. These results show that the proposed algorithm is robust to the subject changes in the DREAMS dataset. In addition, it improves the quality of sleep spindle detection, which is expected to assist the manual marking of experts.
Author Pan, Jiahui
Li, Li
Wang, Fei
Luo, Lixian
Wen, Zhenfu
Huang, Haiyun
Wan, Yinxing
Li, Zhuorong
Hu, Bangshun
Author_xml – sequence: 1
  givenname: Fei
  surname: Wang
  fullname: Wang, Fei
– sequence: 2
  givenname: Li
  surname: Li
  fullname: Li, Li
– sequence: 3
  givenname: Yinxing
  surname: Wan
  fullname: Wan, Yinxing
– sequence: 4
  givenname: Zhuorong
  surname: Li
  fullname: Li, Zhuorong
– sequence: 5
  givenname: Lixian
  surname: Luo
  fullname: Luo, Lixian
– sequence: 6
  givenname: Bangshun
  surname: Hu
  fullname: Hu, Bangshun
– sequence: 7
  givenname: Jiahui
  surname: Pan
  fullname: Pan, Jiahui
– sequence: 8
  givenname: Zhenfu
  surname: Wen
  fullname: Wen, Zhenfu
– sequence: 9
  givenname: Haiyun
  surname: Huang
  fullname: Huang, Haiyun
BookMark eNp1kM1PAjEQxRuDiYDePTbxvNhtd9vuERDUBKMJem5KP7Rkade2HPzvWcSDMfE0k8l7M29-IzDwwRsArks0IZii6lbt1AQjTCaIMIbZGRiWdUULjDEd_OovwCilLUKEkgYNwXLq4cJap5zxGa5bYzq47pzXrYF3JhuVXfBw2r6H6PLHDs5kMhr2o6cXKL2Gq_UshJQvwbmVbTJXP3UM3paL1_lDsXq-f5xPV4UiJcmFLRmxslaYK0yZ0cbymqsGE20p5xtuKqkrU6GKacaZ1BJjohpbck43Fe8jj8HNaW8Xw-fepCy2YR99f1KQsmk4IbTGvYqeVCqGlKKxQrksj5_kKF0rSiS-mYmemTgyEydmvRH9MXbR7WT8-t9yAKj6byA
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3532536
crossref_primary_10_31083_j_jin2307134
Cites_doi 10.32604/cmc.2021.016467
10.1109/78.258082
25442116
29291925
20550978
16911026
19238800
8174288
30622387
10.1088/1741-2552/abd463
15705609
23121471
24562424
27478648
30786245
31944960
10.32604/cmc.2022.020318
21967958
10.1109/ACCESS.2020.3028182
30132445
27119026
11422885
27066274
25434753
27647451
26115480
25956566
10.1016/j.bspc.2021.103026
10.32604/cmc.2021.018239
23370313
10.1007/s00477-017-1394-z
28416048
10.32604/cmc.2021.015976
28600157
25983685
25926784
10.32604/csse.2022.018300
30137521
30853050
26005412
10.1186/s13024-019-0309-5
ContentType Journal Article
Copyright 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
8BQ
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
JG9
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.32604/cmc.2023.037727
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1546-2226
EndPage 2316
ExternalDocumentID 10_32604_cmc_2023_037727
GroupedDBID AAFWJ
AAYXX
ACIWK
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
J9A
OK1
P2P
PHGZM
PHGZT
PIMPY
RTS
TUS
7SC
7SR
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c313t-f173fa5c28c267edef858c923df688b8e4ad4e4047d787ada223c9f1886b48363
IEDL.DBID BENPR
ISSN 1546-2226
1546-2218
IngestDate Mon Jun 30 11:08:05 EDT 2025
Thu Apr 24 23:01:33 EDT 2025
Tue Jul 01 05:19:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-f173fa5c28c267edef858c923df688b8e4ad4e4047d787ada223c9f1886b48363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3199833652?pq-origsite=%requestingapplication%
PQID 3199833652
PQPubID 2048737
PageCount 16
ParticipantIDs proquest_journals_3199833652
crossref_citationtrail_10_32604_cmc_2023_037727
crossref_primary_10_32604_cmc_2023_037727
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computers, materials & continua
PublicationYear 2023
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Abbasi (ref39) 2019
Fogel (ref5) 2006; 15
Ulrich (ref7) 2016; 2016
Latreille (ref10) 2015; 36
Hori (ref18) 2001; 55
Tsanas (ref30) 2015; 9
Nonclercq (ref32) 2013; 214
Berry (ref20) 2017; 13
Wendt (ref21) 2015; 126
Normand (ref6) 2016; 2016
Causa (ref36) 2010; 57
Kinoshita (ref26) 2020; 28
Chen (ref44) 2021; 70
Limoges (ref13) 2005; 128
Abbasi (ref22) 2022; 70
Wamsley (ref34) 2012; 71
Hassan (ref41) 2021; 68
Merikanto (ref14) 2019; 15
Alotaibi (ref17) 2021; 68
Imtiaz (ref27) 2013
Christensen (ref3) 2015; 9
Serdaroğlu (ref16) 2018; 55
Parekh (ref37) 2017; 288
St-Onge (ref2) 2016; 134
Warby (ref43) 2014; 11
Jiang (ref25) 2021; 18
Barzegar (ref42) 2018; 32
Manoach (ref15) 2019; 15
LaRocco (ref23) 2018; 15
Durka (ref24) 2015; 9
Laventure (ref8) 2018; 41
Cologan (ref9) 2013; 30
Devuyst (ref38) 2011; 2011
Schimicek (ref28) 1994; 25
Mallat (ref33) 1993; 41
Lachner-Piza (ref35) 2018; 297
Abbasi (ref1) 2020; 8
Spustek (ref40) 2015; 10
Naseem (ref31) 2021; 69
Gorgoni (ref11) 2016; 2016
Wendt (ref29) 2012; 2012
Moser (ref19) 2009; 32
Parekh (ref4) 2015; 251
Kam (ref12) 2019; 14
Hasnain (ref45) 2022; 40
References_xml – volume: 68
  start-page: 1637
  year: 2021
  ident: ref41
  article-title: Face recognition based on gabor feature extraction followed by fastica and lda
  publication-title: Computers, Materials & Continua
  doi: 10.32604/cmc.2021.016467
– volume: 41
  start-page: 3397
  year: 1993
  ident: ref33
  article-title: Matching pursuits with time-frequency dictionaries
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/78.258082
– volume: 2011
  start-page: 1713
  year: 2011
  ident: ref38
  article-title: Automatic sleep spindles detection–overview and development of a standard proposal assessment method
– volume: 36
  start-page: 1083
  year: 2015
  ident: ref10
  article-title: Sleep spindles in Parkinson’s disease may predict the development of dementia
  publication-title: Neurobiology of Aging
  doi: 25442116
– volume: 297
  start-page: 31
  year: 2018
  ident: ref35
  article-title: A single channel sleep-spindle detector based on multivariate classification of EEG epochs: MUSSDET
  publication-title: Journal of Neuroscience Methods
  doi: 29291925
– volume: 57
  start-page: 2135
  year: 2010
  ident: ref36
  article-title: Automated sleep-spindle detection in healthy children polysomnograms
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 20550978
– volume: 15
  start-page: 250
  year: 2006
  ident: ref5
  article-title: Learning-dependent changes in sleep spindles and stage 2 sleep
  publication-title: Journal of Sleep Research
  doi: 16911026
– volume: 32
  start-page: 139
  year: 2009
  ident: ref19
  article-title: Sleep classification according to AASM and Rechtschaffen & Kales: Effects on sleep scoring parameters
  publication-title: Sleep
  doi: 19238800
– volume: 25
  start-page: 26
  year: 1994
  ident: ref28
  article-title: Automatic sleep-spindle detection procedure: Aspects of reliability and validity
  publication-title: Clinical Electroencephalography
  doi: 8174288
– volume: 55
  start-page: 320
  year: 2018
  ident: ref16
  article-title: Autoimmune epilepsy and/or limbic encephalitis can lead to changes in sleep spindles
  publication-title: Archives of Neuropsychiatry
  doi: 30622387
– volume: 18
  start-page: 026026
  year: 2021
  ident: ref25
  article-title: A robust two-stage sleep spindle detection approach using single-channel EEG
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/abd463
– volume: 128
  start-page: 1049
  year: 2005
  ident: ref13
  article-title: Atypical sleep architecture and the autism phenotype
  publication-title: Brain
  doi: 15705609
– volume: 30
  start-page: 339
  year: 2013
  ident: ref9
  article-title: Sleep in the unresponsive wakefulness syndrome and minimally conscious state
  publication-title: Journal of Neurotrauma
  doi: 23121471
– volume: 11
  start-page: 385
  year: 2014
  ident: ref43
  article-title: Sleep-spindle detection: Crowdsourcing and evaluating performance of experts, non-experts and automated methods
  publication-title: Nature Methods
  doi: 24562424
– volume: 2016
  start-page: 6413473
  year: 2016
  ident: ref6
  article-title: Sleep spindles characteristics in insomnia sufferers and their relationship with sleep misperception
  publication-title: Neural Plasticity
  doi: 27478648
– volume: 15
  start-page: 451
  year: 2019
  ident: ref15
  article-title: Abnormal sleep spindles, memory monsolidation, and schizophrenia
  publication-title: Annual Review of Clinical Psychology
  doi: 30786245
– volume: 28
  start-page: 390
  year: 2020
  ident: ref26
  article-title: Sleep spindle detection using RUSBoost and synchrosqueezed wavelet transform
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 31944960
– volume: 70
  start-page: 4619
  year: 2022
  ident: ref22
  article-title: EEG-based neonatal sleep stage classification using ensemble learning
  publication-title: Computers, Materials & Continua
  doi: 10.32604/cmc.2022.020318
– volume: 71
  start-page: 154
  year: 2012
  ident: ref34
  article-title: Reduced sleep spindles and spindle coherence in schizophrenia: Mechanisms of impaired memory consolidation?
  publication-title: Biological Psychiatry
  doi: 21967958
– volume: 8
  start-page: 183025
  year: 2020
  ident: ref1
  article-title: EEG-based neonatal sleep-wake classification using multilayer perceptron neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3028182
– volume: 15
  start-page: 066015
  year: 2018
  ident: ref23
  article-title: Spindler: A framework for parametric analysis and detection of spindles in EEG with application to sleep spindle
  publication-title: Journal of Neural Engineering
  doi: 30132445
– volume: 2016
  start-page: 1796715
  year: 2016
  ident: ref7
  article-title: Sleep spindles as facilitators of memory formation and learning
  publication-title: Neural Plasticity
  doi: 27119026
– volume: 55
  start-page: 305
  year: 2001
  ident: ref18
  article-title: Proposed supplements and amendments to ‘A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects’, the Rechtschaffen & Kales (1968) standard
  publication-title: Psychiatry and Clinical Neurosciences
  doi: 11422885
– volume: 2016
  start-page: 8376108
  year: 2016
  ident: ref11
  article-title: Parietal fast sleep spindle density decrease in Alzheimer’s disease and amnesic mild cognitive impairment
  publication-title: Neural Plasticity
  doi: 27066274
– volume: 126
  start-page: 1548
  year: 2015
  ident: ref21
  article-title: Inter-expert and intra-expert reliability in sleep spindle scoring
  publication-title: Clinical Neurophysiology
  doi: 25434753
– volume: 2012
  start-page: 4250
  year: 2012
  ident: ref29
  article-title: Validation of a novel automatic sleep spindle detector with high performance during sleep-in middle-aged subjects
– start-page: 1
  year: 2019
  ident: ref39
  article-title: Automatic denoising and artifact removal from neonatal EEG
– volume: 134
  start-page: e367
  year: 2016
  ident: ref2
  article-title: Sleep duration and quality: Impact on lifestyle behaviors and cardiometabolic health: A scientific statement from the American Heart Association
  publication-title: Circulation
  doi: 27647451
– volume: 10
  start-page: e0131007
  year: 2015
  ident: ref40
  article-title: Matching pursuit with asymmetric functions for signal decomposition and parameterization
  publication-title: PLoS One
  doi: 26115480
– volume: 251
  start-page: 37
  year: 2015
  ident: ref4
  article-title: Detection of K-complexes and sleep spindles (DETOKS) using sparse optimization
  publication-title: Journal of Neuroscience Methods
  doi: 25956566
– volume: 70
  start-page: 103026
  year: 2021
  ident: ref44
  article-title: Automated sleep spindle detection with mixed EEG features
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2021.103026
– volume: 69
  start-page: 471
  year: 2021
  ident: ref31
  article-title: Integrated cwt-cnn for epilepsy detection using multiclass EEG dataset
  publication-title: Computers, Materials & Continua
  doi: 10.32604/cmc.2021.018239
– volume: 214
  start-page: 192
  year: 2013
  ident: ref32
  article-title: Sleep spindle detection through amplitude-frequency normal modelling
  publication-title: Journal of Neuroscience Methods
  doi: 23370313
– volume: 32
  start-page: 799
  year: 2018
  ident: ref42
  article-title: Multi-step water quality forecasting using a boosting ensemble multi-wavelet extreme learning machine model
  publication-title: Stochastic Environmental Research and Risk Assessment
  doi: 10.1007/s00477-017-1394-z
– volume: 13
  start-page: 665
  year: 2017
  ident: ref20
  article-title: AASM scoring manual updates for 2017 (Version 2.4)
  publication-title: Journal of Clinical Sleep Medicine
  doi: 28416048
– volume: 68
  start-page: 149
  year: 2021
  ident: ref17
  article-title: Ensemble machine learning based identification of pediatric epilepsy
  publication-title: Computers, Materials & Continua
  doi: 10.32604/cmc.2021.015976
– start-page: 262
  year: 2013
  ident: ref27
  article-title: Automatic detection of sleep spindles using Teager energy and spectral edge frequency
– volume: 288
  start-page: 1
  year: 2017
  ident: ref37
  article-title: Multichannel sleep spindle detection using sparse low-rank optimization
  publication-title: Journal of Neuroscience Methods
  doi: 28600157
– volume: 9
  start-page: 233
  year: 2015
  ident: ref3
  article-title: Sleep spindle alterations in patients with Parkinson’s disease
  publication-title: Frontiers in Human Neuroscience
  doi: 25983685
– volume: 9
  start-page: 181
  year: 2015
  ident: ref30
  article-title: Stage-independent, single lead EEG sleep spindle detection using the continuous wavelet transform and local weighted smoothing
  publication-title: Frontiers in Human Neuroscience
  doi: 25926784
– volume: 40
  start-page: 327
  year: 2022
  ident: ref45
  article-title: Ensemble learning models for classification and selection of web services: A review
  publication-title: Computer Systems Science and Engineering
  doi: 10.32604/csse.2022.018300
– volume: 41
  start-page: zsy142
  year: 2018
  ident: ref8
  article-title: Beyond spindles: Interactions between sleep spindles and boundary frequencies during cued reactivation of motor memory representations
  publication-title: Sleep
  doi: 30137521
– volume: 15
  start-page: 401
  year: 2019
  ident: ref14
  article-title: Autistic traits are associated with decreased activity of fast sleep spindles during adolescence
  publication-title: Journal of Clinical Sleep Medicine
  doi: 30853050
– volume: 9
  start-page: 258
  year: 2015
  ident: ref24
  article-title: Spindles in svarog: Framework and software for parametrization of EEG transients
  publication-title: Frontiers in Human Neuroscience
  doi: 26005412
– volume: 14
  start-page: 1
  year: 2019
  ident: ref12
  article-title: Sleep oscillation-specific associations with Alzheimer’s disease CSF biomarkers: Novel roles for sleep spindles and tau
  publication-title: Molecular Neurodegeneration
  doi: 10.1186/s13024-019-0309-5
SSID ssj0036390
Score 2.2760968
Snippet Sleep spindles are an electroencephalogram (EEG) biomarker of non-rapid eye movement (NREM) sleep and have important implications for clinical diagnosis and...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2301
SubjectTerms Algorithms
Annotations
Assessments
Biomarkers
Datasets
Electroencephalography
Ensemble learning
Machine learning
Matched pursuit
Segments
Sleep
Time-frequency analysis
Title An Efficient Sleep Spindle Detection Algorithm Based on MP and LSBoost
URI https://www.proquest.com/docview/3199833652
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgXVj4RhQK8sDCYJrYTuJOqIVWFaJVRanULXJsB5DapNDw_zknDoila76kvPPdez7bdwjdKMmEZ6gknuYR4TxRREpJScg4yAFP-qa09HgSjub8aREsXMJt47ZV1jGxDNQ6VzZH3mH2MBhjYUDv15_Edo2yq6uuhcYuakIIFjD5avYHk-lLHYsZ8G95JDLgIaHAZtVCJUgWj3fUypYwpOzOYyAxo__E9D8ul2QzPET7TiXiXmXWI7RjsmN0UHdgwM4hT9Cwl-FBWQQCuAPPlsas8Wz9YQsn4EdTlNusMtxbvsGfFO8r3AfO0hgujadYZho_z_p5vilO0Xw4eH0YEdcZgSjms4KkfsRSGSgqFA0jo00qAqFAq-k0FCIRhkvNDfd4pMEhpZYgAlQ39YUIEy4AlTPUyPLMnCMcJpJTnqQ-N0DmoBe5ZAwcnVIVdbXyW6hTwxIrVzbcdq9YxjB9KIGMAcjYAhlXQLbQ7e8b66pkxpZn2zXSsXOeTfxn6ovtty_Rnv1WlRFpo0bx9W2uQCMUybUbCD8pabeD
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7RcKAXHoWKZ_GBHjiY7NqO1xyqKimJAiQRIiBx23ptLyCFTSCLqv6p_saO9wHiwo3reteHz7PzfTO2ZwAOjOYqcEzTwIqICpEYqrVmVHKBciDQoStWejiS_WtxdtO6WYB_9V0Yf6yy9omFo7ZT43PkTe4vg3EuW-zn7JH6rlF-d7VuoVGaxbn7-wdDtvmP0xNc3--M9bpXv_q06ipADQ95TtMw4qluGaYMk5GzLlUtZVDn2FQqlSgntBVOBCKyaMzaaiRQc5yGSslEKC45zvsJFgXHUKYBi53u6OKy9v04WmR1UJdIypA9y41RlEiBaJoHXzKR8aOAo6SN3hLhWx4oyK23CsuVKiXt0ozWYMFlX2Cl7vhAKgewDr12RrpF0QnkKjKeODcj49m9L9RATlxeHOvKSHtyi8jldw-kgxxpCT4aXhCdWTIYd6bTeb4B1x-C2VdoZNPMbQKRiRZMJGkoHIoH1KdCc46OhTETHVsTbkGzhiU2VZly3y1jEmO4UgAZI5CxBzIugdyCw5cvZmWJjnfe3a2RjqufdR6_mtb2-8P7sNS_Gg7iwenofAc--3nLbMwuNPKnZ7eH-iRPvlVGQeD3R9vhfxPx9Gw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Sleep+Spindle+Detection+Algorithm+Based+on+MP+and+LSBoost&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Wang%2C+Fei&rft.au=Li%2C+Li&rft.au=Wan%2C+Yinxing&rft.au=Li%2C+Zhuorong&rft.date=2023-01-01&rft.pub=Tech+Science+Press&rft.issn=1546-2218&rft.eissn=1546-2226&rft.volume=76&rft.issue=2&rft.spage=2301&rft_id=info:doi/10.32604%2Fcmc.2023.037727
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon