Mining Sequential Learning Trajectories With Hidden Markov Models For Early Prediction of At-Risk Students in E-Learning Environments

With the onset of online education via technology-enhanced learning platforms, large amount of educational data is being generated in the form of logs, clickstreams, performance, etc. These Virtual Learning Environments provide an opportunity to the researchers for the application of educational dat...

Full description

Saved in:
Bibliographic Details
Published inIEEE Transactions on Learning Technologies Vol. 15; no. 6; pp. 783 - 797
Main Authors Gupta, Anika, Garg, Deepak, Kumar, Parteek
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.12.2022
Institute of Electrical and Electronics Engineers, Inc
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1939-1382
2372-0050
DOI10.1109/TLT.2022.3197486

Cover

Abstract With the onset of online education via technology-enhanced learning platforms, large amount of educational data is being generated in the form of logs, clickstreams, performance, etc. These Virtual Learning Environments provide an opportunity to the researchers for the application of educational data mining and learning analytics, for mining the students learning behavior. This further helps them in data-driven decision making through timely intervention via early warning systems (EWS), reflecting and optimizing educational environments, and refining pedagogical designs. In this, the role of EWS is to timely identify the at-risk students. This study proposes a modeling methodology deploying interpretable Hidden Markov Model for mining of the sequential learning behavior built upon derived performance features from light-weight assessments. The public OULA dataset having diversified courses and 32 593 student records is used for validation. The results on the unseen test data achieve a classification accuracy ranging from 87.67% to 94.83% and AUC from 0.927 to 0.989, and outperforms other baseline models. For implementation of EWS, the study also predicts the optimal time-period, during the first and second quarter of the course with sufficient number of light-weight assessments in place. With the outcomes, this study tries to establish an efficient generalized modeling framework that may lead the higher educational institutes toward sustainable development.
AbstractList With the onset of online education via technology-enhanced learning platforms, large amount of educational data is being generated in the form of logs, clickstreams, performance, etc. These Virtual Learning Environments provide an opportunity to the researchers for the application of educational data mining and learning analytics, for mining the students learning behavior. This further helps them in data-driven decision making through timely intervention via early warning systems (EWS), reflecting and optimizing educational environments, and refining pedagogical designs. In this, the role of EWS is to timely identify the at-risk students. This study proposes a modeling methodology deploying interpretable Hidden Markov Model for mining of the sequential learning behavior built upon derived performance features from light-weight assessments. The public OULA dataset having diversified courses and 32 593 student records is used for validation. The results on the unseen test data achieve a classification accuracy ranging from 87.67% to 94.83% and AUC from 0.927 to 0.989, and outperforms other baseline models. For implementation of EWS, the study also predicts the optimal time-period, during the first and second quarter of the course with sufficient number of light-weight assessments in place. With the outcomes, this study tries to establish an efficient generalized modeling framework that may lead the higher educational institutes toward sustainable development.
Audience Higher Education
Postsecondary Education
Author Garg, Deepak
Kumar, Parteek
Gupta, Anika
Author_xml – sequence: 1
  givenname: Anika
  orcidid: 0000-0001-6349-6742
  surname: Gupta
  fullname: Gupta, Anika
  email: anikagupta2010@gmail.com
  organization: Bennett University, Greater Noida, India
– sequence: 2
  givenname: Deepak
  surname: Garg
  fullname: Garg, Deepak
  email: deepakgarg108@gmail.com
  organization: Bennett University, Greater Noida, India
– sequence: 3
  givenname: Parteek
  surname: Kumar
  fullname: Kumar, Parteek
  email: parteek.bhatia@thapar.edu
  organization: Thapar Institute of Engineering & Technology, Patiala, India
BackLink http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1360012$$DView record in ERIC
BookMark eNp9kUFrGzEQhUVIoU6aeyEEBD2vOyN5tatjCOsmxaYlcelxUVaziZyNlEpyID-g_zvrOviQQ08D8943w8w7Yoc-eGLsM8IUEfTX1WI1FSDEVKKuZrU6YBMhK1EAlHDIJqilLlDW4iM7SmkNoESlxYT9XTrv_B2_oT8b8tmZgS_IxH-9VTRr6nKIjhL_7fI9v3TWkudLEx_CM18GS0Pi8xB5Y-Lwwn9Gsq7LLngeen6ei2uXHvhN3oxQTtx53hT76Y1_djH4x630iX3ozZDo5K0es1_zZnVxWSx-fLu6OF8UnUSZC-orMJKEvS31rJTQgzEWNSrbo7DlrO8NVXCrrZRGISrUJKiW1NW1LHVJ8ph92c19imG8N-V2HTbRjytbUZUV1qBmanSd7VwUXdc-Rfdo4kvbfEepAFCMOuz0LoaUIvV7D0K7DaMdw2i3YbRvYYyIeod0Lpvtp3I0bvgfeLoDHRHt9-i6FEop-QpN1pjD
CODEN ITLTAT
CitedBy_id crossref_primary_10_1016_j_psicod_2024_04_003
crossref_primary_10_3390_app15031239
crossref_primary_10_1016_j_psicoe_2024_05_004
crossref_primary_10_1109_TCE_2024_3398824
crossref_primary_10_1057_s41599_024_02882_0
crossref_primary_10_1007_s10639_024_12653_8
crossref_primary_10_1080_1475939X_2024_2442989
crossref_primary_10_1186_s41239_023_00400_x
crossref_primary_10_3390_signals5020019
crossref_primary_10_1080_15391523_2024_2437741
crossref_primary_10_1016_j_eswa_2024_124143
Cites_doi 10.1016/j.iheduc.2018.02.001
10.1145/2723576.2723581
10.1016/j.chb.2014.09.034
10.1016/j.compedu.2013.06.009
10.1007/978-3-319-23781-7_21
10.1007/978-3-319-46568-5_9
10.11613/BM.2012.031
10.1016/j.iheduc.2015.05.002
10.1201/b10274
10.1145/3287324.3287407
10.1007/978-3-319-98572-5_13
10.1007/978-3-642-83476-9_19
10.1007/978-3-540-69132-7_64
10.1145/2960310.2960315
10.1016/j.chb.2019.106189
10.1109/TLT.2019.2911070
10.1177/0735633118757015
10.1038/sdata.2017.171
10.1111/exsy.12135
10.1007/s10489-012-0374-8
10.1016/j.iheduc.2005.06.009
10.1109/TLT.2019.2911581
10.1016/j.compedu.2015.07.002
10.1007/978-3-319-24258-3_4
10.18637/jss.v088.i03
10.1016/j.compedu.2016.09.005
10.1145/3277569
10.1016/j.compedu.2012.08.015
10.1109/TLT.2016.2616312
10.1007/978-3-319-55699-4_37
10.1109/ICALT.2018.00052
10.1145/3375462.3375469
10.1145/2723576.2723593
10.1007/978-3-319-66610-5_27
10.1177/0013164485454016
10.1080/09645290701409939
10.1109/FIE.2015.7344361
10.1016/j.compedu.2009.09.008
10.1016/j.ins.2013.03.038
10.18260/p.23643
10.1007/978-3-030-19875-6_9
10.1145/2960310.2960355
10.1145/3051457.3053974
10.1016/j.iheduc.2018.02.002
10.1109/ICDMW.2015.174
10.1109/TLT.2019.2911079
10.1016/j.iheduc.2015.11.003
10.1007/978-3-319-91280-6_301101
10.1109/NAFOSTED.2017.8108043
10.1007/BF01099821
10.1109/TE.2020.2984900
10.1109/MASSP.1986.1165342
10.1145/3051457.3053986
10.1007/978-3-319-49397-8_19
10.1111/j.1467-8535.2007.00806.x
10.1145/2330601.2330666
10.1109/TLT.2019.2911068
10.28945/1281
10.1109/5.18626
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SW
BJH
BNH
BNI
BNJ
BNO
ERI
PET
REK
WWN
DOI 10.1109/TLT.2022.3197486
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
ERIC
ERIC (Ovid)
ERIC
ERIC
ERIC (Legacy Platform)
ERIC( SilverPlatter )
ERIC
ERIC PlusText (Legacy Platform)
Education Resources Information Center (ERIC)
ERIC
DatabaseTitle CrossRef
ERIC
DatabaseTitleList

ERIC
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: ERI
  name: ERIC
  url: https://eric.ed.gov/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Education
EISSN 2372-0050
ERIC EJ1360012
EndPage 797
ExternalDocumentID EJ1360012
10_1109_TLT_2022_3197486
9852666
Genre orig-research
GroupedDBID 0R~
29I
5GY
5VS
6IK
97E
AAJGR
AAKDD
AAKPC
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABOPQ
ABQJQ
ABVLG
ACGFO
ACHQT
ACIWK
ADDVE
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RZB
AAYXX
CITATION
7SW
BJH
BNH
BNI
BNJ
BNO
ERI
PET
REK
WWN
ID FETCH-LOGICAL-c313t-ef70a3e2db594530f0aad1916df12d54ffae70b9d33a611619e2e83ec883595e3
IEDL.DBID RIE
ISSN 1939-1382
IngestDate Mon Jun 30 03:21:29 EDT 2025
Tue Sep 02 18:07:30 EDT 2025
Thu Apr 24 23:13:00 EDT 2025
Tue Jul 01 04:03:59 EDT 2025
Wed Aug 27 02:14:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess false
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-ef70a3e2db594530f0aad1916df12d54ffae70b9d33a611619e2e83ec883595e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6349-6742
PQID 2757180646
PQPubID 85505
PageCount 15
ParticipantIDs ieee_primary_9852666
crossref_citationtrail_10_1109_TLT_2022_3197486
proquest_journals_2757180646
eric_primary_EJ1360012
crossref_primary_10_1109_TLT_2022_3197486
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE Transactions on Learning Technologies
PublicationTitleAbbrev TLT
PublicationYear 2022
Publisher IEEE
Institute of Electrical and Electronics Engineers, Inc
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers, Inc
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref50
ref46
ref45
ref48
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
Pedregosa (ref66) 2011; 12
Jurafsky (ref62) 2020
ref5
ref40
Iqbal (ref6)
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Piech (ref47)
Kuzilek (ref4) 2015
ref24
ref23
ref26
ref25
ref20
ref64
ref63
ref22
ref21
ref65
Choi (ref51) 2018; 21
Knowles (ref3) 2015; 7
ref28
ref27
ref29
ref60
ref61
References_xml – ident: ref24
  doi: 10.1016/j.iheduc.2018.02.001
– ident: ref44
  doi: 10.1145/2723576.2723581
– ident: ref33
  doi: 10.1016/j.chb.2014.09.034
– ident: ref10
  doi: 10.1016/j.compedu.2013.06.009
– ident: ref28
  doi: 10.1007/978-3-319-23781-7_21
– ident: ref19
  doi: 10.1007/978-3-319-46568-5_9
– ident: ref65
  doi: 10.11613/BM.2012.031
– ident: ref12
  doi: 10.1016/j.iheduc.2015.05.002
– ident: ref18
  doi: 10.1201/b10274
– ident: ref56
  doi: 10.1145/3287324.3287407
– ident: ref40
  doi: 10.1007/978-3-319-98572-5_13
– ident: ref59
  doi: 10.1007/978-3-642-83476-9_19
– ident: ref49
  doi: 10.1007/978-3-540-69132-7_64
– ident: ref54
  doi: 10.1145/2960310.2960315
– ident: ref7
  doi: 10.1016/j.chb.2019.106189
– ident: ref36
  doi: 10.1109/TLT.2019.2911070
– ident: ref39
  doi: 10.1177/0735633118757015
– ident: ref57
  doi: 10.1038/sdata.2017.171
– ident: ref31
  doi: 10.1111/exsy.12135
– ident: ref32
  doi: 10.1007/s10489-012-0374-8
– ident: ref20
  doi: 10.1016/j.iheduc.2005.06.009
– ident: ref35
  doi: 10.1109/TLT.2019.2911581
– ident: ref11
  doi: 10.1016/j.compedu.2015.07.002
– ident: ref21
  doi: 10.1007/978-3-319-24258-3_4
– ident: ref63
  doi: 10.18637/jss.v088.i03
– ident: ref37
  doi: 10.1016/j.compedu.2016.09.005
– ident: ref55
  doi: 10.1145/3277569
– ident: ref15
  doi: 10.1016/j.compedu.2012.08.015
– start-page: 1
  year: 2020
  ident: ref62
  article-title: Hidden Markov models
  publication-title: Speech and Language Processing
– volume: 7
  start-page: 18
  issue: 3
  year: 2015
  ident: ref3
  article-title: Of needles and haystacks: Building an accurate statewide dropout early warning system in Wisconsin
  publication-title: J. Educ. Data Mining
– ident: ref16
  doi: 10.1109/TLT.2016.2616312
– ident: ref29
  doi: 10.1007/978-3-319-55699-4_37
– ident: ref43
  doi: 10.1109/ICALT.2018.00052
– ident: ref6
  article-title: Machine learning based student grade prediction: A case study
– ident: ref41
  doi: 10.1145/3375462.3375469
– ident: ref5
  doi: 10.1145/2723576.2723593
– ident: ref47
  article-title: Deep knowledge tracing
– ident: ref14
  doi: 10.1007/978-3-319-66610-5_27
– ident: ref64
  doi: 10.1177/0013164485454016
– ident: ref17
  doi: 10.1080/09645290701409939
– ident: ref1
  doi: 10.1109/FIE.2015.7344361
– ident: ref9
  doi: 10.1016/j.compedu.2009.09.008
– ident: ref30
  doi: 10.1016/j.ins.2013.03.038
– ident: ref22
  doi: 10.18260/p.23643
– ident: ref45
  doi: 10.1007/978-3-030-19875-6_9
– ident: ref53
  doi: 10.1145/2960310.2960355
– ident: ref23
  doi: 10.1145/3051457.3053974
– ident: ref25
  doi: 10.1016/j.iheduc.2018.02.002
– ident: ref42
  doi: 10.1109/ICDMW.2015.174
– ident: ref34
  doi: 10.1109/TLT.2019.2911079
– ident: ref13
  doi: 10.1016/j.iheduc.2015.11.003
– ident: ref58
  doi: 10.1007/978-3-319-91280-6_301101
– ident: ref27
  doi: 10.1109/NAFOSTED.2017.8108043
– ident: ref46
  doi: 10.1007/BF01099821
– ident: ref48
  doi: 10.1109/TE.2020.2984900
– ident: ref60
  doi: 10.1109/MASSP.1986.1165342
– ident: ref50
  doi: 10.1145/3051457.3053986
– ident: ref26
  doi: 10.1007/978-3-319-49397-8_19
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref66
  article-title: Scikit-learn: Machine learning in python
  publication-title: J. Mach. Learn. Res.
– ident: ref52
  doi: 10.1111/j.1467-8535.2007.00806.x
– ident: ref2
  doi: 10.1145/2330601.2330666
– volume: 21
  start-page: 273
  issue: 2
  year: 2018
  ident: ref51
  article-title: Learning analytics at low cost: At-risk student prediction with clicker data and systematic proactive interventions
  publication-title: J. Educ. Technol. Soc.
– start-page: 1
  year: 2015
  ident: ref4
  article-title: OU analyse: Analysing at-risk students at the open university
  publication-title: Learn. Analytics Rev.
– ident: ref38
  doi: 10.1109/TLT.2019.2911068
– ident: ref8
  doi: 10.28945/1281
– ident: ref61
  doi: 10.1109/5.18626
SSID ssj0062792
Score 2.3762598
Snippet With the onset of online education via technology-enhanced learning platforms, large amount of educational data is being generated in the form of logs,...
SourceID proquest
eric
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 783
SubjectTerms Accuracy
Assessments
At Risk Students
Behavioral sciences
CAI
Classification
Computer assisted instruction
Data mining
Data models
Decision Making
Distance learning
e-learning environments
Early warning systems
Early warning systems (EWS)
Educational Environment
Electronic learning
formative assessments
hidden Markov model (HMM)
Hidden Markov models
Higher Education
Instructional Design
Intervention
Learning Analytics
Learning Management Systems
Markov chains
Markov Processes
Modelling
Online Courses
Optimization
Prediction
Predictive models
Sequential Learning
sequential pattern analysis
Student Records
Students
Sustainable Development
Teaching Methods
teaching/learning strategies
Virtual environments
Weight reduction
Title Mining Sequential Learning Trajectories With Hidden Markov Models For Early Prediction of At-Risk Students in E-Learning Environments
URI https://ieeexplore.ieee.org/document/9852666
http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1360012
https://www.proquest.com/docview/2757180646
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXHhVSoWSjUHLkhk14kTb3ys0K5WFUVI3YreIicZQ-kqQbtZDtz533gcJ6oAIW6R_IilGXvms2e-AXhNUmY15Q6pkqqiNK9sZHKTRM48OMClsjq1nu3zg1pdpxc32c0BvB1zYYjIB5_RlD_9W37dVnu-KpvpPHP2RB3CoVOzPldrOHUVE-ENz5BCz9bv1w78JYnDpM5j5kzpe2YnRDb7cip_nMHesCwfweWwpD6e5G6678pp9eM3tsb_XfNjeBg8TDzvVeIJHFDzlIszh0COY_h56YtC4JWPonY7fIOBZfUzOtP11d_jOwCNn267L7hijpEGOaen_Y5cOm2zw2W7RU-NjB-3_NLDE2Nr8Zw5SXZ3eNUzZu7wtsFFNM6-uJdV9wyul4v1u1UUqjFElYxlF5GdCyMpqctMp5kUVhhTO7SnahsndZZaa2guSl1LaVTsHElNCeWSqjzn5F-SJ3DUtA09B5Q6N4KMFqkVqSGr0zJhx1FpqWIiM4HZIKyiClTlXDFjU3jIInThxFuweIsg3gm8GUd862k6_tH3hOU_9ltcxNK7fRM4ZvmNDUF0EzgdNKQIG3xXJPPMWXXnz6kXfx_1Eh7wT_vIl1M46rZ7euX8l6488xj9zKvvL62k7qk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH4a4wAXBoyJbgN84IJEWif-0fg4oVZltBPSOrFb5CTPY6xKpjblwH3_92zHiSZAiFuk2Jalz_b3nv3e9wDeI2OixNR6qiiLiKeFiXSqk8jSg3W4pCi58WqfZ3J2wU8vxeUOfOxzYRDRB5_h0H36t_yyLrbuqmykUmH5RD6Cx5b3uWiztbpzVzopvO4hkqrRcr607l-SWK_U2swuV_oB8YTYZl9Q5Y9T2FPLdA8W3aTaiJKb4bbJh8Wv3_Qa_3fWz-FZsDHJSbsoXsAOVi9deeYQyrEPdwtfFoKc-zhqu8dXJOisXhFLXj_8Tb51ocm36-Y7mTmVkYq4rJ76J3HF01YbMq3XxIsjk69r99bjBia1ISdOlWRzQ85bzcwNua7IJOpHnzzIq3sFF9PJ8tMsCvUYooLFrInQjKlmmJS5UFwwaqjWpfX3ZGnipBTcGI1jmquSMS1ja0oqTDBlWKSpS_9FdgC7VV3hayBMpZqiVpQbyjUaxfPEmY5SMRkj6gGMOrCyIoiVu5oZq8w7LVRlFt7MwZsFeAfwoe9x2wp1_KPtgcO_bzc5jZk3_Aaw7_DrfwToBnDcrZAsbPFNloyF5XVr0cnDv_d6B09my8U8m38--3IET90E2jiYY9ht1lt8Y62ZJn_rF_E9rLXw9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mining+Sequential+Learning+Trajectories+With+Hidden+Markov+Models+For+Early+Prediction+of+At-Risk+Students+in+E-Learning+Environments&rft.jtitle=IEEE+transactions+on+learning+technologies&rft.au=Gupta%2C+Anika&rft.au=Garg%2C+Deepak&rft.au=Kumar%2C+Parteek&rft.date=2022-12-01&rft.pub=IEEE&rft.eissn=2372-0050&rft.volume=15&rft.issue=6&rft.spage=783&rft.epage=797&rft_id=info:doi/10.1109%2FTLT.2022.3197486&rft.externalDocID=9852666
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1382&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1382&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1382&client=summon