Mining Sequential Learning Trajectories With Hidden Markov Models For Early Prediction of At-Risk Students in E-Learning Environments
With the onset of online education via technology-enhanced learning platforms, large amount of educational data is being generated in the form of logs, clickstreams, performance, etc. These Virtual Learning Environments provide an opportunity to the researchers for the application of educational dat...
Saved in:
Published in | IEEE Transactions on Learning Technologies Vol. 15; no. 6; pp. 783 - 797 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.12.2022
Institute of Electrical and Electronics Engineers, Inc The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1939-1382 2372-0050 |
DOI | 10.1109/TLT.2022.3197486 |
Cover
Abstract | With the onset of online education via technology-enhanced learning platforms, large amount of educational data is being generated in the form of logs, clickstreams, performance, etc. These Virtual Learning Environments provide an opportunity to the researchers for the application of educational data mining and learning analytics, for mining the students learning behavior. This further helps them in data-driven decision making through timely intervention via early warning systems (EWS), reflecting and optimizing educational environments, and refining pedagogical designs. In this, the role of EWS is to timely identify the at-risk students. This study proposes a modeling methodology deploying interpretable Hidden Markov Model for mining of the sequential learning behavior built upon derived performance features from light-weight assessments. The public OULA dataset having diversified courses and 32 593 student records is used for validation. The results on the unseen test data achieve a classification accuracy ranging from 87.67% to 94.83% and AUC from 0.927 to 0.989, and outperforms other baseline models. For implementation of EWS, the study also predicts the optimal time-period, during the first and second quarter of the course with sufficient number of light-weight assessments in place. With the outcomes, this study tries to establish an efficient generalized modeling framework that may lead the higher educational institutes toward sustainable development. |
---|---|
AbstractList | With the onset of online education via technology-enhanced learning platforms, large amount of educational data is being generated in the form of logs, clickstreams, performance, etc. These Virtual Learning Environments provide an opportunity to the researchers for the application of educational data mining and learning analytics, for mining the students learning behavior. This further helps them in data-driven decision making through timely intervention via early warning systems (EWS), reflecting and optimizing educational environments, and refining pedagogical designs. In this, the role of EWS is to timely identify the at-risk students. This study proposes a modeling methodology deploying interpretable Hidden Markov Model for mining of the sequential learning behavior built upon derived performance features from light-weight assessments. The public OULA dataset having diversified courses and 32 593 student records is used for validation. The results on the unseen test data achieve a classification accuracy ranging from 87.67% to 94.83% and AUC from 0.927 to 0.989, and outperforms other baseline models. For implementation of EWS, the study also predicts the optimal time-period, during the first and second quarter of the course with sufficient number of light-weight assessments in place. With the outcomes, this study tries to establish an efficient generalized modeling framework that may lead the higher educational institutes toward sustainable development. |
Audience | Higher Education Postsecondary Education |
Author | Garg, Deepak Kumar, Parteek Gupta, Anika |
Author_xml | – sequence: 1 givenname: Anika orcidid: 0000-0001-6349-6742 surname: Gupta fullname: Gupta, Anika email: anikagupta2010@gmail.com organization: Bennett University, Greater Noida, India – sequence: 2 givenname: Deepak surname: Garg fullname: Garg, Deepak email: deepakgarg108@gmail.com organization: Bennett University, Greater Noida, India – sequence: 3 givenname: Parteek surname: Kumar fullname: Kumar, Parteek email: parteek.bhatia@thapar.edu organization: Thapar Institute of Engineering & Technology, Patiala, India |
BackLink | http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1360012$$DView record in ERIC |
BookMark | eNp9kUFrGzEQhUVIoU6aeyEEBD2vOyN5tatjCOsmxaYlcelxUVaziZyNlEpyID-g_zvrOviQQ08D8943w8w7Yoc-eGLsM8IUEfTX1WI1FSDEVKKuZrU6YBMhK1EAlHDIJqilLlDW4iM7SmkNoESlxYT9XTrv_B2_oT8b8tmZgS_IxH-9VTRr6nKIjhL_7fI9v3TWkudLEx_CM18GS0Pi8xB5Y-Lwwn9Gsq7LLngeen6ei2uXHvhN3oxQTtx53hT76Y1_djH4x630iX3ozZDo5K0es1_zZnVxWSx-fLu6OF8UnUSZC-orMJKEvS31rJTQgzEWNSrbo7DlrO8NVXCrrZRGISrUJKiW1NW1LHVJ8ph92c19imG8N-V2HTbRjytbUZUV1qBmanSd7VwUXdc-Rfdo4kvbfEepAFCMOuz0LoaUIvV7D0K7DaMdw2i3YbRvYYyIeod0Lpvtp3I0bvgfeLoDHRHt9-i6FEop-QpN1pjD |
CODEN | ITLTAT |
CitedBy_id | crossref_primary_10_1016_j_psicod_2024_04_003 crossref_primary_10_3390_app15031239 crossref_primary_10_1016_j_psicoe_2024_05_004 crossref_primary_10_1109_TCE_2024_3398824 crossref_primary_10_1057_s41599_024_02882_0 crossref_primary_10_1007_s10639_024_12653_8 crossref_primary_10_1080_1475939X_2024_2442989 crossref_primary_10_1186_s41239_023_00400_x crossref_primary_10_3390_signals5020019 crossref_primary_10_1080_15391523_2024_2437741 crossref_primary_10_1016_j_eswa_2024_124143 |
Cites_doi | 10.1016/j.iheduc.2018.02.001 10.1145/2723576.2723581 10.1016/j.chb.2014.09.034 10.1016/j.compedu.2013.06.009 10.1007/978-3-319-23781-7_21 10.1007/978-3-319-46568-5_9 10.11613/BM.2012.031 10.1016/j.iheduc.2015.05.002 10.1201/b10274 10.1145/3287324.3287407 10.1007/978-3-319-98572-5_13 10.1007/978-3-642-83476-9_19 10.1007/978-3-540-69132-7_64 10.1145/2960310.2960315 10.1016/j.chb.2019.106189 10.1109/TLT.2019.2911070 10.1177/0735633118757015 10.1038/sdata.2017.171 10.1111/exsy.12135 10.1007/s10489-012-0374-8 10.1016/j.iheduc.2005.06.009 10.1109/TLT.2019.2911581 10.1016/j.compedu.2015.07.002 10.1007/978-3-319-24258-3_4 10.18637/jss.v088.i03 10.1016/j.compedu.2016.09.005 10.1145/3277569 10.1016/j.compedu.2012.08.015 10.1109/TLT.2016.2616312 10.1007/978-3-319-55699-4_37 10.1109/ICALT.2018.00052 10.1145/3375462.3375469 10.1145/2723576.2723593 10.1007/978-3-319-66610-5_27 10.1177/0013164485454016 10.1080/09645290701409939 10.1109/FIE.2015.7344361 10.1016/j.compedu.2009.09.008 10.1016/j.ins.2013.03.038 10.18260/p.23643 10.1007/978-3-030-19875-6_9 10.1145/2960310.2960355 10.1145/3051457.3053974 10.1016/j.iheduc.2018.02.002 10.1109/ICDMW.2015.174 10.1109/TLT.2019.2911079 10.1016/j.iheduc.2015.11.003 10.1007/978-3-319-91280-6_301101 10.1109/NAFOSTED.2017.8108043 10.1007/BF01099821 10.1109/TE.2020.2984900 10.1109/MASSP.1986.1165342 10.1145/3051457.3053986 10.1007/978-3-319-49397-8_19 10.1111/j.1467-8535.2007.00806.x 10.1145/2330601.2330666 10.1109/TLT.2019.2911068 10.28945/1281 10.1109/5.18626 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SW BJH BNH BNI BNJ BNO ERI PET REK WWN |
DOI | 10.1109/TLT.2022.3197486 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef ERIC ERIC (Ovid) ERIC ERIC ERIC (Legacy Platform) ERIC( SilverPlatter ) ERIC ERIC PlusText (Legacy Platform) Education Resources Information Center (ERIC) ERIC |
DatabaseTitle | CrossRef ERIC |
DatabaseTitleList | ERIC |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: ERI name: ERIC url: https://eric.ed.gov/ sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Education |
EISSN | 2372-0050 |
ERIC | EJ1360012 |
EndPage | 797 |
ExternalDocumentID | EJ1360012 10_1109_TLT_2022_3197486 9852666 |
Genre | orig-research |
GroupedDBID | 0R~ 29I 5GY 5VS 6IK 97E AAJGR AAKDD AAKPC AARMG AASAJ AAWTH ABAZT ABJNI ABOPQ ABQJQ ABVLG ACGFO ACHQT ACIWK ADDVE AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL P2P PQQKQ RIA RIE RNS RZB AAYXX CITATION 7SW BJH BNH BNI BNJ BNO ERI PET REK WWN |
ID | FETCH-LOGICAL-c313t-ef70a3e2db594530f0aad1916df12d54ffae70b9d33a611619e2e83ec883595e3 |
IEDL.DBID | RIE |
ISSN | 1939-1382 |
IngestDate | Mon Jun 30 03:21:29 EDT 2025 Tue Sep 02 18:07:30 EDT 2025 Thu Apr 24 23:13:00 EDT 2025 Tue Jul 01 04:03:59 EDT 2025 Wed Aug 27 02:14:27 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | false |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c313t-ef70a3e2db594530f0aad1916df12d54ffae70b9d33a611619e2e83ec883595e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6349-6742 |
PQID | 2757180646 |
PQPubID | 85505 |
PageCount | 15 |
ParticipantIDs | ieee_primary_9852666 crossref_citationtrail_10_1109_TLT_2022_3197486 proquest_journals_2757180646 eric_primary_EJ1360012 crossref_primary_10_1109_TLT_2022_3197486 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE Transactions on Learning Technologies |
PublicationTitleAbbrev | TLT |
PublicationYear | 2022 |
Publisher | IEEE Institute of Electrical and Electronics Engineers, Inc The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers, Inc – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref50 ref46 ref45 ref48 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 Pedregosa (ref66) 2011; 12 Jurafsky (ref62) 2020 ref5 ref40 Iqbal (ref6) ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Piech (ref47) Kuzilek (ref4) 2015 ref24 ref23 ref26 ref25 ref20 ref64 ref63 ref22 ref21 ref65 Choi (ref51) 2018; 21 Knowles (ref3) 2015; 7 ref28 ref27 ref29 ref60 ref61 |
References_xml | – ident: ref24 doi: 10.1016/j.iheduc.2018.02.001 – ident: ref44 doi: 10.1145/2723576.2723581 – ident: ref33 doi: 10.1016/j.chb.2014.09.034 – ident: ref10 doi: 10.1016/j.compedu.2013.06.009 – ident: ref28 doi: 10.1007/978-3-319-23781-7_21 – ident: ref19 doi: 10.1007/978-3-319-46568-5_9 – ident: ref65 doi: 10.11613/BM.2012.031 – ident: ref12 doi: 10.1016/j.iheduc.2015.05.002 – ident: ref18 doi: 10.1201/b10274 – ident: ref56 doi: 10.1145/3287324.3287407 – ident: ref40 doi: 10.1007/978-3-319-98572-5_13 – ident: ref59 doi: 10.1007/978-3-642-83476-9_19 – ident: ref49 doi: 10.1007/978-3-540-69132-7_64 – ident: ref54 doi: 10.1145/2960310.2960315 – ident: ref7 doi: 10.1016/j.chb.2019.106189 – ident: ref36 doi: 10.1109/TLT.2019.2911070 – ident: ref39 doi: 10.1177/0735633118757015 – ident: ref57 doi: 10.1038/sdata.2017.171 – ident: ref31 doi: 10.1111/exsy.12135 – ident: ref32 doi: 10.1007/s10489-012-0374-8 – ident: ref20 doi: 10.1016/j.iheduc.2005.06.009 – ident: ref35 doi: 10.1109/TLT.2019.2911581 – ident: ref11 doi: 10.1016/j.compedu.2015.07.002 – ident: ref21 doi: 10.1007/978-3-319-24258-3_4 – ident: ref63 doi: 10.18637/jss.v088.i03 – ident: ref37 doi: 10.1016/j.compedu.2016.09.005 – ident: ref55 doi: 10.1145/3277569 – ident: ref15 doi: 10.1016/j.compedu.2012.08.015 – start-page: 1 year: 2020 ident: ref62 article-title: Hidden Markov models publication-title: Speech and Language Processing – volume: 7 start-page: 18 issue: 3 year: 2015 ident: ref3 article-title: Of needles and haystacks: Building an accurate statewide dropout early warning system in Wisconsin publication-title: J. Educ. Data Mining – ident: ref16 doi: 10.1109/TLT.2016.2616312 – ident: ref29 doi: 10.1007/978-3-319-55699-4_37 – ident: ref43 doi: 10.1109/ICALT.2018.00052 – ident: ref6 article-title: Machine learning based student grade prediction: A case study – ident: ref41 doi: 10.1145/3375462.3375469 – ident: ref5 doi: 10.1145/2723576.2723593 – ident: ref47 article-title: Deep knowledge tracing – ident: ref14 doi: 10.1007/978-3-319-66610-5_27 – ident: ref64 doi: 10.1177/0013164485454016 – ident: ref17 doi: 10.1080/09645290701409939 – ident: ref1 doi: 10.1109/FIE.2015.7344361 – ident: ref9 doi: 10.1016/j.compedu.2009.09.008 – ident: ref30 doi: 10.1016/j.ins.2013.03.038 – ident: ref22 doi: 10.18260/p.23643 – ident: ref45 doi: 10.1007/978-3-030-19875-6_9 – ident: ref53 doi: 10.1145/2960310.2960355 – ident: ref23 doi: 10.1145/3051457.3053974 – ident: ref25 doi: 10.1016/j.iheduc.2018.02.002 – ident: ref42 doi: 10.1109/ICDMW.2015.174 – ident: ref34 doi: 10.1109/TLT.2019.2911079 – ident: ref13 doi: 10.1016/j.iheduc.2015.11.003 – ident: ref58 doi: 10.1007/978-3-319-91280-6_301101 – ident: ref27 doi: 10.1109/NAFOSTED.2017.8108043 – ident: ref46 doi: 10.1007/BF01099821 – ident: ref48 doi: 10.1109/TE.2020.2984900 – ident: ref60 doi: 10.1109/MASSP.1986.1165342 – ident: ref50 doi: 10.1145/3051457.3053986 – ident: ref26 doi: 10.1007/978-3-319-49397-8_19 – volume: 12 start-page: 2825 year: 2011 ident: ref66 article-title: Scikit-learn: Machine learning in python publication-title: J. Mach. Learn. Res. – ident: ref52 doi: 10.1111/j.1467-8535.2007.00806.x – ident: ref2 doi: 10.1145/2330601.2330666 – volume: 21 start-page: 273 issue: 2 year: 2018 ident: ref51 article-title: Learning analytics at low cost: At-risk student prediction with clicker data and systematic proactive interventions publication-title: J. Educ. Technol. Soc. – start-page: 1 year: 2015 ident: ref4 article-title: OU analyse: Analysing at-risk students at the open university publication-title: Learn. Analytics Rev. – ident: ref38 doi: 10.1109/TLT.2019.2911068 – ident: ref8 doi: 10.28945/1281 – ident: ref61 doi: 10.1109/5.18626 |
SSID | ssj0062792 |
Score | 2.3762598 |
Snippet | With the onset of online education via technology-enhanced learning platforms, large amount of educational data is being generated in the form of logs,... |
SourceID | proquest eric crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 783 |
SubjectTerms | Accuracy Assessments At Risk Students Behavioral sciences CAI Classification Computer assisted instruction Data mining Data models Decision Making Distance learning e-learning environments Early warning systems Early warning systems (EWS) Educational Environment Electronic learning formative assessments hidden Markov model (HMM) Hidden Markov models Higher Education Instructional Design Intervention Learning Analytics Learning Management Systems Markov chains Markov Processes Modelling Online Courses Optimization Prediction Predictive models Sequential Learning sequential pattern analysis Student Records Students Sustainable Development Teaching Methods teaching/learning strategies Virtual environments Weight reduction |
Title | Mining Sequential Learning Trajectories With Hidden Markov Models For Early Prediction of At-Risk Students in E-Learning Environments |
URI | https://ieeexplore.ieee.org/document/9852666 http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1360012 https://www.proquest.com/docview/2757180646 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXHhVSoWSjUHLkhk14kTb3ys0K5WFUVI3YreIicZQ-kqQbtZDtz533gcJ6oAIW6R_IilGXvms2e-AXhNUmY15Q6pkqqiNK9sZHKTRM48OMClsjq1nu3zg1pdpxc32c0BvB1zYYjIB5_RlD_9W37dVnu-KpvpPHP2RB3CoVOzPldrOHUVE-ENz5BCz9bv1w78JYnDpM5j5kzpe2YnRDb7cip_nMHesCwfweWwpD6e5G6678pp9eM3tsb_XfNjeBg8TDzvVeIJHFDzlIszh0COY_h56YtC4JWPonY7fIOBZfUzOtP11d_jOwCNn267L7hijpEGOaen_Y5cOm2zw2W7RU-NjB-3_NLDE2Nr8Zw5SXZ3eNUzZu7wtsFFNM6-uJdV9wyul4v1u1UUqjFElYxlF5GdCyMpqctMp5kUVhhTO7SnahsndZZaa2guSl1LaVTsHElNCeWSqjzn5F-SJ3DUtA09B5Q6N4KMFqkVqSGr0zJhx1FpqWIiM4HZIKyiClTlXDFjU3jIInThxFuweIsg3gm8GUd862k6_tH3hOU_9ltcxNK7fRM4ZvmNDUF0EzgdNKQIG3xXJPPMWXXnz6kXfx_1Eh7wT_vIl1M46rZ7euX8l6488xj9zKvvL62k7qk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH4a4wAXBoyJbgN84IJEWif-0fg4oVZltBPSOrFb5CTPY6xKpjblwH3_92zHiSZAiFuk2Jalz_b3nv3e9wDeI2OixNR6qiiLiKeFiXSqk8jSg3W4pCi58WqfZ3J2wU8vxeUOfOxzYRDRB5_h0H36t_yyLrbuqmykUmH5RD6Cx5b3uWiztbpzVzopvO4hkqrRcr607l-SWK_U2swuV_oB8YTYZl9Q5Y9T2FPLdA8W3aTaiJKb4bbJh8Wv3_Qa_3fWz-FZsDHJSbsoXsAOVi9deeYQyrEPdwtfFoKc-zhqu8dXJOisXhFLXj_8Tb51ocm36-Y7mTmVkYq4rJ76J3HF01YbMq3XxIsjk69r99bjBia1ISdOlWRzQ85bzcwNua7IJOpHnzzIq3sFF9PJ8tMsCvUYooLFrInQjKlmmJS5UFwwaqjWpfX3ZGnipBTcGI1jmquSMS1ja0oqTDBlWKSpS_9FdgC7VV3hayBMpZqiVpQbyjUaxfPEmY5SMRkj6gGMOrCyIoiVu5oZq8w7LVRlFt7MwZsFeAfwoe9x2wp1_KPtgcO_bzc5jZk3_Aaw7_DrfwToBnDcrZAsbPFNloyF5XVr0cnDv_d6B09my8U8m38--3IET90E2jiYY9ht1lt8Y62ZJn_rF_E9rLXw9Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mining+Sequential+Learning+Trajectories+With+Hidden+Markov+Models+For+Early+Prediction+of+At-Risk+Students+in+E-Learning+Environments&rft.jtitle=IEEE+transactions+on+learning+technologies&rft.au=Gupta%2C+Anika&rft.au=Garg%2C+Deepak&rft.au=Kumar%2C+Parteek&rft.date=2022-12-01&rft.pub=IEEE&rft.eissn=2372-0050&rft.volume=15&rft.issue=6&rft.spage=783&rft.epage=797&rft_id=info:doi/10.1109%2FTLT.2022.3197486&rft.externalDocID=9852666 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1382&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1382&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1382&client=summon |