Resource utilization of lithium slag supplementary cementitious materials through mechanical activation: mechanism investigation and process optimization

The use of lithium slag (LS) in the preparation of supplementary cementitious materials (SCM) effectively mitigates the environmental pollution caused by open-air storage and landfill disposal of LS. Focusing on region-specific LS as the subject of study, this research proposes optimizing the mechan...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental research Vol. 283; p. 122112
Main Authors Wang, Haitao, Wu, Houqin, Tian, Jia, Liu, Lang, Zhu, Mengbo, Shu, Kaiqian, Tang, Haijun, Liu, Min, Xu, Longhua
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 15.10.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The use of lithium slag (LS) in the preparation of supplementary cementitious materials (SCM) effectively mitigates the environmental pollution caused by open-air storage and landfill disposal of LS. Focusing on region-specific LS as the subject of study, this research proposes optimizing the mechanical properties of SCMs by regulating the grinding time and LS dosage. Based on the analysis of the hydration products and microstructure of the SCM, the LS with the median particle size of 11.71 μm demonstrated the highest activity index, achieving a 28-day compressive strength of 107 % compared to ordinary Portland cement. Remarkably, the 3-day strength also exceeded that of pure cement, likely due to the dilution effect of LS, which provides additional nucleation sites for hydration products like C-S-H and AFt. With 30 % LS replacing cement, the compressive strength of SCM reached 54.61 MPa, comparable to that of pure cement. The introduction of LS significantly reduced the interparticle pore volume. These findings provided a scientific basis for promoting the resource utilization of LS waste and its application in SCM production. •The SCM incorporating LS from Western Sichuan exhibits unique characteristics, particularly high early-age strength.•Grinding LS facilitates the faster and earlier formation of AFt.•SCM with 30 % LS can serve as a direct substitute for cement in various applications.•LS's introduction reduces SCM interparticle pore volume.
AbstractList The use of lithium slag (LS) in the preparation of supplementary cementitious materials (SCM) effectively mitigates the environmental pollution caused by open-air storage and landfill disposal of LS. Focusing on region-specific LS as the subject of study, this research proposes optimizing the mechanical properties of SCMs by regulating the grinding time and LS dosage. Based on the analysis of the hydration products and microstructure of the SCM, the LS with the median particle size of 11.71 μm demonstrated the highest activity index, achieving a 28-day compressive strength of 107 % compared to ordinary Portland cement. Remarkably, the 3-day strength also exceeded that of pure cement, likely due to the dilution effect of LS, which provides additional nucleation sites for hydration products like C-S-H and AFt. With 30 % LS replacing cement, the compressive strength of SCM reached 54.61 MPa, comparable to that of pure cement. The introduction of LS significantly reduced the interparticle pore volume. These findings provided a scientific basis for promoting the resource utilization of LS waste and its application in SCM production. •The SCM incorporating LS from Western Sichuan exhibits unique characteristics, particularly high early-age strength.•Grinding LS facilitates the faster and earlier formation of AFt.•SCM with 30 % LS can serve as a direct substitute for cement in various applications.•LS's introduction reduces SCM interparticle pore volume.
The use of lithium slag (LS) in the preparation of supplementary cementitious materials (SCM) effectively mitigates the environmental pollution caused by open-air storage and landfill disposal of LS. Focusing on region-specific LS as the subject of study, this research proposes optimizing the mechanical properties of SCMs by regulating the grinding time and LS dosage. Based on the analysis of the hydration products and microstructure of the SCM, the LS with the median particle size of 11.71 μm demonstrated the highest activity index, achieving a 28-day compressive strength of 107% compared to ordinary Portland cement. Remarkably, the 3-day strength also exceeded that of pure cement, likely due to the dilution effect of LS, which provides additional nucleation sites for hydration products like C-S-H and AFt. With 30% LS replacing cement, the compressive strength of SCM reached 54.61 MPa, comparable to that of pure cement. The introduction of LS significantly reduced the interparticle pore volume. These findings provided a scientific basis for promoting the resource utilization of LS waste and its application in SCM production.The use of lithium slag (LS) in the preparation of supplementary cementitious materials (SCM) effectively mitigates the environmental pollution caused by open-air storage and landfill disposal of LS. Focusing on region-specific LS as the subject of study, this research proposes optimizing the mechanical properties of SCMs by regulating the grinding time and LS dosage. Based on the analysis of the hydration products and microstructure of the SCM, the LS with the median particle size of 11.71 μm demonstrated the highest activity index, achieving a 28-day compressive strength of 107% compared to ordinary Portland cement. Remarkably, the 3-day strength also exceeded that of pure cement, likely due to the dilution effect of LS, which provides additional nucleation sites for hydration products like C-S-H and AFt. With 30% LS replacing cement, the compressive strength of SCM reached 54.61 MPa, comparable to that of pure cement. The introduction of LS significantly reduced the interparticle pore volume. These findings provided a scientific basis for promoting the resource utilization of LS waste and its application in SCM production.
The use of lithium slag (LS) in the preparation of supplementary cementitious materials (SCM) effectively mitigates the environmental pollution caused by open-air storage and landfill disposal of LS. Focusing on region-specific LS as the subject of study, this research proposes optimizing the mechanical properties of SCMs by regulating the grinding time and LS dosage. Based on the analysis of the hydration products and microstructure of the SCM, the LS with the median particle size of 11.71 μm demonstrated the highest activity index, achieving a 28-day compressive strength of 107 % compared to ordinary Portland cement. Remarkably, the 3-day strength also exceeded that of pure cement, likely due to the dilution effect of LS, which provides additional nucleation sites for hydration products like C-S-H and AFt. With 30 % LS replacing cement, the compressive strength of SCM reached 54.61 MPa, comparable to that of pure cement. The introduction of LS significantly reduced the interparticle pore volume. These findings provided a scientific basis for promoting the resource utilization of LS waste and its application in SCM production.
ArticleNumber 122112
Author Tian, Jia
Shu, Kaiqian
Tang, Haijun
Wang, Haitao
Liu, Lang
Liu, Min
Wu, Houqin
Zhu, Mengbo
Xu, Longhua
Author_xml – sequence: 1
  givenname: Haitao
  surname: Wang
  fullname: Wang, Haitao
  organization: Key Laboratory of Solid Waste Treatment and Resource Recycle Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China
– sequence: 2
  givenname: Houqin
  surname: Wu
  fullname: Wu, Houqin
  email: wuhouqin@swust.edu.cn
  organization: School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China
– sequence: 3
  givenname: Jia
  surname: Tian
  fullname: Tian, Jia
  organization: Key Laboratory of Solid Waste Treatment and Resource Recycle Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China
– sequence: 4
  givenname: Lang
  surname: Liu
  fullname: Liu, Lang
  email: liulang@xust.edu.cn
  organization: Energy School, Xi'an University of Science and Technology, Xi'an, 710054, PR China
– sequence: 5
  givenname: Mengbo
  surname: Zhu
  fullname: Zhu, Mengbo
  organization: Energy School, Xi'an University of Science and Technology, Xi'an, 710054, PR China
– sequence: 6
  givenname: Kaiqian
  surname: Shu
  fullname: Shu, Kaiqian
  organization: Key Laboratory of Solid Waste Treatment and Resource Recycle Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China
– sequence: 7
  givenname: Haijun
  surname: Tang
  fullname: Tang, Haijun
  organization: Key Laboratory of Solid Waste Treatment and Resource Recycle Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China
– sequence: 8
  givenname: Min
  surname: Liu
  fullname: Liu, Min
  organization: Key Laboratory of Solid Waste Treatment and Resource Recycle Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China
– sequence: 9
  givenname: Longhua
  surname: Xu
  fullname: Xu, Longhua
  organization: Key Laboratory of Solid Waste Treatment and Resource Recycle Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40516898$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URKeFN0DISzYZbMfO2CyQUEULUiUkBGvLcW5mPIrtYDsjwZvwtrjNlCUr_-i75557zxW6CDEAQq8p2VJCu3fHLYRTgrxlhIktZYxS9gxtKFFdQ5RoL9CGENo2qhX0El3lfKxPKlryAl1yImgnldygP98gxyVZwEtxk_ttiosBxxFPrhzc4nGezB7nZZ4n8BCKSb-wfby5Si4Ze1MgOTNlXA4pLvsD9mAPJjhrJmxscadHyfdP39ljF06Qi9uvvUwY8JyihZxxnIvzZxMv0fOxysKr83mNftx--n7zubn_evfl5uN9Y1valgZ6png_AJcDh46znaU9MWPfcWt6KVQ7qhFGwQmRwCnpDTc92yllmZSDFKy9Rm9X3Wri51KNae-yhWkyAeqAumVU7naio7Sib87o0nsY9JycrwvRT-usAF8Bm2LOCcZ_CCX6ITV91Gtq-iE1vaZWyz6sZVDnPDlIOlsHwcLgEtiih-j-L_AXajCnTg
Cites_doi 10.1016/j.conbuildmat.2016.06.014
10.1016/j.conbuildmat.2020.121567
10.1016/j.jenvman.2023.118658
10.1016/j.conbuildmat.2013.09.058
10.1016/j.conbuildmat.2024.136416
10.1007/s11595-015-1113-x
10.1016/j.conbuildmat.2013.10.024
10.1016/j.cemconcomp.2020.103598
10.1016/j.jclepro.2020.125241
10.1016/j.jobe.2017.05.005
10.1016/j.scitotenv.2023.161631
10.1016/j.conbuildmat.2022.129692
10.1016/j.cemconcomp.2021.104109
10.1016/j.cemconcomp.2024.105469
10.1016/j.conbuildmat.2024.135073
10.1016/j.cemconcomp.2023.105262
10.1016/j.cemconres.2004.06.015
10.1016/j.jclepro.2019.04.018
10.1016/j.aej.2024.05.057
10.1016/j.conbuildmat.2019.116831
10.1039/C6RA03119F
10.1016/j.cemconcomp.2021.103982
10.1016/j.jhazmat.2018.03.063
10.1016/j.cemconres.2017.02.008
10.1016/j.powtec.2023.118839
10.1016/j.jclepro.2023.138269
10.1016/j.powtec.2015.04.078
10.1016/j.conbuildmat.2019.01.099
10.1016/j.conbuildmat.2020.120465
10.3389/fmats.2023.1134622
10.1016/j.powtec.2020.07.052
10.1016/j.conbuildmat.2023.131768
10.1016/j.conbuildmat.2024.138817
10.1016/j.jenvman.2020.111274
10.1016/j.conbuildmat.2024.137096
10.1016/j.conbuildmat.2023.134615
10.1016/j.istruc.2025.108996
10.1016/j.conbuildmat.2021.124849
10.1016/j.conbuildmat.2023.133302
10.1016/j.jclepro.2020.122212
10.1016/j.conbuildmat.2024.136648
10.1016/j.conbuildmat.2020.118113
10.1016/j.powtec.2021.06.016
10.1016/j.conbuildmat.2023.133375
10.1016/j.powtec.2022.118142
10.1016/j.jclepro.2019.119528
10.1016/j.conbuildmat.2012.12.069
ContentType Journal Article
Copyright 2025 Elsevier Inc.
Copyright © 2025 Elsevier Inc. All rights reserved.
Copyright © 2025. Published by Elsevier Inc.
Copyright_xml – notice: 2025 Elsevier Inc.
– notice: Copyright © 2025 Elsevier Inc. All rights reserved.
– notice: Copyright © 2025. Published by Elsevier Inc.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.envres.2025.122112
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Environmental Sciences
EISSN 1096-0953
ExternalDocumentID 40516898
10_1016_j_envres_2025_122112
S0013935125013635
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
5VS
7-5
71M
8P~
9JM
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACNCT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLECG
BLXMC
BNPGV
C45
CS3
DM4
DU5
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
L7B
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSJ
SSZ
T5K
TAE
TEORI
TN5
TWZ
UPT
WH7
ZCA
ZU3
~02
~G-
~KM
.GJ
29G
3O-
53G
AAQXK
AAYJJ
AAYXX
ABEFU
ABFNM
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AEGFY
AFFNX
AGQPQ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
LG5
LY8
M41
OHT
R2-
RIG
SEN
VOH
WUQ
XOL
XPP
ZGI
ZKB
ZMT
ZXP
NPM
7X8
ID FETCH-LOGICAL-c313t-eb294bde48d4e6427c1b0afb64cab8593f9fef54008e410ba4ab2799c288d8523
IEDL.DBID .~1
ISSN 0013-9351
1096-0953
IngestDate Sun Jun 15 17:00:49 EDT 2025
Mon Jul 21 06:06:23 EDT 2025
Thu Jul 03 08:13:50 EDT 2025
Sat Jul 19 17:10:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Mechanical properties
Supplementary cementitious materials
Lithium slag
Mechanical activation
Microstructural analysis
Language English
License Copyright © 2025 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-eb294bde48d4e6427c1b0afb64cab8593f9fef54008e410ba4ab2799c288d8523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 40516898
PQID 3218775611
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3218775611
pubmed_primary_40516898
crossref_primary_10_1016_j_envres_2025_122112
elsevier_sciencedirect_doi_10_1016_j_envres_2025_122112
PublicationCentury 2000
PublicationDate 2025-10-15
PublicationDateYYYYMMDD 2025-10-15
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-15
  day: 15
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Environmental research
PublicationTitleAlternate Environ Res
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Rahman (bib27) 2023; 143
XIAMEN ISO STANDARD SAND CO., L., China ISO standard sand.
Ruan (bib30) 2023; 419
Wang (bib42) 2023; 404
Ali Shah (bib2) 2021; 291
Tan (bib34) 2021; 267
Wang (bib44) 2024; 411
Althoey (bib3) 2022; 45
Kundu (bib19) 2023; 415
Siriluck (bib32) 2021; 391
Wang (bib39) 2014; 50
Hounsi (bib16) 2013; 42
Bahafid (bib5) 2017; 95
Zhou (bib58) 2023; 75
He (bib15) 2018; 353
Liu (bib22) 2019; 225
Xie (bib47) 2023; 18
(Accessed 15 April 2025).
Zhai (bib53) 2021; 39
Tan (bib36) 2015; 30
Dong (bib9) 2023; 10
Wang (bib40) 2023; 345
Alarcon-Ruiz (bib1) 2005; 35
Patil, Anandhan (bib24) 2015; 281
Tian (bib37) 2024; 101
Zhang (bib54) 2015; 37
He (bib13) 2023; 363
Yang (bib50) 2024; 91
Chen (bib6) 2024
Woskowski (bib45) 2024; 438
Gu (bib11) 2023; 396
Yingliang (bib51) 2020; 375
Xue (bib49) 2020; 241
Li (bib20) 2020; 269
Ruan (bib31) 2023; 869
Liu (bib21) 2021; 306
Taj (bib33) 2023; 428
He (bib12) 2025; 77
Cheng (bib7) 2022; 399
Zhu (bib59) 2024; 89
Wang (bib38) 2020; 110
Yoshida (bib52) 2021; 121
Zhao (bib57) 2021; 118
Amin (bib4) 2024; 416
Zhang (bib55) 2020; 276
Zhang (bib56) 2016; 121
Wang (bib41) 2024; 451
Rahman (bib28) 2024; 148
He (bib14) 2021; 271
Ren (bib29) 2024; 430
Wang (bib43) 2019; 203
Deng (bib8) 2014; 50
Qiu (bib25) 2016; 6
Qoku (bib26) 2017; 12
Tan (bib35) 2020; 250
Kai (bib18) 2023; 406
Hu (bib17) 2023; 138–141
Pang (bib23) 2022; 57
Xu (bib48) 2019; 229
Gu (bib10) 2024; 432
10.1016/j.envres.2025.122112_bib46
Zhai (10.1016/j.envres.2025.122112_bib53) 2021; 39
Tian (10.1016/j.envres.2025.122112_bib37) 2024; 101
Bahafid (10.1016/j.envres.2025.122112_bib5) 2017; 95
Tan (10.1016/j.envres.2025.122112_bib34) 2021; 267
Kundu (10.1016/j.envres.2025.122112_bib19) 2023; 415
Xue (10.1016/j.envres.2025.122112_bib49) 2020; 241
Tan (10.1016/j.envres.2025.122112_bib35) 2020; 250
Wang (10.1016/j.envres.2025.122112_bib42) 2023; 404
Liu (10.1016/j.envres.2025.122112_bib21) 2021; 306
Gu (10.1016/j.envres.2025.122112_bib10) 2024; 432
Rahman (10.1016/j.envres.2025.122112_bib27) 2023; 143
Li (10.1016/j.envres.2025.122112_bib20) 2020; 269
Wang (10.1016/j.envres.2025.122112_bib38) 2020; 110
Ali Shah (10.1016/j.envres.2025.122112_bib2) 2021; 291
Ren (10.1016/j.envres.2025.122112_bib29) 2024; 430
Yingliang (10.1016/j.envres.2025.122112_bib51) 2020; 375
Zhang (10.1016/j.envres.2025.122112_bib55) 2020; 276
Chen (10.1016/j.envres.2025.122112_bib6) 2024
He (10.1016/j.envres.2025.122112_bib15) 2018; 353
He (10.1016/j.envres.2025.122112_bib12) 2025; 77
Tan (10.1016/j.envres.2025.122112_bib36) 2015; 30
Zhu (10.1016/j.envres.2025.122112_bib59) 2024; 89
Dong (10.1016/j.envres.2025.122112_bib9) 2023; 10
Rahman (10.1016/j.envres.2025.122112_bib28) 2024; 148
Wang (10.1016/j.envres.2025.122112_bib40) 2023; 345
He (10.1016/j.envres.2025.122112_bib13) 2023; 363
Zhang (10.1016/j.envres.2025.122112_bib56) 2016; 121
Zhou (10.1016/j.envres.2025.122112_bib58) 2023; 75
Wang (10.1016/j.envres.2025.122112_bib43) 2019; 203
Alarcon-Ruiz (10.1016/j.envres.2025.122112_bib1) 2005; 35
Pang (10.1016/j.envres.2025.122112_bib23) 2022; 57
Amin (10.1016/j.envres.2025.122112_bib4) 2024; 416
Zhao (10.1016/j.envres.2025.122112_bib57) 2021; 118
Taj (10.1016/j.envres.2025.122112_bib33) 2023; 428
Wang (10.1016/j.envres.2025.122112_bib39) 2014; 50
Wang (10.1016/j.envres.2025.122112_bib41) 2024; 451
Xie (10.1016/j.envres.2025.122112_bib47) 2023; 18
Deng (10.1016/j.envres.2025.122112_bib8) 2014; 50
Yoshida (10.1016/j.envres.2025.122112_bib52) 2021; 121
Liu (10.1016/j.envres.2025.122112_bib22) 2019; 225
Yang (10.1016/j.envres.2025.122112_bib50) 2024; 91
Siriluck (10.1016/j.envres.2025.122112_bib32) 2021; 391
Hounsi (10.1016/j.envres.2025.122112_bib16) 2013; 42
Wang (10.1016/j.envres.2025.122112_bib44) 2024; 411
Althoey (10.1016/j.envres.2025.122112_bib3) 2022; 45
Woskowski (10.1016/j.envres.2025.122112_bib45) 2024; 438
Gu (10.1016/j.envres.2025.122112_bib11) 2023; 396
Ruan (10.1016/j.envres.2025.122112_bib30) 2023; 419
Hu (10.1016/j.envres.2025.122112_bib17) 2023; 138–141
Kai (10.1016/j.envres.2025.122112_bib18) 2023; 406
Cheng (10.1016/j.envres.2025.122112_bib7) 2022; 399
Patil (10.1016/j.envres.2025.122112_bib24) 2015; 281
Qiu (10.1016/j.envres.2025.122112_bib25) 2016; 6
He (10.1016/j.envres.2025.122112_bib14) 2021; 271
Ruan (10.1016/j.envres.2025.122112_bib31) 2023; 869
Xu (10.1016/j.envres.2025.122112_bib48) 2019; 229
Qoku (10.1016/j.envres.2025.122112_bib26) 2017; 12
Zhang (10.1016/j.envres.2025.122112_bib54) 2015; 37
References_xml – volume: 101
  start-page: 78
  year: 2024
  end-page: 89
  ident: bib37
  article-title: Investigating the grinding characteristics of vanadium-titanium iron ore tailings for sustainable utilization in cementitious material preparation
  publication-title: Alex. Eng. J.
– volume: 75
  year: 2023
  ident: bib58
  article-title: Insight to workability, compressive strength and microstructure of lithium slag-steel slag based cement under standard condition
  publication-title: J. Build. Eng.
– volume: 267
  year: 2021
  ident: bib34
  article-title: Effect of wet grinded lithium slag on compressive strength and hydration of sulphoaluminate cement system
  publication-title: Constr. Build. Mater.
– volume: 428
  year: 2023
  ident: bib33
  article-title: Effect of duration and type of grinding on the particle size distribution and microstructure of natural pumice with low pozzolanic reactivity
  publication-title: Powder Technol.
– volume: 39
  year: 2021
  ident: bib53
  article-title: Hydration properties and kinetic characteristics of blended cement containing lithium slag powder
  publication-title: J. Build. Eng.
– volume: 411
  year: 2024
  ident: bib44
  article-title: Thermal activation mechanism and activity evaluation of lithium slag: insights from simulated hydration
  publication-title: Constr. Build. Mater.
– volume: 404
  year: 2023
  ident: bib42
  article-title: Synergistic effect of red mud, desulfurized gypsum and fly ash in cementitious materials: mechanical performances and microstructure
  publication-title: Constr. Build. Mater.
– volume: 306
  year: 2021
  ident: bib21
  article-title: Calcined oil shale residue as a supplementary cementitious material for ordinary Portland cement
  publication-title: Constr. Build. Mater.
– volume: 281
  start-page: 151
  year: 2015
  end-page: 158
  ident: bib24
  article-title: Influence of planetary ball milling parameters on the mechano-chemical activation of fly ash
  publication-title: Powder Technol.
– volume: 399
  year: 2022
  ident: bib7
  article-title: Test research on hydration process of cement-iron tailings powder composite cementitious materials
  publication-title: Powder Technol.
– volume: 363
  year: 2023
  ident: bib13
  article-title: Mechanism and assessment of the pozzolanic activity of melting-quenching lithium slag modified with MgO
  publication-title: Constr. Build. Mater.
– volume: 203
  start-page: 304
  year: 2019
  end-page: 313
  ident: bib43
  article-title: Micro-morphology and phase composition of lithium slag from lithium carbonate production by sulphuric acid process
  publication-title: Constr. Build. Mater.
– volume: 430
  year: 2024
  ident: bib29
  article-title: Investigation on the mechanism of self-healing effect of cementitious capillary crystalline waterproofing material on concrete and enhancement of its resistance to chloride erosion
  publication-title: Constr. Build. Mater.
– volume: 451
  year: 2024
  ident: bib41
  article-title: Understanding the utilization potential of lepidolite slag in cementitious materials: composition characteristics, hydration properties, and high value-added cementitious system design
  publication-title: Constr. Build. Mater.
– volume: 18
  year: 2023
  ident: bib47
  article-title: Mechanical grinding activation of modified magnesium slag and its use as backfilling cementitious material
  publication-title: Case Stud. Constr. Mater.
– volume: 45
  year: 2022
  ident: bib3
  article-title: Reducing detrimental sulfate-based phase formation in concrete exposed to sodium chloride using supplementary cementitious materials
  publication-title: J. Build. Eng.
– volume: 89
  year: 2024
  ident: bib59
  article-title: Investigation of synergistic effects of lithium slag and granulated blast furnace slag from the perspectives of physics and hydration
  publication-title: J. Build. Eng.
– volume: 291
  year: 2021
  ident: bib2
  article-title: Development of Cleaner One-part geopolymer from lithium slag
  publication-title: J. Clean. Prod.
– reference: XIAMEN ISO STANDARD SAND CO., L., China ISO standard sand.
– volume: 138–141
  start-page: 147
  year: 2023
  ident: bib17
  article-title: Experimental study on influence of grinding time and lithium residue on mechanical properties of mortar
  publication-title: Concrete
– volume: 118
  year: 2021
  ident: bib57
  article-title: Long-term hydration and microstructure evolution of blended cement containing ground granulated blast furnace slag and waste clay brick
  publication-title: Cement Concr. Compos.
– volume: 77
  year: 2025
  ident: bib12
  article-title: Study on mechanical properties and toughness characteristics of fiber reinforced storage backfill after carbonation curing
  publication-title: Structures
– volume: 6
  start-page: 36942
  year: 2016
  end-page: 36953
  ident: bib25
  article-title: Recycling of spodumene slag: preparation of green polymer composites
  publication-title: RSC Adv.
– volume: 276
  year: 2020
  ident: bib55
  article-title: Effect of TIPA on mechanical properties and hydration properties of cement-lithium slag system
  publication-title: J. Environ. Manag.
– volume: 415
  year: 2023
  ident: bib19
  article-title: Recovery of lithium from spodumene-bearing pegmatites: a comprehensive review on geological reserves, beneficiation, and extraction
  publication-title: Powder Technol.
– volume: 375
  start-page: 284
  year: 2020
  end-page: 291
  ident: bib51
  article-title: Experimental study on the utilization of steel slag for cemented ultra-fine tailings backfill
  publication-title: Powder Technol.
– volume: 10
  year: 2023
  ident: bib9
  article-title: Investigation of the performance of cement mortar incorporating lithium slag as a super-fine aggregate
  publication-title: Front. Mater.
– volume: 42
  start-page: 105
  year: 2013
  end-page: 113
  ident: bib16
  article-title: Kaolin-based geopolymers: effect of mechanical activation and curing process
  publication-title: Constr. Build. Mater.
– volume: 148
  year: 2024
  ident: bib28
  article-title: Fresh, mechanical, and microstructural properties of lithium slag concretes
  publication-title: Cement Concr. Compos.
– volume: 271
  year: 2021
  ident: bib14
  article-title: Mechanical and environmental characteristics of cemented paste backfill containing lithium slag-blended binder
  publication-title: Constr. Build. Mater.
– volume: 121
  year: 2021
  ident: bib52
  article-title: Electrostatic properties of C–S–H and C-A-S-H for predicting calcium and chloride adsorption
  publication-title: Cement Concr. Compos.
– volume: 438
  year: 2024
  ident: bib45
  article-title: Properties of low sulfur leached spodumene as supplementary cementitious material in ordinary Portland cement
  publication-title: Constr. Build. Mater.
– start-page: 1
  year: 2024
  end-page: 20
  ident: bib6
  article-title: Comparison of the characteristics of domestic lithium ores and lithium slag and its application for building materialsization: a review
  publication-title: Multipurpose Utilization of Mineral Resources
– volume: 353
  start-page: 35
  year: 2018
  end-page: 43
  ident: bib15
  article-title: Microstructure of ultra high performance concrete containing lithium slag
  publication-title: J. Hazard Mater.
– volume: 12
  start-page: 37
  year: 2017
  end-page: 50
  ident: bib26
  article-title: Phase assemblage in ettringite-forming cement pastes: a X-ray diffraction and thermal analysis characterization
  publication-title: J. Build. Eng.
– volume: 241
  year: 2020
  ident: bib49
  article-title: Fiber length effect on strength properties of polypropylene fiber reinforced cemented tailings backfill specimens with different sizes
  publication-title: Constr. Build. Mater.
– volume: 416
  year: 2024
  ident: bib4
  article-title: Transport properties of concrete containing lithium slag
  publication-title: Constr. Build. Mater.
– volume: 869
  year: 2023
  ident: bib31
  article-title: Application of desulfurization gypsum as activator for modified magnesium slag-fly ash cemented paste backfill material
  publication-title: Sci. Total Environ.
– volume: 345
  year: 2023
  ident: bib40
  article-title: High performance C-A-S-H seeds from fly ash-carbide slag for activating lithium slag towards a low carbon binder
  publication-title: J. Environ. Manag.
– volume: 432
  year: 2024
  ident: bib10
  article-title: Review: the formation, characteristics, and resource utilization of lithium slag
  publication-title: Constr. Build. Mater.
– volume: 121
  start-page: 483
  year: 2016
  end-page: 490
  ident: bib56
  article-title: Hydration and microstructures of concrete containing raw or densified silica fume at different curing temperatures
  publication-title: Constr. Build. Mater.
– volume: 391
  start-page: 239
  year: 2021
  end-page: 252
  ident: bib32
  article-title: Influence of mechanical properties on milling of amorphous and crystalline silica-based solids
  publication-title: Powder Technol.
– volume: 250
  year: 2020
  ident: bib35
  article-title: Preparation for micro-lithium slag via wet grinding and its application as accelerator in Portland cement
  publication-title: J. Clean. Prod.
– volume: 269
  year: 2020
  ident: bib20
  article-title: Green concrete with ground granulated blast-furnace slag activated by desulfurization gypsum and electric arc furnace reducing slag
  publication-title: J. Clean. Prod.
– volume: 37
  start-page: 23
  year: 2015
  end-page: 27
  ident: bib54
  article-title: Influence of lithium slag on cement properties
  publication-title: J. Wuhan Univ. Technol.
– volume: 35
  start-page: 609
  year: 2005
  end-page: 613
  ident: bib1
  article-title: The use of thermal analysis in assessing the effect of temperature on a cement paste
  publication-title: Cement Concr. Res.
– volume: 30
  start-page: 129
  year: 2015
  end-page: 133
  ident: bib36
  article-title: Utilization of lithium slag as an admixture in blended cements: physico-mechanical and hydration characteristics
  publication-title: J. Wuhan Univ. Technol.-Materials Sci. Ed.
– volume: 95
  start-page: 270
  year: 2017
  end-page: 281
  ident: bib5
  article-title: Effect of the hydration temperature on the microstructure of Class G cement: C-S-H composition and density
  publication-title: Cement Concr. Res.
– reference: . (Accessed 15 April 2025).
– volume: 225
  start-page: 1184
  year: 2019
  end-page: 1193
  ident: bib22
  article-title: A green route to sustainable alkali-activated materials by heat and chemical activation of lithium slag
  publication-title: J. Clean. Prod.
– volume: 50
  start-page: 457
  year: 2014
  end-page: 462
  ident: bib8
  article-title: Influence of lithium sulfate addition on the properties of Portland cement paste
  publication-title: Constr. Build. Mater.
– volume: 50
  start-page: 727
  year: 2014
  end-page: 735
  ident: bib39
  article-title: Effects of fly ash and lithium compounds on the water-soluble alkali and lithium content of cement specimens
  publication-title: Constr. Build. Mater.
– volume: 396
  year: 2023
  ident: bib11
  article-title: Synergistic effect and mechanism of lithium slag on mechanical properties and microstructure of steel slag-cement system
  publication-title: Constr. Build. Mater.
– volume: 419
  year: 2023
  ident: bib30
  article-title: Development and field application of a modified magnesium slag-based mine filling cementitious material
  publication-title: J. Clean. Prod.
– volume: 91
  year: 2024
  ident: bib50
  article-title: Recycling lithium slag into eco-friendly ultra-high performance concrete: hydration process, microstructure development, and environmental benefits
  publication-title: J. Build. Eng.
– volume: 406
  year: 2023
  ident: bib18
  article-title: The feasibility of utilizing sifted desert sand (<75 μm) as sustainable supplementary cementitious materials (SCM)
  publication-title: Constr. Build. Mater.
– volume: 229
  year: 2019
  ident: bib48
  article-title: Investigation on sulfate activation of electrolytic manganese residue on early activity of blast furnace slag in cement-based cementitious material
  publication-title: Constr. Build. Mater.
– volume: 57
  year: 2022
  ident: bib23
  article-title: Influence of steel slag fineness on the hydration of cement-steel slag composite pastes
  publication-title: J. Build. Eng.
– volume: 143
  year: 2023
  ident: bib27
  article-title: Assessment of lithium slag as a supplementary cementitious material: pozzolanic activity and microstructure development
  publication-title: Cement Concr. Compos.
– volume: 110
  year: 2020
  ident: bib38
  article-title: Setting controlling of lithium slag-based geopolymer by activator and sodium tetraborate as a retarder and its effects on mortar properties
  publication-title: Cement Concr. Compos.
– volume: 121
  start-page: 483
  year: 2016
  ident: 10.1016/j.envres.2025.122112_bib56
  article-title: Hydration and microstructures of concrete containing raw or densified silica fume at different curing temperatures
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.06.014
– volume: 271
  year: 2021
  ident: 10.1016/j.envres.2025.122112_bib14
  article-title: Mechanical and environmental characteristics of cemented paste backfill containing lithium slag-blended binder
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.121567
– volume: 345
  year: 2023
  ident: 10.1016/j.envres.2025.122112_bib40
  article-title: High performance C-A-S-H seeds from fly ash-carbide slag for activating lithium slag towards a low carbon binder
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2023.118658
– volume: 50
  start-page: 457
  year: 2014
  ident: 10.1016/j.envres.2025.122112_bib8
  article-title: Influence of lithium sulfate addition on the properties of Portland cement paste
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.09.058
– volume: 430
  year: 2024
  ident: 10.1016/j.envres.2025.122112_bib29
  article-title: Investigation on the mechanism of self-healing effect of cementitious capillary crystalline waterproofing material on concrete and enhancement of its resistance to chloride erosion
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2024.136416
– volume: 30
  start-page: 129
  year: 2015
  ident: 10.1016/j.envres.2025.122112_bib36
  article-title: Utilization of lithium slag as an admixture in blended cements: physico-mechanical and hydration characteristics
  publication-title: J. Wuhan Univ. Technol.-Materials Sci. Ed.
  doi: 10.1007/s11595-015-1113-x
– volume: 91
  year: 2024
  ident: 10.1016/j.envres.2025.122112_bib50
  article-title: Recycling lithium slag into eco-friendly ultra-high performance concrete: hydration process, microstructure development, and environmental benefits
  publication-title: J. Build. Eng.
– volume: 50
  start-page: 727
  year: 2014
  ident: 10.1016/j.envres.2025.122112_bib39
  article-title: Effects of fly ash and lithium compounds on the water-soluble alkali and lithium content of cement specimens
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.10.024
– volume: 138–141
  start-page: 147
  year: 2023
  ident: 10.1016/j.envres.2025.122112_bib17
  article-title: Experimental study on influence of grinding time and lithium residue on mechanical properties of mortar
  publication-title: Concrete
– volume: 39
  year: 2021
  ident: 10.1016/j.envres.2025.122112_bib53
  article-title: Hydration properties and kinetic characteristics of blended cement containing lithium slag powder
  publication-title: J. Build. Eng.
– volume: 110
  year: 2020
  ident: 10.1016/j.envres.2025.122112_bib38
  article-title: Setting controlling of lithium slag-based geopolymer by activator and sodium tetraborate as a retarder and its effects on mortar properties
  publication-title: Cement Concr. Compos.
  doi: 10.1016/j.cemconcomp.2020.103598
– volume: 291
  year: 2021
  ident: 10.1016/j.envres.2025.122112_bib2
  article-title: Development of Cleaner One-part geopolymer from lithium slag
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.125241
– volume: 12
  start-page: 37
  year: 2017
  ident: 10.1016/j.envres.2025.122112_bib26
  article-title: Phase assemblage in ettringite-forming cement pastes: a X-ray diffraction and thermal analysis characterization
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2017.05.005
– volume: 869
  year: 2023
  ident: 10.1016/j.envres.2025.122112_bib31
  article-title: Application of desulfurization gypsum as activator for modified magnesium slag-fly ash cemented paste backfill material
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2023.161631
– volume: 363
  year: 2023
  ident: 10.1016/j.envres.2025.122112_bib13
  article-title: Mechanism and assessment of the pozzolanic activity of melting-quenching lithium slag modified with MgO
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.129692
– volume: 121
  year: 2021
  ident: 10.1016/j.envres.2025.122112_bib52
  article-title: Electrostatic properties of C–S–H and C-A-S-H for predicting calcium and chloride adsorption
  publication-title: Cement Concr. Compos.
  doi: 10.1016/j.cemconcomp.2021.104109
– volume: 148
  year: 2024
  ident: 10.1016/j.envres.2025.122112_bib28
  article-title: Fresh, mechanical, and microstructural properties of lithium slag concretes
  publication-title: Cement Concr. Compos.
  doi: 10.1016/j.cemconcomp.2024.105469
– volume: 416
  year: 2024
  ident: 10.1016/j.envres.2025.122112_bib4
  article-title: Transport properties of concrete containing lithium slag
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2024.135073
– volume: 143
  year: 2023
  ident: 10.1016/j.envres.2025.122112_bib27
  article-title: Assessment of lithium slag as a supplementary cementitious material: pozzolanic activity and microstructure development
  publication-title: Cement Concr. Compos.
  doi: 10.1016/j.cemconcomp.2023.105262
– volume: 75
  year: 2023
  ident: 10.1016/j.envres.2025.122112_bib58
  article-title: Insight to workability, compressive strength and microstructure of lithium slag-steel slag based cement under standard condition
  publication-title: J. Build. Eng.
– volume: 35
  start-page: 609
  year: 2005
  ident: 10.1016/j.envres.2025.122112_bib1
  article-title: The use of thermal analysis in assessing the effect of temperature on a cement paste
  publication-title: Cement Concr. Res.
  doi: 10.1016/j.cemconres.2004.06.015
– volume: 225
  start-page: 1184
  year: 2019
  ident: 10.1016/j.envres.2025.122112_bib22
  article-title: A green route to sustainable alkali-activated materials by heat and chemical activation of lithium slag
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.04.018
– volume: 101
  start-page: 78
  year: 2024
  ident: 10.1016/j.envres.2025.122112_bib37
  article-title: Investigating the grinding characteristics of vanadium-titanium iron ore tailings for sustainable utilization in cementitious material preparation
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2024.05.057
– volume: 229
  year: 2019
  ident: 10.1016/j.envres.2025.122112_bib48
  article-title: Investigation on sulfate activation of electrolytic manganese residue on early activity of blast furnace slag in cement-based cementitious material
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.116831
– volume: 6
  start-page: 36942
  year: 2016
  ident: 10.1016/j.envres.2025.122112_bib25
  article-title: Recycling of spodumene slag: preparation of green polymer composites
  publication-title: RSC Adv.
  doi: 10.1039/C6RA03119F
– volume: 57
  year: 2022
  ident: 10.1016/j.envres.2025.122112_bib23
  article-title: Influence of steel slag fineness on the hydration of cement-steel slag composite pastes
  publication-title: J. Build. Eng.
– volume: 118
  year: 2021
  ident: 10.1016/j.envres.2025.122112_bib57
  article-title: Long-term hydration and microstructure evolution of blended cement containing ground granulated blast furnace slag and waste clay brick
  publication-title: Cement Concr. Compos.
  doi: 10.1016/j.cemconcomp.2021.103982
– volume: 353
  start-page: 35
  year: 2018
  ident: 10.1016/j.envres.2025.122112_bib15
  article-title: Microstructure of ultra high performance concrete containing lithium slag
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2018.03.063
– volume: 95
  start-page: 270
  year: 2017
  ident: 10.1016/j.envres.2025.122112_bib5
  article-title: Effect of the hydration temperature on the microstructure of Class G cement: C-S-H composition and density
  publication-title: Cement Concr. Res.
  doi: 10.1016/j.cemconres.2017.02.008
– volume: 428
  year: 2023
  ident: 10.1016/j.envres.2025.122112_bib33
  article-title: Effect of duration and type of grinding on the particle size distribution and microstructure of natural pumice with low pozzolanic reactivity
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2023.118839
– volume: 419
  year: 2023
  ident: 10.1016/j.envres.2025.122112_bib30
  article-title: Development and field application of a modified magnesium slag-based mine filling cementitious material
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2023.138269
– volume: 281
  start-page: 151
  year: 2015
  ident: 10.1016/j.envres.2025.122112_bib24
  article-title: Influence of planetary ball milling parameters on the mechano-chemical activation of fly ash
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2015.04.078
– start-page: 1
  year: 2024
  ident: 10.1016/j.envres.2025.122112_bib6
  article-title: Comparison of the characteristics of domestic lithium ores and lithium slag and its application for building materialsization: a review
  publication-title: Multipurpose Utilization of Mineral Resources
– volume: 18
  year: 2023
  ident: 10.1016/j.envres.2025.122112_bib47
  article-title: Mechanical grinding activation of modified magnesium slag and its use as backfilling cementitious material
  publication-title: Case Stud. Constr. Mater.
– volume: 399
  year: 2022
  ident: 10.1016/j.envres.2025.122112_bib7
  article-title: Test research on hydration process of cement-iron tailings powder composite cementitious materials
  publication-title: Powder Technol.
– volume: 203
  start-page: 304
  year: 2019
  ident: 10.1016/j.envres.2025.122112_bib43
  article-title: Micro-morphology and phase composition of lithium slag from lithium carbonate production by sulphuric acid process
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.01.099
– volume: 267
  year: 2021
  ident: 10.1016/j.envres.2025.122112_bib34
  article-title: Effect of wet grinded lithium slag on compressive strength and hydration of sulphoaluminate cement system
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.120465
– volume: 10
  year: 2023
  ident: 10.1016/j.envres.2025.122112_bib9
  article-title: Investigation of the performance of cement mortar incorporating lithium slag as a super-fine aggregate
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2023.1134622
– volume: 45
  year: 2022
  ident: 10.1016/j.envres.2025.122112_bib3
  article-title: Reducing detrimental sulfate-based phase formation in concrete exposed to sodium chloride using supplementary cementitious materials
  publication-title: J. Build. Eng.
– volume: 375
  start-page: 284
  year: 2020
  ident: 10.1016/j.envres.2025.122112_bib51
  article-title: Experimental study on the utilization of steel slag for cemented ultra-fine tailings backfill
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2020.07.052
– volume: 396
  year: 2023
  ident: 10.1016/j.envres.2025.122112_bib11
  article-title: Synergistic effect and mechanism of lithium slag on mechanical properties and microstructure of steel slag-cement system
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2023.131768
– volume: 451
  year: 2024
  ident: 10.1016/j.envres.2025.122112_bib41
  article-title: Understanding the utilization potential of lepidolite slag in cementitious materials: composition characteristics, hydration properties, and high value-added cementitious system design
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2024.138817
– volume: 276
  year: 2020
  ident: 10.1016/j.envres.2025.122112_bib55
  article-title: Effect of TIPA on mechanical properties and hydration properties of cement-lithium slag system
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2020.111274
– volume: 438
  year: 2024
  ident: 10.1016/j.envres.2025.122112_bib45
  article-title: Properties of low sulfur leached spodumene as supplementary cementitious material in ordinary Portland cement
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2024.137096
– volume: 411
  year: 2024
  ident: 10.1016/j.envres.2025.122112_bib44
  article-title: Thermal activation mechanism and activity evaluation of lithium slag: insights from simulated hydration
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2023.134615
– volume: 77
  year: 2025
  ident: 10.1016/j.envres.2025.122112_bib12
  article-title: Study on mechanical properties and toughness characteristics of fiber reinforced storage backfill after carbonation curing
  publication-title: Structures
  doi: 10.1016/j.istruc.2025.108996
– volume: 306
  year: 2021
  ident: 10.1016/j.envres.2025.122112_bib21
  article-title: Calcined oil shale residue as a supplementary cementitious material for ordinary Portland cement
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.124849
– volume: 404
  year: 2023
  ident: 10.1016/j.envres.2025.122112_bib42
  article-title: Synergistic effect of red mud, desulfurized gypsum and fly ash in cementitious materials: mechanical performances and microstructure
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2023.133302
– volume: 269
  year: 2020
  ident: 10.1016/j.envres.2025.122112_bib20
  article-title: Green concrete with ground granulated blast-furnace slag activated by desulfurization gypsum and electric arc furnace reducing slag
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.122212
– volume: 432
  year: 2024
  ident: 10.1016/j.envres.2025.122112_bib10
  article-title: Review: the formation, characteristics, and resource utilization of lithium slag
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2024.136648
– volume: 241
  year: 2020
  ident: 10.1016/j.envres.2025.122112_bib49
  article-title: Fiber length effect on strength properties of polypropylene fiber reinforced cemented tailings backfill specimens with different sizes
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.118113
– volume: 391
  start-page: 239
  year: 2021
  ident: 10.1016/j.envres.2025.122112_bib32
  article-title: Influence of mechanical properties on milling of amorphous and crystalline silica-based solids
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2021.06.016
– volume: 37
  start-page: 23
  year: 2015
  ident: 10.1016/j.envres.2025.122112_bib54
  article-title: Influence of lithium slag on cement properties
  publication-title: J. Wuhan Univ. Technol.
– ident: 10.1016/j.envres.2025.122112_bib46
– volume: 89
  year: 2024
  ident: 10.1016/j.envres.2025.122112_bib59
  article-title: Investigation of synergistic effects of lithium slag and granulated blast furnace slag from the perspectives of physics and hydration
  publication-title: J. Build. Eng.
– volume: 406
  year: 2023
  ident: 10.1016/j.envres.2025.122112_bib18
  article-title: The feasibility of utilizing sifted desert sand (<75 μm) as sustainable supplementary cementitious materials (SCM)
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2023.133375
– volume: 415
  year: 2023
  ident: 10.1016/j.envres.2025.122112_bib19
  article-title: Recovery of lithium from spodumene-bearing pegmatites: a comprehensive review on geological reserves, beneficiation, and extraction
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2022.118142
– volume: 250
  year: 2020
  ident: 10.1016/j.envres.2025.122112_bib35
  article-title: Preparation for micro-lithium slag via wet grinding and its application as accelerator in Portland cement
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.119528
– volume: 42
  start-page: 105
  year: 2013
  ident: 10.1016/j.envres.2025.122112_bib16
  article-title: Kaolin-based geopolymers: effect of mechanical activation and curing process
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2012.12.069
SSID ssj0011530
Score 2.458072
Snippet The use of lithium slag (LS) in the preparation of supplementary cementitious materials (SCM) effectively mitigates the environmental pollution caused by...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 122112
SubjectTerms Lithium slag
Mechanical activation
Mechanical properties
Microstructural analysis
Supplementary cementitious materials
Title Resource utilization of lithium slag supplementary cementitious materials through mechanical activation: mechanism investigation and process optimization
URI https://dx.doi.org/10.1016/j.envres.2025.122112
https://www.ncbi.nlm.nih.gov/pubmed/40516898
https://www.proquest.com/docview/3218775611
Volume 283
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swED4h9jIJoY0B6xjISHtNmzhOYu8NVUVlEzwNqW-WkzhQtKYVbSfthf_Bv-Uutql4QEi8JY6jWL6z77vLfWeAH9yoTFWiiFSVZ5GwaRwhys8jhaaYVynF3YiNfHmVj6_Fr0k22YJh4MJQWqXf-92e3u3WvmXgZ3OwmE6J45sQrxQtNNUdS4loLkRBWt5_eE7zQMCTxuEUA-od6HNdjpdt_6FTi14iz_oJR1-Iv2aeXoOfnRk6_wS7Hj-yMzfEz7Bl2z04GG3oavjQr9flHuy4qBxzZKMv8Bii9Qz17a-nYLJ5wxCM307XM4YKcsOWdNKnyyq__8-q7ooyu9ZLhvjWqSzzB_ywmSXuMImaEUfCRXh_hubljE03lTzwW6at2cKRE9gct6uZH8Q-XJ-P_gzHkT-cISIJriL0yJUoaytkLSw6MUWVlLFpylxUpqQiao1qbIN4MJZWJHFphCl5oVTFpawlur8HsN3OW_sVWBZX3Fr0lWueCJPX2JHLTCJQEkqYWPYgCjLRC1eDQ4fktDvtZKhJhtrJsAdFEJx-oUsazcQbb54GOWtcZvTvxLQWp1enCIWKAsFm0oNDpwDPY0HMm-RSyW_v_u4RfKQ7solJ9h22V_dre4xgZ1WedNp8Ah_OLn6Pr54A3WwCwg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB5BOBQJVUB5pC3UlXrdsuvYu3ZvCIHCKyeQuFneXS8EkU1EEiR-Cv-2M7EN4oAq9bay17LlGXu-secbA_ziVktdiSLRVS4T4Xppgig_TzSaYl716NyN2MiXg7x_Lc5u5M0SHEUuDIVVhr3f7-mL3TqUHITZPJgMh8TxzYhXihaa8o715DKsUHYq2YGVw9Pz_uD1MgEXdRofMqAGkUG3CPNy7RP6tegocvk74-gO8Y8s1EcIdGGJTtbhc4CQ7NCPcgOWXLsJ28dvjDWsDEt2uglr_mCOeb7RF3iJB_YMVe4hsDDZuGGIx--G8xFDHbllU3rs0weWPz6zavFFwV3zKUOI67WWhTd-2MgRfZikzYgm4Q95_8Ti6YgN35J5YF-2rdnE8xPYGHesURjEFlyfHF8d9ZPwPkNCQpwl6JRrUdZOqFo49GOKKitT25S5qGxJedQa3bgGIWGqnMjS0gpb8kLriitVK_SAt6HTjlu3C0ymFXcO3eWaZ8LmNf7IlVSIlYQWNlVdSKJMzMSn4TAxPu3eeBkakqHxMuxCEQVn3qmTQUvxj5Y_o5wNrjS6PrGtw-k1PURDRYF4M-vCjleA17Eg7M1ypdXX_-73B3zqX11emIvTwfk3WKUaMpGZ_A6d2ePc7SH2mZX7Qbf_Aqf0BXM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resource+utilization+of+lithium+slag+supplementary+cementitious+materials+through+mechanical+activation%3A+mechanism+investigation+and+process+optimization&rft.jtitle=Environmental+research&rft.au=Wang%2C+Haitao&rft.au=Wu%2C+Houqin&rft.au=Tian%2C+Jia&rft.au=Liu%2C+Lang&rft.date=2025-10-15&rft.pub=Elsevier+Inc&rft.issn=0013-9351&rft.volume=283&rft_id=info:doi/10.1016%2Fj.envres.2025.122112&rft.externalDocID=S0013935125013635
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-9351&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-9351&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-9351&client=summon