Resource utilization of lithium slag supplementary cementitious materials through mechanical activation: mechanism investigation and process optimization
The use of lithium slag (LS) in the preparation of supplementary cementitious materials (SCM) effectively mitigates the environmental pollution caused by open-air storage and landfill disposal of LS. Focusing on region-specific LS as the subject of study, this research proposes optimizing the mechan...
Saved in:
Published in | Environmental research Vol. 283; p. 122112 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
15.10.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The use of lithium slag (LS) in the preparation of supplementary cementitious materials (SCM) effectively mitigates the environmental pollution caused by open-air storage and landfill disposal of LS. Focusing on region-specific LS as the subject of study, this research proposes optimizing the mechanical properties of SCMs by regulating the grinding time and LS dosage. Based on the analysis of the hydration products and microstructure of the SCM, the LS with the median particle size of 11.71 μm demonstrated the highest activity index, achieving a 28-day compressive strength of 107 % compared to ordinary Portland cement. Remarkably, the 3-day strength also exceeded that of pure cement, likely due to the dilution effect of LS, which provides additional nucleation sites for hydration products like C-S-H and AFt. With 30 % LS replacing cement, the compressive strength of SCM reached 54.61 MPa, comparable to that of pure cement. The introduction of LS significantly reduced the interparticle pore volume. These findings provided a scientific basis for promoting the resource utilization of LS waste and its application in SCM production.
•The SCM incorporating LS from Western Sichuan exhibits unique characteristics, particularly high early-age strength.•Grinding LS facilitates the faster and earlier formation of AFt.•SCM with 30 % LS can serve as a direct substitute for cement in various applications.•LS's introduction reduces SCM interparticle pore volume. |
---|---|
AbstractList | The use of lithium slag (LS) in the preparation of supplementary cementitious materials (SCM) effectively mitigates the environmental pollution caused by open-air storage and landfill disposal of LS. Focusing on region-specific LS as the subject of study, this research proposes optimizing the mechanical properties of SCMs by regulating the grinding time and LS dosage. Based on the analysis of the hydration products and microstructure of the SCM, the LS with the median particle size of 11.71 μm demonstrated the highest activity index, achieving a 28-day compressive strength of 107 % compared to ordinary Portland cement. Remarkably, the 3-day strength also exceeded that of pure cement, likely due to the dilution effect of LS, which provides additional nucleation sites for hydration products like C-S-H and AFt. With 30 % LS replacing cement, the compressive strength of SCM reached 54.61 MPa, comparable to that of pure cement. The introduction of LS significantly reduced the interparticle pore volume. These findings provided a scientific basis for promoting the resource utilization of LS waste and its application in SCM production.
•The SCM incorporating LS from Western Sichuan exhibits unique characteristics, particularly high early-age strength.•Grinding LS facilitates the faster and earlier formation of AFt.•SCM with 30 % LS can serve as a direct substitute for cement in various applications.•LS's introduction reduces SCM interparticle pore volume. The use of lithium slag (LS) in the preparation of supplementary cementitious materials (SCM) effectively mitigates the environmental pollution caused by open-air storage and landfill disposal of LS. Focusing on region-specific LS as the subject of study, this research proposes optimizing the mechanical properties of SCMs by regulating the grinding time and LS dosage. Based on the analysis of the hydration products and microstructure of the SCM, the LS with the median particle size of 11.71 μm demonstrated the highest activity index, achieving a 28-day compressive strength of 107% compared to ordinary Portland cement. Remarkably, the 3-day strength also exceeded that of pure cement, likely due to the dilution effect of LS, which provides additional nucleation sites for hydration products like C-S-H and AFt. With 30% LS replacing cement, the compressive strength of SCM reached 54.61 MPa, comparable to that of pure cement. The introduction of LS significantly reduced the interparticle pore volume. These findings provided a scientific basis for promoting the resource utilization of LS waste and its application in SCM production.The use of lithium slag (LS) in the preparation of supplementary cementitious materials (SCM) effectively mitigates the environmental pollution caused by open-air storage and landfill disposal of LS. Focusing on region-specific LS as the subject of study, this research proposes optimizing the mechanical properties of SCMs by regulating the grinding time and LS dosage. Based on the analysis of the hydration products and microstructure of the SCM, the LS with the median particle size of 11.71 μm demonstrated the highest activity index, achieving a 28-day compressive strength of 107% compared to ordinary Portland cement. Remarkably, the 3-day strength also exceeded that of pure cement, likely due to the dilution effect of LS, which provides additional nucleation sites for hydration products like C-S-H and AFt. With 30% LS replacing cement, the compressive strength of SCM reached 54.61 MPa, comparable to that of pure cement. The introduction of LS significantly reduced the interparticle pore volume. These findings provided a scientific basis for promoting the resource utilization of LS waste and its application in SCM production. The use of lithium slag (LS) in the preparation of supplementary cementitious materials (SCM) effectively mitigates the environmental pollution caused by open-air storage and landfill disposal of LS. Focusing on region-specific LS as the subject of study, this research proposes optimizing the mechanical properties of SCMs by regulating the grinding time and LS dosage. Based on the analysis of the hydration products and microstructure of the SCM, the LS with the median particle size of 11.71 μm demonstrated the highest activity index, achieving a 28-day compressive strength of 107 % compared to ordinary Portland cement. Remarkably, the 3-day strength also exceeded that of pure cement, likely due to the dilution effect of LS, which provides additional nucleation sites for hydration products like C-S-H and AFt. With 30 % LS replacing cement, the compressive strength of SCM reached 54.61 MPa, comparable to that of pure cement. The introduction of LS significantly reduced the interparticle pore volume. These findings provided a scientific basis for promoting the resource utilization of LS waste and its application in SCM production. |
ArticleNumber | 122112 |
Author | Tian, Jia Shu, Kaiqian Tang, Haijun Wang, Haitao Liu, Lang Liu, Min Wu, Houqin Zhu, Mengbo Xu, Longhua |
Author_xml | – sequence: 1 givenname: Haitao surname: Wang fullname: Wang, Haitao organization: Key Laboratory of Solid Waste Treatment and Resource Recycle Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China – sequence: 2 givenname: Houqin surname: Wu fullname: Wu, Houqin email: wuhouqin@swust.edu.cn organization: School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China – sequence: 3 givenname: Jia surname: Tian fullname: Tian, Jia organization: Key Laboratory of Solid Waste Treatment and Resource Recycle Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China – sequence: 4 givenname: Lang surname: Liu fullname: Liu, Lang email: liulang@xust.edu.cn organization: Energy School, Xi'an University of Science and Technology, Xi'an, 710054, PR China – sequence: 5 givenname: Mengbo surname: Zhu fullname: Zhu, Mengbo organization: Energy School, Xi'an University of Science and Technology, Xi'an, 710054, PR China – sequence: 6 givenname: Kaiqian surname: Shu fullname: Shu, Kaiqian organization: Key Laboratory of Solid Waste Treatment and Resource Recycle Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China – sequence: 7 givenname: Haijun surname: Tang fullname: Tang, Haijun organization: Key Laboratory of Solid Waste Treatment and Resource Recycle Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China – sequence: 8 givenname: Min surname: Liu fullname: Liu, Min organization: Key Laboratory of Solid Waste Treatment and Resource Recycle Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China – sequence: 9 givenname: Longhua surname: Xu fullname: Xu, Longhua organization: Key Laboratory of Solid Waste Treatment and Resource Recycle Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40516898$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1DAUhS1URKeFN0DISzYZbMfO2CyQUEULUiUkBGvLcW5mPIrtYDsjwZvwtrjNlCUr_-i75557zxW6CDEAQq8p2VJCu3fHLYRTgrxlhIktZYxS9gxtKFFdQ5RoL9CGENo2qhX0El3lfKxPKlryAl1yImgnldygP98gxyVZwEtxk_ttiosBxxFPrhzc4nGezB7nZZ4n8BCKSb-wfby5Si4Ze1MgOTNlXA4pLvsD9mAPJjhrJmxscadHyfdP39ljF06Qi9uvvUwY8JyihZxxnIvzZxMv0fOxysKr83mNftx--n7zubn_evfl5uN9Y1valgZ6png_AJcDh46znaU9MWPfcWt6KVQ7qhFGwQmRwCnpDTc92yllmZSDFKy9Rm9X3Wri51KNae-yhWkyAeqAumVU7naio7Sib87o0nsY9JycrwvRT-usAF8Bm2LOCcZ_CCX6ITV91Gtq-iE1vaZWyz6sZVDnPDlIOlsHwcLgEtiih-j-L_AXajCnTg |
Cites_doi | 10.1016/j.conbuildmat.2016.06.014 10.1016/j.conbuildmat.2020.121567 10.1016/j.jenvman.2023.118658 10.1016/j.conbuildmat.2013.09.058 10.1016/j.conbuildmat.2024.136416 10.1007/s11595-015-1113-x 10.1016/j.conbuildmat.2013.10.024 10.1016/j.cemconcomp.2020.103598 10.1016/j.jclepro.2020.125241 10.1016/j.jobe.2017.05.005 10.1016/j.scitotenv.2023.161631 10.1016/j.conbuildmat.2022.129692 10.1016/j.cemconcomp.2021.104109 10.1016/j.cemconcomp.2024.105469 10.1016/j.conbuildmat.2024.135073 10.1016/j.cemconcomp.2023.105262 10.1016/j.cemconres.2004.06.015 10.1016/j.jclepro.2019.04.018 10.1016/j.aej.2024.05.057 10.1016/j.conbuildmat.2019.116831 10.1039/C6RA03119F 10.1016/j.cemconcomp.2021.103982 10.1016/j.jhazmat.2018.03.063 10.1016/j.cemconres.2017.02.008 10.1016/j.powtec.2023.118839 10.1016/j.jclepro.2023.138269 10.1016/j.powtec.2015.04.078 10.1016/j.conbuildmat.2019.01.099 10.1016/j.conbuildmat.2020.120465 10.3389/fmats.2023.1134622 10.1016/j.powtec.2020.07.052 10.1016/j.conbuildmat.2023.131768 10.1016/j.conbuildmat.2024.138817 10.1016/j.jenvman.2020.111274 10.1016/j.conbuildmat.2024.137096 10.1016/j.conbuildmat.2023.134615 10.1016/j.istruc.2025.108996 10.1016/j.conbuildmat.2021.124849 10.1016/j.conbuildmat.2023.133302 10.1016/j.jclepro.2020.122212 10.1016/j.conbuildmat.2024.136648 10.1016/j.conbuildmat.2020.118113 10.1016/j.powtec.2021.06.016 10.1016/j.conbuildmat.2023.133375 10.1016/j.powtec.2022.118142 10.1016/j.jclepro.2019.119528 10.1016/j.conbuildmat.2012.12.069 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Inc. Copyright © 2025 Elsevier Inc. All rights reserved. Copyright © 2025. Published by Elsevier Inc. |
Copyright_xml | – notice: 2025 Elsevier Inc. – notice: Copyright © 2025 Elsevier Inc. All rights reserved. – notice: Copyright © 2025. Published by Elsevier Inc. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.envres.2025.122112 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Environmental Sciences |
EISSN | 1096-0953 |
ExternalDocumentID | 40516898 10_1016_j_envres_2025_122112 S0013935125013635 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 5VS 7-5 71M 8P~ 9JM AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACNCT ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHEUO AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLECG BLXMC BNPGV C45 CS3 DM4 DU5 EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM L7B MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPCBC SSH SSJ SSZ T5K TAE TEORI TN5 TWZ UPT WH7 ZCA ZU3 ~02 ~G- ~KM .GJ 29G 3O- 53G AAQXK AAYJJ AAYXX ABEFU ABFNM ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AEGFY AFFNX AGQPQ ASPBG AVWKF AZFZN CAG CITATION COF EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ LG5 LY8 M41 OHT R2- RIG SEN VOH WUQ XOL XPP ZGI ZKB ZMT ZXP NPM 7X8 |
ID | FETCH-LOGICAL-c313t-eb294bde48d4e6427c1b0afb64cab8593f9fef54008e410ba4ab2799c288d8523 |
IEDL.DBID | .~1 |
ISSN | 0013-9351 1096-0953 |
IngestDate | Sun Jun 15 17:00:49 EDT 2025 Mon Jul 21 06:06:23 EDT 2025 Thu Jul 03 08:13:50 EDT 2025 Sat Jul 19 17:10:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mechanical properties Supplementary cementitious materials Lithium slag Mechanical activation Microstructural analysis |
Language | English |
License | Copyright © 2025 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c313t-eb294bde48d4e6427c1b0afb64cab8593f9fef54008e410ba4ab2799c288d8523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 40516898 |
PQID | 3218775611 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3218775611 pubmed_primary_40516898 crossref_primary_10_1016_j_envres_2025_122112 elsevier_sciencedirect_doi_10_1016_j_envres_2025_122112 |
PublicationCentury | 2000 |
PublicationDate | 2025-10-15 |
PublicationDateYYYYMMDD | 2025-10-15 |
PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Environmental research |
PublicationTitleAlternate | Environ Res |
PublicationYear | 2025 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Rahman (bib27) 2023; 143 XIAMEN ISO STANDARD SAND CO., L., China ISO standard sand. Ruan (bib30) 2023; 419 Wang (bib42) 2023; 404 Ali Shah (bib2) 2021; 291 Tan (bib34) 2021; 267 Wang (bib44) 2024; 411 Althoey (bib3) 2022; 45 Kundu (bib19) 2023; 415 Siriluck (bib32) 2021; 391 Wang (bib39) 2014; 50 Hounsi (bib16) 2013; 42 Bahafid (bib5) 2017; 95 Zhou (bib58) 2023; 75 He (bib15) 2018; 353 Liu (bib22) 2019; 225 Xie (bib47) 2023; 18 (Accessed 15 April 2025). Zhai (bib53) 2021; 39 Tan (bib36) 2015; 30 Dong (bib9) 2023; 10 Wang (bib40) 2023; 345 Alarcon-Ruiz (bib1) 2005; 35 Patil, Anandhan (bib24) 2015; 281 Tian (bib37) 2024; 101 Zhang (bib54) 2015; 37 He (bib13) 2023; 363 Yang (bib50) 2024; 91 Chen (bib6) 2024 Woskowski (bib45) 2024; 438 Gu (bib11) 2023; 396 Yingliang (bib51) 2020; 375 Xue (bib49) 2020; 241 Li (bib20) 2020; 269 Ruan (bib31) 2023; 869 Liu (bib21) 2021; 306 Taj (bib33) 2023; 428 He (bib12) 2025; 77 Cheng (bib7) 2022; 399 Zhu (bib59) 2024; 89 Wang (bib38) 2020; 110 Yoshida (bib52) 2021; 121 Zhao (bib57) 2021; 118 Amin (bib4) 2024; 416 Zhang (bib55) 2020; 276 Zhang (bib56) 2016; 121 Wang (bib41) 2024; 451 Rahman (bib28) 2024; 148 He (bib14) 2021; 271 Ren (bib29) 2024; 430 Wang (bib43) 2019; 203 Deng (bib8) 2014; 50 Qiu (bib25) 2016; 6 Qoku (bib26) 2017; 12 Tan (bib35) 2020; 250 Kai (bib18) 2023; 406 Hu (bib17) 2023; 138–141 Pang (bib23) 2022; 57 Xu (bib48) 2019; 229 Gu (bib10) 2024; 432 10.1016/j.envres.2025.122112_bib46 Zhai (10.1016/j.envres.2025.122112_bib53) 2021; 39 Tian (10.1016/j.envres.2025.122112_bib37) 2024; 101 Bahafid (10.1016/j.envres.2025.122112_bib5) 2017; 95 Tan (10.1016/j.envres.2025.122112_bib34) 2021; 267 Kundu (10.1016/j.envres.2025.122112_bib19) 2023; 415 Xue (10.1016/j.envres.2025.122112_bib49) 2020; 241 Tan (10.1016/j.envres.2025.122112_bib35) 2020; 250 Wang (10.1016/j.envres.2025.122112_bib42) 2023; 404 Liu (10.1016/j.envres.2025.122112_bib21) 2021; 306 Gu (10.1016/j.envres.2025.122112_bib10) 2024; 432 Rahman (10.1016/j.envres.2025.122112_bib27) 2023; 143 Li (10.1016/j.envres.2025.122112_bib20) 2020; 269 Wang (10.1016/j.envres.2025.122112_bib38) 2020; 110 Ali Shah (10.1016/j.envres.2025.122112_bib2) 2021; 291 Ren (10.1016/j.envres.2025.122112_bib29) 2024; 430 Yingliang (10.1016/j.envres.2025.122112_bib51) 2020; 375 Zhang (10.1016/j.envres.2025.122112_bib55) 2020; 276 Chen (10.1016/j.envres.2025.122112_bib6) 2024 He (10.1016/j.envres.2025.122112_bib15) 2018; 353 He (10.1016/j.envres.2025.122112_bib12) 2025; 77 Tan (10.1016/j.envres.2025.122112_bib36) 2015; 30 Zhu (10.1016/j.envres.2025.122112_bib59) 2024; 89 Dong (10.1016/j.envres.2025.122112_bib9) 2023; 10 Rahman (10.1016/j.envres.2025.122112_bib28) 2024; 148 Wang (10.1016/j.envres.2025.122112_bib40) 2023; 345 He (10.1016/j.envres.2025.122112_bib13) 2023; 363 Zhang (10.1016/j.envres.2025.122112_bib56) 2016; 121 Zhou (10.1016/j.envres.2025.122112_bib58) 2023; 75 Wang (10.1016/j.envres.2025.122112_bib43) 2019; 203 Alarcon-Ruiz (10.1016/j.envres.2025.122112_bib1) 2005; 35 Pang (10.1016/j.envres.2025.122112_bib23) 2022; 57 Amin (10.1016/j.envres.2025.122112_bib4) 2024; 416 Zhao (10.1016/j.envres.2025.122112_bib57) 2021; 118 Taj (10.1016/j.envres.2025.122112_bib33) 2023; 428 Wang (10.1016/j.envres.2025.122112_bib39) 2014; 50 Wang (10.1016/j.envres.2025.122112_bib41) 2024; 451 Xie (10.1016/j.envres.2025.122112_bib47) 2023; 18 Deng (10.1016/j.envres.2025.122112_bib8) 2014; 50 Yoshida (10.1016/j.envres.2025.122112_bib52) 2021; 121 Liu (10.1016/j.envres.2025.122112_bib22) 2019; 225 Yang (10.1016/j.envres.2025.122112_bib50) 2024; 91 Siriluck (10.1016/j.envres.2025.122112_bib32) 2021; 391 Hounsi (10.1016/j.envres.2025.122112_bib16) 2013; 42 Wang (10.1016/j.envres.2025.122112_bib44) 2024; 411 Althoey (10.1016/j.envres.2025.122112_bib3) 2022; 45 Woskowski (10.1016/j.envres.2025.122112_bib45) 2024; 438 Gu (10.1016/j.envres.2025.122112_bib11) 2023; 396 Ruan (10.1016/j.envres.2025.122112_bib30) 2023; 419 Hu (10.1016/j.envres.2025.122112_bib17) 2023; 138–141 Kai (10.1016/j.envres.2025.122112_bib18) 2023; 406 Cheng (10.1016/j.envres.2025.122112_bib7) 2022; 399 Patil (10.1016/j.envres.2025.122112_bib24) 2015; 281 Qiu (10.1016/j.envres.2025.122112_bib25) 2016; 6 He (10.1016/j.envres.2025.122112_bib14) 2021; 271 Ruan (10.1016/j.envres.2025.122112_bib31) 2023; 869 Xu (10.1016/j.envres.2025.122112_bib48) 2019; 229 Qoku (10.1016/j.envres.2025.122112_bib26) 2017; 12 Zhang (10.1016/j.envres.2025.122112_bib54) 2015; 37 |
References_xml | – volume: 101 start-page: 78 year: 2024 end-page: 89 ident: bib37 article-title: Investigating the grinding characteristics of vanadium-titanium iron ore tailings for sustainable utilization in cementitious material preparation publication-title: Alex. Eng. J. – volume: 75 year: 2023 ident: bib58 article-title: Insight to workability, compressive strength and microstructure of lithium slag-steel slag based cement under standard condition publication-title: J. Build. Eng. – volume: 267 year: 2021 ident: bib34 article-title: Effect of wet grinded lithium slag on compressive strength and hydration of sulphoaluminate cement system publication-title: Constr. Build. Mater. – volume: 428 year: 2023 ident: bib33 article-title: Effect of duration and type of grinding on the particle size distribution and microstructure of natural pumice with low pozzolanic reactivity publication-title: Powder Technol. – volume: 39 year: 2021 ident: bib53 article-title: Hydration properties and kinetic characteristics of blended cement containing lithium slag powder publication-title: J. Build. Eng. – volume: 411 year: 2024 ident: bib44 article-title: Thermal activation mechanism and activity evaluation of lithium slag: insights from simulated hydration publication-title: Constr. Build. Mater. – volume: 404 year: 2023 ident: bib42 article-title: Synergistic effect of red mud, desulfurized gypsum and fly ash in cementitious materials: mechanical performances and microstructure publication-title: Constr. Build. Mater. – volume: 306 year: 2021 ident: bib21 article-title: Calcined oil shale residue as a supplementary cementitious material for ordinary Portland cement publication-title: Constr. Build. Mater. – volume: 281 start-page: 151 year: 2015 end-page: 158 ident: bib24 article-title: Influence of planetary ball milling parameters on the mechano-chemical activation of fly ash publication-title: Powder Technol. – volume: 399 year: 2022 ident: bib7 article-title: Test research on hydration process of cement-iron tailings powder composite cementitious materials publication-title: Powder Technol. – volume: 363 year: 2023 ident: bib13 article-title: Mechanism and assessment of the pozzolanic activity of melting-quenching lithium slag modified with MgO publication-title: Constr. Build. Mater. – volume: 203 start-page: 304 year: 2019 end-page: 313 ident: bib43 article-title: Micro-morphology and phase composition of lithium slag from lithium carbonate production by sulphuric acid process publication-title: Constr. Build. Mater. – volume: 430 year: 2024 ident: bib29 article-title: Investigation on the mechanism of self-healing effect of cementitious capillary crystalline waterproofing material on concrete and enhancement of its resistance to chloride erosion publication-title: Constr. Build. Mater. – volume: 451 year: 2024 ident: bib41 article-title: Understanding the utilization potential of lepidolite slag in cementitious materials: composition characteristics, hydration properties, and high value-added cementitious system design publication-title: Constr. Build. Mater. – volume: 18 year: 2023 ident: bib47 article-title: Mechanical grinding activation of modified magnesium slag and its use as backfilling cementitious material publication-title: Case Stud. Constr. Mater. – volume: 45 year: 2022 ident: bib3 article-title: Reducing detrimental sulfate-based phase formation in concrete exposed to sodium chloride using supplementary cementitious materials publication-title: J. Build. Eng. – volume: 89 year: 2024 ident: bib59 article-title: Investigation of synergistic effects of lithium slag and granulated blast furnace slag from the perspectives of physics and hydration publication-title: J. Build. Eng. – volume: 291 year: 2021 ident: bib2 article-title: Development of Cleaner One-part geopolymer from lithium slag publication-title: J. Clean. Prod. – reference: XIAMEN ISO STANDARD SAND CO., L., China ISO standard sand. – volume: 138–141 start-page: 147 year: 2023 ident: bib17 article-title: Experimental study on influence of grinding time and lithium residue on mechanical properties of mortar publication-title: Concrete – volume: 118 year: 2021 ident: bib57 article-title: Long-term hydration and microstructure evolution of blended cement containing ground granulated blast furnace slag and waste clay brick publication-title: Cement Concr. Compos. – volume: 77 year: 2025 ident: bib12 article-title: Study on mechanical properties and toughness characteristics of fiber reinforced storage backfill after carbonation curing publication-title: Structures – volume: 6 start-page: 36942 year: 2016 end-page: 36953 ident: bib25 article-title: Recycling of spodumene slag: preparation of green polymer composites publication-title: RSC Adv. – volume: 276 year: 2020 ident: bib55 article-title: Effect of TIPA on mechanical properties and hydration properties of cement-lithium slag system publication-title: J. Environ. Manag. – volume: 415 year: 2023 ident: bib19 article-title: Recovery of lithium from spodumene-bearing pegmatites: a comprehensive review on geological reserves, beneficiation, and extraction publication-title: Powder Technol. – volume: 375 start-page: 284 year: 2020 end-page: 291 ident: bib51 article-title: Experimental study on the utilization of steel slag for cemented ultra-fine tailings backfill publication-title: Powder Technol. – volume: 10 year: 2023 ident: bib9 article-title: Investigation of the performance of cement mortar incorporating lithium slag as a super-fine aggregate publication-title: Front. Mater. – volume: 42 start-page: 105 year: 2013 end-page: 113 ident: bib16 article-title: Kaolin-based geopolymers: effect of mechanical activation and curing process publication-title: Constr. Build. Mater. – volume: 148 year: 2024 ident: bib28 article-title: Fresh, mechanical, and microstructural properties of lithium slag concretes publication-title: Cement Concr. Compos. – volume: 271 year: 2021 ident: bib14 article-title: Mechanical and environmental characteristics of cemented paste backfill containing lithium slag-blended binder publication-title: Constr. Build. Mater. – volume: 121 year: 2021 ident: bib52 article-title: Electrostatic properties of C–S–H and C-A-S-H for predicting calcium and chloride adsorption publication-title: Cement Concr. Compos. – volume: 438 year: 2024 ident: bib45 article-title: Properties of low sulfur leached spodumene as supplementary cementitious material in ordinary Portland cement publication-title: Constr. Build. Mater. – start-page: 1 year: 2024 end-page: 20 ident: bib6 article-title: Comparison of the characteristics of domestic lithium ores and lithium slag and its application for building materialsization: a review publication-title: Multipurpose Utilization of Mineral Resources – volume: 353 start-page: 35 year: 2018 end-page: 43 ident: bib15 article-title: Microstructure of ultra high performance concrete containing lithium slag publication-title: J. Hazard Mater. – volume: 12 start-page: 37 year: 2017 end-page: 50 ident: bib26 article-title: Phase assemblage in ettringite-forming cement pastes: a X-ray diffraction and thermal analysis characterization publication-title: J. Build. Eng. – volume: 241 year: 2020 ident: bib49 article-title: Fiber length effect on strength properties of polypropylene fiber reinforced cemented tailings backfill specimens with different sizes publication-title: Constr. Build. Mater. – volume: 416 year: 2024 ident: bib4 article-title: Transport properties of concrete containing lithium slag publication-title: Constr. Build. Mater. – volume: 869 year: 2023 ident: bib31 article-title: Application of desulfurization gypsum as activator for modified magnesium slag-fly ash cemented paste backfill material publication-title: Sci. Total Environ. – volume: 345 year: 2023 ident: bib40 article-title: High performance C-A-S-H seeds from fly ash-carbide slag for activating lithium slag towards a low carbon binder publication-title: J. Environ. Manag. – volume: 432 year: 2024 ident: bib10 article-title: Review: the formation, characteristics, and resource utilization of lithium slag publication-title: Constr. Build. Mater. – volume: 121 start-page: 483 year: 2016 end-page: 490 ident: bib56 article-title: Hydration and microstructures of concrete containing raw or densified silica fume at different curing temperatures publication-title: Constr. Build. Mater. – volume: 391 start-page: 239 year: 2021 end-page: 252 ident: bib32 article-title: Influence of mechanical properties on milling of amorphous and crystalline silica-based solids publication-title: Powder Technol. – volume: 250 year: 2020 ident: bib35 article-title: Preparation for micro-lithium slag via wet grinding and its application as accelerator in Portland cement publication-title: J. Clean. Prod. – volume: 269 year: 2020 ident: bib20 article-title: Green concrete with ground granulated blast-furnace slag activated by desulfurization gypsum and electric arc furnace reducing slag publication-title: J. Clean. Prod. – volume: 37 start-page: 23 year: 2015 end-page: 27 ident: bib54 article-title: Influence of lithium slag on cement properties publication-title: J. Wuhan Univ. Technol. – volume: 35 start-page: 609 year: 2005 end-page: 613 ident: bib1 article-title: The use of thermal analysis in assessing the effect of temperature on a cement paste publication-title: Cement Concr. Res. – volume: 30 start-page: 129 year: 2015 end-page: 133 ident: bib36 article-title: Utilization of lithium slag as an admixture in blended cements: physico-mechanical and hydration characteristics publication-title: J. Wuhan Univ. Technol.-Materials Sci. Ed. – volume: 95 start-page: 270 year: 2017 end-page: 281 ident: bib5 article-title: Effect of the hydration temperature on the microstructure of Class G cement: C-S-H composition and density publication-title: Cement Concr. Res. – reference: . (Accessed 15 April 2025). – volume: 225 start-page: 1184 year: 2019 end-page: 1193 ident: bib22 article-title: A green route to sustainable alkali-activated materials by heat and chemical activation of lithium slag publication-title: J. Clean. Prod. – volume: 50 start-page: 457 year: 2014 end-page: 462 ident: bib8 article-title: Influence of lithium sulfate addition on the properties of Portland cement paste publication-title: Constr. Build. Mater. – volume: 50 start-page: 727 year: 2014 end-page: 735 ident: bib39 article-title: Effects of fly ash and lithium compounds on the water-soluble alkali and lithium content of cement specimens publication-title: Constr. Build. Mater. – volume: 396 year: 2023 ident: bib11 article-title: Synergistic effect and mechanism of lithium slag on mechanical properties and microstructure of steel slag-cement system publication-title: Constr. Build. Mater. – volume: 419 year: 2023 ident: bib30 article-title: Development and field application of a modified magnesium slag-based mine filling cementitious material publication-title: J. Clean. Prod. – volume: 91 year: 2024 ident: bib50 article-title: Recycling lithium slag into eco-friendly ultra-high performance concrete: hydration process, microstructure development, and environmental benefits publication-title: J. Build. Eng. – volume: 406 year: 2023 ident: bib18 article-title: The feasibility of utilizing sifted desert sand (<75 μm) as sustainable supplementary cementitious materials (SCM) publication-title: Constr. Build. Mater. – volume: 229 year: 2019 ident: bib48 article-title: Investigation on sulfate activation of electrolytic manganese residue on early activity of blast furnace slag in cement-based cementitious material publication-title: Constr. Build. Mater. – volume: 57 year: 2022 ident: bib23 article-title: Influence of steel slag fineness on the hydration of cement-steel slag composite pastes publication-title: J. Build. Eng. – volume: 143 year: 2023 ident: bib27 article-title: Assessment of lithium slag as a supplementary cementitious material: pozzolanic activity and microstructure development publication-title: Cement Concr. Compos. – volume: 110 year: 2020 ident: bib38 article-title: Setting controlling of lithium slag-based geopolymer by activator and sodium tetraborate as a retarder and its effects on mortar properties publication-title: Cement Concr. Compos. – volume: 121 start-page: 483 year: 2016 ident: 10.1016/j.envres.2025.122112_bib56 article-title: Hydration and microstructures of concrete containing raw or densified silica fume at different curing temperatures publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.06.014 – volume: 271 year: 2021 ident: 10.1016/j.envres.2025.122112_bib14 article-title: Mechanical and environmental characteristics of cemented paste backfill containing lithium slag-blended binder publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.121567 – volume: 345 year: 2023 ident: 10.1016/j.envres.2025.122112_bib40 article-title: High performance C-A-S-H seeds from fly ash-carbide slag for activating lithium slag towards a low carbon binder publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2023.118658 – volume: 50 start-page: 457 year: 2014 ident: 10.1016/j.envres.2025.122112_bib8 article-title: Influence of lithium sulfate addition on the properties of Portland cement paste publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.09.058 – volume: 430 year: 2024 ident: 10.1016/j.envres.2025.122112_bib29 article-title: Investigation on the mechanism of self-healing effect of cementitious capillary crystalline waterproofing material on concrete and enhancement of its resistance to chloride erosion publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2024.136416 – volume: 30 start-page: 129 year: 2015 ident: 10.1016/j.envres.2025.122112_bib36 article-title: Utilization of lithium slag as an admixture in blended cements: physico-mechanical and hydration characteristics publication-title: J. Wuhan Univ. Technol.-Materials Sci. Ed. doi: 10.1007/s11595-015-1113-x – volume: 91 year: 2024 ident: 10.1016/j.envres.2025.122112_bib50 article-title: Recycling lithium slag into eco-friendly ultra-high performance concrete: hydration process, microstructure development, and environmental benefits publication-title: J. Build. Eng. – volume: 50 start-page: 727 year: 2014 ident: 10.1016/j.envres.2025.122112_bib39 article-title: Effects of fly ash and lithium compounds on the water-soluble alkali and lithium content of cement specimens publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.10.024 – volume: 138–141 start-page: 147 year: 2023 ident: 10.1016/j.envres.2025.122112_bib17 article-title: Experimental study on influence of grinding time and lithium residue on mechanical properties of mortar publication-title: Concrete – volume: 39 year: 2021 ident: 10.1016/j.envres.2025.122112_bib53 article-title: Hydration properties and kinetic characteristics of blended cement containing lithium slag powder publication-title: J. Build. Eng. – volume: 110 year: 2020 ident: 10.1016/j.envres.2025.122112_bib38 article-title: Setting controlling of lithium slag-based geopolymer by activator and sodium tetraborate as a retarder and its effects on mortar properties publication-title: Cement Concr. Compos. doi: 10.1016/j.cemconcomp.2020.103598 – volume: 291 year: 2021 ident: 10.1016/j.envres.2025.122112_bib2 article-title: Development of Cleaner One-part geopolymer from lithium slag publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.125241 – volume: 12 start-page: 37 year: 2017 ident: 10.1016/j.envres.2025.122112_bib26 article-title: Phase assemblage in ettringite-forming cement pastes: a X-ray diffraction and thermal analysis characterization publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2017.05.005 – volume: 869 year: 2023 ident: 10.1016/j.envres.2025.122112_bib31 article-title: Application of desulfurization gypsum as activator for modified magnesium slag-fly ash cemented paste backfill material publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2023.161631 – volume: 363 year: 2023 ident: 10.1016/j.envres.2025.122112_bib13 article-title: Mechanism and assessment of the pozzolanic activity of melting-quenching lithium slag modified with MgO publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2022.129692 – volume: 121 year: 2021 ident: 10.1016/j.envres.2025.122112_bib52 article-title: Electrostatic properties of C–S–H and C-A-S-H for predicting calcium and chloride adsorption publication-title: Cement Concr. Compos. doi: 10.1016/j.cemconcomp.2021.104109 – volume: 148 year: 2024 ident: 10.1016/j.envres.2025.122112_bib28 article-title: Fresh, mechanical, and microstructural properties of lithium slag concretes publication-title: Cement Concr. Compos. doi: 10.1016/j.cemconcomp.2024.105469 – volume: 416 year: 2024 ident: 10.1016/j.envres.2025.122112_bib4 article-title: Transport properties of concrete containing lithium slag publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2024.135073 – volume: 143 year: 2023 ident: 10.1016/j.envres.2025.122112_bib27 article-title: Assessment of lithium slag as a supplementary cementitious material: pozzolanic activity and microstructure development publication-title: Cement Concr. Compos. doi: 10.1016/j.cemconcomp.2023.105262 – volume: 75 year: 2023 ident: 10.1016/j.envres.2025.122112_bib58 article-title: Insight to workability, compressive strength and microstructure of lithium slag-steel slag based cement under standard condition publication-title: J. Build. Eng. – volume: 35 start-page: 609 year: 2005 ident: 10.1016/j.envres.2025.122112_bib1 article-title: The use of thermal analysis in assessing the effect of temperature on a cement paste publication-title: Cement Concr. Res. doi: 10.1016/j.cemconres.2004.06.015 – volume: 225 start-page: 1184 year: 2019 ident: 10.1016/j.envres.2025.122112_bib22 article-title: A green route to sustainable alkali-activated materials by heat and chemical activation of lithium slag publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.04.018 – volume: 101 start-page: 78 year: 2024 ident: 10.1016/j.envres.2025.122112_bib37 article-title: Investigating the grinding characteristics of vanadium-titanium iron ore tailings for sustainable utilization in cementitious material preparation publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2024.05.057 – volume: 229 year: 2019 ident: 10.1016/j.envres.2025.122112_bib48 article-title: Investigation on sulfate activation of electrolytic manganese residue on early activity of blast furnace slag in cement-based cementitious material publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.116831 – volume: 6 start-page: 36942 year: 2016 ident: 10.1016/j.envres.2025.122112_bib25 article-title: Recycling of spodumene slag: preparation of green polymer composites publication-title: RSC Adv. doi: 10.1039/C6RA03119F – volume: 57 year: 2022 ident: 10.1016/j.envres.2025.122112_bib23 article-title: Influence of steel slag fineness on the hydration of cement-steel slag composite pastes publication-title: J. Build. Eng. – volume: 118 year: 2021 ident: 10.1016/j.envres.2025.122112_bib57 article-title: Long-term hydration and microstructure evolution of blended cement containing ground granulated blast furnace slag and waste clay brick publication-title: Cement Concr. Compos. doi: 10.1016/j.cemconcomp.2021.103982 – volume: 353 start-page: 35 year: 2018 ident: 10.1016/j.envres.2025.122112_bib15 article-title: Microstructure of ultra high performance concrete containing lithium slag publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2018.03.063 – volume: 95 start-page: 270 year: 2017 ident: 10.1016/j.envres.2025.122112_bib5 article-title: Effect of the hydration temperature on the microstructure of Class G cement: C-S-H composition and density publication-title: Cement Concr. Res. doi: 10.1016/j.cemconres.2017.02.008 – volume: 428 year: 2023 ident: 10.1016/j.envres.2025.122112_bib33 article-title: Effect of duration and type of grinding on the particle size distribution and microstructure of natural pumice with low pozzolanic reactivity publication-title: Powder Technol. doi: 10.1016/j.powtec.2023.118839 – volume: 419 year: 2023 ident: 10.1016/j.envres.2025.122112_bib30 article-title: Development and field application of a modified magnesium slag-based mine filling cementitious material publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2023.138269 – volume: 281 start-page: 151 year: 2015 ident: 10.1016/j.envres.2025.122112_bib24 article-title: Influence of planetary ball milling parameters on the mechano-chemical activation of fly ash publication-title: Powder Technol. doi: 10.1016/j.powtec.2015.04.078 – start-page: 1 year: 2024 ident: 10.1016/j.envres.2025.122112_bib6 article-title: Comparison of the characteristics of domestic lithium ores and lithium slag and its application for building materialsization: a review publication-title: Multipurpose Utilization of Mineral Resources – volume: 18 year: 2023 ident: 10.1016/j.envres.2025.122112_bib47 article-title: Mechanical grinding activation of modified magnesium slag and its use as backfilling cementitious material publication-title: Case Stud. Constr. Mater. – volume: 399 year: 2022 ident: 10.1016/j.envres.2025.122112_bib7 article-title: Test research on hydration process of cement-iron tailings powder composite cementitious materials publication-title: Powder Technol. – volume: 203 start-page: 304 year: 2019 ident: 10.1016/j.envres.2025.122112_bib43 article-title: Micro-morphology and phase composition of lithium slag from lithium carbonate production by sulphuric acid process publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.01.099 – volume: 267 year: 2021 ident: 10.1016/j.envres.2025.122112_bib34 article-title: Effect of wet grinded lithium slag on compressive strength and hydration of sulphoaluminate cement system publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.120465 – volume: 10 year: 2023 ident: 10.1016/j.envres.2025.122112_bib9 article-title: Investigation of the performance of cement mortar incorporating lithium slag as a super-fine aggregate publication-title: Front. Mater. doi: 10.3389/fmats.2023.1134622 – volume: 45 year: 2022 ident: 10.1016/j.envres.2025.122112_bib3 article-title: Reducing detrimental sulfate-based phase formation in concrete exposed to sodium chloride using supplementary cementitious materials publication-title: J. Build. Eng. – volume: 375 start-page: 284 year: 2020 ident: 10.1016/j.envres.2025.122112_bib51 article-title: Experimental study on the utilization of steel slag for cemented ultra-fine tailings backfill publication-title: Powder Technol. doi: 10.1016/j.powtec.2020.07.052 – volume: 396 year: 2023 ident: 10.1016/j.envres.2025.122112_bib11 article-title: Synergistic effect and mechanism of lithium slag on mechanical properties and microstructure of steel slag-cement system publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2023.131768 – volume: 451 year: 2024 ident: 10.1016/j.envres.2025.122112_bib41 article-title: Understanding the utilization potential of lepidolite slag in cementitious materials: composition characteristics, hydration properties, and high value-added cementitious system design publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2024.138817 – volume: 276 year: 2020 ident: 10.1016/j.envres.2025.122112_bib55 article-title: Effect of TIPA on mechanical properties and hydration properties of cement-lithium slag system publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2020.111274 – volume: 438 year: 2024 ident: 10.1016/j.envres.2025.122112_bib45 article-title: Properties of low sulfur leached spodumene as supplementary cementitious material in ordinary Portland cement publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2024.137096 – volume: 411 year: 2024 ident: 10.1016/j.envres.2025.122112_bib44 article-title: Thermal activation mechanism and activity evaluation of lithium slag: insights from simulated hydration publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2023.134615 – volume: 77 year: 2025 ident: 10.1016/j.envres.2025.122112_bib12 article-title: Study on mechanical properties and toughness characteristics of fiber reinforced storage backfill after carbonation curing publication-title: Structures doi: 10.1016/j.istruc.2025.108996 – volume: 306 year: 2021 ident: 10.1016/j.envres.2025.122112_bib21 article-title: Calcined oil shale residue as a supplementary cementitious material for ordinary Portland cement publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.124849 – volume: 404 year: 2023 ident: 10.1016/j.envres.2025.122112_bib42 article-title: Synergistic effect of red mud, desulfurized gypsum and fly ash in cementitious materials: mechanical performances and microstructure publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2023.133302 – volume: 269 year: 2020 ident: 10.1016/j.envres.2025.122112_bib20 article-title: Green concrete with ground granulated blast-furnace slag activated by desulfurization gypsum and electric arc furnace reducing slag publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.122212 – volume: 432 year: 2024 ident: 10.1016/j.envres.2025.122112_bib10 article-title: Review: the formation, characteristics, and resource utilization of lithium slag publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2024.136648 – volume: 241 year: 2020 ident: 10.1016/j.envres.2025.122112_bib49 article-title: Fiber length effect on strength properties of polypropylene fiber reinforced cemented tailings backfill specimens with different sizes publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.118113 – volume: 391 start-page: 239 year: 2021 ident: 10.1016/j.envres.2025.122112_bib32 article-title: Influence of mechanical properties on milling of amorphous and crystalline silica-based solids publication-title: Powder Technol. doi: 10.1016/j.powtec.2021.06.016 – volume: 37 start-page: 23 year: 2015 ident: 10.1016/j.envres.2025.122112_bib54 article-title: Influence of lithium slag on cement properties publication-title: J. Wuhan Univ. Technol. – ident: 10.1016/j.envres.2025.122112_bib46 – volume: 89 year: 2024 ident: 10.1016/j.envres.2025.122112_bib59 article-title: Investigation of synergistic effects of lithium slag and granulated blast furnace slag from the perspectives of physics and hydration publication-title: J. Build. Eng. – volume: 406 year: 2023 ident: 10.1016/j.envres.2025.122112_bib18 article-title: The feasibility of utilizing sifted desert sand (<75 μm) as sustainable supplementary cementitious materials (SCM) publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2023.133375 – volume: 415 year: 2023 ident: 10.1016/j.envres.2025.122112_bib19 article-title: Recovery of lithium from spodumene-bearing pegmatites: a comprehensive review on geological reserves, beneficiation, and extraction publication-title: Powder Technol. doi: 10.1016/j.powtec.2022.118142 – volume: 250 year: 2020 ident: 10.1016/j.envres.2025.122112_bib35 article-title: Preparation for micro-lithium slag via wet grinding and its application as accelerator in Portland cement publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.119528 – volume: 42 start-page: 105 year: 2013 ident: 10.1016/j.envres.2025.122112_bib16 article-title: Kaolin-based geopolymers: effect of mechanical activation and curing process publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2012.12.069 |
SSID | ssj0011530 |
Score | 2.458072 |
Snippet | The use of lithium slag (LS) in the preparation of supplementary cementitious materials (SCM) effectively mitigates the environmental pollution caused by... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 122112 |
SubjectTerms | Lithium slag Mechanical activation Mechanical properties Microstructural analysis Supplementary cementitious materials |
Title | Resource utilization of lithium slag supplementary cementitious materials through mechanical activation: mechanism investigation and process optimization |
URI | https://dx.doi.org/10.1016/j.envres.2025.122112 https://www.ncbi.nlm.nih.gov/pubmed/40516898 https://www.proquest.com/docview/3218775611 |
Volume | 283 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swED4h9jIJoY0B6xjISHtNmzhOYu8NVUVlEzwNqW-WkzhQtKYVbSfthf_Bv-Uutql4QEi8JY6jWL6z77vLfWeAH9yoTFWiiFSVZ5GwaRwhys8jhaaYVynF3YiNfHmVj6_Fr0k22YJh4MJQWqXf-92e3u3WvmXgZ3OwmE6J45sQrxQtNNUdS4loLkRBWt5_eE7zQMCTxuEUA-od6HNdjpdt_6FTi14iz_oJR1-Iv2aeXoOfnRk6_wS7Hj-yMzfEz7Bl2z04GG3oavjQr9flHuy4qBxzZKMv8Bii9Qz17a-nYLJ5wxCM307XM4YKcsOWdNKnyyq__8-q7ooyu9ZLhvjWqSzzB_ywmSXuMImaEUfCRXh_hubljE03lTzwW6at2cKRE9gct6uZH8Q-XJ-P_gzHkT-cISIJriL0yJUoaytkLSw6MUWVlLFpylxUpqQiao1qbIN4MJZWJHFphCl5oVTFpawlur8HsN3OW_sVWBZX3Fr0lWueCJPX2JHLTCJQEkqYWPYgCjLRC1eDQ4fktDvtZKhJhtrJsAdFEJx-oUsazcQbb54GOWtcZvTvxLQWp1enCIWKAsFm0oNDpwDPY0HMm-RSyW_v_u4RfKQ7solJ9h22V_dre4xgZ1WedNp8Ah_OLn6Pr54A3WwCwg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB5BOBQJVUB5pC3UlXrdsuvYu3ZvCIHCKyeQuFneXS8EkU1EEiR-Cv-2M7EN4oAq9bay17LlGXu-secbA_ziVktdiSLRVS4T4Xppgig_TzSaYl716NyN2MiXg7x_Lc5u5M0SHEUuDIVVhr3f7-mL3TqUHITZPJgMh8TxzYhXihaa8o715DKsUHYq2YGVw9Pz_uD1MgEXdRofMqAGkUG3CPNy7RP6tegocvk74-gO8Y8s1EcIdGGJTtbhc4CQ7NCPcgOWXLsJ28dvjDWsDEt2uglr_mCOeb7RF3iJB_YMVe4hsDDZuGGIx--G8xFDHbllU3rs0weWPz6zavFFwV3zKUOI67WWhTd-2MgRfZikzYgm4Q95_8Ti6YgN35J5YF-2rdnE8xPYGHesURjEFlyfHF8d9ZPwPkNCQpwl6JRrUdZOqFo49GOKKitT25S5qGxJedQa3bgGIWGqnMjS0gpb8kLriitVK_SAt6HTjlu3C0ymFXcO3eWaZ8LmNf7IlVSIlYQWNlVdSKJMzMSn4TAxPu3eeBkakqHxMuxCEQVn3qmTQUvxj5Y_o5wNrjS6PrGtw-k1PURDRYF4M-vCjleA17Eg7M1ypdXX_-73B3zqX11emIvTwfk3WKUaMpGZ_A6d2ePc7SH2mZX7Qbf_Aqf0BXM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resource+utilization+of+lithium+slag+supplementary+cementitious+materials+through+mechanical+activation%3A+mechanism+investigation+and+process+optimization&rft.jtitle=Environmental+research&rft.au=Wang%2C+Haitao&rft.au=Wu%2C+Houqin&rft.au=Tian%2C+Jia&rft.au=Liu%2C+Lang&rft.date=2025-10-15&rft.pub=Elsevier+Inc&rft.issn=0013-9351&rft.volume=283&rft_id=info:doi/10.1016%2Fj.envres.2025.122112&rft.externalDocID=S0013935125013635 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-9351&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-9351&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-9351&client=summon |