Hybrid Machine Learning Model for Face Recognition Using SVM
Face recognition systems have enhanced human-computer interactions in the last ten years. However, the literature reveals that current techniques used for identifying or verifying faces are not immune to limitations. Principal Component Analysis-Support Vector Machine (PCA-SVM) and Principal Compone...
Saved in:
Published in | Computers, materials & continua Vol. 72; no. 2; pp. 2697 - 2712 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Henderson
Tech Science Press
2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Face recognition systems have enhanced human-computer interactions in the last ten years. However, the literature reveals that current techniques used for identifying or verifying faces are not immune to limitations. Principal Component Analysis-Support Vector Machine (PCA-SVM) and Principal Component Analysis-Artificial Neural Network (PCA-ANN) are among the relatively recent and powerful face analysis techniques. Compared to PCA-ANN, PCA-SVM has demonstrated generalization capabilities in many tasks, including the ability to recognize objects with small or large data samples. Apart from requiring a minimal number of parameters in face detection, PCA-SVM minimizes generalization errors and avoids overfitting problems better than PCA-ANN. PCA-SVM, however, is ineffective and inefficient in detecting human faces in cases in which there is poor lighting, long hair, or items covering the subject's face. This study proposes a novel PCA-SVM-based model to overcome the recognition problem of PCA-ANN and enhance face detection. The experimental results indicate that the proposed model provides a better face recognition outcome than PCA-SVM. |
---|---|
AbstractList | Face recognition systems have enhanced human-computer interactions in the last ten years. However, the literature reveals that current techniques used for identifying or verifying faces are not immune to limitations. Principal Component Analysis-Support Vector Machine (PCA-SVM) and Principal Component Analysis-Artificial Neural Network (PCA-ANN) are among the relatively recent and powerful face analysis techniques. Compared to PCA-ANN, PCA-SVM has demonstrated generalization capabilities in many tasks, including the ability to recognize objects with small or large data samples. Apart from requiring a minimal number of parameters in face detection, PCA-SVM minimizes generalization errors and avoids overfitting problems better than PCA-ANN. PCA-SVM, however, is ineffective and inefficient in detecting human faces in cases in which there is poor lighting, long hair, or items covering the subject's face. This study proposes a novel PCA-SVM-based model to overcome the recognition problem of PCA-ANN and enhance face detection. The experimental results indicate that the proposed model provides a better face recognition outcome than PCA-SVM. |
Author | K. Pateriya, R. Kumar Saini, Dinesh Kumar Yadav, Anil Gupta, Punit Kumar Gupta, Nirmal Alahmadi, Mohammad |
Author_xml | – sequence: 1 givenname: Anil surname: Kumar Yadav fullname: Kumar Yadav, Anil – sequence: 2 givenname: R. surname: K. Pateriya fullname: K. Pateriya, R. – sequence: 3 givenname: Nirmal surname: Kumar Gupta fullname: Kumar Gupta, Nirmal – sequence: 4 givenname: Punit surname: Gupta fullname: Gupta, Punit – sequence: 5 givenname: Dinesh surname: Kumar Saini fullname: Kumar Saini, Dinesh – sequence: 6 givenname: Mohammad surname: Alahmadi fullname: Alahmadi, Mohammad |
BookMark | eNp1kEFLAzEQRoNUsFbvHgOet04m2dgFL1KsFVoEtV5DNpvUlDapyfbQf-_WehBBGJg5fG9meOekF2KwhFwxGHKUIG7MxgwREIeAHEo8IX1WClkgouz9ms_Iec4rAC55BX1yN93XyTd0rs2HD5bOrE7BhyWdx8auqYuJTrSx9MWauAy-9THQRT4EXt_nF-TU6XW2lz99QBaTh7fxtJg9Pz6N72eF4Yy3hdXMjWDkoAHBOVagLXOmdppLWXIDt01XXNRGNtIJhlDXtbHIXQUORWn5gFwf925T_NzZ3KpV3KXQnVQohQTGmKy6lDymTIo5J-uU8a0-fNwm7deKgfo2pTpT6mBKHU11IPwBt8lvdNr_j3wB9dpr1A |
CitedBy_id | crossref_primary_10_1007_s11517_024_03239_0 |
Cites_doi | 10.4103/0256-4602.110546 10.1109/34.655647 10.1016/S0167-8655(03)00081-3 10.1109/ACCESS.2020.3006097 10.1007/s11042-017-5015-0 10.1016/j.neucom.2014.12.026 10.14257/ijsia.2016.10.3.08 10.1109/ACCESS.2021.3060749 10.1109/97.991133 10.1117/12.542890 10.1023/A:1011183429707 |
ContentType | Journal Article |
Copyright | 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SC 7SR 8BQ 8FD ABUWG AFKRA AZQEC BENPR CCPQU DWQXO JG9 JQ2 L7M L~C L~D PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI |
DOI | 10.32604/cmc.2022.023052 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College METADEX Computer and Information Systems Abstracts Professional ProQuest Central Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1546-2226 |
EndPage | 2712 |
ExternalDocumentID | 10_32604_cmc_2022_023052 |
GroupedDBID | AAFWJ AAYXX ACIWK ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR CCPQU CITATION EBS EJD J9A OK1 P2P PHGZM PHGZT PIMPY PUEGO RTS TUS 7SC 7SR 8BQ 8FD ABUWG AZQEC DWQXO JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c313t-ea1f808f0d0433290ae1fcbfa36653c07d07d34bc6d6f4120bbbce23f90f245e3 |
IEDL.DBID | BENPR |
ISSN | 1546-2226 1546-2218 |
IngestDate | Mon Jun 30 02:19:43 EDT 2025 Mon Sep 01 05:05:03 EDT 2025 Thu Apr 24 23:02:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c313t-ea1f808f0d0433290ae1fcbfa36653c07d07d34bc6d6f4120bbbce23f90f245e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2646011169?pq-origsite=%requestingapplication% |
PQID | 2646011169 |
PQPubID | 2048737 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2646011169 crossref_citationtrail_10_32604_cmc_2022_023052 crossref_primary_10_32604_cmc_2022_023052 |
PublicationCentury | 2000 |
PublicationDate | 2022-00-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 2022-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Henderson |
PublicationPlace_xml | – name: Henderson |
PublicationTitle | Computers, materials & continua |
PublicationYear | 2022 |
Publisher | Tech Science Press |
Publisher_xml | – name: Tech Science Press |
References | Frolov (ref38) 2009 Lu (ref12) 2015; 155 Sani (ref34) 2009 Wang (ref41) 2021 Guo (ref17) 2000 Zhang (ref22) 2011; 10 Wang (ref24) 2007; 6 Lang (ref35) 2009; 1 Xi (ref42) 2021 Jain (ref8) 2004; 5404 Chato (ref40) 2018 Kraus (ref5) 2002 Yang (ref19) 2000; 2 Watson (ref9) 1994; 4 Kasar (ref13) 2016; 10 Johnson (ref6) 2007 Kumar (ref7) 2013; 30 Khayam (ref10) 2003 Lihong (ref32) 2009; 7 Philips (ref18) 1999 Kim (ref20) 2002; 9 Becker (ref28) 2008; 14 Bennett (ref3) 2001; 3 Rowley (ref11) 1998; 20 Hafed (ref16) 2001; 43 Rioux (ref27) 2008; 1 Faruqe (ref31) 2009; 3 Li (ref25) 2007 Cui (ref29) 2008; 2 Mazloom (ref36) 2009; 1 Cui (ref33) 2009; 1 Mansour (ref45) 2020; 79 Zhang (ref26) 2008; 1 Déniz (ref21) 2003; 24 Li (ref30) 2009; 1 Chen (ref37) 2009 Tao (ref39) 2010 Tian (ref43) 2020; 8 Parveen (ref23) 2006; 1 ref4 Shen (ref14) 2007 Kumar (ref1) 2013; 30 Jain (ref2) 2004; 5404 Li (ref44) 2020; 9 Heisele (ref15) 2001; 2 |
References_xml | – start-page: 803 year: 1999 ident: ref18 publication-title: Advances in Neural Information Processing System – volume: 14 start-page: 1 year: 2008 ident: ref28 article-title: Evaluate face recognition for application applied to real word application FaceBook – volume: 30 start-page: 93 year: 2013 ident: ref7 article-title: Face recognition by machines: Is it an effective surveillance tactic? publication-title: IETE Technical Review doi: 10.4103/0256-4602.110546 – start-page: 1 year: 2003 ident: ref10 publication-title: Technical Report – volume: 3 start-page: 115 year: 2001 ident: ref3 article-title: Can facial recognition technology Be used to fight the New War against terrorism? Examining the constitutionality of facial recognition surveillance systems publication-title: North Carolina Journal of Law & Technology – volume: 20 start-page: 23 year: 1998 ident: ref11 article-title: Neural network-based face detection publication-title: IEEE Trans. Pattern Analysis and Machine Intelligence doi: 10.1109/34.655647 – volume: 1 start-page: 179 year: 2006 ident: ref23 article-title: Face recognition using multiple classifiers – start-page: 960 year: 2010 ident: ref39 article-title: Face recognition under complex conditions – volume: 7 start-page: 5871 year: 2009 ident: ref32 article-title: Face recognition based on multi-class SVM – volume: 1 start-page: 5906 year: 2008 ident: ref26 article-title: Face recognition using multi-scale PCA and support vector machine – volume: 30 start-page: 93 year: 2013 ident: ref1 article-title: Face recognition by machines: Is it an effective surveillance tactic? publication-title: IETE Technical Review doi: 10.4103/0256-4602.110546 – volume: 6 start-page: 308 year: 2007 ident: ref24 article-title: An improved PCA face recognition algorithm based on the discrete wavelet transform, the support vector machines – volume: 1 start-page: 619 year: 2009 ident: ref33 article-title: Applications of boolean kernel function SVM in face recognition – start-page: 1 year: 2009 ident: ref37 article-title: The study, implementation of face recognition, tracking system – volume: 24 start-page: 2153 year: 2003 ident: ref21 article-title: Face recognition using independent component analysis and support vector machines publication-title: Pattern Recognition Letters Elsevier doi: 10.1016/S0167-8655(03)00081-3 – start-page: 1 year: 2018 ident: ref40 article-title: Image processing and artificial neural network for counting people inside public transport – volume: 1 start-page: 702 year: 2009 ident: ref35 article-title: Study of face recognition algorithm based on proximal support vector machine – start-page: 196 year: 2000 ident: ref17 article-title: Face recognition by support vector machines – volume: 8 start-page: 125731 year: 2020 ident: ref43 article-title: Artificial intelligence image recognition method based on convolutional neural network algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3006097 – start-page: 165 year: 2007 ident: ref14 article-title: A SVM face recognition method based on optimized Gabor features – volume: 5404 start-page: 561 year: 2004 ident: ref2 article-title: Can soft biometric traits assist user recognition? – start-page: 1773 year: 2007 ident: ref25 publication-title: Robotics and Biometrics – volume: 79 start-page: 22065 year: 2020 ident: ref45 article-title: Evolutionary computing enriched ridge regression model for craniofacial reconstruction publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-017-5015-0 – year: 2007 ident: ref6 article-title: How facial recognition systems work publication-title: How Stuff Works – start-page: 139 year: 2009 ident: ref34 article-title: Evaluation of face recognition system using support vector machine – volume: 155 start-page: 219 year: 2015 ident: ref12 article-title: A hybrid wavelet neural network and switching particle swarm optimization algorithm for face direction recognition publication-title: International Journal on Neurocomputing doi: 10.1016/j.neucom.2014.12.026 – volume: 10 start-page: 81 year: 2016 ident: ref13 article-title: Face recognition using neural network: A review publication-title: International Journal of Security and its Applications doi: 10.14257/ijsia.2016.10.3.08 – volume: 1 start-page: 391 year: 2009 ident: ref36 article-title: Construction, application of SVM model, wavelet-PCA for face recognition – start-page: 1122 year: 2021 ident: ref41 article-title: Research on application of deep learning algorithm in image classification – ident: ref4 – volume: 4 start-page: 81 year: 1994 ident: ref9 article-title: Image compression using the discrete cosine transform publication-title: Mathematica Journal – volume: 9 start-page: 33595 year: 2020 ident: ref44 article-title: Fuzzy multilevel image thresholding based on the choose improved coyote optimization algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3060749 – volume: 9 start-page: 40 year: 2002 ident: ref20 article-title: Face recognition using kernel principal component analysis publication-title: Signal Processing Letters, IEEE doi: 10.1109/97.991133 – start-page: 1062 year: 2021 ident: ref42 article-title: Image feature extraction and analysis algorithm based on multi-level neural network – volume: 2 start-page: 688 year: 2001 ident: ref15 article-title: Face recognition with support vector machines: Global versus component-based approach – volume: 10 start-page: 42 year: 2011 ident: ref22 article-title: Face recognition in color images using principal component analysis and fuzzy support vector machines – volume: 1 start-page: 1 year: 2009 ident: ref30 article-title: Face recognition system using SVM classifier, feature extraction by PCA, LDA combination publication-title: IEEE – volume: 5404 start-page: 561 year: 2004 ident: ref8 article-title: Can soft biometric traits assist user recognition? doi: 10.1117/12.542890 – start-page: 1 year: 2002 ident: ref5 article-title: Face the facts facial recognition technology's troubled past-troubling future publication-title: The Free Library – volume: 2 start-page: 148 year: 2008 ident: ref29 article-title: Research on face recognition based on boolean kernel SVM publication-title: Natural Computation, IEEE – volume: 3 start-page: 97 year: 2009 ident: ref31 article-title: Face recognition using PCA, SVM publication-title: Anti-Counterfeiting, Security, Identification in Communication, IEEE – volume: 2 start-page: 471 year: 2000 ident: ref19 article-title: Gender classification using support vector machines – volume: 43 start-page: 167 year: 2001 ident: ref16 article-title: Face Recognition Using the Discrete Cosine Transform publication-title: International Journal of Computer Vision doi: 10.1023/A:1011183429707 – start-page: 31 year: 2009 ident: ref38 article-title: The techniques for face recognition with support vector machines – volume: 1 start-page: 117 year: 2008 ident: ref27 article-title: Class redundancy for face recognition by SVM |
SSID | ssj0036390 |
Score | 2.285529 |
Snippet | Face recognition systems have enhanced human-computer interactions in the last ten years. However, the literature reveals that current techniques used for... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 2697 |
SubjectTerms | Artificial neural networks Face recognition Learning theory Machine learning Object recognition Principal components analysis Support vector machines |
Title | Hybrid Machine Learning Model for Face Recognition Using SVM |
URI | https://www.proquest.com/docview/2646011169 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXVh4IwoFeWBhMHX8SiwhIUCtKqRWqFDULYodm6W0hZaBf4_tOKAulaIseQzf6e4-n8_3AXDFRMZkYgxijhO5G-ZIcVkgLk2WSaVVEUT7BkPRH7OnCZ_EgtsytlXWMTEE6nKufY284xK38LroQt4tPpFXjfK7q1FCYxs0XQjO3OKr-dAdPo_qWExd_g1HIjkTiLhsVm1UOsqCWUd_-BGGhNx4Gs7JemJaj8sh2fT2wW5kifC-MusB2DKzQ7BXKzDA6JBH4Lb_409cwUFoiTQwTkt9h17ibAodIYW9Qhs4qtuE5jMYmgTgy9vgGIx73dfHPop6CEjThK6QKRKb4cziMkwdk7gwidXKFlQITjVOS3dRprQohWUJwUopbQi1ElvCuKEnoDGbz8wpgCkuSWJS58CZZtpIVQibWi6JCBuFqgU6NRi5jsPCvWbFNHeLhgBf7uDLPXx5BV8LXP99sagGZWx4t13jm0eXWeb_Bj7b_Pgc7Ph_VXWQNmisvr7NhWMGK3UZzf8LGcS0PQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BOcCFHbHjAxw4hDreGksgxFaVpRWCFnELsWNzgZalCPFTfCO2k4C4cEOKckliRS-TmWfPeB7AJhMJk7ExEXOcyJ0wjxSXWcSlSRKptMqCaF-7I1o9dnbLb0fgs9oL48sqK58YHHU-0H6NvO4Ct_C66ELuPz1HXjXKZ1crCY3CLM7Nx7ubsr3unR6777tFSPOke9SKSlWBSNOYDiOTxTbBicV56N0lcWZiq5XNqBCcatzI3UGZ0iIXlsUEK6W0IdRKbAnjhrpxR2GMUfc6NRg7POlcXlW-n7p4H7ZgciYi4qJnkRh1FAmzun70LRMJ2fG0n5PfgfB3HAjBrTkNkyUrRQeFGc3AiOnPwlSl-IBKBzAHu60Pv8MLtUMJpkFld9Z75CXVHpAjwKiZaYOuqrKkQR-FogR0fdOeh96_ILUAtf6gbxYBNXBOYtNwDiPRTBupMmEblksiQmJSLUG9AiPVZXNyr5HxkLpJSoAvdfClHr60gG8Jtr-feCoac_xx72qFb1r-oq_pj0Et_315A8Zb3fZFenHaOV-BCT9usQazCrXhy5tZc6xkqNZLU0Bw99_W9wXoQfG4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Machine+Learning+Model+for+Face+Recognition+Using+SVM&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Kumar+Yadav%2C+Anil&rft.au=K.+Pateriya%2C+R.&rft.au=Kumar+Gupta%2C+Nirmal&rft.au=Gupta%2C+Punit&rft.date=2022&rft.issn=1546-2226&rft.volume=72&rft.issue=2&rft.spage=2697&rft.epage=2712&rft_id=info:doi/10.32604%2Fcmc.2022.023052&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2022_023052 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon |