Hybrid Machine Learning Model for Face Recognition Using SVM

Face recognition systems have enhanced human-computer interactions in the last ten years. However, the literature reveals that current techniques used for identifying or verifying faces are not immune to limitations. Principal Component Analysis-Support Vector Machine (PCA-SVM) and Principal Compone...

Full description

Saved in:
Bibliographic Details
Published inComputers, materials & continua Vol. 72; no. 2; pp. 2697 - 2712
Main Authors Kumar Yadav, Anil, K. Pateriya, R., Kumar Gupta, Nirmal, Gupta, Punit, Kumar Saini, Dinesh, Alahmadi, Mohammad
Format Journal Article
LanguageEnglish
Published Henderson Tech Science Press 2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Face recognition systems have enhanced human-computer interactions in the last ten years. However, the literature reveals that current techniques used for identifying or verifying faces are not immune to limitations. Principal Component Analysis-Support Vector Machine (PCA-SVM) and Principal Component Analysis-Artificial Neural Network (PCA-ANN) are among the relatively recent and powerful face analysis techniques. Compared to PCA-ANN, PCA-SVM has demonstrated generalization capabilities in many tasks, including the ability to recognize objects with small or large data samples. Apart from requiring a minimal number of parameters in face detection, PCA-SVM minimizes generalization errors and avoids overfitting problems better than PCA-ANN. PCA-SVM, however, is ineffective and inefficient in detecting human faces in cases in which there is poor lighting, long hair, or items covering the subject's face. This study proposes a novel PCA-SVM-based model to overcome the recognition problem of PCA-ANN and enhance face detection. The experimental results indicate that the proposed model provides a better face recognition outcome than PCA-SVM.
AbstractList Face recognition systems have enhanced human-computer interactions in the last ten years. However, the literature reveals that current techniques used for identifying or verifying faces are not immune to limitations. Principal Component Analysis-Support Vector Machine (PCA-SVM) and Principal Component Analysis-Artificial Neural Network (PCA-ANN) are among the relatively recent and powerful face analysis techniques. Compared to PCA-ANN, PCA-SVM has demonstrated generalization capabilities in many tasks, including the ability to recognize objects with small or large data samples. Apart from requiring a minimal number of parameters in face detection, PCA-SVM minimizes generalization errors and avoids overfitting problems better than PCA-ANN. PCA-SVM, however, is ineffective and inefficient in detecting human faces in cases in which there is poor lighting, long hair, or items covering the subject's face. This study proposes a novel PCA-SVM-based model to overcome the recognition problem of PCA-ANN and enhance face detection. The experimental results indicate that the proposed model provides a better face recognition outcome than PCA-SVM.
Author K. Pateriya, R.
Kumar Saini, Dinesh
Kumar Yadav, Anil
Gupta, Punit
Kumar Gupta, Nirmal
Alahmadi, Mohammad
Author_xml – sequence: 1
  givenname: Anil
  surname: Kumar Yadav
  fullname: Kumar Yadav, Anil
– sequence: 2
  givenname: R.
  surname: K. Pateriya
  fullname: K. Pateriya, R.
– sequence: 3
  givenname: Nirmal
  surname: Kumar Gupta
  fullname: Kumar Gupta, Nirmal
– sequence: 4
  givenname: Punit
  surname: Gupta
  fullname: Gupta, Punit
– sequence: 5
  givenname: Dinesh
  surname: Kumar Saini
  fullname: Kumar Saini, Dinesh
– sequence: 6
  givenname: Mohammad
  surname: Alahmadi
  fullname: Alahmadi, Mohammad
BookMark eNp1kEFLAzEQRoNUsFbvHgOet04m2dgFL1KsFVoEtV5DNpvUlDapyfbQf-_WehBBGJg5fG9meOekF2KwhFwxGHKUIG7MxgwREIeAHEo8IX1WClkgouz9ms_Iec4rAC55BX1yN93XyTd0rs2HD5bOrE7BhyWdx8auqYuJTrSx9MWauAy-9THQRT4EXt_nF-TU6XW2lz99QBaTh7fxtJg9Pz6N72eF4Yy3hdXMjWDkoAHBOVagLXOmdppLWXIDt01XXNRGNtIJhlDXtbHIXQUORWn5gFwf925T_NzZ3KpV3KXQnVQohQTGmKy6lDymTIo5J-uU8a0-fNwm7deKgfo2pTpT6mBKHU11IPwBt8lvdNr_j3wB9dpr1A
CitedBy_id crossref_primary_10_1007_s11517_024_03239_0
Cites_doi 10.4103/0256-4602.110546
10.1109/34.655647
10.1016/S0167-8655(03)00081-3
10.1109/ACCESS.2020.3006097
10.1007/s11042-017-5015-0
10.1016/j.neucom.2014.12.026
10.14257/ijsia.2016.10.3.08
10.1109/ACCESS.2021.3060749
10.1109/97.991133
10.1117/12.542890
10.1023/A:1011183429707
ContentType Journal Article
Copyright 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
8BQ
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
JG9
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOI 10.32604/cmc.2022.023052
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1546-2226
EndPage 2712
ExternalDocumentID 10_32604_cmc_2022_023052
GroupedDBID AAFWJ
AAYXX
ACIWK
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
J9A
OK1
P2P
PHGZM
PHGZT
PIMPY
PUEGO
RTS
TUS
7SC
7SR
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c313t-ea1f808f0d0433290ae1fcbfa36653c07d07d34bc6d6f4120bbbce23f90f245e3
IEDL.DBID BENPR
ISSN 1546-2226
1546-2218
IngestDate Mon Jun 30 02:19:43 EDT 2025
Mon Sep 01 05:05:03 EDT 2025
Thu Apr 24 23:02:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-ea1f808f0d0433290ae1fcbfa36653c07d07d34bc6d6f4120bbbce23f90f245e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2646011169?pq-origsite=%requestingapplication%
PQID 2646011169
PQPubID 2048737
PageCount 16
ParticipantIDs proquest_journals_2646011169
crossref_citationtrail_10_32604_cmc_2022_023052
crossref_primary_10_32604_cmc_2022_023052
PublicationCentury 2000
PublicationDate 2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computers, materials & continua
PublicationYear 2022
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Frolov (ref38) 2009
Lu (ref12) 2015; 155
Sani (ref34) 2009
Wang (ref41) 2021
Guo (ref17) 2000
Zhang (ref22) 2011; 10
Wang (ref24) 2007; 6
Lang (ref35) 2009; 1
Xi (ref42) 2021
Jain (ref8) 2004; 5404
Chato (ref40) 2018
Kraus (ref5) 2002
Yang (ref19) 2000; 2
Watson (ref9) 1994; 4
Kasar (ref13) 2016; 10
Johnson (ref6) 2007
Kumar (ref7) 2013; 30
Khayam (ref10) 2003
Lihong (ref32) 2009; 7
Philips (ref18) 1999
Kim (ref20) 2002; 9
Becker (ref28) 2008; 14
Bennett (ref3) 2001; 3
Rowley (ref11) 1998; 20
Hafed (ref16) 2001; 43
Rioux (ref27) 2008; 1
Faruqe (ref31) 2009; 3
Li (ref25) 2007
Cui (ref29) 2008; 2
Mazloom (ref36) 2009; 1
Cui (ref33) 2009; 1
Mansour (ref45) 2020; 79
Zhang (ref26) 2008; 1
Déniz (ref21) 2003; 24
Li (ref30) 2009; 1
Chen (ref37) 2009
Tao (ref39) 2010
Tian (ref43) 2020; 8
Parveen (ref23) 2006; 1
ref4
Shen (ref14) 2007
Kumar (ref1) 2013; 30
Jain (ref2) 2004; 5404
Li (ref44) 2020; 9
Heisele (ref15) 2001; 2
References_xml – start-page: 803
  year: 1999
  ident: ref18
  publication-title: Advances in Neural Information Processing System
– volume: 14
  start-page: 1
  year: 2008
  ident: ref28
  article-title: Evaluate face recognition for application applied to real word application FaceBook
– volume: 30
  start-page: 93
  year: 2013
  ident: ref7
  article-title: Face recognition by machines: Is it an effective surveillance tactic?
  publication-title: IETE Technical Review
  doi: 10.4103/0256-4602.110546
– start-page: 1
  year: 2003
  ident: ref10
  publication-title: Technical Report
– volume: 3
  start-page: 115
  year: 2001
  ident: ref3
  article-title: Can facial recognition technology Be used to fight the New War against terrorism? Examining the constitutionality of facial recognition surveillance systems
  publication-title: North Carolina Journal of Law & Technology
– volume: 20
  start-page: 23
  year: 1998
  ident: ref11
  article-title: Neural network-based face detection
  publication-title: IEEE Trans. Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.655647
– volume: 1
  start-page: 179
  year: 2006
  ident: ref23
  article-title: Face recognition using multiple classifiers
– start-page: 960
  year: 2010
  ident: ref39
  article-title: Face recognition under complex conditions
– volume: 7
  start-page: 5871
  year: 2009
  ident: ref32
  article-title: Face recognition based on multi-class SVM
– volume: 1
  start-page: 5906
  year: 2008
  ident: ref26
  article-title: Face recognition using multi-scale PCA and support vector machine
– volume: 30
  start-page: 93
  year: 2013
  ident: ref1
  article-title: Face recognition by machines: Is it an effective surveillance tactic?
  publication-title: IETE Technical Review
  doi: 10.4103/0256-4602.110546
– volume: 6
  start-page: 308
  year: 2007
  ident: ref24
  article-title: An improved PCA face recognition algorithm based on the discrete wavelet transform, the support vector machines
– volume: 1
  start-page: 619
  year: 2009
  ident: ref33
  article-title: Applications of boolean kernel function SVM in face recognition
– start-page: 1
  year: 2009
  ident: ref37
  article-title: The study, implementation of face recognition, tracking system
– volume: 24
  start-page: 2153
  year: 2003
  ident: ref21
  article-title: Face recognition using independent component analysis and support vector machines
  publication-title: Pattern Recognition Letters Elsevier
  doi: 10.1016/S0167-8655(03)00081-3
– start-page: 1
  year: 2018
  ident: ref40
  article-title: Image processing and artificial neural network for counting people inside public transport
– volume: 1
  start-page: 702
  year: 2009
  ident: ref35
  article-title: Study of face recognition algorithm based on proximal support vector machine
– start-page: 196
  year: 2000
  ident: ref17
  article-title: Face recognition by support vector machines
– volume: 8
  start-page: 125731
  year: 2020
  ident: ref43
  article-title: Artificial intelligence image recognition method based on convolutional neural network algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3006097
– start-page: 165
  year: 2007
  ident: ref14
  article-title: A SVM face recognition method based on optimized Gabor features
– volume: 5404
  start-page: 561
  year: 2004
  ident: ref2
  article-title: Can soft biometric traits assist user recognition?
– start-page: 1773
  year: 2007
  ident: ref25
  publication-title: Robotics and Biometrics
– volume: 79
  start-page: 22065
  year: 2020
  ident: ref45
  article-title: Evolutionary computing enriched ridge regression model for craniofacial reconstruction
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-017-5015-0
– year: 2007
  ident: ref6
  article-title: How facial recognition systems work
  publication-title: How Stuff Works
– start-page: 139
  year: 2009
  ident: ref34
  article-title: Evaluation of face recognition system using support vector machine
– volume: 155
  start-page: 219
  year: 2015
  ident: ref12
  article-title: A hybrid wavelet neural network and switching particle swarm optimization algorithm for face direction recognition
  publication-title: International Journal on Neurocomputing
  doi: 10.1016/j.neucom.2014.12.026
– volume: 10
  start-page: 81
  year: 2016
  ident: ref13
  article-title: Face recognition using neural network: A review
  publication-title: International Journal of Security and its Applications
  doi: 10.14257/ijsia.2016.10.3.08
– volume: 1
  start-page: 391
  year: 2009
  ident: ref36
  article-title: Construction, application of SVM model, wavelet-PCA for face recognition
– start-page: 1122
  year: 2021
  ident: ref41
  article-title: Research on application of deep learning algorithm in image classification
– ident: ref4
– volume: 4
  start-page: 81
  year: 1994
  ident: ref9
  article-title: Image compression using the discrete cosine transform
  publication-title: Mathematica Journal
– volume: 9
  start-page: 33595
  year: 2020
  ident: ref44
  article-title: Fuzzy multilevel image thresholding based on the choose improved coyote optimization algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3060749
– volume: 9
  start-page: 40
  year: 2002
  ident: ref20
  article-title: Face recognition using kernel principal component analysis
  publication-title: Signal Processing Letters, IEEE
  doi: 10.1109/97.991133
– start-page: 1062
  year: 2021
  ident: ref42
  article-title: Image feature extraction and analysis algorithm based on multi-level neural network
– volume: 2
  start-page: 688
  year: 2001
  ident: ref15
  article-title: Face recognition with support vector machines: Global versus component-based approach
– volume: 10
  start-page: 42
  year: 2011
  ident: ref22
  article-title: Face recognition in color images using principal component analysis and fuzzy support vector machines
– volume: 1
  start-page: 1
  year: 2009
  ident: ref30
  article-title: Face recognition system using SVM classifier, feature extraction by PCA, LDA combination
  publication-title: IEEE
– volume: 5404
  start-page: 561
  year: 2004
  ident: ref8
  article-title: Can soft biometric traits assist user recognition?
  doi: 10.1117/12.542890
– start-page: 1
  year: 2002
  ident: ref5
  article-title: Face the facts facial recognition technology's troubled past-troubling future
  publication-title: The Free Library
– volume: 2
  start-page: 148
  year: 2008
  ident: ref29
  article-title: Research on face recognition based on boolean kernel SVM
  publication-title: Natural Computation, IEEE
– volume: 3
  start-page: 97
  year: 2009
  ident: ref31
  article-title: Face recognition using PCA, SVM
  publication-title: Anti-Counterfeiting, Security, Identification in Communication, IEEE
– volume: 2
  start-page: 471
  year: 2000
  ident: ref19
  article-title: Gender classification using support vector machines
– volume: 43
  start-page: 167
  year: 2001
  ident: ref16
  article-title: Face Recognition Using the Discrete Cosine Transform
  publication-title: International Journal of Computer Vision
  doi: 10.1023/A:1011183429707
– start-page: 31
  year: 2009
  ident: ref38
  article-title: The techniques for face recognition with support vector machines
– volume: 1
  start-page: 117
  year: 2008
  ident: ref27
  article-title: Class redundancy for face recognition by SVM
SSID ssj0036390
Score 2.285529
Snippet Face recognition systems have enhanced human-computer interactions in the last ten years. However, the literature reveals that current techniques used for...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2697
SubjectTerms Artificial neural networks
Face recognition
Learning theory
Machine learning
Object recognition
Principal components analysis
Support vector machines
Title Hybrid Machine Learning Model for Face Recognition Using SVM
URI https://www.proquest.com/docview/2646011169
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXVh4IwoFeWBhMHX8SiwhIUCtKqRWqFDULYodm6W0hZaBf4_tOKAulaIseQzf6e4-n8_3AXDFRMZkYgxijhO5G-ZIcVkgLk2WSaVVEUT7BkPRH7OnCZ_EgtsytlXWMTEE6nKufY284xK38LroQt4tPpFXjfK7q1FCYxs0XQjO3OKr-dAdPo_qWExd_g1HIjkTiLhsVm1UOsqCWUd_-BGGhNx4Gs7JemJaj8sh2fT2wW5kifC-MusB2DKzQ7BXKzDA6JBH4Lb_409cwUFoiTQwTkt9h17ibAodIYW9Qhs4qtuE5jMYmgTgy9vgGIx73dfHPop6CEjThK6QKRKb4cziMkwdk7gwidXKFlQITjVOS3dRprQohWUJwUopbQi1ElvCuKEnoDGbz8wpgCkuSWJS58CZZtpIVQibWi6JCBuFqgU6NRi5jsPCvWbFNHeLhgBf7uDLPXx5BV8LXP99sagGZWx4t13jm0eXWeb_Bj7b_Pgc7Ph_VXWQNmisvr7NhWMGK3UZzf8LGcS0PQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BOcCFHbHjAxw4hDreGksgxFaVpRWCFnELsWNzgZalCPFTfCO2k4C4cEOKckliRS-TmWfPeB7AJhMJk7ExEXOcyJ0wjxSXWcSlSRKptMqCaF-7I1o9dnbLb0fgs9oL48sqK58YHHU-0H6NvO4Ct_C66ELuPz1HXjXKZ1crCY3CLM7Nx7ubsr3unR6777tFSPOke9SKSlWBSNOYDiOTxTbBicV56N0lcWZiq5XNqBCcatzI3UGZ0iIXlsUEK6W0IdRKbAnjhrpxR2GMUfc6NRg7POlcXlW-n7p4H7ZgciYi4qJnkRh1FAmzun70LRMJ2fG0n5PfgfB3HAjBrTkNkyUrRQeFGc3AiOnPwlSl-IBKBzAHu60Pv8MLtUMJpkFld9Z75CXVHpAjwKiZaYOuqrKkQR-FogR0fdOeh96_ILUAtf6gbxYBNXBOYtNwDiPRTBupMmEblksiQmJSLUG9AiPVZXNyr5HxkLpJSoAvdfClHr60gG8Jtr-feCoac_xx72qFb1r-oq_pj0Et_315A8Zb3fZFenHaOV-BCT9usQazCrXhy5tZc6xkqNZLU0Bw99_W9wXoQfG4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Machine+Learning+Model+for+Face+Recognition+Using+SVM&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Kumar+Yadav%2C+Anil&rft.au=K.+Pateriya%2C+R.&rft.au=Kumar+Gupta%2C+Nirmal&rft.au=Gupta%2C+Punit&rft.date=2022&rft.issn=1546-2226&rft.volume=72&rft.issue=2&rft.spage=2697&rft.epage=2712&rft_id=info:doi/10.32604%2Fcmc.2022.023052&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2022_023052
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon