Degree distribution of random birth-and-death network with network size decline
In this paper,we provide a general method to obtain the exact solutions of the degree distributions for random birthand-death network(RBDN) with network size decline.First,by stochastic process rules,the steady state transformation equations and steady state degree distribution equations are given i...
Saved in:
Published in | Chinese physics B Vol. 25; no. 6; pp. 71 - 77 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.06.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 1741-4199 |
DOI | 10.1088/1674-1056/25/6/060202 |
Cover
Loading…
Abstract | In this paper,we provide a general method to obtain the exact solutions of the degree distributions for random birthand-death network(RBDN) with network size decline.First,by stochastic process rules,the steady state transformation equations and steady state degree distribution equations are given in the case of m ≥ 3 and 0 〈 p 〈 1/2,then the average degree of network with n nodes is introduced to calculate the degree distributions.Specifically,taking m = 3 for example,we explain the detailed solving process,in which computer simulation is used to verify our degree distribution solutions.In addition,the tail characteristics of the degree distribution are discussed.Our findings suggest that the degree distributions will exhibit Poisson tail property for the declining RBDN. |
---|---|
AbstractList | In this paper,we provide a general method to obtain the exact solutions of the degree distributions for random birthand-death network(RBDN) with network size decline.First,by stochastic process rules,the steady state transformation equations and steady state degree distribution equations are given in the case of m ≥ 3 and 0 〈 p 〈 1/2,then the average degree of network with n nodes is introduced to calculate the degree distributions.Specifically,taking m = 3 for example,we explain the detailed solving process,in which computer simulation is used to verify our degree distribution solutions.In addition,the tail characteristics of the degree distribution are discussed.Our findings suggest that the degree distributions will exhibit Poisson tail property for the declining RBDN. In this paper, we provide a general method to obtain the exact solutions of the degree distributions for random birth-and-death network (RBDN) with network size decline. First, by stochastic process rules, the steady state transformation equations and steady state degree distribution equations are given in the case of m greater than or equal to 3 and 0 < p < 1/2, then the average degree of network with n nodes is introduced to calculate the degree distributions. Specifically, taking m = 3 for example, we explain the detailed solving process, in which computer simulation is used to verify our degree distribution solutions. In addition, the tail characteristics of the degree distribution are discussed. Our findings suggest that the degree distributions will exhibit Poisson tail property for the declining RBDN. |
Author | 张晓军 杨会兰 |
AuthorAffiliation | School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China |
Author_xml | – sequence: 1 fullname: 张晓军 杨会兰 |
BookMark | eNqFkEtLAzEUhYNUsFZ_gjC4cjNOHpPH4ErqEwrd6DpkMpk2Ok3aJKXor3eGliJuXJ174HwH7jkHI-edAeAKwVsEhSgQ42WOIGUFpgUrIIMY4hMwxpCKnAhSjsD4mDkD5zF-QMgQxGQM5g9mEYzJGhtTsPU2We8y32ZBucavstqGtMz7O2-MSsvMmbTz4TPb2V8m2u--wOjOOnMBTlvVRXN50Al4f3p8m77ks_nz6_R-lmuCSMoNVRVuWQVNyWipGNWccN0LqVVJdGWEQhw3sBKaMtJWnCNcV5wNTvFGkwm42feug99sTUxyZaM2Xaec8dsokcCUlhUlpI_e7aM6-BiDaaW2SQ2PpqBsJxGUw4xymEgOE0lMJZP7GXua_qHXwa5U-PqXuz5wS-8WG-sWR5AxUXFSUkR-ANHqgw8 |
CitedBy_id | crossref_primary_10_1088_1674_1056_aba9c0 crossref_primary_10_1016_j_physa_2022_128244 crossref_primary_10_1088_1674_1056_ac3d82 crossref_primary_10_1109_TSMC_2023_3268372 crossref_primary_10_1142_S0217984918501592 crossref_primary_10_7498_aps_65_230201 crossref_primary_10_1142_S0217984917501615 |
Cites_doi | 10.1126/science.286.5439.509 10.1103/PhysRevE.64.016131 10.1007/s10955-016-1447-6 10.1038/nature06359 10.1038/35004572 10.1103/PhysRevLett.85.4633 10.1103/PhysRevE.75.027102 10.1137/S003614450342480 10.1016/j.physd.2007.10.012 10.1103/PhysRevE.74.036121 10.1103/PhysRevE.73.066111 10.1038/30918 10.1016/S0378-4371(99)00291-5 10.1103/PhysRevLett.85.4629 10.1016/j.physa.2012.01.040 10.1103/PhysRevE.69.026101 10.1080/00018730110112519 10.1103/PhysRevE.66.026704 10.1126/science.287.5461.2115a 10.1103/PhysRevE.64.016132 10.1103/RevModPhys.74.47 10.1103/PhysRevE.73.041903 10.1088/1751-8113/40/30/001 10.1016/j.physa.2015.10.002 |
ContentType | Journal Article |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 7U5 8FD H8D L7M |
DOI | 10.1088/1674-1056/25/6/060202 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Degree distribution of random birth-and-death network with network size decline |
EISSN | 2058-3834 1741-4199 |
EndPage | 77 |
ExternalDocumentID | 10_1088_1674_1056_25_6_060202 668973451 |
GroupedDBID | 02O 1JI 1WK 29B 2RA 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q 92L AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CCEZO CCVFK CEBXE CHBEP CJUJL CQIGP CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 FEDTE HAK HVGLF IJHAN IOP IZVLO JCGBZ KNG KOT M45 N5L NT- NT. PJBAE Q02 RIN RNS ROL RPA RW3 SY9 TCJ TGP UCJ W28 ~WA -SA -S~ AAYXX ACARI ADEQX AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- U1G U5K 7U5 8FD AEINN H8D L7M |
ID | FETCH-LOGICAL-c313t-e5a92f690e4654a65c737c65c3ba43c9e8a172d098c563f97712b976c563a7dc3 |
ISSN | 1674-1056 |
IngestDate | Tue Aug 05 09:22:38 EDT 2025 Tue Jul 01 02:55:16 EDT 2025 Thu Apr 24 22:53:51 EDT 2025 Wed Feb 14 10:18:59 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c313t-e5a92f690e4654a65c737c65c3ba43c9e8a172d098c563f97712b976c563a7dc3 |
Notes | random birth-and-death network(RBDN);Markov chain;generating function;degree distribution Xiao-Jun Zhang,Hui-Lan Yang In this paper,we provide a general method to obtain the exact solutions of the degree distributions for random birthand-death network(RBDN) with network size decline.First,by stochastic process rules,the steady state transformation equations and steady state degree distribution equations are given in the case of m ≥ 3 and 0 〈 p 〈 1/2,then the average degree of network with n nodes is introduced to calculate the degree distributions.Specifically,taking m = 3 for example,we explain the detailed solving process,in which computer simulation is used to verify our degree distribution solutions.In addition,the tail characteristics of the degree distribution are discussed.Our findings suggest that the degree distributions will exhibit Poisson tail property for the declining RBDN. 11-5639/O4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1825549533 |
PQPubID | 23500 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1825549533 crossref_citationtrail_10_1088_1674_1056_25_6_060202 crossref_primary_10_1088_1674_1056_25_6_060202 chongqing_primary_668973451 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-06-01 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chinese Physics |
PublicationYear | 2016 |
References | Onuttom N (6) 2010; 82 27 29 Wang J R (28) 2015; 24 Barábasi A L (1) 1999; 286 30 Yang G Y (26) 2014; 23 31 10 11 12 Ben-Naim E (20) 2007; 40 13 14 15 16 17 18 19 Ren X Z (24) 2012; 29 Wang X W (25) 2013; 22 2 3 4 5 7 8 9 Tian L X (23) 2012; 61 Zou Z Y (22) 2012; 21 21 |
References_xml | – volume: 286 start-page: 5439 year: 1999 ident: 1 publication-title: Science doi: 10.1126/science.286.5439.509 – ident: 9 doi: 10.1103/PhysRevE.64.016131 – ident: 27 doi: 10.1007/s10955-016-1447-6 – volume: 24 issn: 1674-1056 year: 2015 ident: 28 publication-title: Chin. Phys. – ident: 13 doi: 10.1038/nature06359 – volume: 61 issn: 0372-736X year: 2012 ident: 23 publication-title: Acta Phys. Sin. – ident: 11 doi: 10.1038/35004572 – ident: 31 doi: 10.1103/PhysRevLett.85.4633 – volume: 82 issn: 1063-651X year: 2010 ident: 6 publication-title: Phys. Rev. – ident: 14 doi: 10.1103/PhysRevE.75.027102 – volume: 29 issn: 0256-307X year: 2012 ident: 24 publication-title: Chin. Phys. Lett. – ident: 8 doi: 10.1137/S003614450342480 – volume: 22 issn: 1674-1056 year: 2013 ident: 25 publication-title: Chin. Phys. – ident: 19 doi: 10.1016/j.physd.2007.10.012 – ident: 18 doi: 10.1103/PhysRevE.74.036121 – volume: 21 issn: 1674-1056 year: 2012 ident: 22 publication-title: Chin. Phys. – ident: 16 doi: 10.1103/PhysRevE.73.066111 – ident: 7 doi: 10.1038/30918 – ident: 15 doi: 10.1016/S0378-4371(99)00291-5 – volume: 23 issn: 1674-1056 year: 2014 ident: 26 publication-title: Chin. Phys. – ident: 30 doi: 10.1103/PhysRevLett.85.4629 – ident: 21 doi: 10.1016/j.physa.2012.01.040 – ident: 17 doi: 10.1103/PhysRevE.69.026101 – ident: 4 doi: 10.1080/00018730110112519 – ident: 5 doi: 10.1103/PhysRevE.66.026704 – ident: 3 doi: 10.1126/science.287.5461.2115a – ident: 10 doi: 10.1103/PhysRevE.64.016132 – ident: 2 doi: 10.1103/RevModPhys.74.47 – ident: 12 doi: 10.1103/PhysRevE.73.041903 – volume: 40 start-page: 8607 issn: 1751-8113 year: 2007 ident: 20 publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8113/40/30/001 – ident: 29 doi: 10.1016/j.physa.2015.10.002 |
SSID | ssj0061023 ssib054405859 ssib000804704 |
Score | 2.1036286 |
Snippet | In this paper,we provide a general method to obtain the exact solutions of the degree distributions for random birthand-death network(RBDN) with network size... In this paper, we provide a general method to obtain the exact solutions of the degree distributions for random birth-and-death network (RBDN) with network... |
SourceID | proquest crossref chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 71 |
SubjectTerms | Computer simulation Exact solutions Mathematical analysis Mathematical models Networks Steady state Stochastic processes Transformations 变换方程 度分布 死亡 求解过程 网络规模 节点计算 计算机仿真 随机过程 |
Title | Degree distribution of random birth-and-death network with network size decline |
URI | http://lib.cqvip.com/qk/85823A/201606/668973451.html https://www.proquest.com/docview/1825549533 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgERIXxFOUBRQkbitvm4dfRwS7Kqtqu4dWKifLThxaCRLYppf99czETpqilVi4pLHVOJXn6_ibsWeGkA_cWWNs7KhRsQUDpUyodYrT0lpnTFYwsObwtMUlny6zixVbddXsQ3RJY0_zm1vjSv5HqtAHcsUo2X-QbD8odMA9yBeuIGG43knGnx1Yyw43Wfq6VUj-YPkp6h8ndnPdrCnc0wJ53knlT3x712vX2G5uMHIKAyQPsxas29qUwfOx3Rdn7j3Mq42p6cWuB9fX0D_dbegsYC64E2K-P_YUNCAXGehmFvJT-z6gHbhdrIZq08crB3gMdSAHBpoMFlRsy1u1NWg4dBx0b8TgFMx00e4oDUYZ5si-nOvz5WymF2erxX3yIBGi3Zz_Mr8akJpJJvZGJsuAk0okbX595pisAs3w7rVdXJeU475vnLAxH_sfgVk31nX17RdwiUP2crh4t4xk8YQ8DqZE9NHj4im556pn5OGVF9hzMvfoiIboiOoy8uiI_kBHFAARITr6BqIjCuh4QZbnZ4tPUxrKZ9A8jdOGOmZUUnI1cZgzz3CWi1Tk8JFak6W5ctIAey0mSuaMpyUYAnFigZ1iy4giT1-So6qu3CsSZdw4Zy3jTliw5wtZCBUbxtJCSquUG5Hjfor0T58mRXMulUgzFo9I1k2azkPmeSyA8l23JyCk1DjvGuddJ0xz7ed9RE77x7ox__LA-04iGpQk7nyZytW7rQYjGmgznqR-fYfvHJNH-3_GG3LUXO_cW6CejX3XIu03PEB7Iw |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Degree+distribution+of+random+birth-and-death+network+with+network+size+decline&rft.jtitle=Chinese+physics+B&rft.au=Zhang%2C+Xiao-Jun&rft.au=Yang%2C+Hui-Lan&rft.date=2016-06-01&rft.issn=1674-1056&rft.eissn=1741-4199&rft.volume=25&rft.issue=6&rft.spage=60202&rft.epage=60208&rft_id=info:doi/10.1088%2F1674-1056%2F25%2F6%2F060202&rft.externalDBID=NO_FULL_TEXT |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg |