Degree distribution of random birth-and-death network with network size decline

In this paper,we provide a general method to obtain the exact solutions of the degree distributions for random birthand-death network(RBDN) with network size decline.First,by stochastic process rules,the steady state transformation equations and steady state degree distribution equations are given i...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 25; no. 6; pp. 71 - 77
Main Author 张晓军 杨会兰
Format Journal Article
LanguageEnglish
Published 01.06.2016
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/25/6/060202

Cover

Loading…
Abstract In this paper,we provide a general method to obtain the exact solutions of the degree distributions for random birthand-death network(RBDN) with network size decline.First,by stochastic process rules,the steady state transformation equations and steady state degree distribution equations are given in the case of m ≥ 3 and 0 〈 p 〈 1/2,then the average degree of network with n nodes is introduced to calculate the degree distributions.Specifically,taking m = 3 for example,we explain the detailed solving process,in which computer simulation is used to verify our degree distribution solutions.In addition,the tail characteristics of the degree distribution are discussed.Our findings suggest that the degree distributions will exhibit Poisson tail property for the declining RBDN.
AbstractList In this paper,we provide a general method to obtain the exact solutions of the degree distributions for random birthand-death network(RBDN) with network size decline.First,by stochastic process rules,the steady state transformation equations and steady state degree distribution equations are given in the case of m ≥ 3 and 0 〈 p 〈 1/2,then the average degree of network with n nodes is introduced to calculate the degree distributions.Specifically,taking m = 3 for example,we explain the detailed solving process,in which computer simulation is used to verify our degree distribution solutions.In addition,the tail characteristics of the degree distribution are discussed.Our findings suggest that the degree distributions will exhibit Poisson tail property for the declining RBDN.
In this paper, we provide a general method to obtain the exact solutions of the degree distributions for random birth-and-death network (RBDN) with network size decline. First, by stochastic process rules, the steady state transformation equations and steady state degree distribution equations are given in the case of m greater than or equal to 3 and 0 < p < 1/2, then the average degree of network with n nodes is introduced to calculate the degree distributions. Specifically, taking m = 3 for example, we explain the detailed solving process, in which computer simulation is used to verify our degree distribution solutions. In addition, the tail characteristics of the degree distribution are discussed. Our findings suggest that the degree distributions will exhibit Poisson tail property for the declining RBDN.
Author 张晓军 杨会兰
AuthorAffiliation School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
Author_xml – sequence: 1
  fullname: 张晓军 杨会兰
BookMark eNqFkEtLAzEUhYNUsFZ_gjC4cjNOHpPH4ErqEwrd6DpkMpk2Ok3aJKXor3eGliJuXJ174HwH7jkHI-edAeAKwVsEhSgQ42WOIGUFpgUrIIMY4hMwxpCKnAhSjsD4mDkD5zF-QMgQxGQM5g9mEYzJGhtTsPU2We8y32ZBucavstqGtMz7O2-MSsvMmbTz4TPb2V8m2u--wOjOOnMBTlvVRXN50Al4f3p8m77ks_nz6_R-lmuCSMoNVRVuWQVNyWipGNWccN0LqVVJdGWEQhw3sBKaMtJWnCNcV5wNTvFGkwm42feug99sTUxyZaM2Xaec8dsokcCUlhUlpI_e7aM6-BiDaaW2SQ2PpqBsJxGUw4xymEgOE0lMJZP7GXua_qHXwa5U-PqXuz5wS-8WG-sWR5AxUXFSUkR-ANHqgw8
CitedBy_id crossref_primary_10_1088_1674_1056_aba9c0
crossref_primary_10_1016_j_physa_2022_128244
crossref_primary_10_1088_1674_1056_ac3d82
crossref_primary_10_1109_TSMC_2023_3268372
crossref_primary_10_1142_S0217984918501592
crossref_primary_10_7498_aps_65_230201
crossref_primary_10_1142_S0217984917501615
Cites_doi 10.1126/science.286.5439.509
10.1103/PhysRevE.64.016131
10.1007/s10955-016-1447-6
10.1038/nature06359
10.1038/35004572
10.1103/PhysRevLett.85.4633
10.1103/PhysRevE.75.027102
10.1137/S003614450342480
10.1016/j.physd.2007.10.012
10.1103/PhysRevE.74.036121
10.1103/PhysRevE.73.066111
10.1038/30918
10.1016/S0378-4371(99)00291-5
10.1103/PhysRevLett.85.4629
10.1016/j.physa.2012.01.040
10.1103/PhysRevE.69.026101
10.1080/00018730110112519
10.1103/PhysRevE.66.026704
10.1126/science.287.5461.2115a
10.1103/PhysRevE.64.016132
10.1103/RevModPhys.74.47
10.1103/PhysRevE.73.041903
10.1088/1751-8113/40/30/001
10.1016/j.physa.2015.10.002
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1088/1674-1056/25/6/060202
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Degree distribution of random birth-and-death network with network size decline
EISSN 2058-3834
1741-4199
EndPage 77
ExternalDocumentID 10_1088_1674_1056_25_6_060202
668973451
GroupedDBID 02O
1JI
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NT-
NT.
PJBAE
Q02
RIN
RNS
ROL
RPA
RW3
SY9
TCJ
TGP
UCJ
W28
~WA
-SA
-S~
AAYXX
ACARI
ADEQX
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
U1G
U5K
7U5
8FD
AEINN
H8D
L7M
ID FETCH-LOGICAL-c313t-e5a92f690e4654a65c737c65c3ba43c9e8a172d098c563f97712b976c563a7dc3
ISSN 1674-1056
IngestDate Tue Aug 05 09:22:38 EDT 2025
Tue Jul 01 02:55:16 EDT 2025
Thu Apr 24 22:53:51 EDT 2025
Wed Feb 14 10:18:59 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c313t-e5a92f690e4654a65c737c65c3ba43c9e8a172d098c563f97712b976c563a7dc3
Notes random birth-and-death network(RBDN);Markov chain;generating function;degree distribution
Xiao-Jun Zhang,Hui-Lan Yang
In this paper,we provide a general method to obtain the exact solutions of the degree distributions for random birthand-death network(RBDN) with network size decline.First,by stochastic process rules,the steady state transformation equations and steady state degree distribution equations are given in the case of m ≥ 3 and 0 〈 p 〈 1/2,then the average degree of network with n nodes is introduced to calculate the degree distributions.Specifically,taking m = 3 for example,we explain the detailed solving process,in which computer simulation is used to verify our degree distribution solutions.In addition,the tail characteristics of the degree distribution are discussed.Our findings suggest that the degree distributions will exhibit Poisson tail property for the declining RBDN.
11-5639/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1825549533
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_1825549533
crossref_citationtrail_10_1088_1674_1056_25_6_060202
crossref_primary_10_1088_1674_1056_25_6_060202
chongqing_primary_668973451
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-06-01
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics B
PublicationTitleAlternate Chinese Physics
PublicationYear 2016
References Onuttom N (6) 2010; 82
27
29
Wang J R (28) 2015; 24
Barábasi A L (1) 1999; 286
30
Yang G Y (26) 2014; 23
31
10
11
12
Ben-Naim E (20) 2007; 40
13
14
15
16
17
18
19
Ren X Z (24) 2012; 29
Wang X W (25) 2013; 22
2
3
4
5
7
8
9
Tian L X (23) 2012; 61
Zou Z Y (22) 2012; 21
21
References_xml – volume: 286
  start-page: 5439
  year: 1999
  ident: 1
  publication-title: Science
  doi: 10.1126/science.286.5439.509
– ident: 9
  doi: 10.1103/PhysRevE.64.016131
– ident: 27
  doi: 10.1007/s10955-016-1447-6
– volume: 24
  issn: 1674-1056
  year: 2015
  ident: 28
  publication-title: Chin. Phys.
– ident: 13
  doi: 10.1038/nature06359
– volume: 61
  issn: 0372-736X
  year: 2012
  ident: 23
  publication-title: Acta Phys. Sin.
– ident: 11
  doi: 10.1038/35004572
– ident: 31
  doi: 10.1103/PhysRevLett.85.4633
– volume: 82
  issn: 1063-651X
  year: 2010
  ident: 6
  publication-title: Phys. Rev.
– ident: 14
  doi: 10.1103/PhysRevE.75.027102
– volume: 29
  issn: 0256-307X
  year: 2012
  ident: 24
  publication-title: Chin. Phys. Lett.
– ident: 8
  doi: 10.1137/S003614450342480
– volume: 22
  issn: 1674-1056
  year: 2013
  ident: 25
  publication-title: Chin. Phys.
– ident: 19
  doi: 10.1016/j.physd.2007.10.012
– ident: 18
  doi: 10.1103/PhysRevE.74.036121
– volume: 21
  issn: 1674-1056
  year: 2012
  ident: 22
  publication-title: Chin. Phys.
– ident: 16
  doi: 10.1103/PhysRevE.73.066111
– ident: 7
  doi: 10.1038/30918
– ident: 15
  doi: 10.1016/S0378-4371(99)00291-5
– volume: 23
  issn: 1674-1056
  year: 2014
  ident: 26
  publication-title: Chin. Phys.
– ident: 30
  doi: 10.1103/PhysRevLett.85.4629
– ident: 21
  doi: 10.1016/j.physa.2012.01.040
– ident: 17
  doi: 10.1103/PhysRevE.69.026101
– ident: 4
  doi: 10.1080/00018730110112519
– ident: 5
  doi: 10.1103/PhysRevE.66.026704
– ident: 3
  doi: 10.1126/science.287.5461.2115a
– ident: 10
  doi: 10.1103/PhysRevE.64.016132
– ident: 2
  doi: 10.1103/RevModPhys.74.47
– ident: 12
  doi: 10.1103/PhysRevE.73.041903
– volume: 40
  start-page: 8607
  issn: 1751-8113
  year: 2007
  ident: 20
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8113/40/30/001
– ident: 29
  doi: 10.1016/j.physa.2015.10.002
SSID ssj0061023
ssib054405859
ssib000804704
Score 2.1036286
Snippet In this paper,we provide a general method to obtain the exact solutions of the degree distributions for random birthand-death network(RBDN) with network size...
In this paper, we provide a general method to obtain the exact solutions of the degree distributions for random birth-and-death network (RBDN) with network...
SourceID proquest
crossref
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 71
SubjectTerms Computer simulation
Exact solutions
Mathematical analysis
Mathematical models
Networks
Steady state
Stochastic processes
Transformations
变换方程
度分布
死亡
求解过程
网络规模
节点计算
计算机仿真
随机过程
Title Degree distribution of random birth-and-death network with network size decline
URI http://lib.cqvip.com/qk/85823A/201606/668973451.html
https://www.proquest.com/docview/1825549533
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgERIXxFOUBRQkbitvm4dfRwS7Kqtqu4dWKifLThxaCRLYppf99czETpqilVi4pLHVOJXn6_ibsWeGkA_cWWNs7KhRsQUDpUyodYrT0lpnTFYwsObwtMUlny6zixVbddXsQ3RJY0_zm1vjSv5HqtAHcsUo2X-QbD8odMA9yBeuIGG43knGnx1Yyw43Wfq6VUj-YPkp6h8ndnPdrCnc0wJ53knlT3x712vX2G5uMHIKAyQPsxas29qUwfOx3Rdn7j3Mq42p6cWuB9fX0D_dbegsYC64E2K-P_YUNCAXGehmFvJT-z6gHbhdrIZq08crB3gMdSAHBpoMFlRsy1u1NWg4dBx0b8TgFMx00e4oDUYZ5si-nOvz5WymF2erxX3yIBGi3Zz_Mr8akJpJJvZGJsuAk0okbX595pisAs3w7rVdXJeU475vnLAxH_sfgVk31nX17RdwiUP2crh4t4xk8YQ8DqZE9NHj4im556pn5OGVF9hzMvfoiIboiOoy8uiI_kBHFAARITr6BqIjCuh4QZbnZ4tPUxrKZ9A8jdOGOmZUUnI1cZgzz3CWi1Tk8JFak6W5ctIAey0mSuaMpyUYAnFigZ1iy4giT1-So6qu3CsSZdw4Zy3jTliw5wtZCBUbxtJCSquUG5Hjfor0T58mRXMulUgzFo9I1k2azkPmeSyA8l23JyCk1DjvGuddJ0xz7ed9RE77x7ox__LA-04iGpQk7nyZytW7rQYjGmgznqR-fYfvHJNH-3_GG3LUXO_cW6CejX3XIu03PEB7Iw
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Degree+distribution+of+random+birth-and-death+network+with+network+size+decline&rft.jtitle=Chinese+physics+B&rft.au=Zhang%2C+Xiao-Jun&rft.au=Yang%2C+Hui-Lan&rft.date=2016-06-01&rft.issn=1674-1056&rft.eissn=1741-4199&rft.volume=25&rft.issue=6&rft.spage=60202&rft.epage=60208&rft_id=info:doi/10.1088%2F1674-1056%2F25%2F6%2F060202&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg