4D-printed shape-programmable [H+]-responsive needles for determination of urea

Four-dimensional printing (4DP) technologies are revolutionizing the fabrication, functionality, and applicability of stimuli-responsive analytical devices. More practically, 4DP technologies are effective in fabricating devices with complex geometric designs and functions, and the degree of shape p...

Full description

Saved in:
Bibliographic Details
Published inTalanta (Oxford) Vol. 282; p. 126998
Main Authors Su, Yi-Ting, Chiu, Hsiao-Chu, Su, Cheng-Kuan
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Four-dimensional printing (4DP) technologies are revolutionizing the fabrication, functionality, and applicability of stimuli-responsive analytical devices. More practically, 4DP technologies are effective in fabricating devices with complex geometric designs and functions, and the degree of shape programming of 4D-printed stimuli-responsive devices can be optimized to become a reliable analytical strategy. Although shape-programming modes play a critical role in determining the analytical characteristics of 4D-printed stimuli-responsive sensing devices, the effect of shape-programming modes on the analytical performance of 4D-printed stimuli-responsive devices remains an unexplored subject. We employed digital light processing three-dimensional printing (3DP) with acrylate-based photocurable resins and 2-carboxyethyl acrylate (CEA)-incorporated photocurable resins for 4DP of the bending, helixing, and twisting needles. Upon immersion in samples with pH values above the pKa of CEA, the electrostatic repulsion among the dissociated carboxyl groups of polyCEA caused swelling of the CEA-incorporated part and [H+]-dependent shape programming. When coupling with the derivatization reaction of the urease-mediated hydrolysis of urea, the decline in [H+] induced shape programming of the needles, offering reliable determination of urea based on the shape-programming angles. After optimizing the experimental conditions, the helixing needles provided the best analytical performance, with the method's detection limit of 0.9 μM. The reliability of this analytical method was validated by determining urea in samples of human urine and sweat, fetal bovine serum, and rat plasma with spike analyses and comparing these results with those obtained from a commercial assay kit. Our demonstration and analytical results suggest the importance of optimizing the shape-programming modes to improve the analytical performance of 4D-printed stimuli-responsive shape-programming sensing devices and emphasize the benefits and applicability of 4DP technologies in advancing the development and fabrication of stimuli-responsive sensing devices for chemical sensing and quantitative chemical analyses. [Display omitted] •The shape-programming effects of 4D-printed devices remain an unexplored subject.•The 4D-printed bending, helixing, and twisting needles were optimized respectively.•The [H+]-induced shape programming of the needle allowed reliable urea determination.•The helixing needle provided the best analytical performance, with the MDL of 0.9 μM.•It suggests the importance of optimizing the shape programming of 4D-printed devices.
AbstractList Four-dimensional printing (4DP) technologies are revolutionizing the fabrication, functionality, and applicability of stimuli-responsive analytical devices. More practically, 4DP technologies are effective in fabricating devices with complex geometric designs and functions, and the degree of shape programming of 4D-printed stimuli-responsive devices can be optimized to become a reliable analytical strategy. Although shape-programming modes play a critical role in determining the analytical characteristics of 4D-printed stimuli-responsive sensing devices, the effect of shape-programming modes on the analytical performance of 4D-printed stimuli-responsive devices remains an unexplored subject. We employed digital light processing three-dimensional printing (3DP) with acrylate-based photocurable resins and 2-carboxyethyl acrylate (CEA)-incorporated photocurable resins for 4DP of the bending, helixing, and twisting needles. Upon immersion in samples with pH values above the pK of CEA, the electrostatic repulsion among the dissociated carboxyl groups of polyCEA caused swelling of the CEA-incorporated part and [H ]-dependent shape programming. When coupling with the derivatization reaction of the urease-mediated hydrolysis of urea, the decline in [H ] induced shape programming of the needles, offering reliable determination of urea based on the shape-programming angles. After optimizing the experimental conditions, the helixing needles provided the best analytical performance, with the method's detection limit of 0.9 μM. The reliability of this analytical method was validated by determining urea in samples of human urine and sweat, fetal bovine serum, and rat plasma with spike analyses and comparing these results with those obtained from a commercial assay kit. Our demonstration and analytical results suggest the importance of optimizing the shape-programming modes to improve the analytical performance of 4D-printed stimuli-responsive shape-programming sensing devices and emphasize the benefits and applicability of 4DP technologies in advancing the development and fabrication of stimuli-responsive sensing devices for chemical sensing and quantitative chemical analyses.
Four-dimensional printing (4DP) technologies are revolutionizing the fabrication, functionality, and applicability of stimuli-responsive analytical devices. More practically, 4DP technologies are effective in fabricating devices with complex geometric designs and functions, and the degree of shape programming of 4D-printed stimuli-responsive devices can be optimized to become a reliable analytical strategy. Although shape-programming modes play a critical role in determining the analytical characteristics of 4D-printed stimuli-responsive sensing devices, the effect of shape-programming modes on the analytical performance of 4D-printed stimuli-responsive devices remains an unexplored subject. We employed digital light processing three-dimensional printing (3DP) with acrylate-based photocurable resins and 2-carboxyethyl acrylate (CEA)-incorporated photocurable resins for 4DP of the bending, helixing, and twisting needles. Upon immersion in samples with pH values above the pKₐ of CEA, the electrostatic repulsion among the dissociated carboxyl groups of polyCEA caused swelling of the CEA-incorporated part and [H⁺]-dependent shape programming. When coupling with the derivatization reaction of the urease-mediated hydrolysis of urea, the decline in [H⁺] induced shape programming of the needles, offering reliable determination of urea based on the shape-programming angles. After optimizing the experimental conditions, the helixing needles provided the best analytical performance, with the method's detection limit of 0.9 μM. The reliability of this analytical method was validated by determining urea in samples of human urine and sweat, fetal bovine serum, and rat plasma with spike analyses and comparing these results with those obtained from a commercial assay kit. Our demonstration and analytical results suggest the importance of optimizing the shape-programming modes to improve the analytical performance of 4D-printed stimuli-responsive shape-programming sensing devices and emphasize the benefits and applicability of 4DP technologies in advancing the development and fabrication of stimuli-responsive sensing devices for chemical sensing and quantitative chemical analyses.
Four-dimensional printing (4DP) technologies are revolutionizing the fabrication, functionality, and applicability of stimuli-responsive analytical devices. More practically, 4DP technologies are effective in fabricating devices with complex geometric designs and functions, and the degree of shape programming of 4D-printed stimuli-responsive devices can be optimized to become a reliable analytical strategy. Although shape-programming modes play a critical role in determining the analytical characteristics of 4D-printed stimuli-responsive sensing devices, the effect of shape-programming modes on the analytical performance of 4D-printed stimuli-responsive devices remains an unexplored subject. We employed digital light processing three-dimensional printing (3DP) with acrylate-based photocurable resins and 2-carboxyethyl acrylate (CEA)-incorporated photocurable resins for 4DP of the bending, helixing, and twisting needles. Upon immersion in samples with pH values above the pKa of CEA, the electrostatic repulsion among the dissociated carboxyl groups of polyCEA caused swelling of the CEA-incorporated part and [H+]-dependent shape programming. When coupling with the derivatization reaction of the urease-mediated hydrolysis of urea, the decline in [H+] induced shape programming of the needles, offering reliable determination of urea based on the shape-programming angles. After optimizing the experimental conditions, the helixing needles provided the best analytical performance, with the method's detection limit of 0.9 μM. The reliability of this analytical method was validated by determining urea in samples of human urine and sweat, fetal bovine serum, and rat plasma with spike analyses and comparing these results with those obtained from a commercial assay kit. Our demonstration and analytical results suggest the importance of optimizing the shape-programming modes to improve the analytical performance of 4D-printed stimuli-responsive shape-programming sensing devices and emphasize the benefits and applicability of 4DP technologies in advancing the development and fabrication of stimuli-responsive sensing devices for chemical sensing and quantitative chemical analyses. [Display omitted] •The shape-programming effects of 4D-printed devices remain an unexplored subject.•The 4D-printed bending, helixing, and twisting needles were optimized respectively.•The [H+]-induced shape programming of the needle allowed reliable urea determination.•The helixing needle provided the best analytical performance, with the MDL of 0.9 μM.•It suggests the importance of optimizing the shape programming of 4D-printed devices.
ArticleNumber 126998
Author Chiu, Hsiao-Chu
Su, Cheng-Kuan
Su, Yi-Ting
Author_xml – sequence: 1
  givenname: Yi-Ting
  surname: Su
  fullname: Su, Yi-Ting
– sequence: 2
  givenname: Hsiao-Chu
  surname: Chiu
  fullname: Chiu, Hsiao-Chu
– sequence: 3
  givenname: Cheng-Kuan
  orcidid: 0000-0003-1306-9202
  surname: Su
  fullname: Su, Cheng-Kuan
  email: cksu@nchu.edu.tw
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39368332$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1LJDEQhoMoOo7-BKWPgvSYpPojfRLRXV0Y8KInkVDdqd7N0J2MSY_gvzcyo9c9FUU9VdT7HLN95x0xdib4QnBRXa0WEw7oJlxILouFkFXTqD02E6qGHMoa9tmMc2jyRhT8iB3HuOKcS-BwyI6ggUoByBl7LO7ydbBuIpPFf7im1Pm_AccR24Gyl4fL1zxQXHsX7TtljsgMFLPeh8zQRGG0DifrXeb7bBMIT9hBj0Ok012ds-ffv55uH_Ll4_2f25tl3oGAKTeFRA5cEiqUildt1UAPQilhWpJ9j2lEZV20piKsqUFVVkpi14LpeVkWMGcX27vp3bcNxUmPNnY0JCXkN1GDKEEBL5o6oec7dNOOZHSKO2L40N8SElBugS74GAP1P4jg-ku2XumdbP0lW29lp73r7R6loO-Wgo6dJdeRsYG6SRtv_3PhE5RlidU
Cites_doi 10.3390/molecules24142547
10.1002/adma.201504021
10.1016/j.snb.2012.11.031
10.1016/j.cej.2020.126162
10.1016/S0165-9936(02)00507-1
10.1016/j.progpolymsci.2009.10.008
10.1126/science.1210734
10.1016/j.trac.2020.116177
10.1016/j.smaim.2022.07.006
10.1016/j.trac.2018.06.013
10.1016/j.snb.2004.12.043
10.1016/j.aca.2021.338630
10.1002/cplu.201900365
10.1016/S0956-5663(02)00164-1
10.1039/C6LC00284F
10.1016/j.matdes.2019.107704
10.1016/j.snb.2022.133096
10.1016/j.cej.2021.130879
10.1016/S0956-5663(02)00020-9
10.1088/0964-1726/21/5/053001
10.1038/nmat2614
10.1016/j.jhazmat.2020.124157
10.1016/j.aca.2021.338348
10.1007/s00449-011-0514-2
10.1039/C2AN15780B
10.1007/s40964-019-00079-5
10.1039/C6PY01585A
10.1126/sciadv.1602890
10.1016/j.apsadv.2021.100068
10.1021/acs.analchem.6b04344
10.1021/acs.analchem.0c04672
10.1515/pac-2020-0206
10.1002/adfm.201603448
10.1016/j.microc.2022.107783
10.1016/j.chroma.2020.461764
10.1016/j.bios.2023.115500
10.1016/j.procs.2020.03.434
10.1016/j.colsurfa.2022.129425
10.1557/jmr.2020.204
10.1007/s00216-015-8679-1
10.1016/j.matdes.2021.109699
10.1021/acs.analchem.1c01703
10.1016/S1567-5394(02)00042-7
10.3390/biomedicines8120596
10.3181/00379727-149-38804
10.1002/marc.202000208
10.1016/j.snb.2018.09.079
10.1016/j.aca.2022.339733
10.1016/j.bios.2018.09.067
10.1016/j.polymer.2013.02.023
10.1039/C9MH00490D
10.1007/s00170-021-07233-w
10.1016/j.foodchem.2020.126545
10.1016/j.matdes.2017.02.068
10.1016/j.snb.2008.04.025
10.1016/j.snb.2018.04.108
10.1016/j.vascn.2005.05.004
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright © 2024 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2024 Elsevier B.V.
– notice: Copyright © 2024 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
DOI 10.1016/j.talanta.2024.126998
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3573
ExternalDocumentID 39368332
10_1016_j_talanta_2024_126998
S0039914024013778
Genre Journal Article
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXKI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SCH
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SSZ
T5K
TN5
TWZ
WH7
XPP
YK3
YNT
ZMT
~02
~G-
29Q
3O-
53G
AAQXK
AATTM
AAYJJ
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AJQLL
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
RIG
SCB
SSH
WUQ
XOL
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
ID FETCH-LOGICAL-c313t-d42a0302ea8a2806b693f31881dbe2ffa02ee574bd6ea7e9a85682acb3df05543
IEDL.DBID .~1
ISSN 0039-9140
IngestDate Fri Jul 11 06:21:51 EDT 2025
Wed Feb 19 02:04:12 EST 2025
Tue Jul 01 03:44:30 EDT 2025
Sat Nov 16 15:58:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Urea
Three-dimensional printing
Stimuli-responsive materials
Four-dimensional printing
Shape programming
Enzymatic derivatization
Language English
License Copyright © 2024 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-d42a0302ea8a2806b693f31881dbe2ffa02ee574bd6ea7e9a85682acb3df05543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1306-9202
PMID 39368332
PQID 3153830497
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153830497
pubmed_primary_39368332
crossref_primary_10_1016_j_talanta_2024_126998
elsevier_sciencedirect_doi_10_1016_j_talanta_2024_126998
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
2025-01-00
2025-Jan-01
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Talanta (Oxford)
PublicationTitleAlternate Talanta
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References González-Sálamo, Ortega-Zamora, Carrillo, Hernández-Borges (bib14) 2021; 1636
Wu, Chen, Su (bib46) 2021; 93
Chatterjee, Hui (bib9) 2019; 24
Forterre, Dumais (bib36) 2011; 333
Roy, Cambre, Sumerlin (bib2) 2010; 35
Wang, Liu, Yang, Shi, Li, Xue, Liu, Lei (bib17) 2023; 4
Nam, Pei (bib10) 2019; 4
Ryan, Down, Banks (bib31) 2021; 403
Hu, Zhang, Li, Serpe (bib13) 2019; 6
Zhang, Zhang, Zhou, Tian, Chen, Zhang, Yang (bib56) 2022; 181
Zhao, Zhang, Zhu, Zou, Zhao, Shi, Wang (bib15) 2022; 651
Farid, Wu, Liu, Wang (bib32) 2021; 115
Yin, Yao, Gao, Zhang, Tam, Wai (bib33) 2016; 28
Hussain, Park (bib16) 2023; 377
Liu, Ju, Pu, Wen, Liu, Liu, Wang, Xie, Chu (bib19) 2021; 404
Soni, Surana, Jha (bib59) 2018; 269
Waheed, Cabot, Macdonald, Lewis, Guijt, Paull, Breadmore (bib20) 2016; 16
Ding, Yuan, Peng, Wang, Qi, Dunn (bib37) 2017; 3
Cecchini, Mariani, Ronzan, Mondini, Pugno, Mazzolai (bib39) 2023; 10
Wu, Chen, Yan, Cai, Shi (bib45) 2019; 171
Phonchai, Rattana, Thongprajukaew (bib51) 2020; 319
Wu, Chen, Su (bib34) 2022; 1204
Scarpa, Lemma, Fiammengo, Cipolla, Pisanello, Rizzi, De Vittorio (bib40) 2019; 279
Talat, Singh, Srivastava (bib47) 2011; 34
Momeni, HassaniN, Liu, Ni (bib27) 2017; 122
Lorenzo, Carro, Concheiro, Alvarez-Lorenzo (bib12) 2015; 407
Liu, Mo, Wei, Raftery (bib50) 2012; 137
Kuralay, Özyörük, Yıldız (bib52) 2005; 109
Joshi, Rawat, Rajamohan, Mathew, Koziol, Thakur, Balan (bib29) 2020; 18
Mrinalini, Prasanthkumar (bib5) 2019; 84
Behl, Zhao, Lendlein (bib18) 2020; 35
Lai, Ye, Liu, Wang, Li, Wang, Ma, Wang (bib38) 2021; 205
Wu, Su, Su (bib35) 2023; 237
Francis, Lewis, Lim (bib42) 2002; 21
Singhal, Gambhir, Pandey, Annapoorni, Malhotra (bib60) 2002; 17
Hu, Meng, Li, Ibekwe (bib7) 2012; 21
Balakrishnan, Badar, Doeven, Novak, Merenda, Dumée, Loy, Guijt (bib23) 2021; 93
Quanjin, Rejab, Idris, Kumar, Abdullah, Reddy (bib30) 2020; 167
Vostiar, Tkac, Sturdik, Gemeiner (bib54) 2002; 56
Li, Chen, Wang, Stenzel, Chapman (bib41) 2020; 41
Sorg, Peltz, Klitzman, Dewhirst (bib49) 2005; 52
Choi, Shaban, Moon, Pyun, Kim (bib57) 2021; 1170
Kuang, Roach, Wu, Hamel, Ding, Wang, Dunn, Qi (bib28) 2018; 29
Dixit, Kadimisetty, Rusling (bib22) 2018; 106
Pundir, Jakhar, Narwal (bib44) 2019; 123
Bratek-Skicki (bib6) 2021; 4
Honn, Singley, Chavin (bib48) 1975; 149
Meng, Li (bib3) 2013; 54
Cho, Kang, Lee, Koh (bib11) 2022; 427
Gross, Lockwood, Spence (bib21) 2017; 89
Su (bib26) 2021; 1158
Kovacs, Nagy, Dombi, Toth (bib53) 2003; 18
Mondal, Sangaranarayanan (bib55) 2013; 177
Wei, Gao, Li, Serpe (bib4) 2017; 8
Ma, Le, Tang, He, Xiao, Zheng, Xiao, Lu, Zhang, Huang, Chen (bib8) 2016; 26
Kim, Sung, Park (bib58) 2020; 8
Stuart, Huck, Genzer, Müller, Ober, Stamm, Sukhorukov, Szleifer, Tsukruk, Urban, Winnik, Zauscher, Luzinov, Minko (bib1) 2010; 9
Singh, Verma, Garg, Redhu (bib43) 2008; 134
Carrasco-Correa, Simó-Alfonso, Herrero-Martínez, Miró (bib24) 2021; 136
Nesterenko (bib25) 2020; 92
Dixit (10.1016/j.talanta.2024.126998_bib22) 2018; 106
Hussain (10.1016/j.talanta.2024.126998_bib16) 2023; 377
Joshi (10.1016/j.talanta.2024.126998_bib29) 2020; 18
Ding (10.1016/j.talanta.2024.126998_bib37) 2017; 3
Hu (10.1016/j.talanta.2024.126998_bib13) 2019; 6
Carrasco-Correa (10.1016/j.talanta.2024.126998_bib24) 2021; 136
Talat (10.1016/j.talanta.2024.126998_bib47) 2011; 34
Liu (10.1016/j.talanta.2024.126998_bib50) 2012; 137
Roy (10.1016/j.talanta.2024.126998_bib2) 2010; 35
Phonchai (10.1016/j.talanta.2024.126998_bib51) 2020; 319
Choi (10.1016/j.talanta.2024.126998_bib57) 2021; 1170
Nam (10.1016/j.talanta.2024.126998_bib10) 2019; 4
Francis (10.1016/j.talanta.2024.126998_bib42) 2002; 21
Kim (10.1016/j.talanta.2024.126998_bib58) 2020; 8
Vostiar (10.1016/j.talanta.2024.126998_bib54) 2002; 56
Meng (10.1016/j.talanta.2024.126998_bib3) 2013; 54
Balakrishnan (10.1016/j.talanta.2024.126998_bib23) 2021; 93
Bratek-Skicki (10.1016/j.talanta.2024.126998_bib6) 2021; 4
Yin (10.1016/j.talanta.2024.126998_bib33) 2016; 28
Zhao (10.1016/j.talanta.2024.126998_bib15) 2022; 651
Nesterenko (10.1016/j.talanta.2024.126998_bib25) 2020; 92
Cecchini (10.1016/j.talanta.2024.126998_bib39) 2023; 10
Lai (10.1016/j.talanta.2024.126998_bib38) 2021; 205
Zhang (10.1016/j.talanta.2024.126998_bib56) 2022; 181
Momeni (10.1016/j.talanta.2024.126998_bib27) 2017; 122
Kovacs (10.1016/j.talanta.2024.126998_bib53) 2003; 18
González-Sálamo (10.1016/j.talanta.2024.126998_bib14) 2021; 1636
Su (10.1016/j.talanta.2024.126998_bib26) 2021; 1158
Wu (10.1016/j.talanta.2024.126998_bib34) 2022; 1204
Forterre (10.1016/j.talanta.2024.126998_bib36) 2011; 333
Wu (10.1016/j.talanta.2024.126998_bib35) 2023; 237
Pundir (10.1016/j.talanta.2024.126998_bib44) 2019; 123
Ryan (10.1016/j.talanta.2024.126998_bib31) 2021; 403
Lorenzo (10.1016/j.talanta.2024.126998_bib12) 2015; 407
Wei (10.1016/j.talanta.2024.126998_bib4) 2017; 8
Wu (10.1016/j.talanta.2024.126998_bib45) 2019; 171
Wu (10.1016/j.talanta.2024.126998_bib46) 2021; 93
Soni (10.1016/j.talanta.2024.126998_bib59) 2018; 269
Quanjin (10.1016/j.talanta.2024.126998_bib30) 2020; 167
Honn (10.1016/j.talanta.2024.126998_bib48) 1975; 149
Chatterjee (10.1016/j.talanta.2024.126998_bib9) 2019; 24
Waheed (10.1016/j.talanta.2024.126998_bib20) 2016; 16
Behl (10.1016/j.talanta.2024.126998_bib18) 2020; 35
Mondal (10.1016/j.talanta.2024.126998_bib55) 2013; 177
Hu (10.1016/j.talanta.2024.126998_bib7) 2012; 21
Sorg (10.1016/j.talanta.2024.126998_bib49) 2005; 52
Mrinalini (10.1016/j.talanta.2024.126998_bib5) 2019; 84
Liu (10.1016/j.talanta.2024.126998_bib19) 2021; 404
Kuralay (10.1016/j.talanta.2024.126998_bib52) 2005; 109
Singhal (10.1016/j.talanta.2024.126998_bib60) 2002; 17
Farid (10.1016/j.talanta.2024.126998_bib32) 2021; 115
Li (10.1016/j.talanta.2024.126998_bib41) 2020; 41
Singh (10.1016/j.talanta.2024.126998_bib43) 2008; 134
Stuart (10.1016/j.talanta.2024.126998_bib1) 2010; 9
Cho (10.1016/j.talanta.2024.126998_bib11) 2022; 427
Gross (10.1016/j.talanta.2024.126998_bib21) 2017; 89
Kuang (10.1016/j.talanta.2024.126998_bib28) 2018; 29
Ma (10.1016/j.talanta.2024.126998_bib8) 2016; 26
Wang (10.1016/j.talanta.2024.126998_bib17) 2023; 4
Scarpa (10.1016/j.talanta.2024.126998_bib40) 2019; 279
References_xml – volume: 109
  start-page: 194
  year: 2005
  end-page: 199
  ident: bib52
  article-title: Potentiometric enzyme electrode for urea determination using immobilized urease in poly (vinylferrocenium) film
  publication-title: Sens. Actuators B Chem.
– volume: 403
  year: 2021
  ident: bib31
  article-title: Future of additive manufacturing: overview of 4D and 3D printed smart and advanced materials and their applications
  publication-title: Chem. Eng. J.
– volume: 52
  start-page: 341
  year: 2005
  end-page: 349
  ident: bib49
  article-title: Method for improved accuracy in endogenous urea recovery marker calibrations for microdialysis in tumors
  publication-title: J. Pharmacol. Toxicol. Methods
– volume: 3
  year: 2017
  ident: bib37
  article-title: Direct 4D printing
  publication-title: Sci. Adv.
– volume: 56
  start-page: 113
  year: 2002
  end-page: 115
  ident: bib54
  article-title: Amperometric urea biosensor based on urease and electropolymerized toluidine blue dye as a pH-sensitive redox probe
  publication-title: Bioelectrochemistry
– volume: 136
  year: 2021
  ident: bib24
  article-title: The emerging role of 3D printing in the fabrication of detection systems
  publication-title: TrAC—Trends Anal. Chem.
– volume: 269
  start-page: 346
  year: 2018
  end-page: 353
  ident: bib59
  article-title: Smartphone based optical biosensor for the detection of urea in saliva
  publication-title: Sens. Actuators B Chem.
– volume: 18
  start-page: 111
  year: 2003
  end-page: 118
  ident: bib53
  article-title: Optical biosensor for urea with improved response time
  publication-title: Biosens. Bioelectron.
– volume: 1204
  year: 2022
  ident: bib34
  article-title: 4D-Printed pH sensing claw
  publication-title: Anal. Chim. Acta
– volume: 35
  start-page: 278
  year: 2010
  end-page: 301
  ident: bib2
  article-title: Future perspectives and recent advances in stimuli-responsive materials
  publication-title: Prog. Polym. Sci.
– volume: 1636
  year: 2021
  ident: bib14
  article-title: Application of stimuli-responsive materials for extraction purposes
  publication-title: J. Chromatogr. A
– volume: 427
  year: 2022
  ident: bib11
  article-title: Multi-stimuli responsive and reversible soft actuator engineered by layered fibrous matrix and hydrogel micropatterns
  publication-title: Chem. Eng. J.
– volume: 1170
  year: 2021
  ident: bib57
  article-title: Smartphone-assisted point-of-care colorimetric biosensor for the detection of urea
  publication-title: Anal. Chim. Acta
– volume: 122
  start-page: 42
  year: 2017
  end-page: 79
  ident: bib27
  article-title: A review of 4D printing
  publication-title: Mater. Design
– volume: 106
  start-page: 37
  year: 2018
  end-page: 52
  ident: bib22
  article-title: 3D-Printed miniaturized fluidic tools in chemistry and biology
  publication-title: TrAC—Trends Anal. Chem.
– volume: 93
  start-page: 11497
  year: 2021
  end-page: 11505
  ident: bib46
  article-title: 4D-Printed temperature-controlled flow-actuated solid-phase extraction devices
  publication-title: Anal. Chem.
– volume: 4
  start-page: 167
  year: 2019
  end-page: 184
  ident: bib10
  article-title: A taxonomy of shape-changing behavior for 4D printed parts using shape-memory polymers
  publication-title: Prog. Addit. Manuf.
– volume: 29
  year: 2018
  ident: bib28
  article-title: Advances in 4D printing: materials and applications
  publication-title: Adv. Funct. Mater.
– volume: 34
  start-page: 647
  year: 2011
  end-page: 657
  ident: bib47
  article-title: Optimization of process variables by central composite design for the immobilization of urease enzyme on functionalized gold nanoparticles for various applications
  publication-title: Bioprocess Biosyst. Eng.
– volume: 1158
  year: 2021
  ident: bib26
  article-title: Review of 3D-printed functionalized devices for chemical and biochemical analysis
  publication-title: Anal. Chim. Acta
– volume: 123
  start-page: 36
  year: 2019
  end-page: 50
  ident: bib44
  article-title: Determination of urea with special emphasis on biosensors: a review
  publication-title: Biosens. Bioelectron.
– volume: 137
  start-page: 595
  year: 2012
  end-page: 600
  ident: bib50
  article-title: Quantitative analysis of urea in human urine and serum by
  publication-title: Analyst
– volume: 8
  start-page: 127
  year: 2017
  end-page: 143
  ident: bib4
  article-title: Stimuli-responsive polymers and their applications
  publication-title: Polym. Chem.
– volume: 10
  year: 2023
  ident: bib39
  article-title: 4D printing of humidity-driven seed inspired soft robots
  publication-title: Adv. Sci.
– volume: 377
  year: 2023
  ident: bib16
  article-title: pH-responsive circular bilayer biosensor based on the actuation of an interpenetrating polymer network comprising crosslinked nematic liquid crystals and poly(acrylic acid)
  publication-title: Sens. Actuators B Chem.
– volume: 167
  start-page: 1210
  year: 2020
  end-page: 1219
  ident: bib30
  article-title: Recent 3D and 4D intelligent printing technologies: a comparative review and future perspective
  publication-title: Procedia Comput. Sci.
– volume: 319
  year: 2020
  ident: bib51
  article-title: A portable sol-gel urea colorimetric method for the determination of urea in feedstuffs
  publication-title: Food Chem.
– volume: 17
  start-page: 697
  year: 2002
  end-page: 703
  ident: bib60
  article-title: Immobilization of urease on poly (N-vinyl carbazole)/stearic acid Langmuir–blodgett films for application to urea biosensor
  publication-title: Biosens. Bioelectron.
– volume: 35
  start-page: 2396
  year: 2020
  end-page: 2404
  ident: bib18
  article-title: Glucose-responsive shape-memory cryogels
  publication-title: J. Mater. Res.
– volume: 54
  start-page: 2199
  year: 2013
  end-page: 2221
  ident: bib3
  article-title: Review of stimuli-responsive shape memory polymer composites
  publication-title: Polymer
– volume: 41
  year: 2020
  ident: bib41
  article-title: Polyion complex micelles for protein delivery benefit from flexible hydrophobic spacers in the binding group, macromol
  publication-title: Rapid Commun
– volume: 89
  start-page: 57
  year: 2017
  end-page: 70
  ident: bib21
  article-title: Recent advances in analytical chemistry by 3D printing
  publication-title: Anal. Chem.
– volume: 407
  start-page: 4927
  year: 2015
  end-page: 4948
  ident: bib12
  article-title: Stimuli-responsive materials in analytical separation
  publication-title: Anal. Bioanal. Chem.
– volume: 237
  year: 2023
  ident: bib35
  article-title: 4D-Printed needle panel meters coupled with enzymatic derivatization for reading urea and glucose concentrations in biological samples
  publication-title: Biosens. Bioelectron.
– volume: 333
  start-page: 1715
  year: 2011
  end-page: 1716
  ident: bib36
  article-title: Generating helices in nature
  publication-title: Science
– volume: 134
  start-page: 345
  year: 2008
  end-page: 351
  ident: bib43
  article-title: Urea biosensors
  publication-title: Sens. Actuators B: Chem.
– volume: 9
  start-page: 101
  year: 2010
  end-page: 113
  ident: bib1
  article-title: Emerging applications of stimuli-responsive polymer materials
  publication-title: Nat. Mater.
– volume: 24
  start-page: 2547
  year: 2019
  ident: bib9
  article-title: Review of stimuli-responsive polymers in drug delivery and textile application
  publication-title: Molecules
– volume: 404
  year: 2021
  ident: bib19
  article-title: Visual detection of trace lead(II) using a forward osmosis-driven device loaded with ion-responsive nanogels
  publication-title: J. Hazard Mater.
– volume: 8
  start-page: 596
  year: 2020
  ident: bib58
  article-title: Efficient portable urea biosensor based on urease immobilized membrane for monitoring of physiological fluids
  publication-title: Biomedicines
– volume: 4
  start-page: 69
  year: 2023
  end-page: 77
  ident: bib17
  article-title: A responsive hydrogel-based microneedle system for minimally invasive glucose monitoring
  publication-title: Smart Mater. Med.
– volume: 92
  start-page: 1341
  year: 2020
  end-page: 1355
  ident: bib25
  article-title: 3D printing in analytical chemistry: current state and future
  publication-title: Pure Appl. Chem.
– volume: 16
  start-page: 1993
  year: 2016
  end-page: 2013
  ident: bib20
  article-title: 3D printed microfluidic devices: enablers and barriers
  publication-title: Lab Chip
– volume: 28
  start-page: 1394
  year: 2016
  end-page: 1399
  ident: bib33
  article-title: Rapid 3D patterning of poly(acrylic acid) ionic hydrogel for miniature pH sensors
  publication-title: Adv. Mater.
– volume: 84
  start-page: 1103
  year: 2019
  end-page: 1121
  ident: bib5
  article-title: Recent advances on stimuli-responsive smart materials and their applications
  publication-title: ChemPlusChem
– volume: 205
  year: 2021
  ident: bib38
  article-title: 4D printing of highly printable and shape morphing hydrogels composed of alginate and methylcellulose
  publication-title: Mater. Des.
– volume: 651
  year: 2022
  ident: bib15
  article-title: Photothermal responsive hydrogel for adsorbing heavy metal ions in aqueous solution
  publication-title: Colloids Surf. A: Physicochem. Eng. Asp.
– volume: 177
  start-page: 478
  year: 2013
  end-page: 486
  ident: bib55
  article-title: A novel non-enzymatic sensor for urea using a polypyrrole-coated platinum electrode
  publication-title: Sens. Actuators B Chem.
– volume: 21
  year: 2012
  ident: bib7
  article-title: A review of stimuli-responsive polymers for smart textile applications
  publication-title: Smart Mater. Struct.
– volume: 181
  year: 2022
  ident: bib56
  article-title: Paper-based sensor depending on the prussian blue pH sensitivity: smartphone-assisted detection of urea
  publication-title: Microchem. J.
– volume: 4
  year: 2021
  ident: bib6
  article-title: Towards a new class of stimuli-responsive polymer-based materials: recent advances and challenges
  publication-title: Appl. Surf. Sci. Adv.
– volume: 171
  year: 2019
  ident: bib45
  article-title: Four-dimensional printing of a novel acrylate-based shape memory polymer using digital light processing
  publication-title: Mater. Des.
– volume: 115
  start-page: 2973
  year: 2021
  end-page: 2988
  ident: bib32
  article-title: Additive manufacturing landscape and materials perspective in 4D printing
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 149
  start-page: 344
  year: 1975
  end-page: 347
  ident: bib48
  article-title: Fetal bovine serum: a multivariate standard
  publication-title: Proc. Soc. Exp. Biol. Med.
– volume: 18
  year: 2020
  ident: bib29
  article-title: 4D printing of materials for the future: opportunities and challenges
  publication-title: Appl. Mater. Today
– volume: 279
  start-page: 418
  year: 2019
  end-page: 426
  ident: bib40
  article-title: Microfabrication of pH-responsive 3D hydrogel structures
  publication-title: Sens. Actuators B: Chem.
– volume: 93
  start-page: 350
  year: 2021
  end-page: 366
  ident: bib23
  article-title: 3D printing: an alternative microfabrication approach with unprecedented opportunities in design
  publication-title: Anal. Chem.
– volume: 21
  start-page: 389
  year: 2002
  end-page: 400
  ident: bib42
  article-title: Analytical methodology for the determination of urea: current practice and future trends
  publication-title: TrAC—Trends Anal. Chem.
– volume: 26
  start-page: 8670
  year: 2016
  end-page: 8676
  ident: bib8
  article-title: A multiresponsive anisotropic hydrogel with macroscopic 3D complex deformations
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 1774
  year: 2019
  end-page: 1793
  ident: bib13
  article-title: Stimuli-responsive polymers for sensing and actuation
  publication-title: Mater. Horiz.
– volume: 24
  start-page: 2547
  year: 2019
  ident: 10.1016/j.talanta.2024.126998_bib9
  article-title: Review of stimuli-responsive polymers in drug delivery and textile application
  publication-title: Molecules
  doi: 10.3390/molecules24142547
– volume: 28
  start-page: 1394
  year: 2016
  ident: 10.1016/j.talanta.2024.126998_bib33
  article-title: Rapid 3D patterning of poly(acrylic acid) ionic hydrogel for miniature pH sensors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504021
– volume: 177
  start-page: 478
  year: 2013
  ident: 10.1016/j.talanta.2024.126998_bib55
  article-title: A novel non-enzymatic sensor for urea using a polypyrrole-coated platinum electrode
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2012.11.031
– volume: 403
  year: 2021
  ident: 10.1016/j.talanta.2024.126998_bib31
  article-title: Future of additive manufacturing: overview of 4D and 3D printed smart and advanced materials and their applications
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126162
– volume: 21
  start-page: 389
  year: 2002
  ident: 10.1016/j.talanta.2024.126998_bib42
  article-title: Analytical methodology for the determination of urea: current practice and future trends
  publication-title: TrAC—Trends Anal. Chem.
  doi: 10.1016/S0165-9936(02)00507-1
– volume: 35
  start-page: 278
  year: 2010
  ident: 10.1016/j.talanta.2024.126998_bib2
  article-title: Future perspectives and recent advances in stimuli-responsive materials
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2009.10.008
– volume: 333
  start-page: 1715
  year: 2011
  ident: 10.1016/j.talanta.2024.126998_bib36
  article-title: Generating helices in nature
  publication-title: Science
  doi: 10.1126/science.1210734
– volume: 136
  year: 2021
  ident: 10.1016/j.talanta.2024.126998_bib24
  article-title: The emerging role of 3D printing in the fabrication of detection systems
  publication-title: TrAC—Trends Anal. Chem.
  doi: 10.1016/j.trac.2020.116177
– volume: 4
  start-page: 69
  year: 2023
  ident: 10.1016/j.talanta.2024.126998_bib17
  article-title: A responsive hydrogel-based microneedle system for minimally invasive glucose monitoring
  publication-title: Smart Mater. Med.
  doi: 10.1016/j.smaim.2022.07.006
– volume: 106
  start-page: 37
  year: 2018
  ident: 10.1016/j.talanta.2024.126998_bib22
  article-title: 3D-Printed miniaturized fluidic tools in chemistry and biology
  publication-title: TrAC—Trends Anal. Chem.
  doi: 10.1016/j.trac.2018.06.013
– volume: 109
  start-page: 194
  year: 2005
  ident: 10.1016/j.talanta.2024.126998_bib52
  article-title: Potentiometric enzyme electrode for urea determination using immobilized urease in poly (vinylferrocenium) film
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2004.12.043
– volume: 1170
  year: 2021
  ident: 10.1016/j.talanta.2024.126998_bib57
  article-title: Smartphone-assisted point-of-care colorimetric biosensor for the detection of urea via pH-mediated AgNPs growth
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2021.338630
– volume: 84
  start-page: 1103
  year: 2019
  ident: 10.1016/j.talanta.2024.126998_bib5
  article-title: Recent advances on stimuli-responsive smart materials and their applications
  publication-title: ChemPlusChem
  doi: 10.1002/cplu.201900365
– volume: 18
  start-page: 111
  year: 2003
  ident: 10.1016/j.talanta.2024.126998_bib53
  article-title: Optical biosensor for urea with improved response time
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/S0956-5663(02)00164-1
– volume: 16
  start-page: 1993
  year: 2016
  ident: 10.1016/j.talanta.2024.126998_bib20
  article-title: 3D printed microfluidic devices: enablers and barriers
  publication-title: Lab Chip
  doi: 10.1039/C6LC00284F
– volume: 171
  year: 2019
  ident: 10.1016/j.talanta.2024.126998_bib45
  article-title: Four-dimensional printing of a novel acrylate-based shape memory polymer using digital light processing
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.107704
– volume: 377
  year: 2023
  ident: 10.1016/j.talanta.2024.126998_bib16
  article-title: pH-responsive circular bilayer biosensor based on the actuation of an interpenetrating polymer network comprising crosslinked nematic liquid crystals and poly(acrylic acid)
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2022.133096
– volume: 427
  year: 2022
  ident: 10.1016/j.talanta.2024.126998_bib11
  article-title: Multi-stimuli responsive and reversible soft actuator engineered by layered fibrous matrix and hydrogel micropatterns
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130879
– volume: 17
  start-page: 697
  year: 2002
  ident: 10.1016/j.talanta.2024.126998_bib60
  article-title: Immobilization of urease on poly (N-vinyl carbazole)/stearic acid Langmuir–blodgett films for application to urea biosensor
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/S0956-5663(02)00020-9
– volume: 21
  year: 2012
  ident: 10.1016/j.talanta.2024.126998_bib7
  article-title: A review of stimuli-responsive polymers for smart textile applications
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/21/5/053001
– volume: 9
  start-page: 101
  year: 2010
  ident: 10.1016/j.talanta.2024.126998_bib1
  article-title: Emerging applications of stimuli-responsive polymer materials
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2614
– volume: 404
  year: 2021
  ident: 10.1016/j.talanta.2024.126998_bib19
  article-title: Visual detection of trace lead(II) using a forward osmosis-driven device loaded with ion-responsive nanogels
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2020.124157
– volume: 10
  year: 2023
  ident: 10.1016/j.talanta.2024.126998_bib39
  article-title: 4D printing of humidity-driven seed inspired soft robots
  publication-title: Adv. Sci.
– volume: 1158
  year: 2021
  ident: 10.1016/j.talanta.2024.126998_bib26
  article-title: Review of 3D-printed functionalized devices for chemical and biochemical analysis
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2021.338348
– volume: 34
  start-page: 647
  year: 2011
  ident: 10.1016/j.talanta.2024.126998_bib47
  article-title: Optimization of process variables by central composite design for the immobilization of urease enzyme on functionalized gold nanoparticles for various applications
  publication-title: Bioprocess Biosyst. Eng.
  doi: 10.1007/s00449-011-0514-2
– volume: 137
  start-page: 595
  year: 2012
  ident: 10.1016/j.talanta.2024.126998_bib50
  article-title: Quantitative analysis of urea in human urine and serum by 1H nuclear magnetic resonance
  publication-title: Analyst
  doi: 10.1039/C2AN15780B
– volume: 4
  start-page: 167
  year: 2019
  ident: 10.1016/j.talanta.2024.126998_bib10
  article-title: A taxonomy of shape-changing behavior for 4D printed parts using shape-memory polymers
  publication-title: Prog. Addit. Manuf.
  doi: 10.1007/s40964-019-00079-5
– volume: 8
  start-page: 127
  year: 2017
  ident: 10.1016/j.talanta.2024.126998_bib4
  article-title: Stimuli-responsive polymers and their applications
  publication-title: Polym. Chem.
  doi: 10.1039/C6PY01585A
– volume: 3
  year: 2017
  ident: 10.1016/j.talanta.2024.126998_bib37
  article-title: Direct 4D printing via active composite materials
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1602890
– volume: 4
  year: 2021
  ident: 10.1016/j.talanta.2024.126998_bib6
  article-title: Towards a new class of stimuli-responsive polymer-based materials: recent advances and challenges
  publication-title: Appl. Surf. Sci. Adv.
  doi: 10.1016/j.apsadv.2021.100068
– volume: 18
  year: 2020
  ident: 10.1016/j.talanta.2024.126998_bib29
  article-title: 4D printing of materials for the future: opportunities and challenges
  publication-title: Appl. Mater. Today
– volume: 89
  start-page: 57
  year: 2017
  ident: 10.1016/j.talanta.2024.126998_bib21
  article-title: Recent advances in analytical chemistry by 3D printing
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b04344
– volume: 93
  start-page: 350
  year: 2021
  ident: 10.1016/j.talanta.2024.126998_bib23
  article-title: 3D printing: an alternative microfabrication approach with unprecedented opportunities in design
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c04672
– volume: 92
  start-page: 1341
  year: 2020
  ident: 10.1016/j.talanta.2024.126998_bib25
  article-title: 3D printing in analytical chemistry: current state and future
  publication-title: Pure Appl. Chem.
  doi: 10.1515/pac-2020-0206
– volume: 29
  year: 2018
  ident: 10.1016/j.talanta.2024.126998_bib28
  article-title: Advances in 4D printing: materials and applications
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 8670
  year: 2016
  ident: 10.1016/j.talanta.2024.126998_bib8
  article-title: A multiresponsive anisotropic hydrogel with macroscopic 3D complex deformations
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201603448
– volume: 181
  year: 2022
  ident: 10.1016/j.talanta.2024.126998_bib56
  article-title: Paper-based sensor depending on the prussian blue pH sensitivity: smartphone-assisted detection of urea
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2022.107783
– volume: 1636
  year: 2021
  ident: 10.1016/j.talanta.2024.126998_bib14
  article-title: Application of stimuli-responsive materials for extraction purposes
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2020.461764
– volume: 237
  year: 2023
  ident: 10.1016/j.talanta.2024.126998_bib35
  article-title: 4D-Printed needle panel meters coupled with enzymatic derivatization for reading urea and glucose concentrations in biological samples
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2023.115500
– volume: 167
  start-page: 1210
  year: 2020
  ident: 10.1016/j.talanta.2024.126998_bib30
  article-title: Recent 3D and 4D intelligent printing technologies: a comparative review and future perspective
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.03.434
– volume: 651
  year: 2022
  ident: 10.1016/j.talanta.2024.126998_bib15
  article-title: Photothermal responsive hydrogel for adsorbing heavy metal ions in aqueous solution
  publication-title: Colloids Surf. A: Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2022.129425
– volume: 35
  start-page: 2396
  year: 2020
  ident: 10.1016/j.talanta.2024.126998_bib18
  article-title: Glucose-responsive shape-memory cryogels
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2020.204
– volume: 407
  start-page: 4927
  year: 2015
  ident: 10.1016/j.talanta.2024.126998_bib12
  article-title: Stimuli-responsive materials in analytical separation
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-015-8679-1
– volume: 205
  year: 2021
  ident: 10.1016/j.talanta.2024.126998_bib38
  article-title: 4D printing of highly printable and shape morphing hydrogels composed of alginate and methylcellulose
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2021.109699
– volume: 93
  start-page: 11497
  year: 2021
  ident: 10.1016/j.talanta.2024.126998_bib46
  article-title: 4D-Printed temperature-controlled flow-actuated solid-phase extraction devices
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c01703
– volume: 56
  start-page: 113
  year: 2002
  ident: 10.1016/j.talanta.2024.126998_bib54
  article-title: Amperometric urea biosensor based on urease and electropolymerized toluidine blue dye as a pH-sensitive redox probe
  publication-title: Bioelectrochemistry
  doi: 10.1016/S1567-5394(02)00042-7
– volume: 8
  start-page: 596
  year: 2020
  ident: 10.1016/j.talanta.2024.126998_bib58
  article-title: Efficient portable urea biosensor based on urease immobilized membrane for monitoring of physiological fluids
  publication-title: Biomedicines
  doi: 10.3390/biomedicines8120596
– volume: 149
  start-page: 344
  year: 1975
  ident: 10.1016/j.talanta.2024.126998_bib48
  article-title: Fetal bovine serum: a multivariate standard
  publication-title: Proc. Soc. Exp. Biol. Med.
  doi: 10.3181/00379727-149-38804
– volume: 41
  year: 2020
  ident: 10.1016/j.talanta.2024.126998_bib41
  article-title: Polyion complex micelles for protein delivery benefit from flexible hydrophobic spacers in the binding group, macromol
  publication-title: Rapid Commun
  doi: 10.1002/marc.202000208
– volume: 279
  start-page: 418
  year: 2019
  ident: 10.1016/j.talanta.2024.126998_bib40
  article-title: Microfabrication of pH-responsive 3D hydrogel structures via two-photon polymerization of high-molecular-weight poly(ethylene glycol) diacrylates
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/j.snb.2018.09.079
– volume: 1204
  year: 2022
  ident: 10.1016/j.talanta.2024.126998_bib34
  article-title: 4D-Printed pH sensing claw
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2022.339733
– volume: 123
  start-page: 36
  year: 2019
  ident: 10.1016/j.talanta.2024.126998_bib44
  article-title: Determination of urea with special emphasis on biosensors: a review
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.09.067
– volume: 54
  start-page: 2199
  year: 2013
  ident: 10.1016/j.talanta.2024.126998_bib3
  article-title: Review of stimuli-responsive shape memory polymer composites
  publication-title: Polymer
  doi: 10.1016/j.polymer.2013.02.023
– volume: 6
  start-page: 1774
  year: 2019
  ident: 10.1016/j.talanta.2024.126998_bib13
  article-title: Stimuli-responsive polymers for sensing and actuation
  publication-title: Mater. Horiz.
  doi: 10.1039/C9MH00490D
– volume: 115
  start-page: 2973
  year: 2021
  ident: 10.1016/j.talanta.2024.126998_bib32
  article-title: Additive manufacturing landscape and materials perspective in 4D printing
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-021-07233-w
– volume: 319
  year: 2020
  ident: 10.1016/j.talanta.2024.126998_bib51
  article-title: A portable sol-gel urea colorimetric method for the determination of urea in feedstuffs
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2020.126545
– volume: 122
  start-page: 42
  year: 2017
  ident: 10.1016/j.talanta.2024.126998_bib27
  article-title: A review of 4D printing
  publication-title: Mater. Design
  doi: 10.1016/j.matdes.2017.02.068
– volume: 134
  start-page: 345
  year: 2008
  ident: 10.1016/j.talanta.2024.126998_bib43
  article-title: Urea biosensors
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/j.snb.2008.04.025
– volume: 269
  start-page: 346
  year: 2018
  ident: 10.1016/j.talanta.2024.126998_bib59
  article-title: Smartphone based optical biosensor for the detection of urea in saliva
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2018.04.108
– volume: 52
  start-page: 341
  year: 2005
  ident: 10.1016/j.talanta.2024.126998_bib49
  article-title: Method for improved accuracy in endogenous urea recovery marker calibrations for microdialysis in tumors
  publication-title: J. Pharmacol. Toxicol. Methods
  doi: 10.1016/j.vascn.2005.05.004
SSID ssj0002303
Score 2.45701
Snippet Four-dimensional printing (4DP) technologies are revolutionizing the fabrication, functionality, and applicability of stimuli-responsive analytical devices....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 126998
SubjectTerms analytical methods
Animals
derivatization
detection limit
electrostatic interactions
Enzymatic derivatization
fetal bovine serum
Four-dimensional printing
geometry
Humans
Hydrogen-Ion Concentration
hydrolysis
Limit of Detection
Needles
Printing, Three-Dimensional
Rats
Shape programming
Stimuli-responsive materials
sweat
Three-dimensional printing
Urea
Urea - analysis
Urea - blood
Urea - chemistry
Urea - urine
urine
Title 4D-printed shape-programmable [H+]-responsive needles for determination of urea
URI https://dx.doi.org/10.1016/j.talanta.2024.126998
https://www.ncbi.nlm.nih.gov/pubmed/39368332
https://www.proquest.com/docview/3153830497
Volume 282
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB72Ib9cXEbxJ9pGkr6OsyqqoFwVBJCTNFFe0u7irR3-7M22qeBDBa9vQMJPMfEm-b8LYgfeRkzr2wjkohI5cIlwXEhGDz2WekfiaxMmXV_HgVp_fRXczrN9oYYhWGWJ_HdOraB2edII1O-PhkDS-mFxxfSB1VTaPBL9aJzTK2x_fNA-E2KHwbibo628VT-eJigxi_6n8kNTtnoxx7fFbfvoNf1Z56HSJLQYAyY_qPi6zGShX2Hy_ubdtlV3rY0G7dQgl-eTRjkEEDtYLqaT4_eDwQbwGZuw78BLT1zNMOIJX7htuDHmLjwpOlPU1dnt6ctMfiHBtgshVT02F19Li1JVgU0vnpi7OVIFTF5GpA1kUFl9BlGjnY7AJZDaN4lTa3ClfdBFdqHU2W45K2GQ8cz1vdY5rMlA66RZZodDnEDmd9VyioMXajbHMuK6OYRra2JMJ1jVkXVNbt8XSxqTmh5sNRvC_mu43LjBoUTrXsCWM3iZGUdSm48KkxTZq33z1RmUqTpWSW___8TZbkHTpb7XvssNmp69vsItIZOr2qqG2x-aOzi4GV58yVN5N
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RONBLRWmBLW1xJW7I-7Cd1xFtQUvL4wISUlVZdjwRIMiu2KXH_nZmEgfUA0LqNQ8l-Sae-Wx_MwOwG0LilUmD9B4raRKfST_ETKYYSlUWnHzNycknp-nkwvy4TC6XYNzlwrCsMvr-1qc33joeGUQ0B7Pra87xpeBK8wNlmrJ5-RtYMTR8uY1B_--zzoM4dqy8W0i-_DmNZ3DDVQbpA7j-kDL9kUpp8vFSgHqJgDaB6HAN3kUGKfbbl3wPS1ivw-q4a9z2Ac7Md8nLdcQlxfzKzVBGEdYdp0mJX5O93_I-SmP_oKgpft3iXBB7FaETx7C5xLQSrFn_CBeHB-fjiYx9E2SpR3ohg1GOxq5ClzveOPVpoSsau0RNPaqqcnQKk8z4kKLLsHB5kubKlV6Hakj0Qm_Acj2tcQtE4UfBmZImZahNNqyKSpPRMfGmGPlMYw_6HVh21pbHsJ1u7MZGdC2ja1t0e5B3kNp_7GzJhb9267fOBJYQ5Y0NV-P0YW41u23eL8x6sNna5ultdKHTXGv16f8fvAOrk_OTY3t8dPpzG94q7gDcLMJ8huXF_QN-IVqy8F-b3-4RYrTf2w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=4D-printed+shape-programmable+%5BH%2B%5D-responsive+needles+for+determination+of+urea&rft.jtitle=Talanta+%28Oxford%29&rft.au=Su%2C+Yi-Ting&rft.au=Chiu%2C+Hsiao-Chu&rft.au=Su%2C+Cheng-Kuan&rft.date=2025-01-01&rft.pub=Elsevier+B.V&rft.issn=0039-9140&rft.volume=282&rft_id=info:doi/10.1016%2Fj.talanta.2024.126998&rft.externalDocID=S0039914024013778
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-9140&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-9140&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-9140&client=summon