4D-printed shape-programmable [H+]-responsive needles for determination of urea
Four-dimensional printing (4DP) technologies are revolutionizing the fabrication, functionality, and applicability of stimuli-responsive analytical devices. More practically, 4DP technologies are effective in fabricating devices with complex geometric designs and functions, and the degree of shape p...
Saved in:
Published in | Talanta (Oxford) Vol. 282; p. 126998 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Four-dimensional printing (4DP) technologies are revolutionizing the fabrication, functionality, and applicability of stimuli-responsive analytical devices. More practically, 4DP technologies are effective in fabricating devices with complex geometric designs and functions, and the degree of shape programming of 4D-printed stimuli-responsive devices can be optimized to become a reliable analytical strategy. Although shape-programming modes play a critical role in determining the analytical characteristics of 4D-printed stimuli-responsive sensing devices, the effect of shape-programming modes on the analytical performance of 4D-printed stimuli-responsive devices remains an unexplored subject. We employed digital light processing three-dimensional printing (3DP) with acrylate-based photocurable resins and 2-carboxyethyl acrylate (CEA)-incorporated photocurable resins for 4DP of the bending, helixing, and twisting needles. Upon immersion in samples with pH values above the pKa of CEA, the electrostatic repulsion among the dissociated carboxyl groups of polyCEA caused swelling of the CEA-incorporated part and [H+]-dependent shape programming. When coupling with the derivatization reaction of the urease-mediated hydrolysis of urea, the decline in [H+] induced shape programming of the needles, offering reliable determination of urea based on the shape-programming angles. After optimizing the experimental conditions, the helixing needles provided the best analytical performance, with the method's detection limit of 0.9 μM. The reliability of this analytical method was validated by determining urea in samples of human urine and sweat, fetal bovine serum, and rat plasma with spike analyses and comparing these results with those obtained from a commercial assay kit. Our demonstration and analytical results suggest the importance of optimizing the shape-programming modes to improve the analytical performance of 4D-printed stimuli-responsive shape-programming sensing devices and emphasize the benefits and applicability of 4DP technologies in advancing the development and fabrication of stimuli-responsive sensing devices for chemical sensing and quantitative chemical analyses.
[Display omitted]
•The shape-programming effects of 4D-printed devices remain an unexplored subject.•The 4D-printed bending, helixing, and twisting needles were optimized respectively.•The [H+]-induced shape programming of the needle allowed reliable urea determination.•The helixing needle provided the best analytical performance, with the MDL of 0.9 μM.•It suggests the importance of optimizing the shape programming of 4D-printed devices. |
---|---|
AbstractList | Four-dimensional printing (4DP) technologies are revolutionizing the fabrication, functionality, and applicability of stimuli-responsive analytical devices. More practically, 4DP technologies are effective in fabricating devices with complex geometric designs and functions, and the degree of shape programming of 4D-printed stimuli-responsive devices can be optimized to become a reliable analytical strategy. Although shape-programming modes play a critical role in determining the analytical characteristics of 4D-printed stimuli-responsive sensing devices, the effect of shape-programming modes on the analytical performance of 4D-printed stimuli-responsive devices remains an unexplored subject. We employed digital light processing three-dimensional printing (3DP) with acrylate-based photocurable resins and 2-carboxyethyl acrylate (CEA)-incorporated photocurable resins for 4DP of the bending, helixing, and twisting needles. Upon immersion in samples with pH values above the pK
of CEA, the electrostatic repulsion among the dissociated carboxyl groups of polyCEA caused swelling of the CEA-incorporated part and [H
]-dependent shape programming. When coupling with the derivatization reaction of the urease-mediated hydrolysis of urea, the decline in [H
] induced shape programming of the needles, offering reliable determination of urea based on the shape-programming angles. After optimizing the experimental conditions, the helixing needles provided the best analytical performance, with the method's detection limit of 0.9 μM. The reliability of this analytical method was validated by determining urea in samples of human urine and sweat, fetal bovine serum, and rat plasma with spike analyses and comparing these results with those obtained from a commercial assay kit. Our demonstration and analytical results suggest the importance of optimizing the shape-programming modes to improve the analytical performance of 4D-printed stimuli-responsive shape-programming sensing devices and emphasize the benefits and applicability of 4DP technologies in advancing the development and fabrication of stimuli-responsive sensing devices for chemical sensing and quantitative chemical analyses. Four-dimensional printing (4DP) technologies are revolutionizing the fabrication, functionality, and applicability of stimuli-responsive analytical devices. More practically, 4DP technologies are effective in fabricating devices with complex geometric designs and functions, and the degree of shape programming of 4D-printed stimuli-responsive devices can be optimized to become a reliable analytical strategy. Although shape-programming modes play a critical role in determining the analytical characteristics of 4D-printed stimuli-responsive sensing devices, the effect of shape-programming modes on the analytical performance of 4D-printed stimuli-responsive devices remains an unexplored subject. We employed digital light processing three-dimensional printing (3DP) with acrylate-based photocurable resins and 2-carboxyethyl acrylate (CEA)-incorporated photocurable resins for 4DP of the bending, helixing, and twisting needles. Upon immersion in samples with pH values above the pKₐ of CEA, the electrostatic repulsion among the dissociated carboxyl groups of polyCEA caused swelling of the CEA-incorporated part and [H⁺]-dependent shape programming. When coupling with the derivatization reaction of the urease-mediated hydrolysis of urea, the decline in [H⁺] induced shape programming of the needles, offering reliable determination of urea based on the shape-programming angles. After optimizing the experimental conditions, the helixing needles provided the best analytical performance, with the method's detection limit of 0.9 μM. The reliability of this analytical method was validated by determining urea in samples of human urine and sweat, fetal bovine serum, and rat plasma with spike analyses and comparing these results with those obtained from a commercial assay kit. Our demonstration and analytical results suggest the importance of optimizing the shape-programming modes to improve the analytical performance of 4D-printed stimuli-responsive shape-programming sensing devices and emphasize the benefits and applicability of 4DP technologies in advancing the development and fabrication of stimuli-responsive sensing devices for chemical sensing and quantitative chemical analyses. Four-dimensional printing (4DP) technologies are revolutionizing the fabrication, functionality, and applicability of stimuli-responsive analytical devices. More practically, 4DP technologies are effective in fabricating devices with complex geometric designs and functions, and the degree of shape programming of 4D-printed stimuli-responsive devices can be optimized to become a reliable analytical strategy. Although shape-programming modes play a critical role in determining the analytical characteristics of 4D-printed stimuli-responsive sensing devices, the effect of shape-programming modes on the analytical performance of 4D-printed stimuli-responsive devices remains an unexplored subject. We employed digital light processing three-dimensional printing (3DP) with acrylate-based photocurable resins and 2-carboxyethyl acrylate (CEA)-incorporated photocurable resins for 4DP of the bending, helixing, and twisting needles. Upon immersion in samples with pH values above the pKa of CEA, the electrostatic repulsion among the dissociated carboxyl groups of polyCEA caused swelling of the CEA-incorporated part and [H+]-dependent shape programming. When coupling with the derivatization reaction of the urease-mediated hydrolysis of urea, the decline in [H+] induced shape programming of the needles, offering reliable determination of urea based on the shape-programming angles. After optimizing the experimental conditions, the helixing needles provided the best analytical performance, with the method's detection limit of 0.9 μM. The reliability of this analytical method was validated by determining urea in samples of human urine and sweat, fetal bovine serum, and rat plasma with spike analyses and comparing these results with those obtained from a commercial assay kit. Our demonstration and analytical results suggest the importance of optimizing the shape-programming modes to improve the analytical performance of 4D-printed stimuli-responsive shape-programming sensing devices and emphasize the benefits and applicability of 4DP technologies in advancing the development and fabrication of stimuli-responsive sensing devices for chemical sensing and quantitative chemical analyses. [Display omitted] •The shape-programming effects of 4D-printed devices remain an unexplored subject.•The 4D-printed bending, helixing, and twisting needles were optimized respectively.•The [H+]-induced shape programming of the needle allowed reliable urea determination.•The helixing needle provided the best analytical performance, with the MDL of 0.9 μM.•It suggests the importance of optimizing the shape programming of 4D-printed devices. |
ArticleNumber | 126998 |
Author | Chiu, Hsiao-Chu Su, Cheng-Kuan Su, Yi-Ting |
Author_xml | – sequence: 1 givenname: Yi-Ting surname: Su fullname: Su, Yi-Ting – sequence: 2 givenname: Hsiao-Chu surname: Chiu fullname: Chiu, Hsiao-Chu – sequence: 3 givenname: Cheng-Kuan orcidid: 0000-0003-1306-9202 surname: Su fullname: Su, Cheng-Kuan email: cksu@nchu.edu.tw |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39368332$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1LJDEQhoMoOo7-BKWPgvSYpPojfRLRXV0Y8KInkVDdqd7N0J2MSY_gvzcyo9c9FUU9VdT7HLN95x0xdib4QnBRXa0WEw7oJlxILouFkFXTqD02E6qGHMoa9tmMc2jyRhT8iB3HuOKcS-BwyI6ggUoByBl7LO7ydbBuIpPFf7im1Pm_AccR24Gyl4fL1zxQXHsX7TtljsgMFLPeh8zQRGG0DifrXeb7bBMIT9hBj0Ok012ds-ffv55uH_Ll4_2f25tl3oGAKTeFRA5cEiqUildt1UAPQilhWpJ9j2lEZV20piKsqUFVVkpi14LpeVkWMGcX27vp3bcNxUmPNnY0JCXkN1GDKEEBL5o6oec7dNOOZHSKO2L40N8SElBugS74GAP1P4jg-ku2XumdbP0lW29lp73r7R6loO-Wgo6dJdeRsYG6SRtv_3PhE5RlidU |
Cites_doi | 10.3390/molecules24142547 10.1002/adma.201504021 10.1016/j.snb.2012.11.031 10.1016/j.cej.2020.126162 10.1016/S0165-9936(02)00507-1 10.1016/j.progpolymsci.2009.10.008 10.1126/science.1210734 10.1016/j.trac.2020.116177 10.1016/j.smaim.2022.07.006 10.1016/j.trac.2018.06.013 10.1016/j.snb.2004.12.043 10.1016/j.aca.2021.338630 10.1002/cplu.201900365 10.1016/S0956-5663(02)00164-1 10.1039/C6LC00284F 10.1016/j.matdes.2019.107704 10.1016/j.snb.2022.133096 10.1016/j.cej.2021.130879 10.1016/S0956-5663(02)00020-9 10.1088/0964-1726/21/5/053001 10.1038/nmat2614 10.1016/j.jhazmat.2020.124157 10.1016/j.aca.2021.338348 10.1007/s00449-011-0514-2 10.1039/C2AN15780B 10.1007/s40964-019-00079-5 10.1039/C6PY01585A 10.1126/sciadv.1602890 10.1016/j.apsadv.2021.100068 10.1021/acs.analchem.6b04344 10.1021/acs.analchem.0c04672 10.1515/pac-2020-0206 10.1002/adfm.201603448 10.1016/j.microc.2022.107783 10.1016/j.chroma.2020.461764 10.1016/j.bios.2023.115500 10.1016/j.procs.2020.03.434 10.1016/j.colsurfa.2022.129425 10.1557/jmr.2020.204 10.1007/s00216-015-8679-1 10.1016/j.matdes.2021.109699 10.1021/acs.analchem.1c01703 10.1016/S1567-5394(02)00042-7 10.3390/biomedicines8120596 10.3181/00379727-149-38804 10.1002/marc.202000208 10.1016/j.snb.2018.09.079 10.1016/j.aca.2022.339733 10.1016/j.bios.2018.09.067 10.1016/j.polymer.2013.02.023 10.1039/C9MH00490D 10.1007/s00170-021-07233-w 10.1016/j.foodchem.2020.126545 10.1016/j.matdes.2017.02.068 10.1016/j.snb.2008.04.025 10.1016/j.snb.2018.04.108 10.1016/j.vascn.2005.05.004 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. Copyright © 2024 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier B.V. – notice: Copyright © 2024 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7S9 L.6 |
DOI | 10.1016/j.talanta.2024.126998 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3573 |
ExternalDocumentID | 39368332 10_1016_j_talanta_2024_126998 S0039914024013778 |
Genre | Journal Article |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXKI AAXUO ABJNI ABMAC ACDAQ ACGFS ACNCT ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AFJKZ AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SCH SDF SDG SDP SES SEW SPC SPCBC SSK SSZ T5K TN5 TWZ WH7 XPP YK3 YNT ZMT ~02 ~G- 29Q 3O- 53G AAQXK AATTM AAYJJ AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AJQLL AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HMU HVGLF HZ~ R2- RIG SCB SSH WUQ XOL CGR CUY CVF ECM EIF NPM 7S9 L.6 |
ID | FETCH-LOGICAL-c313t-d42a0302ea8a2806b693f31881dbe2ffa02ee574bd6ea7e9a85682acb3df05543 |
IEDL.DBID | .~1 |
ISSN | 0039-9140 |
IngestDate | Fri Jul 11 06:21:51 EDT 2025 Wed Feb 19 02:04:12 EST 2025 Tue Jul 01 03:44:30 EDT 2025 Sat Nov 16 15:58:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Urea Three-dimensional printing Stimuli-responsive materials Four-dimensional printing Shape programming Enzymatic derivatization |
Language | English |
License | Copyright © 2024 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c313t-d42a0302ea8a2806b693f31881dbe2ffa02ee574bd6ea7e9a85682acb3df05543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1306-9202 |
PMID | 39368332 |
PQID | 3153830497 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153830497 pubmed_primary_39368332 crossref_primary_10_1016_j_talanta_2024_126998 elsevier_sciencedirect_doi_10_1016_j_talanta_2024_126998 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 2025-01-00 2025-Jan-01 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Talanta (Oxford) |
PublicationTitleAlternate | Talanta |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | González-Sálamo, Ortega-Zamora, Carrillo, Hernández-Borges (bib14) 2021; 1636 Wu, Chen, Su (bib46) 2021; 93 Chatterjee, Hui (bib9) 2019; 24 Forterre, Dumais (bib36) 2011; 333 Roy, Cambre, Sumerlin (bib2) 2010; 35 Wang, Liu, Yang, Shi, Li, Xue, Liu, Lei (bib17) 2023; 4 Nam, Pei (bib10) 2019; 4 Ryan, Down, Banks (bib31) 2021; 403 Hu, Zhang, Li, Serpe (bib13) 2019; 6 Zhang, Zhang, Zhou, Tian, Chen, Zhang, Yang (bib56) 2022; 181 Zhao, Zhang, Zhu, Zou, Zhao, Shi, Wang (bib15) 2022; 651 Farid, Wu, Liu, Wang (bib32) 2021; 115 Yin, Yao, Gao, Zhang, Tam, Wai (bib33) 2016; 28 Hussain, Park (bib16) 2023; 377 Liu, Ju, Pu, Wen, Liu, Liu, Wang, Xie, Chu (bib19) 2021; 404 Soni, Surana, Jha (bib59) 2018; 269 Waheed, Cabot, Macdonald, Lewis, Guijt, Paull, Breadmore (bib20) 2016; 16 Ding, Yuan, Peng, Wang, Qi, Dunn (bib37) 2017; 3 Cecchini, Mariani, Ronzan, Mondini, Pugno, Mazzolai (bib39) 2023; 10 Wu, Chen, Yan, Cai, Shi (bib45) 2019; 171 Phonchai, Rattana, Thongprajukaew (bib51) 2020; 319 Wu, Chen, Su (bib34) 2022; 1204 Scarpa, Lemma, Fiammengo, Cipolla, Pisanello, Rizzi, De Vittorio (bib40) 2019; 279 Talat, Singh, Srivastava (bib47) 2011; 34 Momeni, HassaniN, Liu, Ni (bib27) 2017; 122 Lorenzo, Carro, Concheiro, Alvarez-Lorenzo (bib12) 2015; 407 Liu, Mo, Wei, Raftery (bib50) 2012; 137 Kuralay, Özyörük, Yıldız (bib52) 2005; 109 Joshi, Rawat, Rajamohan, Mathew, Koziol, Thakur, Balan (bib29) 2020; 18 Mrinalini, Prasanthkumar (bib5) 2019; 84 Behl, Zhao, Lendlein (bib18) 2020; 35 Lai, Ye, Liu, Wang, Li, Wang, Ma, Wang (bib38) 2021; 205 Wu, Su, Su (bib35) 2023; 237 Francis, Lewis, Lim (bib42) 2002; 21 Singhal, Gambhir, Pandey, Annapoorni, Malhotra (bib60) 2002; 17 Hu, Meng, Li, Ibekwe (bib7) 2012; 21 Balakrishnan, Badar, Doeven, Novak, Merenda, Dumée, Loy, Guijt (bib23) 2021; 93 Quanjin, Rejab, Idris, Kumar, Abdullah, Reddy (bib30) 2020; 167 Vostiar, Tkac, Sturdik, Gemeiner (bib54) 2002; 56 Li, Chen, Wang, Stenzel, Chapman (bib41) 2020; 41 Sorg, Peltz, Klitzman, Dewhirst (bib49) 2005; 52 Choi, Shaban, Moon, Pyun, Kim (bib57) 2021; 1170 Kuang, Roach, Wu, Hamel, Ding, Wang, Dunn, Qi (bib28) 2018; 29 Dixit, Kadimisetty, Rusling (bib22) 2018; 106 Pundir, Jakhar, Narwal (bib44) 2019; 123 Bratek-Skicki (bib6) 2021; 4 Honn, Singley, Chavin (bib48) 1975; 149 Meng, Li (bib3) 2013; 54 Cho, Kang, Lee, Koh (bib11) 2022; 427 Gross, Lockwood, Spence (bib21) 2017; 89 Su (bib26) 2021; 1158 Kovacs, Nagy, Dombi, Toth (bib53) 2003; 18 Mondal, Sangaranarayanan (bib55) 2013; 177 Wei, Gao, Li, Serpe (bib4) 2017; 8 Ma, Le, Tang, He, Xiao, Zheng, Xiao, Lu, Zhang, Huang, Chen (bib8) 2016; 26 Kim, Sung, Park (bib58) 2020; 8 Stuart, Huck, Genzer, Müller, Ober, Stamm, Sukhorukov, Szleifer, Tsukruk, Urban, Winnik, Zauscher, Luzinov, Minko (bib1) 2010; 9 Singh, Verma, Garg, Redhu (bib43) 2008; 134 Carrasco-Correa, Simó-Alfonso, Herrero-Martínez, Miró (bib24) 2021; 136 Nesterenko (bib25) 2020; 92 Dixit (10.1016/j.talanta.2024.126998_bib22) 2018; 106 Hussain (10.1016/j.talanta.2024.126998_bib16) 2023; 377 Joshi (10.1016/j.talanta.2024.126998_bib29) 2020; 18 Ding (10.1016/j.talanta.2024.126998_bib37) 2017; 3 Hu (10.1016/j.talanta.2024.126998_bib13) 2019; 6 Carrasco-Correa (10.1016/j.talanta.2024.126998_bib24) 2021; 136 Talat (10.1016/j.talanta.2024.126998_bib47) 2011; 34 Liu (10.1016/j.talanta.2024.126998_bib50) 2012; 137 Roy (10.1016/j.talanta.2024.126998_bib2) 2010; 35 Phonchai (10.1016/j.talanta.2024.126998_bib51) 2020; 319 Choi (10.1016/j.talanta.2024.126998_bib57) 2021; 1170 Nam (10.1016/j.talanta.2024.126998_bib10) 2019; 4 Francis (10.1016/j.talanta.2024.126998_bib42) 2002; 21 Kim (10.1016/j.talanta.2024.126998_bib58) 2020; 8 Vostiar (10.1016/j.talanta.2024.126998_bib54) 2002; 56 Meng (10.1016/j.talanta.2024.126998_bib3) 2013; 54 Balakrishnan (10.1016/j.talanta.2024.126998_bib23) 2021; 93 Bratek-Skicki (10.1016/j.talanta.2024.126998_bib6) 2021; 4 Yin (10.1016/j.talanta.2024.126998_bib33) 2016; 28 Zhao (10.1016/j.talanta.2024.126998_bib15) 2022; 651 Nesterenko (10.1016/j.talanta.2024.126998_bib25) 2020; 92 Cecchini (10.1016/j.talanta.2024.126998_bib39) 2023; 10 Lai (10.1016/j.talanta.2024.126998_bib38) 2021; 205 Zhang (10.1016/j.talanta.2024.126998_bib56) 2022; 181 Momeni (10.1016/j.talanta.2024.126998_bib27) 2017; 122 Kovacs (10.1016/j.talanta.2024.126998_bib53) 2003; 18 González-Sálamo (10.1016/j.talanta.2024.126998_bib14) 2021; 1636 Su (10.1016/j.talanta.2024.126998_bib26) 2021; 1158 Wu (10.1016/j.talanta.2024.126998_bib34) 2022; 1204 Forterre (10.1016/j.talanta.2024.126998_bib36) 2011; 333 Wu (10.1016/j.talanta.2024.126998_bib35) 2023; 237 Pundir (10.1016/j.talanta.2024.126998_bib44) 2019; 123 Ryan (10.1016/j.talanta.2024.126998_bib31) 2021; 403 Lorenzo (10.1016/j.talanta.2024.126998_bib12) 2015; 407 Wei (10.1016/j.talanta.2024.126998_bib4) 2017; 8 Wu (10.1016/j.talanta.2024.126998_bib45) 2019; 171 Wu (10.1016/j.talanta.2024.126998_bib46) 2021; 93 Soni (10.1016/j.talanta.2024.126998_bib59) 2018; 269 Quanjin (10.1016/j.talanta.2024.126998_bib30) 2020; 167 Honn (10.1016/j.talanta.2024.126998_bib48) 1975; 149 Chatterjee (10.1016/j.talanta.2024.126998_bib9) 2019; 24 Waheed (10.1016/j.talanta.2024.126998_bib20) 2016; 16 Behl (10.1016/j.talanta.2024.126998_bib18) 2020; 35 Mondal (10.1016/j.talanta.2024.126998_bib55) 2013; 177 Hu (10.1016/j.talanta.2024.126998_bib7) 2012; 21 Sorg (10.1016/j.talanta.2024.126998_bib49) 2005; 52 Mrinalini (10.1016/j.talanta.2024.126998_bib5) 2019; 84 Liu (10.1016/j.talanta.2024.126998_bib19) 2021; 404 Kuralay (10.1016/j.talanta.2024.126998_bib52) 2005; 109 Singhal (10.1016/j.talanta.2024.126998_bib60) 2002; 17 Farid (10.1016/j.talanta.2024.126998_bib32) 2021; 115 Li (10.1016/j.talanta.2024.126998_bib41) 2020; 41 Singh (10.1016/j.talanta.2024.126998_bib43) 2008; 134 Stuart (10.1016/j.talanta.2024.126998_bib1) 2010; 9 Cho (10.1016/j.talanta.2024.126998_bib11) 2022; 427 Gross (10.1016/j.talanta.2024.126998_bib21) 2017; 89 Kuang (10.1016/j.talanta.2024.126998_bib28) 2018; 29 Ma (10.1016/j.talanta.2024.126998_bib8) 2016; 26 Wang (10.1016/j.talanta.2024.126998_bib17) 2023; 4 Scarpa (10.1016/j.talanta.2024.126998_bib40) 2019; 279 |
References_xml | – volume: 109 start-page: 194 year: 2005 end-page: 199 ident: bib52 article-title: Potentiometric enzyme electrode for urea determination using immobilized urease in poly (vinylferrocenium) film publication-title: Sens. Actuators B Chem. – volume: 403 year: 2021 ident: bib31 article-title: Future of additive manufacturing: overview of 4D and 3D printed smart and advanced materials and their applications publication-title: Chem. Eng. J. – volume: 52 start-page: 341 year: 2005 end-page: 349 ident: bib49 article-title: Method for improved accuracy in endogenous urea recovery marker calibrations for microdialysis in tumors publication-title: J. Pharmacol. Toxicol. Methods – volume: 3 year: 2017 ident: bib37 article-title: Direct 4D printing publication-title: Sci. Adv. – volume: 56 start-page: 113 year: 2002 end-page: 115 ident: bib54 article-title: Amperometric urea biosensor based on urease and electropolymerized toluidine blue dye as a pH-sensitive redox probe publication-title: Bioelectrochemistry – volume: 136 year: 2021 ident: bib24 article-title: The emerging role of 3D printing in the fabrication of detection systems publication-title: TrAC—Trends Anal. Chem. – volume: 269 start-page: 346 year: 2018 end-page: 353 ident: bib59 article-title: Smartphone based optical biosensor for the detection of urea in saliva publication-title: Sens. Actuators B Chem. – volume: 18 start-page: 111 year: 2003 end-page: 118 ident: bib53 article-title: Optical biosensor for urea with improved response time publication-title: Biosens. Bioelectron. – volume: 1204 year: 2022 ident: bib34 article-title: 4D-Printed pH sensing claw publication-title: Anal. Chim. Acta – volume: 35 start-page: 278 year: 2010 end-page: 301 ident: bib2 article-title: Future perspectives and recent advances in stimuli-responsive materials publication-title: Prog. Polym. Sci. – volume: 1636 year: 2021 ident: bib14 article-title: Application of stimuli-responsive materials for extraction purposes publication-title: J. Chromatogr. A – volume: 427 year: 2022 ident: bib11 article-title: Multi-stimuli responsive and reversible soft actuator engineered by layered fibrous matrix and hydrogel micropatterns publication-title: Chem. Eng. J. – volume: 1170 year: 2021 ident: bib57 article-title: Smartphone-assisted point-of-care colorimetric biosensor for the detection of urea publication-title: Anal. Chim. Acta – volume: 122 start-page: 42 year: 2017 end-page: 79 ident: bib27 article-title: A review of 4D printing publication-title: Mater. Design – volume: 106 start-page: 37 year: 2018 end-page: 52 ident: bib22 article-title: 3D-Printed miniaturized fluidic tools in chemistry and biology publication-title: TrAC—Trends Anal. Chem. – volume: 93 start-page: 11497 year: 2021 end-page: 11505 ident: bib46 article-title: 4D-Printed temperature-controlled flow-actuated solid-phase extraction devices publication-title: Anal. Chem. – volume: 4 start-page: 167 year: 2019 end-page: 184 ident: bib10 article-title: A taxonomy of shape-changing behavior for 4D printed parts using shape-memory polymers publication-title: Prog. Addit. Manuf. – volume: 29 year: 2018 ident: bib28 article-title: Advances in 4D printing: materials and applications publication-title: Adv. Funct. Mater. – volume: 34 start-page: 647 year: 2011 end-page: 657 ident: bib47 article-title: Optimization of process variables by central composite design for the immobilization of urease enzyme on functionalized gold nanoparticles for various applications publication-title: Bioprocess Biosyst. Eng. – volume: 1158 year: 2021 ident: bib26 article-title: Review of 3D-printed functionalized devices for chemical and biochemical analysis publication-title: Anal. Chim. Acta – volume: 123 start-page: 36 year: 2019 end-page: 50 ident: bib44 article-title: Determination of urea with special emphasis on biosensors: a review publication-title: Biosens. Bioelectron. – volume: 137 start-page: 595 year: 2012 end-page: 600 ident: bib50 article-title: Quantitative analysis of urea in human urine and serum by publication-title: Analyst – volume: 8 start-page: 127 year: 2017 end-page: 143 ident: bib4 article-title: Stimuli-responsive polymers and their applications publication-title: Polym. Chem. – volume: 10 year: 2023 ident: bib39 article-title: 4D printing of humidity-driven seed inspired soft robots publication-title: Adv. Sci. – volume: 377 year: 2023 ident: bib16 article-title: pH-responsive circular bilayer biosensor based on the actuation of an interpenetrating polymer network comprising crosslinked nematic liquid crystals and poly(acrylic acid) publication-title: Sens. Actuators B Chem. – volume: 167 start-page: 1210 year: 2020 end-page: 1219 ident: bib30 article-title: Recent 3D and 4D intelligent printing technologies: a comparative review and future perspective publication-title: Procedia Comput. Sci. – volume: 319 year: 2020 ident: bib51 article-title: A portable sol-gel urea colorimetric method for the determination of urea in feedstuffs publication-title: Food Chem. – volume: 17 start-page: 697 year: 2002 end-page: 703 ident: bib60 article-title: Immobilization of urease on poly (N-vinyl carbazole)/stearic acid Langmuir–blodgett films for application to urea biosensor publication-title: Biosens. Bioelectron. – volume: 35 start-page: 2396 year: 2020 end-page: 2404 ident: bib18 article-title: Glucose-responsive shape-memory cryogels publication-title: J. Mater. Res. – volume: 54 start-page: 2199 year: 2013 end-page: 2221 ident: bib3 article-title: Review of stimuli-responsive shape memory polymer composites publication-title: Polymer – volume: 41 year: 2020 ident: bib41 article-title: Polyion complex micelles for protein delivery benefit from flexible hydrophobic spacers in the binding group, macromol publication-title: Rapid Commun – volume: 89 start-page: 57 year: 2017 end-page: 70 ident: bib21 article-title: Recent advances in analytical chemistry by 3D printing publication-title: Anal. Chem. – volume: 407 start-page: 4927 year: 2015 end-page: 4948 ident: bib12 article-title: Stimuli-responsive materials in analytical separation publication-title: Anal. Bioanal. Chem. – volume: 237 year: 2023 ident: bib35 article-title: 4D-Printed needle panel meters coupled with enzymatic derivatization for reading urea and glucose concentrations in biological samples publication-title: Biosens. Bioelectron. – volume: 333 start-page: 1715 year: 2011 end-page: 1716 ident: bib36 article-title: Generating helices in nature publication-title: Science – volume: 134 start-page: 345 year: 2008 end-page: 351 ident: bib43 article-title: Urea biosensors publication-title: Sens. Actuators B: Chem. – volume: 9 start-page: 101 year: 2010 end-page: 113 ident: bib1 article-title: Emerging applications of stimuli-responsive polymer materials publication-title: Nat. Mater. – volume: 24 start-page: 2547 year: 2019 ident: bib9 article-title: Review of stimuli-responsive polymers in drug delivery and textile application publication-title: Molecules – volume: 404 year: 2021 ident: bib19 article-title: Visual detection of trace lead(II) using a forward osmosis-driven device loaded with ion-responsive nanogels publication-title: J. Hazard Mater. – volume: 8 start-page: 596 year: 2020 ident: bib58 article-title: Efficient portable urea biosensor based on urease immobilized membrane for monitoring of physiological fluids publication-title: Biomedicines – volume: 4 start-page: 69 year: 2023 end-page: 77 ident: bib17 article-title: A responsive hydrogel-based microneedle system for minimally invasive glucose monitoring publication-title: Smart Mater. Med. – volume: 92 start-page: 1341 year: 2020 end-page: 1355 ident: bib25 article-title: 3D printing in analytical chemistry: current state and future publication-title: Pure Appl. Chem. – volume: 16 start-page: 1993 year: 2016 end-page: 2013 ident: bib20 article-title: 3D printed microfluidic devices: enablers and barriers publication-title: Lab Chip – volume: 28 start-page: 1394 year: 2016 end-page: 1399 ident: bib33 article-title: Rapid 3D patterning of poly(acrylic acid) ionic hydrogel for miniature pH sensors publication-title: Adv. Mater. – volume: 84 start-page: 1103 year: 2019 end-page: 1121 ident: bib5 article-title: Recent advances on stimuli-responsive smart materials and their applications publication-title: ChemPlusChem – volume: 205 year: 2021 ident: bib38 article-title: 4D printing of highly printable and shape morphing hydrogels composed of alginate and methylcellulose publication-title: Mater. Des. – volume: 651 year: 2022 ident: bib15 article-title: Photothermal responsive hydrogel for adsorbing heavy metal ions in aqueous solution publication-title: Colloids Surf. A: Physicochem. Eng. Asp. – volume: 177 start-page: 478 year: 2013 end-page: 486 ident: bib55 article-title: A novel non-enzymatic sensor for urea using a polypyrrole-coated platinum electrode publication-title: Sens. Actuators B Chem. – volume: 21 year: 2012 ident: bib7 article-title: A review of stimuli-responsive polymers for smart textile applications publication-title: Smart Mater. Struct. – volume: 181 year: 2022 ident: bib56 article-title: Paper-based sensor depending on the prussian blue pH sensitivity: smartphone-assisted detection of urea publication-title: Microchem. J. – volume: 4 year: 2021 ident: bib6 article-title: Towards a new class of stimuli-responsive polymer-based materials: recent advances and challenges publication-title: Appl. Surf. Sci. Adv. – volume: 171 year: 2019 ident: bib45 article-title: Four-dimensional printing of a novel acrylate-based shape memory polymer using digital light processing publication-title: Mater. Des. – volume: 115 start-page: 2973 year: 2021 end-page: 2988 ident: bib32 article-title: Additive manufacturing landscape and materials perspective in 4D printing publication-title: Int. J. Adv. Manuf. Technol. – volume: 149 start-page: 344 year: 1975 end-page: 347 ident: bib48 article-title: Fetal bovine serum: a multivariate standard publication-title: Proc. Soc. Exp. Biol. Med. – volume: 18 year: 2020 ident: bib29 article-title: 4D printing of materials for the future: opportunities and challenges publication-title: Appl. Mater. Today – volume: 279 start-page: 418 year: 2019 end-page: 426 ident: bib40 article-title: Microfabrication of pH-responsive 3D hydrogel structures publication-title: Sens. Actuators B: Chem. – volume: 93 start-page: 350 year: 2021 end-page: 366 ident: bib23 article-title: 3D printing: an alternative microfabrication approach with unprecedented opportunities in design publication-title: Anal. Chem. – volume: 21 start-page: 389 year: 2002 end-page: 400 ident: bib42 article-title: Analytical methodology for the determination of urea: current practice and future trends publication-title: TrAC—Trends Anal. Chem. – volume: 26 start-page: 8670 year: 2016 end-page: 8676 ident: bib8 article-title: A multiresponsive anisotropic hydrogel with macroscopic 3D complex deformations publication-title: Adv. Funct. Mater. – volume: 6 start-page: 1774 year: 2019 end-page: 1793 ident: bib13 article-title: Stimuli-responsive polymers for sensing and actuation publication-title: Mater. Horiz. – volume: 24 start-page: 2547 year: 2019 ident: 10.1016/j.talanta.2024.126998_bib9 article-title: Review of stimuli-responsive polymers in drug delivery and textile application publication-title: Molecules doi: 10.3390/molecules24142547 – volume: 28 start-page: 1394 year: 2016 ident: 10.1016/j.talanta.2024.126998_bib33 article-title: Rapid 3D patterning of poly(acrylic acid) ionic hydrogel for miniature pH sensors publication-title: Adv. Mater. doi: 10.1002/adma.201504021 – volume: 177 start-page: 478 year: 2013 ident: 10.1016/j.talanta.2024.126998_bib55 article-title: A novel non-enzymatic sensor for urea using a polypyrrole-coated platinum electrode publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2012.11.031 – volume: 403 year: 2021 ident: 10.1016/j.talanta.2024.126998_bib31 article-title: Future of additive manufacturing: overview of 4D and 3D printed smart and advanced materials and their applications publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126162 – volume: 21 start-page: 389 year: 2002 ident: 10.1016/j.talanta.2024.126998_bib42 article-title: Analytical methodology for the determination of urea: current practice and future trends publication-title: TrAC—Trends Anal. Chem. doi: 10.1016/S0165-9936(02)00507-1 – volume: 35 start-page: 278 year: 2010 ident: 10.1016/j.talanta.2024.126998_bib2 article-title: Future perspectives and recent advances in stimuli-responsive materials publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2009.10.008 – volume: 333 start-page: 1715 year: 2011 ident: 10.1016/j.talanta.2024.126998_bib36 article-title: Generating helices in nature publication-title: Science doi: 10.1126/science.1210734 – volume: 136 year: 2021 ident: 10.1016/j.talanta.2024.126998_bib24 article-title: The emerging role of 3D printing in the fabrication of detection systems publication-title: TrAC—Trends Anal. Chem. doi: 10.1016/j.trac.2020.116177 – volume: 4 start-page: 69 year: 2023 ident: 10.1016/j.talanta.2024.126998_bib17 article-title: A responsive hydrogel-based microneedle system for minimally invasive glucose monitoring publication-title: Smart Mater. Med. doi: 10.1016/j.smaim.2022.07.006 – volume: 106 start-page: 37 year: 2018 ident: 10.1016/j.talanta.2024.126998_bib22 article-title: 3D-Printed miniaturized fluidic tools in chemistry and biology publication-title: TrAC—Trends Anal. Chem. doi: 10.1016/j.trac.2018.06.013 – volume: 109 start-page: 194 year: 2005 ident: 10.1016/j.talanta.2024.126998_bib52 article-title: Potentiometric enzyme electrode for urea determination using immobilized urease in poly (vinylferrocenium) film publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2004.12.043 – volume: 1170 year: 2021 ident: 10.1016/j.talanta.2024.126998_bib57 article-title: Smartphone-assisted point-of-care colorimetric biosensor for the detection of urea via pH-mediated AgNPs growth publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2021.338630 – volume: 84 start-page: 1103 year: 2019 ident: 10.1016/j.talanta.2024.126998_bib5 article-title: Recent advances on stimuli-responsive smart materials and their applications publication-title: ChemPlusChem doi: 10.1002/cplu.201900365 – volume: 18 start-page: 111 year: 2003 ident: 10.1016/j.talanta.2024.126998_bib53 article-title: Optical biosensor for urea with improved response time publication-title: Biosens. Bioelectron. doi: 10.1016/S0956-5663(02)00164-1 – volume: 16 start-page: 1993 year: 2016 ident: 10.1016/j.talanta.2024.126998_bib20 article-title: 3D printed microfluidic devices: enablers and barriers publication-title: Lab Chip doi: 10.1039/C6LC00284F – volume: 171 year: 2019 ident: 10.1016/j.talanta.2024.126998_bib45 article-title: Four-dimensional printing of a novel acrylate-based shape memory polymer using digital light processing publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.107704 – volume: 377 year: 2023 ident: 10.1016/j.talanta.2024.126998_bib16 article-title: pH-responsive circular bilayer biosensor based on the actuation of an interpenetrating polymer network comprising crosslinked nematic liquid crystals and poly(acrylic acid) publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2022.133096 – volume: 427 year: 2022 ident: 10.1016/j.talanta.2024.126998_bib11 article-title: Multi-stimuli responsive and reversible soft actuator engineered by layered fibrous matrix and hydrogel micropatterns publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130879 – volume: 17 start-page: 697 year: 2002 ident: 10.1016/j.talanta.2024.126998_bib60 article-title: Immobilization of urease on poly (N-vinyl carbazole)/stearic acid Langmuir–blodgett films for application to urea biosensor publication-title: Biosens. Bioelectron. doi: 10.1016/S0956-5663(02)00020-9 – volume: 21 year: 2012 ident: 10.1016/j.talanta.2024.126998_bib7 article-title: A review of stimuli-responsive polymers for smart textile applications publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/21/5/053001 – volume: 9 start-page: 101 year: 2010 ident: 10.1016/j.talanta.2024.126998_bib1 article-title: Emerging applications of stimuli-responsive polymer materials publication-title: Nat. Mater. doi: 10.1038/nmat2614 – volume: 404 year: 2021 ident: 10.1016/j.talanta.2024.126998_bib19 article-title: Visual detection of trace lead(II) using a forward osmosis-driven device loaded with ion-responsive nanogels publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2020.124157 – volume: 10 year: 2023 ident: 10.1016/j.talanta.2024.126998_bib39 article-title: 4D printing of humidity-driven seed inspired soft robots publication-title: Adv. Sci. – volume: 1158 year: 2021 ident: 10.1016/j.talanta.2024.126998_bib26 article-title: Review of 3D-printed functionalized devices for chemical and biochemical analysis publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2021.338348 – volume: 34 start-page: 647 year: 2011 ident: 10.1016/j.talanta.2024.126998_bib47 article-title: Optimization of process variables by central composite design for the immobilization of urease enzyme on functionalized gold nanoparticles for various applications publication-title: Bioprocess Biosyst. Eng. doi: 10.1007/s00449-011-0514-2 – volume: 137 start-page: 595 year: 2012 ident: 10.1016/j.talanta.2024.126998_bib50 article-title: Quantitative analysis of urea in human urine and serum by 1H nuclear magnetic resonance publication-title: Analyst doi: 10.1039/C2AN15780B – volume: 4 start-page: 167 year: 2019 ident: 10.1016/j.talanta.2024.126998_bib10 article-title: A taxonomy of shape-changing behavior for 4D printed parts using shape-memory polymers publication-title: Prog. Addit. Manuf. doi: 10.1007/s40964-019-00079-5 – volume: 8 start-page: 127 year: 2017 ident: 10.1016/j.talanta.2024.126998_bib4 article-title: Stimuli-responsive polymers and their applications publication-title: Polym. Chem. doi: 10.1039/C6PY01585A – volume: 3 year: 2017 ident: 10.1016/j.talanta.2024.126998_bib37 article-title: Direct 4D printing via active composite materials publication-title: Sci. Adv. doi: 10.1126/sciadv.1602890 – volume: 4 year: 2021 ident: 10.1016/j.talanta.2024.126998_bib6 article-title: Towards a new class of stimuli-responsive polymer-based materials: recent advances and challenges publication-title: Appl. Surf. Sci. Adv. doi: 10.1016/j.apsadv.2021.100068 – volume: 18 year: 2020 ident: 10.1016/j.talanta.2024.126998_bib29 article-title: 4D printing of materials for the future: opportunities and challenges publication-title: Appl. Mater. Today – volume: 89 start-page: 57 year: 2017 ident: 10.1016/j.talanta.2024.126998_bib21 article-title: Recent advances in analytical chemistry by 3D printing publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b04344 – volume: 93 start-page: 350 year: 2021 ident: 10.1016/j.talanta.2024.126998_bib23 article-title: 3D printing: an alternative microfabrication approach with unprecedented opportunities in design publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c04672 – volume: 92 start-page: 1341 year: 2020 ident: 10.1016/j.talanta.2024.126998_bib25 article-title: 3D printing in analytical chemistry: current state and future publication-title: Pure Appl. Chem. doi: 10.1515/pac-2020-0206 – volume: 29 year: 2018 ident: 10.1016/j.talanta.2024.126998_bib28 article-title: Advances in 4D printing: materials and applications publication-title: Adv. Funct. Mater. – volume: 26 start-page: 8670 year: 2016 ident: 10.1016/j.talanta.2024.126998_bib8 article-title: A multiresponsive anisotropic hydrogel with macroscopic 3D complex deformations publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201603448 – volume: 181 year: 2022 ident: 10.1016/j.talanta.2024.126998_bib56 article-title: Paper-based sensor depending on the prussian blue pH sensitivity: smartphone-assisted detection of urea publication-title: Microchem. J. doi: 10.1016/j.microc.2022.107783 – volume: 1636 year: 2021 ident: 10.1016/j.talanta.2024.126998_bib14 article-title: Application of stimuli-responsive materials for extraction purposes publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2020.461764 – volume: 237 year: 2023 ident: 10.1016/j.talanta.2024.126998_bib35 article-title: 4D-Printed needle panel meters coupled with enzymatic derivatization for reading urea and glucose concentrations in biological samples publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2023.115500 – volume: 167 start-page: 1210 year: 2020 ident: 10.1016/j.talanta.2024.126998_bib30 article-title: Recent 3D and 4D intelligent printing technologies: a comparative review and future perspective publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.03.434 – volume: 651 year: 2022 ident: 10.1016/j.talanta.2024.126998_bib15 article-title: Photothermal responsive hydrogel for adsorbing heavy metal ions in aqueous solution publication-title: Colloids Surf. A: Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2022.129425 – volume: 35 start-page: 2396 year: 2020 ident: 10.1016/j.talanta.2024.126998_bib18 article-title: Glucose-responsive shape-memory cryogels publication-title: J. Mater. Res. doi: 10.1557/jmr.2020.204 – volume: 407 start-page: 4927 year: 2015 ident: 10.1016/j.talanta.2024.126998_bib12 article-title: Stimuli-responsive materials in analytical separation publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-015-8679-1 – volume: 205 year: 2021 ident: 10.1016/j.talanta.2024.126998_bib38 article-title: 4D printing of highly printable and shape morphing hydrogels composed of alginate and methylcellulose publication-title: Mater. Des. doi: 10.1016/j.matdes.2021.109699 – volume: 93 start-page: 11497 year: 2021 ident: 10.1016/j.talanta.2024.126998_bib46 article-title: 4D-Printed temperature-controlled flow-actuated solid-phase extraction devices publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c01703 – volume: 56 start-page: 113 year: 2002 ident: 10.1016/j.talanta.2024.126998_bib54 article-title: Amperometric urea biosensor based on urease and electropolymerized toluidine blue dye as a pH-sensitive redox probe publication-title: Bioelectrochemistry doi: 10.1016/S1567-5394(02)00042-7 – volume: 8 start-page: 596 year: 2020 ident: 10.1016/j.talanta.2024.126998_bib58 article-title: Efficient portable urea biosensor based on urease immobilized membrane for monitoring of physiological fluids publication-title: Biomedicines doi: 10.3390/biomedicines8120596 – volume: 149 start-page: 344 year: 1975 ident: 10.1016/j.talanta.2024.126998_bib48 article-title: Fetal bovine serum: a multivariate standard publication-title: Proc. Soc. Exp. Biol. Med. doi: 10.3181/00379727-149-38804 – volume: 41 year: 2020 ident: 10.1016/j.talanta.2024.126998_bib41 article-title: Polyion complex micelles for protein delivery benefit from flexible hydrophobic spacers in the binding group, macromol publication-title: Rapid Commun doi: 10.1002/marc.202000208 – volume: 279 start-page: 418 year: 2019 ident: 10.1016/j.talanta.2024.126998_bib40 article-title: Microfabrication of pH-responsive 3D hydrogel structures via two-photon polymerization of high-molecular-weight poly(ethylene glycol) diacrylates publication-title: Sens. Actuators B: Chem. doi: 10.1016/j.snb.2018.09.079 – volume: 1204 year: 2022 ident: 10.1016/j.talanta.2024.126998_bib34 article-title: 4D-Printed pH sensing claw publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2022.339733 – volume: 123 start-page: 36 year: 2019 ident: 10.1016/j.talanta.2024.126998_bib44 article-title: Determination of urea with special emphasis on biosensors: a review publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.09.067 – volume: 54 start-page: 2199 year: 2013 ident: 10.1016/j.talanta.2024.126998_bib3 article-title: Review of stimuli-responsive shape memory polymer composites publication-title: Polymer doi: 10.1016/j.polymer.2013.02.023 – volume: 6 start-page: 1774 year: 2019 ident: 10.1016/j.talanta.2024.126998_bib13 article-title: Stimuli-responsive polymers for sensing and actuation publication-title: Mater. Horiz. doi: 10.1039/C9MH00490D – volume: 115 start-page: 2973 year: 2021 ident: 10.1016/j.talanta.2024.126998_bib32 article-title: Additive manufacturing landscape and materials perspective in 4D printing publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-021-07233-w – volume: 319 year: 2020 ident: 10.1016/j.talanta.2024.126998_bib51 article-title: A portable sol-gel urea colorimetric method for the determination of urea in feedstuffs publication-title: Food Chem. doi: 10.1016/j.foodchem.2020.126545 – volume: 122 start-page: 42 year: 2017 ident: 10.1016/j.talanta.2024.126998_bib27 article-title: A review of 4D printing publication-title: Mater. Design doi: 10.1016/j.matdes.2017.02.068 – volume: 134 start-page: 345 year: 2008 ident: 10.1016/j.talanta.2024.126998_bib43 article-title: Urea biosensors publication-title: Sens. Actuators B: Chem. doi: 10.1016/j.snb.2008.04.025 – volume: 269 start-page: 346 year: 2018 ident: 10.1016/j.talanta.2024.126998_bib59 article-title: Smartphone based optical biosensor for the detection of urea in saliva publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.04.108 – volume: 52 start-page: 341 year: 2005 ident: 10.1016/j.talanta.2024.126998_bib49 article-title: Method for improved accuracy in endogenous urea recovery marker calibrations for microdialysis in tumors publication-title: J. Pharmacol. Toxicol. Methods doi: 10.1016/j.vascn.2005.05.004 |
SSID | ssj0002303 |
Score | 2.45701 |
Snippet | Four-dimensional printing (4DP) technologies are revolutionizing the fabrication, functionality, and applicability of stimuli-responsive analytical devices.... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 126998 |
SubjectTerms | analytical methods Animals derivatization detection limit electrostatic interactions Enzymatic derivatization fetal bovine serum Four-dimensional printing geometry Humans Hydrogen-Ion Concentration hydrolysis Limit of Detection Needles Printing, Three-Dimensional Rats Shape programming Stimuli-responsive materials sweat Three-dimensional printing Urea Urea - analysis Urea - blood Urea - chemistry Urea - urine urine |
Title | 4D-printed shape-programmable [H+]-responsive needles for determination of urea |
URI | https://dx.doi.org/10.1016/j.talanta.2024.126998 https://www.ncbi.nlm.nih.gov/pubmed/39368332 https://www.proquest.com/docview/3153830497 |
Volume | 282 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB72Ib9cXEbxJ9pGkr6OsyqqoFwVBJCTNFFe0u7irR3-7M22qeBDBa9vQMJPMfEm-b8LYgfeRkzr2wjkohI5cIlwXEhGDz2WekfiaxMmXV_HgVp_fRXczrN9oYYhWGWJ_HdOraB2edII1O-PhkDS-mFxxfSB1VTaPBL9aJzTK2x_fNA-E2KHwbibo628VT-eJigxi_6n8kNTtnoxx7fFbfvoNf1Z56HSJLQYAyY_qPi6zGShX2Hy_ubdtlV3rY0G7dQgl-eTRjkEEDtYLqaT4_eDwQbwGZuw78BLT1zNMOIJX7htuDHmLjwpOlPU1dnt6ctMfiHBtgshVT02F19Li1JVgU0vnpi7OVIFTF5GpA1kUFl9BlGjnY7AJZDaN4lTa3ClfdBFdqHU2W45K2GQ8cz1vdY5rMlA66RZZodDnEDmd9VyioMXajbHMuK6OYRra2JMJ1jVkXVNbt8XSxqTmh5sNRvC_mu43LjBoUTrXsCWM3iZGUdSm48KkxTZq33z1RmUqTpWSW___8TZbkHTpb7XvssNmp69vsItIZOr2qqG2x-aOzi4GV58yVN5N |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RONBLRWmBLW1xJW7I-7Cd1xFtQUvL4wISUlVZdjwRIMiu2KXH_nZmEgfUA0LqNQ8l-Sae-Wx_MwOwG0LilUmD9B4raRKfST_ETKYYSlUWnHzNycknp-nkwvy4TC6XYNzlwrCsMvr-1qc33joeGUQ0B7Pra87xpeBK8wNlmrJ5-RtYMTR8uY1B_--zzoM4dqy8W0i-_DmNZ3DDVQbpA7j-kDL9kUpp8vFSgHqJgDaB6HAN3kUGKfbbl3wPS1ivw-q4a9z2Ac7Md8nLdcQlxfzKzVBGEdYdp0mJX5O93_I-SmP_oKgpft3iXBB7FaETx7C5xLQSrFn_CBeHB-fjiYx9E2SpR3ohg1GOxq5ClzveOPVpoSsau0RNPaqqcnQKk8z4kKLLsHB5kubKlV6Hakj0Qm_Acj2tcQtE4UfBmZImZahNNqyKSpPRMfGmGPlMYw_6HVh21pbHsJ1u7MZGdC2ja1t0e5B3kNp_7GzJhb9267fOBJYQ5Y0NV-P0YW41u23eL8x6sNna5ultdKHTXGv16f8fvAOrk_OTY3t8dPpzG94q7gDcLMJ8huXF_QN-IVqy8F-b3-4RYrTf2w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=4D-printed+shape-programmable+%5BH%2B%5D-responsive+needles+for+determination+of+urea&rft.jtitle=Talanta+%28Oxford%29&rft.au=Su%2C+Yi-Ting&rft.au=Chiu%2C+Hsiao-Chu&rft.au=Su%2C+Cheng-Kuan&rft.date=2025-01-01&rft.pub=Elsevier+B.V&rft.issn=0039-9140&rft.volume=282&rft_id=info:doi/10.1016%2Fj.talanta.2024.126998&rft.externalDocID=S0039914024013778 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-9140&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-9140&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-9140&client=summon |