Deep Convolutional Neural Networks on Automatic Classification for Skin Tumour Images

Abstract The skin, uniquely positioned at the interface between the human body and the external world, plays a multifaceted immunologic role in human life. In medical practice, early accurate detection of all types of skin tumours is essential to guide appropriate management and improve patients’ su...

Full description

Saved in:
Bibliographic Details
Published inLogic journal of the IGPL Vol. 30; no. 4; pp. 649 - 663
Main Authors Simić, Svetlana, Simić, Svetislav D, Banković, Zorana, Ivkov-Simić, Milana, Villar, José R, Simić, Dragan
Format Journal Article
LanguageEnglish
Published Oxford University Press 25.07.2022
Subjects
Online AccessGet full text
ISSN1367-0751
1368-9894
DOI10.1093/jigpal/jzab009

Cover

Abstract Abstract The skin, uniquely positioned at the interface between the human body and the external world, plays a multifaceted immunologic role in human life. In medical practice, early accurate detection of all types of skin tumours is essential to guide appropriate management and improve patients’ survival. The most important issue is to differentiate between malignant skin tumours and benign lesions. The aim of this research is the classification of skin tumours by analysing medical skin tumour dermoscopy images. This paper is focused on a new strategy based on deep convolutional neural networks which have recently shown a state-of-the-art performance to define strategy to automatic classification for skin tumour images. The proposed system is tested on well-known HAM10000 data set. For experimental results, verification is performed and the results are compared with similar researches.
AbstractList Abstract The skin, uniquely positioned at the interface between the human body and the external world, plays a multifaceted immunologic role in human life. In medical practice, early accurate detection of all types of skin tumours is essential to guide appropriate management and improve patients’ survival. The most important issue is to differentiate between malignant skin tumours and benign lesions. The aim of this research is the classification of skin tumours by analysing medical skin tumour dermoscopy images. This paper is focused on a new strategy based on deep convolutional neural networks which have recently shown a state-of-the-art performance to define strategy to automatic classification for skin tumour images. The proposed system is tested on well-known HAM10000 data set. For experimental results, verification is performed and the results are compared with similar researches.
Author Simić, Svetlana
Simić, Svetislav D
Banković, Zorana
Villar, José R
Simić, Dragan
Ivkov-Simić, Milana
Author_xml – sequence: 1
  givenname: Svetlana
  surname: Simić
  fullname: Simić, Svetlana
  email: svetlana.simic@mf.uns.ac.rs
– sequence: 2
  givenname: Svetislav D
  surname: Simić
  fullname: Simić, Svetislav D
  email: simicsvetislav@uns.ac.rs
– sequence: 3
  givenname: Zorana
  surname: Banković
  fullname: Banković, Zorana
  email: zbankovic@gmail.com
– sequence: 4
  givenname: Milana
  surname: Ivkov-Simić
  fullname: Ivkov-Simić, Milana
  email: milana.ivkov-simic@mf.uns.ac.rs
– sequence: 5
  givenname: José R
  surname: Villar
  fullname: Villar, José R
  email: villarjose@uniovi.es
– sequence: 6
  givenname: Dragan
  surname: Simić
  fullname: Simić, Dragan
  email: dsimic@eunet.rs
BookMark eNotkDtvwyAYRVGVSk3Srp1ZO7j5CNiGMXJfkaJ2aDJbgCHCsY1lTKv210d5TOcOV2c4MzTpfGcQeiTwTEDQRe32vWwW9b9UAOIGTQnNeCK4YJPzzhPIU3KHZiHUAMD4Mp2i3YsxPS589-ObODrfyQZ_mjicMf764RCw7_Aqjr6Vo9O4aGQIzjotT29s_YC_D67D29j6OOB1K_cm3KNbK5tgHq6co93b67b4SDZf7-titUk0JXRMtKEgMloRIS2vQDGaZgSyXGsJlqVasSpLgXNQNqfa5EYAUG2FWmqmRK7pHD1dvD72ZT-4Vg5_JYHy1KO89CivPegRZJVY9A
CitedBy_id crossref_primary_10_1002_qute_202400700
crossref_primary_10_1109_TMI_2023_3317088
crossref_primary_10_1007_s11128_023_04217_5
crossref_primary_10_32628_CSEIT251112401
crossref_primary_10_3390_informatics9040099
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press. 2021
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press. 2021
DBID TOX
DOI 10.1093/jigpal/jzab009
DatabaseName Oxford Journals Open Access Collection
DatabaseTitleList
Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Languages & Literatures
Mathematics
Philosophy
EISSN 1368-9894
EndPage 663
ExternalDocumentID 10.1093/jigpal/jzab009
GroupedDBID .2P
.4S
.DC
.I3
0R~
1TH
29L
4.4
482
48X
5GY
5VS
5WA
70D
8VB
AAIJN
AAJKP
AAJQQ
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWDT
ABAZT
ABDFA
ABDTM
ABEJV
ABEUO
ABGNP
ABIME
ABIXL
ABJNI
ABNGD
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABVGC
ABWST
ABXVV
ABZBJ
ACFRR
ACGFO
ACGFS
ACUFI
ACUKT
ACUTJ
ACUXJ
ACYTK
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AGINJ
AGKEF
AGQXC
AGSYK
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AJNCP
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
ANAKG
ANFBD
APIBT
APWMN
AQDSO
ARCSS
ATGXG
ATTQO
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DILTD
DU5
D~K
EBS
EBU
EDO
EE~
EJD
ELUNK
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
JAVBF
JXSIZ
K1G
KAQDR
KBUDW
KOP
KSI
KSN
M-Z
N9A
NGC
NMDNZ
NOMLY
NVLIB
O0~
O9-
OCL
ODMLO
OJQWA
OJZSN
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QWB
R44
RD5
RNI
ROL
ROX
RUSNO
RW1
RXO
RZF
RZO
TCN
TH9
TJP
TOX
TUS
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
ID FETCH-LOGICAL-c313t-ce30963d19af8d0b43561067cca0f45cb4d650880bf73ce7e9003cf9b2c4b97c3
IEDL.DBID TOX
ISSN 1367-0751
IngestDate Wed Apr 02 07:00:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords automatic classification
dermoscopy images
deep learning
convolutional neural networks
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-ce30963d19af8d0b43561067cca0f45cb4d650880bf73ce7e9003cf9b2c4b97c3
OpenAccessLink https://dx.doi.org/10.1093/jigpal/jzab009
PageCount 15
ParticipantIDs oup_primary_10_1093_jigpal_jzab009
PublicationCentury 2000
PublicationDate 2022-07-25
PublicationDateYYYYMMDD 2022-07-25
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-25
  day: 25
PublicationDecade 2020
PublicationTitle Logic journal of the IGPL
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
SSID ssj0004825
Score 2.2898026
Snippet Abstract The skin, uniquely positioned at the interface between the human body and the external world, plays a multifaceted immunologic role in human life. In...
SourceID oup
SourceType Publisher
StartPage 649
Title Deep Convolutional Neural Networks on Automatic Classification for Skin Tumour Images
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA6yp_kgOu83gohvYW2TJuvjmI4pm_qwwd5KruLQtqydoL_eJK1TxAefQiAJ4ZyE8-Vyvg-AS6XiADODkQoNQ4RpbreUoEhHhkSBibnxynOTezqakbt5PG_Ioss_nvAT3F08PxX8pbv44KJO1bMR2K3o6cP8OwOy5-VVHf8YskEwXNMz_u5e57H9CCHDbbDVYD_Yr521AzZ01gEH4-bGsIRXcLwmOS47YHOyplS1tfbjl-jA-y6YXWtdwEGevTUrxw7raDZ84f91lzDPYH9V5b4_9NqX7leQdwS0SBU62S04Xdmj_xLevroJ7IHZ8GY6GKFGIAFJHOIKSY3tCQSrMOGmpwJhoQ91lHDWK4EhsRREeQAWCMOw1Ey7a0tpEhFJIhIm8T5oZXmmDwHEkaSMxqGWiSHaxIKr0KIzJkIeCEnpEbiwdkuLmgIjrZ-ucVobN22Me_yfRiegHbkUgsAxRJyCVrVc6TMb2Ctx7n36CUD3o4w
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Convolutional+Neural+Networks+on+Automatic+Classification+for+Skin+Tumour+Images&rft.jtitle=Logic+journal+of+the+IGPL&rft.au=Simi%C4%87%2C+Svetlana&rft.au=Simi%C4%87%2C+Svetislav+D&rft.au=Bankovi%C4%87%2C+Zorana&rft.au=Ivkov-Simi%C4%87%2C+Milana&rft.date=2022-07-25&rft.pub=Oxford+University+Press&rft.issn=1367-0751&rft.eissn=1368-9894&rft.volume=30&rft.issue=4&rft.spage=649&rft.epage=663&rft_id=info:doi/10.1093%2Fjigpal%2Fjzab009&rft.externalDocID=10.1093%2Fjigpal%2Fjzab009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-0751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-0751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-0751&client=summon