Deep Convolutional Neural Networks on Automatic Classification for Skin Tumour Images
Abstract The skin, uniquely positioned at the interface between the human body and the external world, plays a multifaceted immunologic role in human life. In medical practice, early accurate detection of all types of skin tumours is essential to guide appropriate management and improve patients’ su...
Saved in:
Published in | Logic journal of the IGPL Vol. 30; no. 4; pp. 649 - 663 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
25.07.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1367-0751 1368-9894 |
DOI | 10.1093/jigpal/jzab009 |
Cover
Abstract | Abstract
The skin, uniquely positioned at the interface between the human body and the external world, plays a multifaceted immunologic role in human life. In medical practice, early accurate detection of all types of skin tumours is essential to guide appropriate management and improve patients’ survival. The most important issue is to differentiate between malignant skin tumours and benign lesions. The aim of this research is the classification of skin tumours by analysing medical skin tumour dermoscopy images. This paper is focused on a new strategy based on deep convolutional neural networks which have recently shown a state-of-the-art performance to define strategy to automatic classification for skin tumour images. The proposed system is tested on well-known HAM10000 data set. For experimental results, verification is performed and the results are compared with similar researches. |
---|---|
AbstractList | Abstract
The skin, uniquely positioned at the interface between the human body and the external world, plays a multifaceted immunologic role in human life. In medical practice, early accurate detection of all types of skin tumours is essential to guide appropriate management and improve patients’ survival. The most important issue is to differentiate between malignant skin tumours and benign lesions. The aim of this research is the classification of skin tumours by analysing medical skin tumour dermoscopy images. This paper is focused on a new strategy based on deep convolutional neural networks which have recently shown a state-of-the-art performance to define strategy to automatic classification for skin tumour images. The proposed system is tested on well-known HAM10000 data set. For experimental results, verification is performed and the results are compared with similar researches. |
Author | Simić, Svetlana Simić, Svetislav D Banković, Zorana Villar, José R Simić, Dragan Ivkov-Simić, Milana |
Author_xml | – sequence: 1 givenname: Svetlana surname: Simić fullname: Simić, Svetlana email: svetlana.simic@mf.uns.ac.rs – sequence: 2 givenname: Svetislav D surname: Simić fullname: Simić, Svetislav D email: simicsvetislav@uns.ac.rs – sequence: 3 givenname: Zorana surname: Banković fullname: Banković, Zorana email: zbankovic@gmail.com – sequence: 4 givenname: Milana surname: Ivkov-Simić fullname: Ivkov-Simić, Milana email: milana.ivkov-simic@mf.uns.ac.rs – sequence: 5 givenname: José R surname: Villar fullname: Villar, José R email: villarjose@uniovi.es – sequence: 6 givenname: Dragan surname: Simić fullname: Simić, Dragan email: dsimic@eunet.rs |
BookMark | eNotkDtvwyAYRVGVSk3Srp1ZO7j5CNiGMXJfkaJ2aDJbgCHCsY1lTKv210d5TOcOV2c4MzTpfGcQeiTwTEDQRe32vWwW9b9UAOIGTQnNeCK4YJPzzhPIU3KHZiHUAMD4Mp2i3YsxPS589-ObODrfyQZ_mjicMf764RCw7_Aqjr6Vo9O4aGQIzjotT29s_YC_D67D29j6OOB1K_cm3KNbK5tgHq6co93b67b4SDZf7-titUk0JXRMtKEgMloRIS2vQDGaZgSyXGsJlqVasSpLgXNQNqfa5EYAUG2FWmqmRK7pHD1dvD72ZT-4Vg5_JYHy1KO89CivPegRZJVY9A |
CitedBy_id | crossref_primary_10_1002_qute_202400700 crossref_primary_10_1109_TMI_2023_3317088 crossref_primary_10_1007_s11128_023_04217_5 crossref_primary_10_32628_CSEIT251112401 crossref_primary_10_3390_informatics9040099 |
ContentType | Journal Article |
Copyright | The Author(s) 2021. Published by Oxford University Press. 2021 |
Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press. 2021 |
DBID | TOX |
DOI | 10.1093/jigpal/jzab009 |
DatabaseName | Oxford Journals Open Access Collection |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Languages & Literatures Mathematics Philosophy |
EISSN | 1368-9894 |
EndPage | 663 |
ExternalDocumentID | 10.1093/jigpal/jzab009 |
GroupedDBID | .2P .4S .DC .I3 0R~ 1TH 29L 4.4 482 48X 5GY 5VS 5WA 70D 8VB AAIJN AAJKP AAJQQ AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAWDT ABAZT ABDFA ABDTM ABEJV ABEUO ABGNP ABIME ABIXL ABJNI ABNGD ABNKS ABPQP ABPTD ABQLI ABQTQ ABVGC ABWST ABXVV ABZBJ ACFRR ACGFO ACGFS ACUFI ACUKT ACUTJ ACUXJ ACYTK ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRDM ADRTK ADVEK ADYVW ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AGINJ AGKEF AGQXC AGSYK AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AJNCP AKVCP ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX ANAKG ANFBD APIBT APWMN AQDSO ARCSS ATGXG ATTQO AXUDD AZFZN AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN CAG CDBKE COF CS3 CZ4 DAKXR DILTD DU5 D~K EBS EBU EDO EE~ EJD ELUNK F9B FEDTE FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC H13 H5~ HAR HVGLF HW0 HZ~ IOX JAVBF JXSIZ K1G KAQDR KBUDW KOP KSI KSN M-Z N9A NGC NMDNZ NOMLY NVLIB O0~ O9- OCL ODMLO OJQWA OJZSN OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QWB R44 RD5 RNI ROL ROX RUSNO RW1 RXO RZF RZO TCN TH9 TJP TOX TUS X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 |
ID | FETCH-LOGICAL-c313t-ce30963d19af8d0b43561067cca0f45cb4d650880bf73ce7e9003cf9b2c4b97c3 |
IEDL.DBID | TOX |
ISSN | 1367-0751 |
IngestDate | Wed Apr 02 07:00:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | automatic classification dermoscopy images deep learning convolutional neural networks |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c313t-ce30963d19af8d0b43561067cca0f45cb4d650880bf73ce7e9003cf9b2c4b97c3 |
OpenAccessLink | https://dx.doi.org/10.1093/jigpal/jzab009 |
PageCount | 15 |
ParticipantIDs | oup_primary_10_1093_jigpal_jzab009 |
PublicationCentury | 2000 |
PublicationDate | 2022-07-25 |
PublicationDateYYYYMMDD | 2022-07-25 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-25 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | Logic journal of the IGPL |
PublicationYear | 2022 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
SSID | ssj0004825 |
Score | 2.2898026 |
Snippet | Abstract
The skin, uniquely positioned at the interface between the human body and the external world, plays a multifaceted immunologic role in human life. In... |
SourceID | oup |
SourceType | Publisher |
StartPage | 649 |
Title | Deep Convolutional Neural Networks on Automatic Classification for Skin Tumour Images |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA6yp_kgOu83gohvYW2TJuvjmI4pm_qwwd5KruLQtqydoL_eJK1TxAefQiAJ4ZyE8-Vyvg-AS6XiADODkQoNQ4RpbreUoEhHhkSBibnxynOTezqakbt5PG_Ioss_nvAT3F08PxX8pbv44KJO1bMR2K3o6cP8OwOy5-VVHf8YskEwXNMz_u5e57H9CCHDbbDVYD_Yr521AzZ01gEH4-bGsIRXcLwmOS47YHOyplS1tfbjl-jA-y6YXWtdwEGevTUrxw7raDZ84f91lzDPYH9V5b4_9NqX7leQdwS0SBU62S04Xdmj_xLevroJ7IHZ8GY6GKFGIAFJHOIKSY3tCQSrMOGmpwJhoQ91lHDWK4EhsRREeQAWCMOw1Ey7a0tpEhFJIhIm8T5oZXmmDwHEkaSMxqGWiSHaxIKr0KIzJkIeCEnpEbiwdkuLmgIjrZ-ucVobN22Me_yfRiegHbkUgsAxRJyCVrVc6TMb2Ctx7n36CUD3o4w |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Convolutional+Neural+Networks+on+Automatic+Classification+for+Skin+Tumour+Images&rft.jtitle=Logic+journal+of+the+IGPL&rft.au=Simi%C4%87%2C+Svetlana&rft.au=Simi%C4%87%2C+Svetislav+D&rft.au=Bankovi%C4%87%2C+Zorana&rft.au=Ivkov-Simi%C4%87%2C+Milana&rft.date=2022-07-25&rft.pub=Oxford+University+Press&rft.issn=1367-0751&rft.eissn=1368-9894&rft.volume=30&rft.issue=4&rft.spage=649&rft.epage=663&rft_id=info:doi/10.1093%2Fjigpal%2Fjzab009&rft.externalDocID=10.1093%2Fjigpal%2Fjzab009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-0751&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-0751&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-0751&client=summon |