Task Offloading and Resource Allocation in IoT Based Mobile Edge Computing Using Deep Learning
Recently, computation offloading has become an effective method for overcoming the constraint of a mobile device (MD) using computation-intensive mobile and offloading delay-sensitive application tasks to the remote cloud-based data center. Smart city benefitted from offloading to edge point. Consid...
Saved in:
Published in | Computers, materials & continua Vol. 76; no. 2; pp. 1463 - 1477 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Henderson
Tech Science Press
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1546-2226 1546-2218 1546-2226 |
DOI | 10.32604/cmc.2023.038417 |
Cover
Loading…
Abstract | Recently, computation offloading has become an effective method for overcoming the constraint of a mobile device (MD) using computation-intensive mobile and offloading delay-sensitive application tasks to the remote cloud-based data center. Smart city benefitted from offloading to edge point. Consider a mobile edge computing (MEC) network in multiple regions. They comprise N MDs and many access points, in which every MD has M independent real-time tasks. This study designs a new Task Offloading and Resource Allocation in IoT-based MEC using Deep Learning with Seagull Optimization (TORA-DLSGO) algorithm. The proposed TORA-DLSGO technique addresses the resource management issue in the MEC server, which enables an optimum offloading decision to minimize the system cost. In addition, an objective function is derived based on minimizing energy consumption subject to the latency requirements and restricted resources. The TORA-DLSGO technique uses the deep belief network (DBN) model for optimum offloading decision-making. Finally, the SGO algorithm is used for the parameter tuning of the DBN model. The simulation results exemplify that the TORA-DLSGO technique outperformed the existing model in reducing client overhead in the MEC systems with a maximum reward of 0.8967. |
---|---|
AbstractList | Recently, computation offloading has become an effective method for overcoming the constraint of a mobile device (MD) using computation-intensive mobile and offloading delay-sensitive application tasks to the remote cloud-based data center. Smart city benefitted from offloading to edge point. Consider a mobile edge computing (MEC) network in multiple regions. They comprise N MDs and many access points, in which every MD has M independent real-time tasks. This study designs a new Task Offloading and Resource Allocation in IoT-based MEC using Deep Learning with Seagull Optimization (TORA-DLSGO) algorithm. The proposed TORA-DLSGO technique addresses the resource management issue in the MEC server, which enables an optimum offloading decision to minimize the system cost. In addition, an objective function is derived based on minimizing energy consumption subject to the latency requirements and restricted resources. The TORA-DLSGO technique uses the deep belief network (DBN) model for optimum offloading decision-making. Finally, the SGO algorithm is used for the parameter tuning of the DBN model. The simulation results exemplify that the TORA-DLSGO technique outperformed the existing model in reducing client overhead in the MEC systems with a maximum reward of 0.8967. |
Author | Kadry, Seifedine Abdullaev, Ilyоs Prodanova, Natalia Aruna Bhaskar, K. Laxmi Lydia, E. Kim, Jungeun |
Author_xml | – sequence: 1 givenname: Ilyоs surname: Abdullaev fullname: Abdullaev, Ilyоs – sequence: 2 givenname: Natalia surname: Prodanova fullname: Prodanova, Natalia – sequence: 3 givenname: K. surname: Aruna Bhaskar fullname: Aruna Bhaskar, K. – sequence: 4 givenname: E. surname: Laxmi Lydia fullname: Laxmi Lydia, E. – sequence: 5 givenname: Seifedine surname: Kadry fullname: Kadry, Seifedine – sequence: 6 givenname: Jungeun surname: Kim fullname: Kim, Jungeun |
BookMark | eNp1kEtPAjEUhRuDiYDuXTZxPdgXHWaJiEqCITGwtem0t2RwaMd2WPjvHcCFMXFzH8k59-Z8A9TzwQNCt5SMOJNE3Ju9GTHC-IjwiaD5BerTsZAZY0z2fs1XaJDSjhAueUH66H2t0wdeOVcHbSu_xdpb_AYpHKIBPK3rYHRbBY8rjxdhjR90AotfQ1nVgOd2C3gW9s2hPVo36VgfARq8BB19t12jS6frBDc_fYg2T_P17CVbrp4Xs-kyM5zyNjNSlDnTghsnJ8QRUhIG1OkuiHSlE5I6W4pCS6cts0ZCwaAEUo5tkY_z3PEhujvfbWL4PEBq1a5L4LuXitOimHAuhehU5KwyMaQUwakmVnsdvxQl6kRRdRTVkaI6U-ws8o_FVO2JSBt1Vf9v_Abi0Xjh |
CitedBy_id | crossref_primary_10_1051_e3sconf_202344904001 crossref_primary_10_1051_e3sconf_202344907018 crossref_primary_10_1016_j_engappai_2024_108819 crossref_primary_10_1051_bioconf_20248206015 crossref_primary_10_1051_bioconf_20248205001 crossref_primary_10_1186_s13677_024_00658_0 crossref_primary_10_1051_bioconf_20248206014 crossref_primary_10_1051_e3sconf_202344907001 crossref_primary_10_1051_e3sconf_202344902001 |
Cites_doi | 10.1007/s11280-022-01011-8 10.1109/TII.2019.2954944 10.1007/s00521-015-1874-3 10.1109/TII.2022.3213603 10.1109/TII.2020.3024170 10.1109/ACCESS.2020.3036416 10.1109/JIOT.2020.3026862 10.1109/JIOT.2021.3100117 31658684 10.1109/JIOT.2021.3073113 10.1109/TWC.2021.3108641 10.1109/JIOT.2020.2982670 10.1109/ACCESS.2020.3026875 10.1109/TVT.2022.3220571 10.1109/TR.2022.3180273 10.1007/s12652-022-03766-4 10.1109/TII.2022.3225313 10.1109/TII.2022.3192882 35808234 10.3390/electronics11193249 10.1109/JIOT.2021.3123406 10.1109/JSYST.2020.3041706 10.1109/ACCESS.2020.2981434 10.1155/2022/4409336 |
ContentType | Journal Article |
Copyright | 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SC 7SR 8BQ 8FD ABUWG AFKRA AZQEC BENPR CCPQU DWQXO JG9 JQ2 L7M L~C L~D PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
DOI | 10.32604/cmc.2023.038417 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China METADEX Computer and Information Systems Abstracts Professional ProQuest Central Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1546-2226 |
EndPage | 1477 |
ExternalDocumentID | 10_32604_cmc_2023_038417 |
GroupedDBID | AAFWJ AAYXX ACIWK ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR CCPQU CITATION EBS EJD J9A OK1 P2P PHGZM PHGZT PIMPY RTS TUS 7SC 7SR 8BQ 8FD ABUWG AZQEC DWQXO JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c313t-c64b72a43cf680f00b02e1fa8416fbf461fdb49a6fad2dc6e92ebe0b5d97577f3 |
IEDL.DBID | BENPR |
ISSN | 1546-2226 1546-2218 |
IngestDate | Mon Jun 30 07:46:43 EDT 2025 Thu Apr 24 23:07:47 EDT 2025 Tue Jul 01 05:19:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c313t-c64b72a43cf680f00b02e1fa8416fbf461fdb49a6fad2dc6e92ebe0b5d97577f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3199833644?pq-origsite=%requestingapplication% |
PQID | 3199833644 |
PQPubID | 2048737 |
PageCount | 15 |
ParticipantIDs | proquest_journals_3199833644 crossref_primary_10_32604_cmc_2023_038417 crossref_citationtrail_10_32604_cmc_2023_038417 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Henderson |
PublicationPlace_xml | – name: Henderson |
PublicationTitle | Computers, materials & continua |
PublicationYear | 2023 |
Publisher | Tech Science Press |
Publisher_xml | – name: Tech Science Press |
References | Huang (ref21) 2020; 7 Guo (ref13) 2019; 16 Wang (ref11) 2020; 8 Alfaer (ref24) 2022; 2022 Fan (ref8) 2022 Wang (ref10) 2019; 19 Wang (ref6) 2016; 27 Zhao (ref23) 2022 Mishra (ref5) 2020; 8 Zhu (ref19) 2021; 8 Alfakih (ref22) 2020; 8 Dong (ref1) 2022 Wang (ref7) 2022 Gao (ref15) 2022 Lu (ref9) 2020; 8 Deng (ref17) 2021 Zhang (ref14) 2018 Tan (ref2) 2022 Chen (ref25) 2022; 22 Mao (ref12) 2020; 15 Sun (ref3) 2020; 17 Chen (ref18) 2021; 9 Tan (ref16) 2021; 21 Dai (ref20) 2022 Talwani (ref4) 2022; 11 |
References_xml | – start-page: 1 year: 2022 ident: ref20 article-title: Task offloading for vehicular edge computing with edge-cloud cooperation publication-title: World Wide Web doi: 10.1007/s11280-022-01011-8 – volume: 16 start-page: 2737 year: 2019 ident: ref13 article-title: UAV-enhanced intelligent offloading for internet of things at the edge publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2019.2954944 – volume: 27 start-page: 291 year: 2016 ident: ref6 article-title: Self-adaptive extreme learning machine publication-title: Neural Computing and Applications doi: 10.1007/s00521-015-1874-3 – year: 2022 ident: ref2 article-title: Energy-efficient collaborative multi-access edge computing via deep reinforcement learning publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2022.3213603 – volume: 17 start-page: 5031 year: 2020 ident: ref3 article-title: Learning-based resource allocation strategy for industrial IoT in UAV-enabled MEC systems publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2020.3024170 – volume: 8 start-page: 202573 year: 2020 ident: ref9 article-title: Optimization of task offloading strategy for mobile edge computing based on multi-agent deep reinforcement learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3036416 – volume: 8 start-page: 6733 year: 2020 ident: ref11 article-title: CampEdge: Distributed computation offloading strategy under large-scale AP-based edge computing system for IoT applications publication-title: IEEE Internet of Things Journal doi: 10.1109/JIOT.2020.3026862 – volume: 9 start-page: 3799 year: 2021 ident: ref18 article-title: Multiuser computation offloading and resource allocation for cloud–edge heterogeneous network publication-title: IEEE Internet of Things Journal doi: 10.1109/JIOT.2021.3100117 – volume: 19 start-page: 4375 year: 2019 ident: ref10 article-title: Satellite edge computing for the internet of things in aerospace publication-title: Sensors doi: 31658684 – volume: 8 start-page: 15582 year: 2021 ident: ref19 article-title: Multiobjective optimized cloudlet deployment and task offloading for mobile-edge computing publication-title: IEEE Internet of Things Journal doi: 10.1109/JIOT.2021.3073113 – volume: 21 start-page: 1960 year: 2021 ident: ref16 article-title: Energy-efficient joint task offloading and resource allocation in OFDMA-based collaborative edge computing publication-title: IEEE Transactions on Wireless Communications doi: 10.1109/TWC.2021.3108641 – volume: 7 start-page: 7194 year: 2020 ident: ref21 article-title: Joint task offloading and QoS-aware resource allocation in fog-enabled Internet-of-Things networks publication-title: IEEE Internet of Things Journal doi: 10.1109/JIOT.2020.2982670 – volume: 8 start-page: 178825 year: 2020 ident: ref5 article-title: Energy-aware task allocation for multi-cloud networks publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3026875 – year: 2022 ident: ref15 article-title: Joint offloading scheduling and resource allocation in vehicular edge computing: A two layer solution publication-title: IEEE Transactions on Vehicular Technology doi: 10.1109/TVT.2022.3220571 – year: 2022 ident: ref23 article-title: Intelligent diagnosis using continuous wavelet transform and gauss convolutional deep belief network publication-title: IEEE Transactions on Reliability doi: 10.1109/TR.2022.3180273 – start-page: 794 year: 2018 ident: ref14 article-title: Resource allocation for multi-user MEC system: Machine learning approaches – year: 2022 ident: ref7 article-title: Architecture evolution of convolutional neural network using monarch butterfly optimization publication-title: Journal of Ambient Intelligence and Humanized Computing doi: 10.1007/s12652-022-03766-4 – year: 2022 ident: ref1 article-title: Quantum particle swarm optimization for task offloading in mobile edge computing publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2022.3225313 – year: 2022 ident: ref8 article-title: DNN deployment, task offloading, and resource allocation for joint task inference in IIoT publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2022.3192882 – volume: 22 start-page: 4738 year: 2022 ident: ref25 article-title: Federated deep reinforcement learning-based task offloading and resource allocation for smart cities in a mobile edge network publication-title: Sensors doi: 35808234 – volume: 11 start-page: 3249 year: 2022 ident: ref4 article-title: Machine-learning-based approach for virtual machine allocation and migration publication-title: Electronics doi: 10.3390/electronics11193249 – year: 2021 ident: ref17 article-title: Intelligent delay-aware partial computing task offloading for multi-user Industrial Internet of Things through edge computing publication-title: IEEE Internet of Things Journal doi: 10.1109/JIOT.2021.3123406 – volume: 15 start-page: 3992 year: 2020 ident: ref12 article-title: Joint UAV position optimization and resource scheduling in space-air-ground integrated networks with mixed cloud-edge computing publication-title: IEEE Systems Journal doi: 10.1109/JSYST.2020.3041706 – volume: 8 start-page: 54074 year: 2020 ident: ref22 article-title: Task offloading and resource allocation for mobile edge computing by deep reinforcement learning based on SARSA publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2981434 – volume: 2022 start-page: 1 year: 2022 ident: ref24 article-title: Fusion-based deep learning with nature-inspired algorithm for intracerebral haemorrhage diagnosis publication-title: Journal of Healthcare Engineering doi: 10.1155/2022/4409336 |
SSID | ssj0036390 |
Score | 2.347292 |
Snippet | Recently, computation offloading has become an effective method for overcoming the constraint of a mobile device (MD) using computation-intensive mobile and... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 1463 |
SubjectTerms | Algorithms Belief networks Cloud computing Computation offloading Deep learning Edge computing Energy consumption Mobile computing Optimization Real time Resource allocation Resource management |
Title | Task Offloading and Resource Allocation in IoT Based Mobile Edge Computing Using Deep Learning |
URI | https://www.proquest.com/docview/3199833644 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXVh4IwoFeWBhCHVjx0km1EKrgtSCUJGYiPysECUptPx_zonDY2GMHHu4s7_v7uy7Q-hMWZdwKSmgn4hdtEoGSWqjQKQcyJgwpbXLdx5P-OiR3T5FTz7gtvTPKmtMLIFaF8rFyDvUJYNRCvR9uXgPXNcod7vqW2isoyZAcAL7vNkfTO4faiymwL9lSmTEeBACm1UXlWCyENZRb66EYUgvCE1Y2bDsFzH9xeWSbIbbaNNbibhXqXUHrZl8F23VHRiwP5B76Hkqlq_4ztp5Ub6FxyLXuI7I497cMZWTPH7J8U0xxX3gLI3HhQQswAM9M7ha000tHw_ga2MW2Bddne2jx-FgejUKfMeEQNEuXQWKMxmHglFleUIsIZKEpmuFu1u00jLetVqyVHArdKgVN2kISiQy0mkcxbGlB6iRF7k5RBjcPHCOjUhipRkoTBAuGTNEJQw-SdpCnVpcmfLlxF1Xi3kGbkUp4AwEnDkBZ5WAW-j8e8aiKqXxz7_tWgOZP1TL7GcLHP0_fIw23FpVpKSNGquPT3MCtsNKnvoN8gXwtcIX |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7RcGgv0KdKoe0e6KEHNxvveh0fUAUlKAGSVlWQONXdJ0IEOyVBqH-K38iMH624cONo2TuWZ8fzzWNnBmDbBiq4NAK1n04pWmWifhaSSGcKwZhL6xzVO48nangiD0-T0xW4bWth6FhlqxMrRe1KSzHyrqBiMCEQvr_O_0Q0NYqyq-0IjVosjvzfG3TZFjujfdzfT3F8MJh-G0bNVIHIip5YRlZJk8ZaChtUnwfODY99L2jKvwUTpOoFZ2SmVdAudlb5LMYP5SZxWZqkaRBI9wmsSqpo7cDq3mDy42er-wXifVWCmUgVxYiedWIUTSQuu_aSWibG4gsX-K70PhDex4EK3A6ew1pjlbLdWoxewIovXsJ6O_GBNQrgFfya6sUF-x7CrKzO3jNdONZmANjujJCRdpqdF2xUTtkeYqRj49Kg7mEDd-ZZTZOWVocV2L73c9Y0eT17DSePwss30CnKwr8Fhm4lOuNe91PrJAqI5spI6bntS7zk2QZ0W3bltmlfTlM0Zjm6MRWDc2RwTgzOawZvwOd_K-Z1644Hnt1qdyBvfuJF_l_k3j18-yM8HU7Hx_nxaHK0Cc-Ibh2l2YLO8urav0e7ZWk-NMLC4Pdjy-cdrZIArQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Task+Offloading+and+Resource+Allocation+in+IoT+Based+Mobile+Edge+Computing+Using+Deep+Learning&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Abdullaev%2C+Ily%D0%BEs&rft.au=Prodanova%2C+Natalia&rft.au=Aruna+Bhaskar%2C+K.&rft.au=Laxmi+Lydia%2C+E.&rft.date=2023-01-01&rft.issn=1546-2226&rft.volume=76&rft.issue=2&rft.spage=1463&rft.epage=1477&rft_id=info:doi/10.32604%2Fcmc.2023.038417&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2023_038417 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon |