Task Offloading and Resource Allocation in IoT Based Mobile Edge Computing Using Deep Learning

Recently, computation offloading has become an effective method for overcoming the constraint of a mobile device (MD) using computation-intensive mobile and offloading delay-sensitive application tasks to the remote cloud-based data center. Smart city benefitted from offloading to edge point. Consid...

Full description

Saved in:
Bibliographic Details
Published inComputers, materials & continua Vol. 76; no. 2; pp. 1463 - 1477
Main Authors Abdullaev, Ilyоs, Prodanova, Natalia, Aruna Bhaskar, K., Laxmi Lydia, E., Kadry, Seifedine, Kim, Jungeun
Format Journal Article
LanguageEnglish
Published Henderson Tech Science Press 01.01.2023
Subjects
Online AccessGet full text
ISSN1546-2226
1546-2218
1546-2226
DOI10.32604/cmc.2023.038417

Cover

Loading…
Abstract Recently, computation offloading has become an effective method for overcoming the constraint of a mobile device (MD) using computation-intensive mobile and offloading delay-sensitive application tasks to the remote cloud-based data center. Smart city benefitted from offloading to edge point. Consider a mobile edge computing (MEC) network in multiple regions. They comprise N MDs and many access points, in which every MD has M independent real-time tasks. This study designs a new Task Offloading and Resource Allocation in IoT-based MEC using Deep Learning with Seagull Optimization (TORA-DLSGO) algorithm. The proposed TORA-DLSGO technique addresses the resource management issue in the MEC server, which enables an optimum offloading decision to minimize the system cost. In addition, an objective function is derived based on minimizing energy consumption subject to the latency requirements and restricted resources. The TORA-DLSGO technique uses the deep belief network (DBN) model for optimum offloading decision-making. Finally, the SGO algorithm is used for the parameter tuning of the DBN model. The simulation results exemplify that the TORA-DLSGO technique outperformed the existing model in reducing client overhead in the MEC systems with a maximum reward of 0.8967.
AbstractList Recently, computation offloading has become an effective method for overcoming the constraint of a mobile device (MD) using computation-intensive mobile and offloading delay-sensitive application tasks to the remote cloud-based data center. Smart city benefitted from offloading to edge point. Consider a mobile edge computing (MEC) network in multiple regions. They comprise N MDs and many access points, in which every MD has M independent real-time tasks. This study designs a new Task Offloading and Resource Allocation in IoT-based MEC using Deep Learning with Seagull Optimization (TORA-DLSGO) algorithm. The proposed TORA-DLSGO technique addresses the resource management issue in the MEC server, which enables an optimum offloading decision to minimize the system cost. In addition, an objective function is derived based on minimizing energy consumption subject to the latency requirements and restricted resources. The TORA-DLSGO technique uses the deep belief network (DBN) model for optimum offloading decision-making. Finally, the SGO algorithm is used for the parameter tuning of the DBN model. The simulation results exemplify that the TORA-DLSGO technique outperformed the existing model in reducing client overhead in the MEC systems with a maximum reward of 0.8967.
Author Kadry, Seifedine
Abdullaev, Ilyоs
Prodanova, Natalia
Aruna Bhaskar, K.
Laxmi Lydia, E.
Kim, Jungeun
Author_xml – sequence: 1
  givenname: Ilyоs
  surname: Abdullaev
  fullname: Abdullaev, Ilyоs
– sequence: 2
  givenname: Natalia
  surname: Prodanova
  fullname: Prodanova, Natalia
– sequence: 3
  givenname: K.
  surname: Aruna Bhaskar
  fullname: Aruna Bhaskar, K.
– sequence: 4
  givenname: E.
  surname: Laxmi Lydia
  fullname: Laxmi Lydia, E.
– sequence: 5
  givenname: Seifedine
  surname: Kadry
  fullname: Kadry, Seifedine
– sequence: 6
  givenname: Jungeun
  surname: Kim
  fullname: Kim, Jungeun
BookMark eNp1kEtPAjEUhRuDiYDuXTZxPdgXHWaJiEqCITGwtem0t2RwaMd2WPjvHcCFMXFzH8k59-Z8A9TzwQNCt5SMOJNE3Ju9GTHC-IjwiaD5BerTsZAZY0z2fs1XaJDSjhAueUH66H2t0wdeOVcHbSu_xdpb_AYpHKIBPK3rYHRbBY8rjxdhjR90AotfQ1nVgOd2C3gW9s2hPVo36VgfARq8BB19t12jS6frBDc_fYg2T_P17CVbrp4Xs-kyM5zyNjNSlDnTghsnJ8QRUhIG1OkuiHSlE5I6W4pCS6cts0ZCwaAEUo5tkY_z3PEhujvfbWL4PEBq1a5L4LuXitOimHAuhehU5KwyMaQUwakmVnsdvxQl6kRRdRTVkaI6U-ws8o_FVO2JSBt1Vf9v_Abi0Xjh
CitedBy_id crossref_primary_10_1051_e3sconf_202344904001
crossref_primary_10_1051_e3sconf_202344907018
crossref_primary_10_1016_j_engappai_2024_108819
crossref_primary_10_1051_bioconf_20248206015
crossref_primary_10_1051_bioconf_20248205001
crossref_primary_10_1186_s13677_024_00658_0
crossref_primary_10_1051_bioconf_20248206014
crossref_primary_10_1051_e3sconf_202344907001
crossref_primary_10_1051_e3sconf_202344902001
Cites_doi 10.1007/s11280-022-01011-8
10.1109/TII.2019.2954944
10.1007/s00521-015-1874-3
10.1109/TII.2022.3213603
10.1109/TII.2020.3024170
10.1109/ACCESS.2020.3036416
10.1109/JIOT.2020.3026862
10.1109/JIOT.2021.3100117
31658684
10.1109/JIOT.2021.3073113
10.1109/TWC.2021.3108641
10.1109/JIOT.2020.2982670
10.1109/ACCESS.2020.3026875
10.1109/TVT.2022.3220571
10.1109/TR.2022.3180273
10.1007/s12652-022-03766-4
10.1109/TII.2022.3225313
10.1109/TII.2022.3192882
35808234
10.3390/electronics11193249
10.1109/JIOT.2021.3123406
10.1109/JSYST.2020.3041706
10.1109/ACCESS.2020.2981434
10.1155/2022/4409336
ContentType Journal Article
Copyright 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
8BQ
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
JG9
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.32604/cmc.2023.038417
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1546-2226
EndPage 1477
ExternalDocumentID 10_32604_cmc_2023_038417
GroupedDBID AAFWJ
AAYXX
ACIWK
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
J9A
OK1
P2P
PHGZM
PHGZT
PIMPY
RTS
TUS
7SC
7SR
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c313t-c64b72a43cf680f00b02e1fa8416fbf461fdb49a6fad2dc6e92ebe0b5d97577f3
IEDL.DBID BENPR
ISSN 1546-2226
1546-2218
IngestDate Mon Jun 30 07:46:43 EDT 2025
Thu Apr 24 23:07:47 EDT 2025
Tue Jul 01 05:19:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-c64b72a43cf680f00b02e1fa8416fbf461fdb49a6fad2dc6e92ebe0b5d97577f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3199833644?pq-origsite=%requestingapplication%
PQID 3199833644
PQPubID 2048737
PageCount 15
ParticipantIDs proquest_journals_3199833644
crossref_primary_10_32604_cmc_2023_038417
crossref_citationtrail_10_32604_cmc_2023_038417
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computers, materials & continua
PublicationYear 2023
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Huang (ref21) 2020; 7
Guo (ref13) 2019; 16
Wang (ref11) 2020; 8
Alfaer (ref24) 2022; 2022
Fan (ref8) 2022
Wang (ref10) 2019; 19
Wang (ref6) 2016; 27
Zhao (ref23) 2022
Mishra (ref5) 2020; 8
Zhu (ref19) 2021; 8
Alfakih (ref22) 2020; 8
Dong (ref1) 2022
Wang (ref7) 2022
Gao (ref15) 2022
Lu (ref9) 2020; 8
Deng (ref17) 2021
Zhang (ref14) 2018
Tan (ref2) 2022
Chen (ref25) 2022; 22
Mao (ref12) 2020; 15
Sun (ref3) 2020; 17
Chen (ref18) 2021; 9
Tan (ref16) 2021; 21
Dai (ref20) 2022
Talwani (ref4) 2022; 11
References_xml – start-page: 1
  year: 2022
  ident: ref20
  article-title: Task offloading for vehicular edge computing with edge-cloud cooperation
  publication-title: World Wide Web
  doi: 10.1007/s11280-022-01011-8
– volume: 16
  start-page: 2737
  year: 2019
  ident: ref13
  article-title: UAV-enhanced intelligent offloading for internet of things at the edge
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2019.2954944
– volume: 27
  start-page: 291
  year: 2016
  ident: ref6
  article-title: Self-adaptive extreme learning machine
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-015-1874-3
– year: 2022
  ident: ref2
  article-title: Energy-efficient collaborative multi-access edge computing via deep reinforcement learning
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2022.3213603
– volume: 17
  start-page: 5031
  year: 2020
  ident: ref3
  article-title: Learning-based resource allocation strategy for industrial IoT in UAV-enabled MEC systems
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2020.3024170
– volume: 8
  start-page: 202573
  year: 2020
  ident: ref9
  article-title: Optimization of task offloading strategy for mobile edge computing based on multi-agent deep reinforcement learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3036416
– volume: 8
  start-page: 6733
  year: 2020
  ident: ref11
  article-title: CampEdge: Distributed computation offloading strategy under large-scale AP-based edge computing system for IoT applications
  publication-title: IEEE Internet of Things Journal
  doi: 10.1109/JIOT.2020.3026862
– volume: 9
  start-page: 3799
  year: 2021
  ident: ref18
  article-title: Multiuser computation offloading and resource allocation for cloud–edge heterogeneous network
  publication-title: IEEE Internet of Things Journal
  doi: 10.1109/JIOT.2021.3100117
– volume: 19
  start-page: 4375
  year: 2019
  ident: ref10
  article-title: Satellite edge computing for the internet of things in aerospace
  publication-title: Sensors
  doi: 31658684
– volume: 8
  start-page: 15582
  year: 2021
  ident: ref19
  article-title: Multiobjective optimized cloudlet deployment and task offloading for mobile-edge computing
  publication-title: IEEE Internet of Things Journal
  doi: 10.1109/JIOT.2021.3073113
– volume: 21
  start-page: 1960
  year: 2021
  ident: ref16
  article-title: Energy-efficient joint task offloading and resource allocation in OFDMA-based collaborative edge computing
  publication-title: IEEE Transactions on Wireless Communications
  doi: 10.1109/TWC.2021.3108641
– volume: 7
  start-page: 7194
  year: 2020
  ident: ref21
  article-title: Joint task offloading and QoS-aware resource allocation in fog-enabled Internet-of-Things networks
  publication-title: IEEE Internet of Things Journal
  doi: 10.1109/JIOT.2020.2982670
– volume: 8
  start-page: 178825
  year: 2020
  ident: ref5
  article-title: Energy-aware task allocation for multi-cloud networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3026875
– year: 2022
  ident: ref15
  article-title: Joint offloading scheduling and resource allocation in vehicular edge computing: A two layer solution
  publication-title: IEEE Transactions on Vehicular Technology
  doi: 10.1109/TVT.2022.3220571
– year: 2022
  ident: ref23
  article-title: Intelligent diagnosis using continuous wavelet transform and gauss convolutional deep belief network
  publication-title: IEEE Transactions on Reliability
  doi: 10.1109/TR.2022.3180273
– start-page: 794
  year: 2018
  ident: ref14
  article-title: Resource allocation for multi-user MEC system: Machine learning approaches
– year: 2022
  ident: ref7
  article-title: Architecture evolution of convolutional neural network using monarch butterfly optimization
  publication-title: Journal of Ambient Intelligence and Humanized Computing
  doi: 10.1007/s12652-022-03766-4
– year: 2022
  ident: ref1
  article-title: Quantum particle swarm optimization for task offloading in mobile edge computing
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2022.3225313
– year: 2022
  ident: ref8
  article-title: DNN deployment, task offloading, and resource allocation for joint task inference in IIoT
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2022.3192882
– volume: 22
  start-page: 4738
  year: 2022
  ident: ref25
  article-title: Federated deep reinforcement learning-based task offloading and resource allocation for smart cities in a mobile edge network
  publication-title: Sensors
  doi: 35808234
– volume: 11
  start-page: 3249
  year: 2022
  ident: ref4
  article-title: Machine-learning-based approach for virtual machine allocation and migration
  publication-title: Electronics
  doi: 10.3390/electronics11193249
– year: 2021
  ident: ref17
  article-title: Intelligent delay-aware partial computing task offloading for multi-user Industrial Internet of Things through edge computing
  publication-title: IEEE Internet of Things Journal
  doi: 10.1109/JIOT.2021.3123406
– volume: 15
  start-page: 3992
  year: 2020
  ident: ref12
  article-title: Joint UAV position optimization and resource scheduling in space-air-ground integrated networks with mixed cloud-edge computing
  publication-title: IEEE Systems Journal
  doi: 10.1109/JSYST.2020.3041706
– volume: 8
  start-page: 54074
  year: 2020
  ident: ref22
  article-title: Task offloading and resource allocation for mobile edge computing by deep reinforcement learning based on SARSA
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2981434
– volume: 2022
  start-page: 1
  year: 2022
  ident: ref24
  article-title: Fusion-based deep learning with nature-inspired algorithm for intracerebral haemorrhage diagnosis
  publication-title: Journal of Healthcare Engineering
  doi: 10.1155/2022/4409336
SSID ssj0036390
Score 2.347292
Snippet Recently, computation offloading has become an effective method for overcoming the constraint of a mobile device (MD) using computation-intensive mobile and...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1463
SubjectTerms Algorithms
Belief networks
Cloud computing
Computation offloading
Deep learning
Edge computing
Energy consumption
Mobile computing
Optimization
Real time
Resource allocation
Resource management
Title Task Offloading and Resource Allocation in IoT Based Mobile Edge Computing Using Deep Learning
URI https://www.proquest.com/docview/3199833644
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXVh4IwoFeWBhCHVjx0km1EKrgtSCUJGYiPysECUptPx_zonDY2GMHHu4s7_v7uy7Q-hMWZdwKSmgn4hdtEoGSWqjQKQcyJgwpbXLdx5P-OiR3T5FTz7gtvTPKmtMLIFaF8rFyDvUJYNRCvR9uXgPXNcod7vqW2isoyZAcAL7vNkfTO4faiymwL9lSmTEeBACm1UXlWCyENZRb66EYUgvCE1Y2bDsFzH9xeWSbIbbaNNbibhXqXUHrZl8F23VHRiwP5B76Hkqlq_4ztp5Ub6FxyLXuI7I497cMZWTPH7J8U0xxX3gLI3HhQQswAM9M7ha000tHw_ga2MW2Bddne2jx-FgejUKfMeEQNEuXQWKMxmHglFleUIsIZKEpmuFu1u00jLetVqyVHArdKgVN2kISiQy0mkcxbGlB6iRF7k5RBjcPHCOjUhipRkoTBAuGTNEJQw-SdpCnVpcmfLlxF1Xi3kGbkUp4AwEnDkBZ5WAW-j8e8aiKqXxz7_tWgOZP1TL7GcLHP0_fIw23FpVpKSNGquPT3MCtsNKnvoN8gXwtcIX
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7RcGgv0KdKoe0e6KEHNxvveh0fUAUlKAGSVlWQONXdJ0IEOyVBqH-K38iMH624cONo2TuWZ8fzzWNnBmDbBiq4NAK1n04pWmWifhaSSGcKwZhL6xzVO48nangiD0-T0xW4bWth6FhlqxMrRe1KSzHyrqBiMCEQvr_O_0Q0NYqyq-0IjVosjvzfG3TZFjujfdzfT3F8MJh-G0bNVIHIip5YRlZJk8ZaChtUnwfODY99L2jKvwUTpOoFZ2SmVdAudlb5LMYP5SZxWZqkaRBI9wmsSqpo7cDq3mDy42er-wXifVWCmUgVxYiedWIUTSQuu_aSWibG4gsX-K70PhDex4EK3A6ew1pjlbLdWoxewIovXsJ6O_GBNQrgFfya6sUF-x7CrKzO3jNdONZmANjujJCRdpqdF2xUTtkeYqRj49Kg7mEDd-ZZTZOWVocV2L73c9Y0eT17DSePwss30CnKwr8Fhm4lOuNe91PrJAqI5spI6bntS7zk2QZ0W3bltmlfTlM0Zjm6MRWDc2RwTgzOawZvwOd_K-Z1644Hnt1qdyBvfuJF_l_k3j18-yM8HU7Hx_nxaHK0Cc-Ibh2l2YLO8urav0e7ZWk-NMLC4Pdjy-cdrZIArQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Task+Offloading+and+Resource+Allocation+in+IoT+Based+Mobile+Edge+Computing+Using+Deep+Learning&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Abdullaev%2C+Ily%D0%BEs&rft.au=Prodanova%2C+Natalia&rft.au=Aruna+Bhaskar%2C+K.&rft.au=Laxmi+Lydia%2C+E.&rft.date=2023-01-01&rft.issn=1546-2226&rft.volume=76&rft.issue=2&rft.spage=1463&rft.epage=1477&rft_id=info:doi/10.32604%2Fcmc.2023.038417&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2023_038417
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon