Inverse source problem in a space fractional diffusion equation from the final overdetermination
We consider the problem of determining the unknown source term f = f ( x,t ) in a space fractional diffusion equation from the measured data at the final time u ( x,T ) = ψ ( x ). In this way, a methodology involving minimization of the cost functional J ( f ) = ∫ l 0 ( u ( x, t ; f ) t=T − ψ ( x ))...
Saved in:
Published in | Applications of mathematics (Prague) Vol. 64; no. 4; pp. 469 - 484 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider the problem of determining the unknown source term
f
=
f
(
x,t
) in a space fractional diffusion equation from the measured data at the final time
u
(
x,T
) =
ψ
(
x
). In this way, a methodology involving minimization of the cost functional
J
(
f
) =
∫
l
0
(
u
(
x, t
;
f
)
t=T
−
ψ
(
x
))
2
d
x
is applied and shown that this cost functional is Fréchet differentiable and its derivative can be formulated via the solution of an adjoint problem. In addition, Lipschitz continuity of the gradient is proved. These results help us to prove the monotonicity and convergence of the sequence {
J′
(
f
(
n
)
)}, where
f
(
n
)
is the
n
th iteration of a gradient like method. At the end, the convexity of the Fréchet derivative is given. |
---|---|
AbstractList | We consider the problem of determining the unknown source term
f
=
f
(
x,t
) in a space fractional diffusion equation from the measured data at the final time
u
(
x,T
) =
ψ
(
x
). In this way, a methodology involving minimization of the cost functional
J
(
f
) =
∫
l
0
(
u
(
x, t
;
f
)
t=T
−
ψ
(
x
))
2
d
x
is applied and shown that this cost functional is Fréchet differentiable and its derivative can be formulated via the solution of an adjoint problem. In addition, Lipschitz continuity of the gradient is proved. These results help us to prove the monotonicity and convergence of the sequence {
J′
(
f
(
n
)
)}, where
f
(
n
)
is the
n
th iteration of a gradient like method. At the end, the convexity of the Fréchet derivative is given. We consider the problem of determining the unknown source term f = f(x,t) in a space fractional diffusion equation from the measured data at the final time u(x,T) = ψ(x). In this way, a methodology involving minimization of the cost functional J(f) = ∫l0(u(x, t; f)t=T − ψ(x))2 dx is applied and shown that this cost functional is Fréchet differentiable and its derivative can be formulated via the solution of an adjoint problem. In addition, Lipschitz continuity of the gradient is proved. These results help us to prove the monotonicity and convergence of the sequence {J′(f(n))}, where f(n) is the nth iteration of a gradient like method. At the end, the convexity of the Fréchet derivative is given. |
Author | Ghanbari, Alireza Salehi Shayegan, Amir Hossein Safaie, Ali Tajvar, Reza Bayat |
Author_xml | – sequence: 1 givenname: Amir Hossein surname: Salehi Shayegan fullname: Salehi Shayegan, Amir Hossein email: ahsalehi.kau@gmail.com organization: Mathematics Department, Faculty of Basic Science, Khatam-ol-Anbia (PBU) University – sequence: 2 givenname: Reza Bayat surname: Tajvar fullname: Tajvar, Reza Bayat organization: Mathematics Department, Faculty of Basic Science, Khatam-ol-Anbia (PBU) University – sequence: 3 givenname: Alireza surname: Ghanbari fullname: Ghanbari, Alireza organization: Mathematics Department, Faculty of Basic Science, Khatam-ol-Anbia (PBU) University – sequence: 4 givenname: Ali surname: Safaie fullname: Safaie, Ali organization: Mathematics Department, Faculty of Basic Science, Khatam-ol-Anbia (PBU) University |
BookMark | eNpFkEFPwzAMhSM0JLbBnWMkzh1xsqbpcZqATdrEBc4hTRzo1LVb0vL7SRkSJ9vPn57sNyOTtmuRkHtgCw4g5ONqv-AMygXjOWSgrsgU8oJnJbByQqZMSZ4V5ZLdkFmMB8ZYKZWako9t-40hIo3dECzSU-iqBo-0bqmh8WSS5IOxfd21pqGu9n6Iqad4Hswopm13pP1XwuqR6JKbwx7DMY0jcEuuvWki3v3VOXl_fnpbb7Ld68t2vdplVoDoM2N4bgpvpUQrqsJ7btGpJeQGpQespHdCIIPKqCQ4r6xTFQpUokRXJYs5ebj4pg_OA8ZeH9JH6aSoOZcFsEKyPFFwoeIp1O0nhn8KmP4NUq_2egxSj0FqUOIHP2FrBA |
CitedBy_id | crossref_primary_10_1515_cmam_2022_0178 crossref_primary_10_1142_S0219691324500103 crossref_primary_10_1016_j_apnum_2021_04_016 crossref_primary_10_1515_jiip_2022_0054 |
Cites_doi | 10.1016/j.cam.2004.01.033 10.1088/0266-5611/11/4/001 10.1016/S0022-247X(02)00155-5 10.1080/17415977.2017.1384826 10.1016/j.matcom.2012.08.011 10.1007/978-3-319-62797-7 10.1007/s10492-014-0081-3 10.1007/s11075-015-0065-8 10.1088/0266-5611/12/3/002 10.1016/j.jmaa.2006.08.018 10.1002/cpa.3160440203 10.1137/080718942 10.1088/0266-5611/10/5/009 10.1016/S0370-1573(00)00070-3 |
ContentType | Journal Article |
Copyright | Mathematical Institute, Academy of Sciences of Cz 2019 Copyright Springer Nature B.V. 2019 |
Copyright_xml | – notice: Mathematical Institute, Academy of Sciences of Cz 2019 – notice: Copyright Springer Nature B.V. 2019 |
DBID | 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.21136/AM.2019.0251-18 |
DatabaseName | Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1572-9109 |
EndPage | 484 |
ExternalDocumentID | 10_21136_AM_2019_0251_18 |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 23M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 692 6HX 6NX 7WY 88I 8FE 8FG 8FL 8G5 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIPV ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AKSEZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV L6V LAK LLZTM LO0 M0C M0N M2O M2P M4Y M7S MA- MK~ N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OK1 OVD P2P P62 P9R PADUT PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PTHSS Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TR2 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 ZMTXR ~8M 7SC 7TB 8FD AAPKM ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c313t-aa25a7fc66ec3b7ff2ced8415ae6f1eb6fd33e01ba8e6fdf8cd8be3e839edb313 |
IEDL.DBID | U2A |
ISSN | 0862-7940 |
IngestDate | Fri Jul 25 19:09:59 EDT 2025 Fri Feb 21 02:34:03 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | space fractional diffusion equation adjoint problem inverse source problem weak solution theory 65N21 Lipschitz continuity 65N20 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c313t-aa25a7fc66ec3b7ff2ced8415ae6f1eb6fd33e01ba8e6fdf8cd8be3e839edb313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2267107605 |
PQPubID | 54190 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2267107605 springer_journals_10_21136_AM_2019_0251_18 |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Prague |
PublicationTitle | Applications of mathematics (Prague) |
PublicationTitleAbbrev | Appl Math |
PublicationYear | 2019 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Metzler, Klafter (CR13) 2000; 339 Choulli, Yamamoto (CR3) 1996; 12 Li, Xu (CR11) 2010; 8 Bushuyev (CR1) 1995; 11 Choulli (CR2) 1994; 10 Ford, Xiao, Yan (CR5) 2011; 14 Isakov (CR8) 1991; 54 Zeghal (CR16) 2002; 272 Feng, Zhuang, Liu, Turner, Gu (CR4) 2016; 72 Salehi Shayegan, Zakeri (CR14) 2018; 26 Tian, Li, Deng, Wu (CR15) 2012; 85 Li, Xu (CR10) 2009; 47 Hasanov Hasanoğglu, Romanov (CR7) 2017 Hasanov (CR6) 2007; 330 Kaya (CR9) 2014; 59 Meerschaert, Tadjeran (CR12) 2004; 172 |
References_xml | – volume: 14 start-page: 454 year: 2011 end-page: 474 ident: CR5 article-title: A finite element method for time fractional partial differential equations publication-title: Fract. Calc. Appl. Anal. – volume: 172 start-page: 65 year: 2004 end-page: 77 ident: CR12 article-title: Finite difference approximations for fractional advection-dispersion flow equations publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2004.01.033 – volume: 11 start-page: L11 year: 1995 end-page: L16 ident: CR1 article-title: Global uniqueness for inverse parabolic problems with final observation publication-title: Inverse Probl. doi: 10.1088/0266-5611/11/4/001 – volume: 272 start-page: 240 year: 2002 end-page: 248 ident: CR16 article-title: Existence results for inverse problems associated with a nonlinear parabolic equation publication-title: J. Math. Anal. Appl. doi: 10.1016/S0022-247X(02)00155-5 – volume: 26 start-page: 1130 year: 2018 end-page: 1154 ident: CR14 article-title: A numerical method for determining a quasi solution of a backward time-fractional diffusion equation publication-title: Inverse Probl. Sci. Eng. doi: 10.1080/17415977.2017.1384826 – volume: 85 start-page: 45 year: 2012 end-page: 56 ident: CR15 article-title: Regularization methods for unknown source in space fractional diffusion equation publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2012.08.011 – year: 2017 ident: CR7 publication-title: Introduction to Inverse Problems for Differential Equations doi: 10.1007/978-3-319-62797-7 – volume: 59 start-page: 715 year: 2014 end-page: 728 ident: CR9 article-title: Determination of the unknown source term in a linear parabolic problem from the measured data at the final time publication-title: Appl. Math., Praha doi: 10.1007/s10492-014-0081-3 – volume: 72 start-page: 749 year: 2016 end-page: 767 ident: CR4 article-title: Finite element method for space-time fractional diffusion equation publication-title: Numer. Algorithms doi: 10.1007/s11075-015-0065-8 – volume: 8 start-page: 1016 year: 2010 end-page: 1051 ident: CR11 article-title: Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation publication-title: Commun. Comput. Phys. – volume: 12 start-page: 195 year: 1996 end-page: 205 ident: CR3 article-title: Generic well-posedness of an inverse parabolic problem—the Holder-space approach publication-title: Inverse Probl. doi: 10.1088/0266-5611/12/3/002 – volume: 330 start-page: 766 year: 2007 end-page: 779 ident: CR6 article-title: Simultaneous determination of source terms in a linear parabolic problem from the final overdetermination: Weak solution approach publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2006.08.018 – volume: 54 start-page: 185 year: 1991 end-page: 209 ident: CR8 article-title: Inverse parabolic problems with the final overdetermination publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160440203 – volume: 47 start-page: 2108 year: 2009 end-page: 2131 ident: CR10 article-title: A space-time spectral method for the time fractional diffusion equation publication-title: SIAM J. Numer. Anal. doi: 10.1137/080718942 – volume: 10 start-page: 1123 year: 1994 end-page: 1132 ident: CR2 article-title: An inverse problem for a semilinear parabolic equation publication-title: Inverse Probl. doi: 10.1088/0266-5611/10/5/009 – volume: 339 start-page: 1 year: 2000 end-page: 77 ident: CR13 article-title: The random walk’s guide to anomalous diffusion: A fractional dynamics approach publication-title: Phys. Rep. doi: 10.1016/S0370-1573(00)00070-3 |
SSID | ssj0009688 |
Score | 2.1630902 |
Snippet | We consider the problem of determining the unknown source term
f
=
f
(
x,t
) in a space fractional diffusion equation from the measured data at the final time... We consider the problem of determining the unknown source term f = f(x,t) in a space fractional diffusion equation from the measured data at the final time... |
SourceID | proquest springer |
SourceType | Aggregation Database Publisher |
StartPage | 469 |
SubjectTerms | Analysis Applications of Mathematics Classical and Continuum Physics Convexity Diffusion Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Optimization Theoretical |
Title | Inverse source problem in a space fractional diffusion equation from the final overdetermination |
URI | https://link.springer.com/article/10.21136/AM.2019.0251-18 https://www.proquest.com/docview/2267107605 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLYGu8AB8RSDMeXACSnQZ9odK7QxgcqJSeNUksaRuBSxx__H7oMJxIVj08gH17W_xJ9tgGsVaeONnZEu9qyMjB9K43QoKTSgcZGxseZC4fxZzebR4yJe9CDoamFqtnuXkqw9NZOVefDIXZYzE2t8y6iYZO1AP6aTO9O45kG2bbSr6lmTjNQl2ZrXpCb_lPADVP7Kg9bhZXoIBy0uFFnzIY-gh9Ux7OffTVVXJ_DGPTGWKxTNhbtoZ8GI90poQY6BltyyqVMgSTz5ZMNXYQI_m3begktJBAkUjkdhCSZv2o4NwxtOYT6dvNzPZDsgQZahH66l1kGsE1cqhWVoEueCEm1KIVmjcj4a5WwYoucbndKCdWlpU4MhEihCa0jEGexWHxWeg6CojeilmvxfGaWcfvTpbzZaJdZG2pkBDDtdFa2VrwqCbgRQEjoRDeCm09_2NZ0var0XWV6w3gvWe-GnF__ZfAl7_Nhw7oawu15u8IpwwNqMoJ89vD5NRrUBfAE4B7D0 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKGYAB8RTl6YEJyZDEieOOEaIq0HRqpW7Bjs8SSxF9_H_u8qACsbDa1g2Xy91n3-Nj7FbFxgZ9b4VPAidiG0phvZECQwNYH1uXGGoUzsdqOI1fZsmsw6K2F6aqdm9TkpWnpmJlIh55yHKqxOrfEypGWVtsG6GAJkueRtlm0K6quCYJqQu0taBOTf4p4Qeo_JUHrcLL4IDtN7iQZ_WHPGQdmB-xvfx7qOrymL3RTIzFEnj94M4bLhj-PueGo2PAJb-o-xRQEjGfrOkpjMNnPc6bUysJR4HcExUWp-JN11bD0IETNh08TR6HoiFIEKUM5UoYEyUm9aVSUEqbeh-V4DSGZAPKh2CVd1JCEFqjccF5XTptQQKCInAWRZyy7vxjDmeMY9QGCLRB_1fGmtKPIf7N1qjUudh422OXra6KxsqXBUI3BCgp3oh67K7V32Yb7xeV3ossL0jvBem9CPX5fw7fsJ3hJB8Vo-fx6wXbpa26_u6SdVeLNVwhJljZ68oIvgAiKbJT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSAgGxFMUCnhgQjJN6sRJxwqoyiMVA5W6BTs-SywBmvT_c5cHFYiF1bZuuFx8n-_1MXapAm28oTPChZ4VgfGlME5Lga4BjAuMDTU1CidTNZkFD_Nw3gTcirbavU1J1j0NNKUpL_sf1lWFy0RC0h8lVJU1vCaEjHLX2UZAvcBoz7PBaDV0V1W8k4TaBdqdV6cp_5TwA2D-yolWrma8y3YajMhH9UfdY2uQ77Pt5HvAanHAXmk-xqIAXgffecMLw99yrjleErjkFnXPAkoiFpQlhcU4fNajvTm1lXAUyB3RYnEq5LRtZQwdOGSz8d3LzUQ0ZAkik74shdaDUEcuUwoyaSLnBhnYGN2zBuV8MMpZKcHzjY5xwbo4s7EBCQiQwBoUccQ6-XsOx4yjBwfwYo13YRbElIr08c82WkXWBtqZLuu1ukobiy9ShHEIViJ8HXXZVau_1Ta-NSq9p6MkJb2npPfUj0_-c_iCbT7fjtOn--njKduinboUr8c65WIJZwgPSnNe2cAXgjy2hg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inverse+source+problem+in+a+space+fractional+diffusion+equation+from+the+final+overdetermination&rft.jtitle=Applications+of+mathematics+%28Prague%29&rft.au=Salehi+Shayegan%2C+Amir+Hossein&rft.au=Tajvar%2C+Reza+Bayat&rft.au=Ghanbari%2C+Alireza&rft.au=Safaie%2C+Ali&rft.date=2019-08-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0862-7940&rft.eissn=1572-9109&rft.volume=64&rft.issue=4&rft.spage=469&rft.epage=484&rft_id=info:doi/10.21136%2FAM.2019.0251-18&rft.externalDocID=10_21136_AM_2019_0251_18 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0862-7940&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0862-7940&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0862-7940&client=summon |