Review of magnetic properties and magnetocaloric effect in the intermetallic compounds of rare earth with low boiling point metals

The magnetocaloric effect (MCE) in many rare earth (RE) based intermetallic compounds has been extensively in- vestigated during the last two decades, not only due to their potential applications for magnetic refrigeration but also for better understanding of the fundamental problems of the material...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 25; no. 3; pp. 1 - 15
Main Author 李领伟
Format Journal Article
LanguageEnglish
Published 01.03.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The magnetocaloric effect (MCE) in many rare earth (RE) based intermetallic compounds has been extensively in- vestigated during the last two decades, not only due to their potential applications for magnetic refrigeration but also for better understanding of the fundamental problems of the materials. This paper reviews our recent progress on studying the magnetic properties and MCE in some binary or ternary intermetallic compounds of RE with low boiling point metal(s) (Zn, Mg, and Cd). Some of them exhibit promising MCE properties, which make them attractive for low temperature magnetic refrigeration. Characteristics of the magnetic transition, origin of large MCE, as well as the potential application of these compounds are thoroughly discussed. Additionally, a brief review of the magnetic and magnetocaloric properties in the quaternary rare earth nickel boroncarbides RENi2B2C superconductors is also presented.
AbstractList The magnetocaloric effect (MCE) in many rare earth (RE) based intermetallic compounds has been extensively in- vestigated during the last two decades, not only due to their potential applications for magnetic refrigeration but also for better understanding of the fundamental problems of the materials. This paper reviews our recent progress on studying the magnetic properties and MCE in some binary or ternary intermetallic compounds of RE with low boiling point metal(s) (Zn, Mg, and Cd). Some of them exhibit promising MCE properties, which make them attractive for low temperature magnetic refrigeration. Characteristics of the magnetic transition, origin of large MCE, as well as the potential application of these compounds are thoroughly discussed. Additionally, a brief review of the magnetic and magnetocaloric properties in the quaternary rare earth nickel boroncarbides RENi2B2C superconductors is also presented.
The magnetocaloric effect (MCE) in many rare earth (RE) based intermetallic compounds has been extensively investigated during the last two decades, not only due to their potential applications for magnetic refrigeration but also for better understanding of the fundamental problems of the materials. This paper reviews our recent progress on studying the magnetic properties and MCE in some binary or ternary intermetallic compounds of RE with low boiling point metal(s) (Zn, Mg, and Cd). Some of them exhibit promising MCE properties, which make them attractive for low temperature magnetic refrigeration. Characteristics of the magnetic transition, origin of large MCE, as well as the potential application of these compounds are thoroughly discussed. Additionally, a brief review of the magnetic and magnetocaloric properties in the quaternary rare earth nickel boroncarbides RENi sub(2)B sub(2)C superconductors is also presented.
Author 李领伟
AuthorAffiliation Key Laboratory of Electromagnetic Processing o Materials (Ministry oF Education), Northeastern University, Shenyang 110819, China Institute of Materials Physics and Chemistry, Colleague of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Author_xml – sequence: 1
  fullname: 李领伟
BookMark eNqFkUtrGzEURkVJoI6Tn1AQWXUztR6jh8mqhL4gUAjJWsiaO7bKjDSR5Jps88urqU0W2WSjD3S_c0FHF-gsxAAIfaLkCyVar6hUbUOJkCsmVnxFuBKEfUALRoRuuObtGVq8dj6ii5z_ECIpYXyBXu7hr4cDjj0e7TZA8Q5PKU6QioeMbehO99HZIaY6hb4HV7APuOygRoE0QrHDUGcujlPchy7P-5JNgMGmssMHX48hHvAm-sGHLZ5iBfF_Ll-i874GXJ1yiR6_f3u4_dnc_f7x6_brXeM45aWxVEjSdb2Gfg67VnIjW6U7zh2xvG8ZhY7oVgmwLVNcCq446ZxglrVSKL5En4976_ue9pCLGX12MAw2QNxnQzUTraCSiVq9OVZdijkn6I3zxRYfQ0nWD4YSM5s3s1UzWzVMGG6O5ist3tBT8qNNz-9y1yduF8P2qXp6BaVUa83qh_J_tGGWfA
CitedBy_id crossref_primary_10_1002_tcr_202100317
crossref_primary_10_1007_s40843_021_1967_5
crossref_primary_10_1007_s12034_020_2038_3
crossref_primary_10_1088_1674_1056_ab7da7
crossref_primary_10_1116_6_0002213
crossref_primary_10_1515_znb_2018_0151
crossref_primary_10_1016_j_physb_2019_06_059
crossref_primary_10_1016_j_jmmm_2018_05_097
crossref_primary_10_1142_S2010324723500273
crossref_primary_10_1063_1_5048696
crossref_primary_10_1016_j_ssc_2019_03_009
crossref_primary_10_1007_s00339_022_06050_6
crossref_primary_10_1016_j_jmmm_2021_168397
crossref_primary_10_1038_srep42908
crossref_primary_10_1063_1_5006562
crossref_primary_10_1016_j_jmmm_2018_02_036
crossref_primary_10_1021_acsanm_3c01817
crossref_primary_10_1063_5_0120280
crossref_primary_10_1016_j_jmmm_2018_01_073
crossref_primary_10_1109_TMAG_2018_2878550
crossref_primary_10_1111_ijac_13180
crossref_primary_10_1016_j_jallcom_2017_11_353
crossref_primary_10_1063_5_0001403
crossref_primary_10_1016_j_jallcom_2016_01_157
crossref_primary_10_1016_j_pmatsci_2017_10_005
crossref_primary_10_3390_ma12020309
crossref_primary_10_59717_j_xinn_mater_2023_100045
crossref_primary_10_1039_C9DT03245B
crossref_primary_10_1016_j_jallcom_2019_152228
crossref_primary_10_1016_j_jallcom_2020_153726
crossref_primary_10_1016_j_cplett_2018_06_008
crossref_primary_10_1016_j_jmmm_2020_167009
crossref_primary_10_1063_1_5140765
crossref_primary_10_1016_j_intermet_2018_09_002
crossref_primary_10_1134_S0031918X23602147
crossref_primary_10_1016_j_jallcom_2017_04_157
crossref_primary_10_1088_1402_4896_abe00d
crossref_primary_10_1063_1_4975405
crossref_primary_10_3390_app12189098
crossref_primary_10_1007_s00339_019_2733_3
crossref_primary_10_1039_D0DT01212B
crossref_primary_10_1007_s10948_022_06225_5
crossref_primary_10_1016_j_intermet_2017_05_011
crossref_primary_10_1063_1_4966655
crossref_primary_10_1063_1_5030620
crossref_primary_10_3390_met13020290
crossref_primary_10_1016_j_apmt_2022_101624
crossref_primary_10_1016_j_physb_2017_05_003
crossref_primary_10_1016_j_jmmm_2018_07_029
crossref_primary_10_1016_j_ceramint_2018_08_075
crossref_primary_10_1002_ejic_201700418
crossref_primary_10_1021_acs_inorgchem_9b02753
crossref_primary_10_1038_srep34192
crossref_primary_10_31857_S0015323023601058
crossref_primary_10_1103_PhysRevB_110_134406
crossref_primary_10_1007_s10909_022_02727_7
crossref_primary_10_1016_j_ssc_2017_12_015
crossref_primary_10_1016_j_intermet_2019_106676
crossref_primary_10_1007_s10948_016_3602_3
crossref_primary_10_1016_j_jallcom_2016_09_161
crossref_primary_10_1016_j_jallcom_2017_10_296
crossref_primary_10_1016_j_jmmm_2019_165477
crossref_primary_10_1039_C9RA00984A
crossref_primary_10_1063_1_5003637
crossref_primary_10_3390_ma13204476
crossref_primary_10_1038_srep34235
crossref_primary_10_1063_9_0000519
crossref_primary_10_1016_S1002_0721_17_60989_X
crossref_primary_10_1016_j_jallcom_2017_03_132
crossref_primary_10_1039_D2CS01030E
crossref_primary_10_1088_1674_1056_aba9be
crossref_primary_10_1016_j_jallcom_2017_08_073
crossref_primary_10_1016_j_jre_2018_09_011
crossref_primary_10_1007_s10854_022_09810_5
crossref_primary_10_1088_1361_648X_29_5_055804
crossref_primary_10_1016_j_ceramint_2018_05_239
crossref_primary_10_1007_s10948_024_06737_2
crossref_primary_10_1039_D3DT00223C
crossref_primary_10_1063_1_5044578
crossref_primary_10_1515_znb_2018_0191
crossref_primary_10_1007_s10948_018_4701_0
crossref_primary_10_1007_s10948_016_3519_x
crossref_primary_10_1021_acs_inorgchem_4c01887
crossref_primary_10_1063_5_0217012
crossref_primary_10_1016_j_jmmm_2016_08_048
crossref_primary_10_1016_j_jallcom_2017_11_146
crossref_primary_10_1039_C6RA16356D
crossref_primary_10_3390_ma11060943
crossref_primary_10_1007_s00339_022_05719_2
crossref_primary_10_1007_s10853_018_2257_9
crossref_primary_10_1007_s10948_022_06320_7
crossref_primary_10_1039_C9CP06670E
crossref_primary_10_1007_s10948_019_05396_y
crossref_primary_10_1088_1674_1056_28_6_066201
crossref_primary_10_1016_j_intermet_2024_108234
crossref_primary_10_1038_s41598_017_14279_y
crossref_primary_10_1016_j_jpcs_2017_07_022
crossref_primary_10_1016_j_jmmm_2017_08_010
crossref_primary_10_1016_j_jmmm_2017_08_015
crossref_primary_10_1016_j_jallcom_2016_09_104
crossref_primary_10_1039_C6RA16486B
crossref_primary_10_1016_j_intermet_2016_10_005
crossref_primary_10_1088_1674_1056_ab9739
crossref_primary_10_1039_D3RA00199G
crossref_primary_10_1016_j_intermet_2018_03_010
crossref_primary_10_1016_j_jallcom_2016_04_154
crossref_primary_10_1021_acs_chemmater_3c03217
crossref_primary_10_1016_j_jre_2019_07_011
crossref_primary_10_1016_j_cplett_2018_12_025
crossref_primary_10_1016_j_jmmm_2017_11_047
crossref_primary_10_1016_j_jallcom_2017_01_285
crossref_primary_10_1038_s41598_022_20893_2
crossref_primary_10_1063_5_0153045
crossref_primary_10_1080_21663831_2017_1393778
crossref_primary_10_1016_j_jmmm_2023_170834
crossref_primary_10_1088_1674_1056_ac43a1
crossref_primary_10_1016_j_rinp_2021_103933
crossref_primary_10_1088_1361_6463_aa60dd
crossref_primary_10_1016_j_ceramint_2017_10_143
crossref_primary_10_1016_j_jallcom_2017_07_092
crossref_primary_10_1016_j_ceramint_2018_07_236
crossref_primary_10_1039_C6RA08791D
crossref_primary_10_1016_j_intermet_2018_03_006
crossref_primary_10_1515_gps_2020_0052
Cites_doi 10.1063/1.1447592
10.1016/j.jallcom.2015.04.146
10.1016/j.jallcom.2011.01.049
10.1103/PhysRevLett.78.4494
10.1063/1.3625250
10.1016/j.intermet.2015.06.003
10.1063/1.4932058
10.1007/s00706-011-0622-3
10.1016/j.ijrefrig.2009.11.005
10.1016/j.physb.2015.05.017
10.1016/0304-8853(91)90816-S
10.1103/PhysRevB.16.3182
10.1016/j.jallcom.2014.05.008
10.5560/ZNB.2012.67b0061
10.1016/S0304-8853(99)00397-2
10.1016/j.jmmm.2004.10.100
10.1063/1.4752738
10.1109/TMAG.2014.2323339
10.1038/415150a
10.1016/j.intermet.2012.06.005
10.1016/j.intermet.2015.03.004
10.1016/j.jallcom.2015.10.026
10.1103/PhysRev.43.768
10.1109/TMAG.2015.2445790
10.1063/1.4867882
10.1146/annurev-matsci-062910-100356
10.1063/1.3554725
10.1021/cm900841t
10.1063/1.3518556
10.1016/j.jallcom.2014.08.079
10.1016/j.solidstatesciences.2014.06.010
10.1524/zkri.1999.214.3.143
10.1063/1.4882735
10.1063/1.3466775
10.1016/j.jmmm.2007.04.009
10.1038/ncomms1868
10.1063/1.3240399
10.1016/j.jallcom.2013.08.117
10.1007/978-1-4613-9871-4_34
10.1063/1.4751038
10.1063/1.4834815
10.1016/0031-9163(64)91158-8
10.1063/1.3599456
10.1002/adma.v23.7
10.1088/0034-4885/64/8/202
10.1088/0305-4608/12/8/021
10.1088/0034-4885/68/6/R04
10.1088/0953-8984/20/39/395217
10.1063/1.882396
10.1063/1.4832218
10.1016/S0168-1273(04)34001-8
10.1088/0022-3727/38/23/R01
10.1016/j.jssc.2009.01.027
10.1063/1.1419048
10.1002/aelm.201570022
10.1063/1.1375836
10.1063/1.3130090
10.1039/c3ta01289a
10.1038/nmat3334
10.1002/andp.18812490510
10.1063/1.3095660
10.1016/S1567-2719(99)12008-0
10.1007/978-1-4757-9047-4_222
10.1021/ja01407a003
10.1088/0953-8984/20/28/285207
10.1063/1.3572060
10.1016/j.jallcom.2010.10.043
10.1016/j.intermet.2013.11.019
10.1038/srep15413
10.1103/PhysRevB.81.214517
10.1038/367252a0
10.1002/andp.19263862517
10.1146/annurev.matsci.30.1.387
10.1016/j.jallcom.2013.04.081
10.1016/j.physrep.2009.12.006
10.1088/0034-4885/40/10/002
10.1063/1.1991966
10.1016/j.scriptamat.2012.04.028
10.1063/1.352443
10.1002/adma.v21:45
10.1515/revic.2011.007
10.1016/j.jallcom.2014.08.235
10.1016/j.intermet.2015.01.005
10.1016/j.intermet.2010.02.007
10.1063/1.4704155
10.1063/1.3386523
10.1063/1.4936610
10.1063/1.2399361
10.1016/j.physc.2015.02.050
10.1063/1.330877
10.1016/j.jallcom.2012.03.061
10.1016/j.jmmm.2006.07.025
10.1080/00018737100101311
10.1016/j.intermet.2011.12.002
10.1109/TMAG.2015.2441778
10.1016/j.jallcom.2013.03.109
10.1103/PhysRevB.67.104416
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1088/1674-1056/25/3/037502
DatabaseName 中文科技期刊数据库
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Review of magnetic properties and magnetocaloric effect in the intermetallic compounds of rare earth with low boiling point metals
EISSN 2058-3834
1741-4199
EndPage 15
ExternalDocumentID 10_1088_1674_1056_25_3_037502
667982205
GroupedDBID 02O
1JI
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NT-
NT.
PJBAE
Q02
RIN
RNS
ROL
RPA
RW3
SY9
TCJ
TGP
UCJ
W28
~WA
-SA
-S~
AAYXX
ACARI
ADEQX
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
U1G
U5K
7U5
8FD
AEINN
H8D
L7M
ID FETCH-LOGICAL-c313t-a1560ddf8ef0ddfa976b6478d33c0a3f421ed08475ea4273653730dc52a246573
ISSN 1674-1056
IngestDate Sun Aug 24 03:51:34 EDT 2025
Tue Jul 01 02:55:15 EDT 2025
Thu Apr 24 22:52:54 EDT 2025
Wed Feb 14 10:25:16 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c313t-a1560ddf8ef0ddfa976b6478d33c0a3f421ed08475ea4273653730dc52a246573
Notes The magnetocaloric effect (MCE) in many rare earth (RE) based intermetallic compounds has been extensively in- vestigated during the last two decades, not only due to their potential applications for magnetic refrigeration but also for better understanding of the fundamental problems of the materials. This paper reviews our recent progress on studying the magnetic properties and MCE in some binary or ternary intermetallic compounds of RE with low boiling point metal(s) (Zn, Mg, and Cd). Some of them exhibit promising MCE properties, which make them attractive for low temperature magnetic refrigeration. Characteristics of the magnetic transition, origin of large MCE, as well as the potential application of these compounds are thoroughly discussed. Additionally, a brief review of the magnetic and magnetocaloric properties in the quaternary rare earth nickel boroncarbides RENi2B2C superconductors is also presented.
11-5639/O4
magnetocaloric effect, rare earth based intermetallic compounds, RENizB2C superconductors,magnetic phase transition
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1825451625
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_1825451625
crossref_citationtrail_10_1088_1674_1056_25_3_037502
crossref_primary_10_1088_1674_1056_25_3_037502
chongqing_primary_667982205
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-01
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics B
PublicationTitleAlternate Chinese Physics
PublicationYear 2016
References 88
Shen B G (27) 2013; 22
89
Warburg E (1) 1881; 13
Gschneidner K AJr (11) 2005; 68
90
91
92
Galéra R M (52) 2008; 20
93
94
95
96
97
10
98
99
12
15
16
19
2
3
4
5
6
7
8
9
20
Pöttgen R (50) 1999; 214
Li L W (105) 2011; 4
21
24
25
26
28
29
30
31
34
35
36
37
38
39
Pöttgen R (49) 1999; 43
Gratz Z (13) 2001; 3
Liu J (22) 2014; 23
40
42
43
44
46
47
48
Zhong W (18) 2013; 22
Yue M (17) 2015; 24
Wang D H (32) 2013; 22
51
53
54
Inoue J (41) 1982; 12
55
56
57
58
59
60
61
Hu F X (23) 2013; 22
62
63
64
65
66
67
68
69
Buschow K H J (45) 1977; 40
Muller K H (101) 2001; 64
Zhang H (33) 2015; 24
70
71
72
73
74
76
77
78
79
100
102
Bruck E (14) 2005; 38
103
104
106
80
107
81
108
82
83
84
85
Franco V (75) 2008; 20
86
87
References_xml – ident: 25
  doi: 10.1063/1.1447592
– ident: 58
  doi: 10.1016/j.jallcom.2015.04.146
– ident: 91
  doi: 10.1016/j.jallcom.2011.01.049
– ident: 10
  doi: 10.1103/PhysRevLett.78.4494
– volume: 22
  issn: 1674-1056
  year: 2013
  ident: 23
  publication-title: Chin. Phys. B
– ident: 106
  doi: 10.1063/1.3625250
– ident: 92
  doi: 10.1016/j.intermet.2015.06.003
– ident: 57
  doi: 10.1063/1.4932058
– ident: 64
  doi: 10.1007/s00706-011-0622-3
– ident: 38
  doi: 10.1016/j.ijrefrig.2009.11.005
– volume: 22
  issn: 1674-1056
  year: 2013
  ident: 18
  publication-title: Chin. Phys. B
– ident: 79
  doi: 10.1016/j.physb.2015.05.017
– ident: 46
  doi: 10.1016/0304-8853(91)90816-S
– ident: 51
  doi: 10.1103/PhysRevB.16.3182
– ident: 108
  doi: 10.1016/j.jallcom.2014.05.008
– ident: 62
  doi: 10.5560/ZNB.2012.67b0061
– ident: 7
  doi: 10.1016/S0304-8853(99)00397-2
– ident: 42
  doi: 10.1016/j.jmmm.2004.10.100
– ident: 78
  doi: 10.1063/1.4752738
– ident: 60
  doi: 10.1109/TMAG.2014.2323339
– ident: 15
  doi: 10.1038/415150a
– ident: 65
  doi: 10.1016/j.intermet.2012.06.005
– ident: 67
  doi: 10.1016/j.intermet.2015.03.004
– ident: 61
  doi: 10.1016/j.jallcom.2015.10.026
– volume: 23
  issn: 1674-1056
  year: 2014
  ident: 22
  publication-title: Chin. Phys. B
– ident: 4
  doi: 10.1103/PhysRev.43.768
– ident: 68
  doi: 10.1109/TMAG.2015.2445790
– ident: 66
  doi: 10.1063/1.4867882
– ident: 34
  doi: 10.1146/annurev-matsci-062910-100356
– ident: 56
  doi: 10.1063/1.3554725
– ident: 59
  doi: 10.1021/cm900841t
– ident: 72
  doi: 10.1063/1.3518556
– ident: 48
  doi: 10.1016/j.jallcom.2014.08.079
– ident: 98
  doi: 10.1016/j.solidstatesciences.2014.06.010
– volume: 214
  start-page: 143
  issn: 0044-2968
  year: 1999
  ident: 50
  publication-title: Z. Kristallogr.
  doi: 10.1524/zkri.1999.214.3.143
– ident: 96
  doi: 10.1063/1.4882735
– ident: 69
  doi: 10.1063/1.3466775
– ident: 12
  doi: 10.1016/j.jmmm.2007.04.009
– ident: 30
  doi: 10.1038/ncomms1868
– ident: 104
  doi: 10.1063/1.3240399
– ident: 80
  doi: 10.1016/j.jallcom.2013.08.117
– ident: 5
  doi: 10.1007/978-1-4613-9871-4_34
– ident: 95
  doi: 10.1063/1.4751038
– ident: 87
  doi: 10.1063/1.4834815
– ident: 43
  doi: 10.1016/0031-9163(64)91158-8
– volume: 22
  issn: 1674-1056
  year: 2013
  ident: 27
  publication-title: Chin. Phys. B
– ident: 90
  doi: 10.1063/1.3599456
– ident: 40
  doi: 10.1002/adma.v23.7
– volume: 64
  start-page: 943
  issn: 0034-4885
  year: 2001
  ident: 101
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/64/8/202
– volume: 12
  start-page: 1811
  issn: 0305-4608
  year: 1982
  ident: 41
  publication-title: J. Phys. F: Met. Phys.
  doi: 10.1088/0305-4608/12/8/021
– volume: 68
  start-page: 1479
  issn: 0034-4885
  year: 2005
  ident: 11
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/68/6/R04
– volume: 20
  issn: 0953-8984
  year: 2008
  ident: 52
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/20/39/395217
– ident: 100
  doi: 10.1063/1.882396
– volume: 22
  issn: 1674-1056
  year: 2013
  ident: 32
  publication-title: Chin. Phys. B
– ident: 93
  doi: 10.1063/1.4832218
– ident: 47
  doi: 10.1016/S0168-1273(04)34001-8
– volume: 38
  start-page: R381
  issn: 0022-3727
  year: 2005
  ident: 14
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/38/23/R01
– ident: 70
  doi: 10.1016/j.jssc.2009.01.027
– ident: 16
  doi: 10.1063/1.1419048
– ident: 31
  doi: 10.1002/aelm.201570022
– ident: 24
  doi: 10.1063/1.1375836
– ident: 94
  doi: 10.1063/1.3130090
– ident: 35
  doi: 10.1039/c3ta01289a
– volume: 4
  issn: 1882-0786
  year: 2011
  ident: 105
  publication-title: Appl. Phys. Express
– ident: 20
  doi: 10.1038/nmat3334
– volume: 13
  start-page: 141
  year: 1881
  ident: 1
  publication-title: Ann. Phys.
  doi: 10.1002/andp.18812490510
– ident: 88
  doi: 10.1063/1.3095660
– ident: 8
  doi: 10.1016/S1567-2719(99)12008-0
– ident: 9
  doi: 10.1007/978-1-4757-9047-4_222
– ident: 3
  doi: 10.1021/ja01407a003
– volume: 20
  issn: 0953-8984
  year: 2008
  ident: 75
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/20/28/285207
– ident: 86
  doi: 10.1063/1.3572060
– ident: 36
  doi: 10.1063/1.4834815
– ident: 89
  doi: 10.1016/j.jallcom.2010.10.043
– ident: 97
  doi: 10.1016/j.intermet.2013.11.019
– ident: 21
  doi: 10.1038/srep15413
– ident: 102
  doi: 10.1103/PhysRevB.81.214517
– ident: 99
  doi: 10.1038/367252a0
– ident: 2
  doi: 10.1002/andp.19263862517
– ident: 37
  doi: 10.1146/annurev.matsci.30.1.387
– ident: 77
  doi: 10.1016/j.jallcom.2013.04.081
– volume: 3
  start-page: R385
  year: 2001
  ident: 13
  publication-title: J. Phys.: Condens. Matter
– ident: 39
  doi: 10.1016/j.physrep.2009.12.006
– volume: 40
  start-page: 1179
  issn: 0034-4885
  year: 1977
  ident: 45
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/40/10/002
– ident: 53
  doi: 10.1063/1.1991966
– ident: 76
  doi: 10.1016/j.scriptamat.2012.04.028
– ident: 6
  doi: 10.1063/1.352443
– ident: 26
  doi: 10.1002/adma.v21:45
– ident: 71
  doi: 10.1515/revic.2011.007
– ident: 84
  doi: 10.1016/j.jallcom.2014.08.235
– ident: 73
  doi: 10.1016/j.intermet.2015.01.005
– ident: 63
  doi: 10.1016/j.intermet.2010.02.007
– ident: 81
  doi: 10.1063/1.4704155
– ident: 55
  doi: 10.1063/1.3386523
– ident: 29
  doi: 10.1063/1.4936610
– volume: 43
  start-page: 133
  year: 1999
  ident: 49
  publication-title: GIT Labor-Fachzeitschrift
– volume: 24
  issn: 1674-1056
  year: 2015
  ident: 33
  publication-title: Chin. Phys. B
– volume: 24
  issn: 1674-1056
  year: 2015
  ident: 17
  publication-title: Chin. Phys. B
– ident: 74
  doi: 10.1063/1.2399361
– ident: 103
  doi: 10.1016/j.physc.2015.02.050
– ident: 54
  doi: 10.1063/1.330877
– ident: 107
  doi: 10.1016/j.jallcom.2012.03.061
– ident: 19
  doi: 10.1016/j.jmmm.2006.07.025
– ident: 44
  doi: 10.1080/00018737100101311
– ident: 83
  doi: 10.1016/j.intermet.2011.12.002
– ident: 85
  doi: 10.1109/TMAG.2015.2441778
– ident: 82
  doi: 10.1016/j.jallcom.2013.03.109
– ident: 28
  doi: 10.1103/PhysRevB.67.104416
SSID ssj0061023
ssib054405859
ssib000804704
Score 2.513559
SecondaryResourceType review_article
Snippet The magnetocaloric effect (MCE) in many rare earth (RE) based intermetallic compounds has been extensively in- vestigated during the last two decades, not only...
The magnetocaloric effect (MCE) in many rare earth (RE) based intermetallic compounds has been extensively investigated during the last two decades, not only...
SourceID proquest
crossref
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Austenitic stainless steels
Boiling points
Intermetallic compounds
Intermetallics
Magnetic properties
Rare earth compounds
Rare earth metals
Refrigeration
低沸点
声学特性
磁性
磁热性能
磁热效应
稀土金属间化合物
综述
金属化合物
Title Review of magnetic properties and magnetocaloric effect in the intermetallic compounds of rare earth with low boiling point metals
URI http://lib.cqvip.com/qk/85823A/201603/667982205.html
https://www.proquest.com/docview/1825451625
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZbx2Avo7uxrGvRYG_FjW1JtvM4Sks3SltGwvImbF3SQGu3ictgj_3lPceSL2GDdXtxYhHJQefzOZ-kcyHkc2Z1apgIA6DHacBtmAVZovNAgSkRXKWYdA29Lc6Skxn_NhfzvrxVE11SFwfq1x_jSv5HqtAGcsUo2X-QbDcoNMB3kC9cQcJwfZSMv3dxJ9f5osRwRPS3ukFXaeNyL7t2tFeYC8R7b7S-jZgqYnVtgH5jpmt0LscaS41vxwodwuAlqC_dTu1V9XO_qJYudr2CjvtNv_WQ22IpbrM2frNkPajnvPSr_0XwwyyH-wxR0jtaedWYpByUtvCJq10b8BE8R54M9akLZPa4YQPlyICdxANLC_cuzvI3NQ6qD3cU2idi1AqmwMAcE-FglGHy7LNzeTw7PZXTo_n0KXkWw6oBC1p8Pb8YsJ2Qp_3qU3AgqxmyOWe4E8xigevz9rFtwFeWjbu2cSzGbOz-BKbjuKzKxS3M3yat2bTqDVWZbpOXfo1BvzjAvCJPTPmaPL9wYnlD7h1saGVpCxvaw4YCbOgmbKiDDV2WFGBDN2BDO9jgeAgb2sCGImwowIZ62NAGNtTB5i2ZHR9ND08CX4ojUCxidZBjwL3WNjMWP3IgsQVGKWvGVJgzy-PI6BCYjjA5B0acCAamQysR5zFPRMreka2yKs17QpXSYNPyaGKt5ioWRWSTiSmsViFn2qYjstPNqrxxKVdkgoeFGBM-IrydZ6l8FnsspnIlG2-KLJMoKomikrGQTDpRjchB160d8y8dPrVClKBw8RQtL011t5YR7qkAcGPx4RG_2SEv-pfpI9mqV3dmF2hsXew14HwAvW-YAQ
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+magnetic+properties+and+magnetocaloric+effect+in+the+intermetallic+compounds+of+rare+earth+with+low+boiling+point+metals&rft.jtitle=Chinese+physics+B&rft.au=Li%2C+Ling-Wei&rft.date=2016-03-01&rft.issn=1674-1056&rft.eissn=1741-4199&rft.volume=25&rft.issue=3&rft.spage=37502&rft.epage=37516&rft_id=info:doi/10.1088%2F1674-1056%2F25%2F3%2F037502&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg