Quantum information entropy for one-dimensional system undergoing quantum phase transition
Calculations of the quantum information entropy have been extended to a non-analytically solvable situation. Specifically, we have investigated the information entropy for a one-dimensional system with a schematic "Landau" potential in a numerical way. Particularly, it is found that the phase transi...
Saved in:
Published in | Chinese physics B Vol. 25; no. 5; pp. 38 - 42 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.05.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Calculations of the quantum information entropy have been extended to a non-analytically solvable situation. Specifically, we have investigated the information entropy for a one-dimensional system with a schematic "Landau" potential in a numerical way. Particularly, it is found that the phase transitional behavior of the system can be well expressed by the evolution of quantum information entropy. The calculated results also indicate that the position entropy S_x and the momentum entropy S_p at the critical point of phase transition may vary with the mass parameter M but their sum remains as a constant independent of M for a given excited state. In addition, the entropy uncertainty relation is proven to be robust during the whole process of the phase transition. |
---|---|
AbstractList | Calculations of the quantum information entropy have been extended to a non-analytically solvable situation. Specifically, we have investigated the information entropy for a one-dimensional system with a schematic "Landau" potential in a numerical way. Particularly, it is found that the phase transitional behavior of the system can be well expressed by the evolution of quantum information entropy. The calculated results also indicate that the position entropy S sub(x)and the momentum entropy S sub(p)at the critical point of phase transition may vary with the mass parameter M but their sum remains as a constant independent of M for a given excited state. In addition, the entropy uncertainty relation is proven to be robust during the whole process of the phase transition. Calculations of the quantum information entropy have been extended to a non-analytically solvable situation. Specifically, we have investigated the information entropy for a one-dimensional system with a schematic "Landau" potential in a numerical way. Particularly, it is found that the phase transitional behavior of the system can be well expressed by the evolution of quantum information entropy. The calculated results also indicate that the position entropy S_x and the momentum entropy S_p at the critical point of phase transition may vary with the mass parameter M but their sum remains as a constant independent of M for a given excited state. In addition, the entropy uncertainty relation is proven to be robust during the whole process of the phase transition. |
Author | 宋旭东 董世海 张宇 |
AuthorAffiliation | Software Institute, Dalian Jiaotong University, Dalian 116028, China CIDETEC, Instituto Politecnico Nacional, Unidad Profesional ALM, Mexico D. F. 07700, Mexico Department of Physics, Liaoning Normal University, Dalian 116029, China |
Author_xml | – sequence: 1 fullname: 宋旭东 董世海 张宇 |
BookMark | eNqFkE9LwzAYh4NMcJt-BKF48lL7JlmyDE8y_AcDEfTiJaRtukXaZEvSw769qRs7ePEUSJ7f733zTNDIOqsRusZwh0GIAvP5LMfAeEFYwQpgQIGcoTEBJnIq6GyExifmAk1C-AbgGAgdo6_3XtnYd5mxjfOdisbZTNvo3XafpZssjcpr02kb0otqs7APUXdZb2vt187YdbY7Nmw3KugsepXQoeYSnTeqDfrqeE7R59Pjx_IlX709vy4fVnlFMY25AsUWVJclEQJjLWa4VHVTlljVABWUitRp2bpJMFcUBK1FpaDhhFRNojWdottD79a7Xa9DlJ0JlW5bZbXrg8QCcxCcCJZQdkAr70LwupFbbzrl9xKDHFzKwZMcPEnCJJMHlyl3_ydXmfjrKn3XtP-mb47pjbPrXXJ2Gsu5YJzMYUF_AE8wiaE |
CitedBy_id | crossref_primary_10_3390_e25091296 crossref_primary_10_1002_qua_70024 crossref_primary_10_3390_e24111516 crossref_primary_10_3938_jkps_68_1267 crossref_primary_10_3390_e25070988 crossref_primary_10_1002_qua_26645 crossref_primary_10_1038_s41598_024_80123_9 crossref_primary_10_3938_jkps_75_87 crossref_primary_10_1142_S0217732318500335 crossref_primary_10_1002_qua_25368 crossref_primary_10_1002_qua_26410 crossref_primary_10_1140_epjp_s13360_020_00525_2 crossref_primary_10_1142_S0217732318500888 crossref_primary_10_1002_qua_25197 crossref_primary_10_1007_s10909_021_02596_6 crossref_primary_10_1016_j_rinp_2021_105109 crossref_primary_10_1140_epjp_s13360_021_02057_9 crossref_primary_10_1088_1674_1056_27_4_040301 crossref_primary_10_1140_epjp_s13360_023_04617_7 crossref_primary_10_3390_sym14050976 crossref_primary_10_1002_andp_201600121 |
Cites_doi | 10.1088/0305-4470/33/37/307 10.4310/MAA.1997.v4.n1.a7 10.7498/aps.64.107101 10.1002/(ISSN)1097-461X 10.2307/1970980 10.1063/1.2008212 10.1103/PhysRevA.50.3065 10.1103/PhysRevLett.99.263601 10.1007/BF01608825 10.1002/andp.v525.12 10.1016/j.aop.2014.05.018 10.1142/S021797920803848X 10.1016/j.physleta.2013.11.020 10.1103/PhysRevLett.92.212501 10.1063/1.530861 10.1103/PhysRevA.56.2545 10.1006/jath.1998.3315 10.1063/1.530949 10.1088/0031-8949/90/3/035205 10.1007/s100530050375 10.1063/1.532238 10.1139/P07-062 10.1080/00268970500493243 10.2307/2372390 10.1093/oso/9780195080919.001.0001 10.1088/0305-4470/29/9/029 10.1016/j.cam.2008.04.039 10.1016/j.nuclphysa.2005.04.003 10.1016/j.physleta.2015.09.029 10.1103/PhysRevA.69.052107 10.1016/j.physleta.2015.03.020 |
ContentType | Journal Article |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 7U5 8FD H8D L7M |
DOI | 10.1088/1674-1056/25/5/050302 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Quantum information entropy for one-dimensional system undergoing quantum phase transition |
EISSN | 2058-3834 1741-4199 |
EndPage | 42 |
ExternalDocumentID | 10_1088_1674_1056_25_5_050302 668562709 |
GroupedDBID | 02O 1JI 1WK 29B 2RA 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q 92L AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CCEZO CCVFK CEBXE CHBEP CJUJL CQIGP CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 FEDTE HAK HVGLF IJHAN IOP IZVLO JCGBZ KNG KOT M45 N5L NT- NT. PJBAE Q02 RIN RNS ROL RPA RW3 SY9 TCJ TGP UCJ W28 ~WA -SA -S~ AAYXX ACARI ADEQX AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- U1G U5K 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-c313t-a0a593ebb28811e841badfbb1ad00c0ba2d061df3136a3083d8ca0f622cfe84e3 |
ISSN | 1674-1056 |
IngestDate | Fri Jul 11 02:25:53 EDT 2025 Thu Apr 24 23:09:58 EDT 2025 Tue Jul 01 02:55:15 EDT 2025 Wed Feb 14 10:19:51 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c313t-a0a593ebb28811e841badfbb1ad00c0ba2d061df3136a3083d8ca0f622cfe84e3 |
Notes | quantum information entropy; quantum phase transition; entropy uncertainty relation Xu-Dong Song, Shi-Hai Dong, and Yu Zhang( 1 Software Institute, Dalian Jiaotong University, Dalian 116028, China 2 CIDETEC, Instituto Politdcnico Nacional, Unidad Profesional ALM, Mexico D. E 07700, Mexico 3 Department of Physics, Liaoning Normal University, Dalian 116029, China) Calculations of the quantum information entropy have been extended to a non-analytically solvable situation. Specifically, we have investigated the information entropy for a one-dimensional system with a schematic "Landau" potential in a numerical way. Particularly, it is found that the phase transitional behavior of the system can be well expressed by the evolution of quantum information entropy. The calculated results also indicate that the position entropy S_x and the momentum entropy S_p at the critical point of phase transition may vary with the mass parameter M but their sum remains as a constant independent of M for a given excited state. In addition, the entropy uncertainty relation is proven to be robust during the whole process of the phase transition. 11-5639/O4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1816086285 |
PQPubID | 23500 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1816086285 crossref_primary_10_1088_1674_1056_25_5_050302 crossref_citationtrail_10_1088_1674_1056_25_5_050302 chongqing_primary_668562709 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-05-01 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chinese Physics |
PublicationYear | 2016 |
References | 22 Kumar A (20) 2005; 43 24 25 26 28 Majernik V (15) 1996; 29 Sun G H (27) 2013; 87 Bialynicki-Birula I (9) 2010 Sun G H (29) 2013; 22 30 31 Zhang Y (39) 2010; 43 10 Valencia-Torres R (32) 2015; 90 11 Galindo A (13) 1978 33 12 34 14 36 37 16 17 18 19 Diao X F (41) 2015; 32 Everett H (5) 1973 1 2 Sloane N J A (4) 1993 Buyarov V S (23) 2000; 33 3 Iachello F (38) 1995 6 7 8 40 Sun G H (35) 2015; 24 21 |
References_xml | – volume: 33 start-page: 6549 issn: 0305-4470 year: 2000 ident: 23 publication-title: J. Phys. doi: 10.1088/0305-4470/33/37/307 – ident: 19 doi: 10.4310/MAA.1997.v4.n1.a7 – year: 1973 ident: 5 publication-title: The Many World Interpretation of Quantum Mechannics – volume: 87 issn: 1402-4896 year: 2013 ident: 27 publication-title: Phys. Scr. – ident: 40 doi: 10.7498/aps.64.107101 – ident: 25 doi: 10.1002/(ISSN)1097-461X – ident: 7 doi: 10.2307/1970980 – ident: 26 doi: 10.1063/1.2008212 – ident: 1 doi: 10.1103/PhysRevA.50.3065 – ident: 12 doi: 10.1103/PhysRevLett.99.263601 – volume: 22 issn: 1674-1056 year: 2013 ident: 29 publication-title: Chin. Phys. – ident: 8 doi: 10.1007/BF01608825 – ident: 28 doi: 10.1002/andp.v525.12 – year: 2010 ident: 9 – ident: 31 doi: 10.1016/j.aop.2014.05.018 – volume: 24 issn: 1674-1056 year: 2015 ident: 35 publication-title: Chin. Phys. – ident: 18 doi: 10.1142/S021797920803848X – ident: 30 doi: 10.1016/j.physleta.2013.11.020 – ident: 36 doi: 10.1103/PhysRevLett.92.212501 – ident: 3 doi: 10.1063/1.530861 – ident: 10 doi: 10.1103/PhysRevA.56.2545 – ident: 22 doi: 10.1006/jath.1998.3315 – ident: 2 doi: 10.1063/1.530949 – year: 1978 ident: 13 publication-title: Quantum Mechanics – volume: 90 issn: 1402-4896 year: 2015 ident: 32 publication-title: Phys. Scr. doi: 10.1088/0031-8949/90/3/035205 – ident: 14 doi: 10.1007/s100530050375 – year: 1993 ident: 4 publication-title: Shannon C E Collected Papers – ident: 21 doi: 10.1063/1.532238 – ident: 17 doi: 10.1139/P07-062 – ident: 16 doi: 10.1080/00268970500493243 – ident: 6 doi: 10.2307/2372390 – volume: 43 start-page: 958 issn: 0019-5596 year: 2005 ident: 20 publication-title: Ind J. Pure. Appl. Phys. – volume: 43 issn: 0953-4075 year: 2010 ident: 39 publication-title: J. Phys. – volume: 32 issn: 0256-307X year: 2015 ident: 41 publication-title: Chin. Phys. Lett. – year: 1995 ident: 38 publication-title: Algebraic Theory of Molecules doi: 10.1093/oso/9780195080919.001.0001 – volume: 29 start-page: 2187 issn: 0305-4470 year: 1996 ident: 15 publication-title: J. Phys. doi: 10.1088/0305-4470/29/9/029 – ident: 24 doi: 10.1016/j.cam.2008.04.039 – ident: 37 doi: 10.1016/j.nuclphysa.2005.04.003 – ident: 34 doi: 10.1016/j.physleta.2015.09.029 – ident: 11 doi: 10.1103/PhysRevA.69.052107 – ident: 33 doi: 10.1016/j.physleta.2015.03.020 |
SSID | ssj0061023 ssib054405859 ssib000804704 |
Score | 2.1991954 |
Snippet | Calculations of the quantum information entropy have been extended to a non-analytically solvable situation. Specifically, we have investigated the information... |
SourceID | proquest crossref chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 38 |
SubjectTerms | Constants Entropy (Information theory) Entropy (Information theory) (Information) Evolution Mathematical analysis Mathematical models Phase transformations Quantum phenomena 一维系统 信息熵 定性关系 数值方法 相变 计算结果 质量参数 量子 |
Title | Quantum information entropy for one-dimensional system undergoing quantum phase transition |
URI | http://lib.cqvip.com/qk/85823A/201605/668562709.html https://www.proquest.com/docview/1816086285 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVgCIkXxKcoA2Qk3pDXfNl1HifYVNDYhtZKhRfLjp11EiTd1rzs13Nv7DQZTGLwErWO40Q-J9fHju-9hLzLJFjFpOTMcGMZbmBkUhjBbGI5EErYPEUH5y-HYjrPPi_4os_Z2nqXrM1OcXWjX8n_oAplgCt6yf4DsptGoQB-A75wBITheCuMvzbQL83P9yH6aQslrtbWK78Ns64csxi-34feCGGb29S3F6c1LhKchxZWSxjNMF9E5fdwDTUrpth2cNYvglz2eZpPwnbeRcM-1mEERE0cik-WZ2yqz_5Ymv7WDJcaYtFv7AvWUUwysNs8xK72ZSBJ8FNyPjSp3pc5UIcP7CMHm5IMBlv8L2605GD9cFGhuyM6rmAUjDYSxqCVYfzswyO1Pz84ULO9xewuuZfAxAFzWnw6Oh4Iniib9BNQnoFelSjo_NgtMJAFTtG723Y-X1KON2XjhI_52D8ERuRYQq-eA2TXlc31gb1VK7NH5GGYZtBdz5nH5I6rnpD7xx7Bp-R7YA4dMIcG5lAoob8xh3rm0J45NDCHtsyhPXOekfn-3uzDlIUsG6xI43TNdKR5njpjEinj2MksNtqWxsTaRlERGZ1Y6BdbQmWhU1DsVhY6KuENL0qo7dLnZKuCp3pBaClSV8YOVGZhsrjMdG5Sk0uuo4kGPpUjsr3pLbXy0VSUEBI0-CTKRyTr-k8VIUA95kn5odqNElIqhEAhBCrhiisPwYjsbC7r2vzLBW87cBTYUvxApitXN5cK1K7AKb7kL29RZ5s86F-SV2RrfdG416BQ1-ZNS7pfsVyKcg |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+information+entropy+for+one-dimensional+system+undergoing+quantum+phase+transition&rft.jtitle=Chinese+physics+B&rft.au=Song%2C+Xu-Dong&rft.au=Dong%2C+Shi-Hai&rft.au=Zhang%2C+Yu&rft.date=2016-05-01&rft.issn=1674-1056&rft.eissn=1741-4199&rft.volume=25&rft.issue=5&rft.spage=50302&rft.epage=50306&rft_id=info:doi/10.1088%2F1674-1056%2F25%2F5%2F050302&rft.externalDBID=NO_FULL_TEXT |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg |