Quantum information entropy for one-dimensional system undergoing quantum phase transition

Calculations of the quantum information entropy have been extended to a non-analytically solvable situation. Specifically, we have investigated the information entropy for a one-dimensional system with a schematic "Landau" potential in a numerical way. Particularly, it is found that the phase transi...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 25; no. 5; pp. 38 - 42
Main Author 宋旭东 董世海 张宇
Format Journal Article
LanguageEnglish
Published 01.05.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Calculations of the quantum information entropy have been extended to a non-analytically solvable situation. Specifically, we have investigated the information entropy for a one-dimensional system with a schematic "Landau" potential in a numerical way. Particularly, it is found that the phase transitional behavior of the system can be well expressed by the evolution of quantum information entropy. The calculated results also indicate that the position entropy S_x and the momentum entropy S_p at the critical point of phase transition may vary with the mass parameter M but their sum remains as a constant independent of M for a given excited state. In addition, the entropy uncertainty relation is proven to be robust during the whole process of the phase transition.
AbstractList Calculations of the quantum information entropy have been extended to a non-analytically solvable situation. Specifically, we have investigated the information entropy for a one-dimensional system with a schematic "Landau" potential in a numerical way. Particularly, it is found that the phase transitional behavior of the system can be well expressed by the evolution of quantum information entropy. The calculated results also indicate that the position entropy S sub(x)and the momentum entropy S sub(p)at the critical point of phase transition may vary with the mass parameter M but their sum remains as a constant independent of M for a given excited state. In addition, the entropy uncertainty relation is proven to be robust during the whole process of the phase transition.
Calculations of the quantum information entropy have been extended to a non-analytically solvable situation. Specifically, we have investigated the information entropy for a one-dimensional system with a schematic "Landau" potential in a numerical way. Particularly, it is found that the phase transitional behavior of the system can be well expressed by the evolution of quantum information entropy. The calculated results also indicate that the position entropy S_x and the momentum entropy S_p at the critical point of phase transition may vary with the mass parameter M but their sum remains as a constant independent of M for a given excited state. In addition, the entropy uncertainty relation is proven to be robust during the whole process of the phase transition.
Author 宋旭东 董世海 张宇
AuthorAffiliation Software Institute, Dalian Jiaotong University, Dalian 116028, China CIDETEC, Instituto Politecnico Nacional, Unidad Profesional ALM, Mexico D. F. 07700, Mexico Department of Physics, Liaoning Normal University, Dalian 116029, China
Author_xml – sequence: 1
  fullname: 宋旭东 董世海 张宇
BookMark eNqFkE9LwzAYh4NMcJt-BKF48lL7JlmyDE8y_AcDEfTiJaRtukXaZEvSw769qRs7ePEUSJ7f733zTNDIOqsRusZwh0GIAvP5LMfAeEFYwQpgQIGcoTEBJnIq6GyExifmAk1C-AbgGAgdo6_3XtnYd5mxjfOdisbZTNvo3XafpZssjcpr02kb0otqs7APUXdZb2vt187YdbY7Nmw3KugsepXQoeYSnTeqDfrqeE7R59Pjx_IlX709vy4fVnlFMY25AsUWVJclEQJjLWa4VHVTlljVABWUitRp2bpJMFcUBK1FpaDhhFRNojWdottD79a7Xa9DlJ0JlW5bZbXrg8QCcxCcCJZQdkAr70LwupFbbzrl9xKDHFzKwZMcPEnCJJMHlyl3_ydXmfjrKn3XtP-mb47pjbPrXXJ2Gsu5YJzMYUF_AE8wiaE
CitedBy_id crossref_primary_10_3390_e25091296
crossref_primary_10_1002_qua_70024
crossref_primary_10_3390_e24111516
crossref_primary_10_3938_jkps_68_1267
crossref_primary_10_3390_e25070988
crossref_primary_10_1002_qua_26645
crossref_primary_10_1038_s41598_024_80123_9
crossref_primary_10_3938_jkps_75_87
crossref_primary_10_1142_S0217732318500335
crossref_primary_10_1002_qua_25368
crossref_primary_10_1002_qua_26410
crossref_primary_10_1140_epjp_s13360_020_00525_2
crossref_primary_10_1142_S0217732318500888
crossref_primary_10_1002_qua_25197
crossref_primary_10_1007_s10909_021_02596_6
crossref_primary_10_1016_j_rinp_2021_105109
crossref_primary_10_1140_epjp_s13360_021_02057_9
crossref_primary_10_1088_1674_1056_27_4_040301
crossref_primary_10_1140_epjp_s13360_023_04617_7
crossref_primary_10_3390_sym14050976
crossref_primary_10_1002_andp_201600121
Cites_doi 10.1088/0305-4470/33/37/307
10.4310/MAA.1997.v4.n1.a7
10.7498/aps.64.107101
10.1002/(ISSN)1097-461X
10.2307/1970980
10.1063/1.2008212
10.1103/PhysRevA.50.3065
10.1103/PhysRevLett.99.263601
10.1007/BF01608825
10.1002/andp.v525.12
10.1016/j.aop.2014.05.018
10.1142/S021797920803848X
10.1016/j.physleta.2013.11.020
10.1103/PhysRevLett.92.212501
10.1063/1.530861
10.1103/PhysRevA.56.2545
10.1006/jath.1998.3315
10.1063/1.530949
10.1088/0031-8949/90/3/035205
10.1007/s100530050375
10.1063/1.532238
10.1139/P07-062
10.1080/00268970500493243
10.2307/2372390
10.1093/oso/9780195080919.001.0001
10.1088/0305-4470/29/9/029
10.1016/j.cam.2008.04.039
10.1016/j.nuclphysa.2005.04.003
10.1016/j.physleta.2015.09.029
10.1103/PhysRevA.69.052107
10.1016/j.physleta.2015.03.020
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1088/1674-1056/25/5/050302
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Quantum information entropy for one-dimensional system undergoing quantum phase transition
EISSN 2058-3834
1741-4199
EndPage 42
ExternalDocumentID 10_1088_1674_1056_25_5_050302
668562709
GroupedDBID 02O
1JI
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NT-
NT.
PJBAE
Q02
RIN
RNS
ROL
RPA
RW3
SY9
TCJ
TGP
UCJ
W28
~WA
-SA
-S~
AAYXX
ACARI
ADEQX
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
U1G
U5K
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c313t-a0a593ebb28811e841badfbb1ad00c0ba2d061df3136a3083d8ca0f622cfe84e3
ISSN 1674-1056
IngestDate Fri Jul 11 02:25:53 EDT 2025
Thu Apr 24 23:09:58 EDT 2025
Tue Jul 01 02:55:15 EDT 2025
Wed Feb 14 10:19:51 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c313t-a0a593ebb28811e841badfbb1ad00c0ba2d061df3136a3083d8ca0f622cfe84e3
Notes quantum information entropy; quantum phase transition; entropy uncertainty relation
Xu-Dong Song, Shi-Hai Dong, and Yu Zhang( 1 Software Institute, Dalian Jiaotong University, Dalian 116028, China 2 CIDETEC, Instituto Politdcnico Nacional, Unidad Profesional ALM, Mexico D. E 07700, Mexico 3 Department of Physics, Liaoning Normal University, Dalian 116029, China)
Calculations of the quantum information entropy have been extended to a non-analytically solvable situation. Specifically, we have investigated the information entropy for a one-dimensional system with a schematic "Landau" potential in a numerical way. Particularly, it is found that the phase transitional behavior of the system can be well expressed by the evolution of quantum information entropy. The calculated results also indicate that the position entropy S_x and the momentum entropy S_p at the critical point of phase transition may vary with the mass parameter M but their sum remains as a constant independent of M for a given excited state. In addition, the entropy uncertainty relation is proven to be robust during the whole process of the phase transition.
11-5639/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1816086285
PQPubID 23500
PageCount 5
ParticipantIDs proquest_miscellaneous_1816086285
crossref_primary_10_1088_1674_1056_25_5_050302
crossref_citationtrail_10_1088_1674_1056_25_5_050302
chongqing_primary_668562709
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-05-01
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics B
PublicationTitleAlternate Chinese Physics
PublicationYear 2016
References 22
Kumar A (20) 2005; 43
24
25
26
28
Majernik V (15) 1996; 29
Sun G H (27) 2013; 87
Bialynicki-Birula I (9) 2010
Sun G H (29) 2013; 22
30
31
Zhang Y (39) 2010; 43
10
Valencia-Torres R (32) 2015; 90
11
Galindo A (13) 1978
33
12
34
14
36
37
16
17
18
19
Diao X F (41) 2015; 32
Everett H (5) 1973
1
2
Sloane N J A (4) 1993
Buyarov V S (23) 2000; 33
3
Iachello F (38) 1995
6
7
8
40
Sun G H (35) 2015; 24
21
References_xml – volume: 33
  start-page: 6549
  issn: 0305-4470
  year: 2000
  ident: 23
  publication-title: J. Phys.
  doi: 10.1088/0305-4470/33/37/307
– ident: 19
  doi: 10.4310/MAA.1997.v4.n1.a7
– year: 1973
  ident: 5
  publication-title: The Many World Interpretation of Quantum Mechannics
– volume: 87
  issn: 1402-4896
  year: 2013
  ident: 27
  publication-title: Phys. Scr.
– ident: 40
  doi: 10.7498/aps.64.107101
– ident: 25
  doi: 10.1002/(ISSN)1097-461X
– ident: 7
  doi: 10.2307/1970980
– ident: 26
  doi: 10.1063/1.2008212
– ident: 1
  doi: 10.1103/PhysRevA.50.3065
– ident: 12
  doi: 10.1103/PhysRevLett.99.263601
– volume: 22
  issn: 1674-1056
  year: 2013
  ident: 29
  publication-title: Chin. Phys.
– ident: 8
  doi: 10.1007/BF01608825
– ident: 28
  doi: 10.1002/andp.v525.12
– year: 2010
  ident: 9
– ident: 31
  doi: 10.1016/j.aop.2014.05.018
– volume: 24
  issn: 1674-1056
  year: 2015
  ident: 35
  publication-title: Chin. Phys.
– ident: 18
  doi: 10.1142/S021797920803848X
– ident: 30
  doi: 10.1016/j.physleta.2013.11.020
– ident: 36
  doi: 10.1103/PhysRevLett.92.212501
– ident: 3
  doi: 10.1063/1.530861
– ident: 10
  doi: 10.1103/PhysRevA.56.2545
– ident: 22
  doi: 10.1006/jath.1998.3315
– ident: 2
  doi: 10.1063/1.530949
– year: 1978
  ident: 13
  publication-title: Quantum Mechanics
– volume: 90
  issn: 1402-4896
  year: 2015
  ident: 32
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/90/3/035205
– ident: 14
  doi: 10.1007/s100530050375
– year: 1993
  ident: 4
  publication-title: Shannon C E Collected Papers
– ident: 21
  doi: 10.1063/1.532238
– ident: 17
  doi: 10.1139/P07-062
– ident: 16
  doi: 10.1080/00268970500493243
– ident: 6
  doi: 10.2307/2372390
– volume: 43
  start-page: 958
  issn: 0019-5596
  year: 2005
  ident: 20
  publication-title: Ind J. Pure. Appl. Phys.
– volume: 43
  issn: 0953-4075
  year: 2010
  ident: 39
  publication-title: J. Phys.
– volume: 32
  issn: 0256-307X
  year: 2015
  ident: 41
  publication-title: Chin. Phys. Lett.
– year: 1995
  ident: 38
  publication-title: Algebraic Theory of Molecules
  doi: 10.1093/oso/9780195080919.001.0001
– volume: 29
  start-page: 2187
  issn: 0305-4470
  year: 1996
  ident: 15
  publication-title: J. Phys.
  doi: 10.1088/0305-4470/29/9/029
– ident: 24
  doi: 10.1016/j.cam.2008.04.039
– ident: 37
  doi: 10.1016/j.nuclphysa.2005.04.003
– ident: 34
  doi: 10.1016/j.physleta.2015.09.029
– ident: 11
  doi: 10.1103/PhysRevA.69.052107
– ident: 33
  doi: 10.1016/j.physleta.2015.03.020
SSID ssj0061023
ssib054405859
ssib000804704
Score 2.1991954
Snippet Calculations of the quantum information entropy have been extended to a non-analytically solvable situation. Specifically, we have investigated the information...
SourceID proquest
crossref
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 38
SubjectTerms Constants
Entropy (Information theory)
Entropy (Information theory) (Information)
Evolution
Mathematical analysis
Mathematical models
Phase transformations
Quantum phenomena
一维系统
信息熵
定性关系
数值方法
相变
计算结果
质量参数
量子
Title Quantum information entropy for one-dimensional system undergoing quantum phase transition
URI http://lib.cqvip.com/qk/85823A/201605/668562709.html
https://www.proquest.com/docview/1816086285
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVgCIkXxKcoA2Qk3pDXfNl1HifYVNDYhtZKhRfLjp11EiTd1rzs13Nv7DQZTGLwErWO40Q-J9fHju-9hLzLJFjFpOTMcGMZbmBkUhjBbGI5EErYPEUH5y-HYjrPPi_4os_Z2nqXrM1OcXWjX8n_oAplgCt6yf4DsptGoQB-A75wBITheCuMvzbQL83P9yH6aQslrtbWK78Ns64csxi-34feCGGb29S3F6c1LhKchxZWSxjNMF9E5fdwDTUrpth2cNYvglz2eZpPwnbeRcM-1mEERE0cik-WZ2yqz_5Ymv7WDJcaYtFv7AvWUUwysNs8xK72ZSBJ8FNyPjSp3pc5UIcP7CMHm5IMBlv8L2605GD9cFGhuyM6rmAUjDYSxqCVYfzswyO1Pz84ULO9xewuuZfAxAFzWnw6Oh4Iniib9BNQnoFelSjo_NgtMJAFTtG723Y-X1KON2XjhI_52D8ERuRYQq-eA2TXlc31gb1VK7NH5GGYZtBdz5nH5I6rnpD7xx7Bp-R7YA4dMIcG5lAoob8xh3rm0J45NDCHtsyhPXOekfn-3uzDlIUsG6xI43TNdKR5njpjEinj2MksNtqWxsTaRlERGZ1Y6BdbQmWhU1DsVhY6KuENL0qo7dLnZKuCp3pBaClSV8YOVGZhsrjMdG5Sk0uuo4kGPpUjsr3pLbXy0VSUEBI0-CTKRyTr-k8VIUA95kn5odqNElIqhEAhBCrhiisPwYjsbC7r2vzLBW87cBTYUvxApitXN5cK1K7AKb7kL29RZ5s86F-SV2RrfdG416BQ1-ZNS7pfsVyKcg
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+information+entropy+for+one-dimensional+system+undergoing+quantum+phase+transition&rft.jtitle=Chinese+physics+B&rft.au=Song%2C+Xu-Dong&rft.au=Dong%2C+Shi-Hai&rft.au=Zhang%2C+Yu&rft.date=2016-05-01&rft.issn=1674-1056&rft.eissn=1741-4199&rft.volume=25&rft.issue=5&rft.spage=50302&rft.epage=50306&rft_id=info:doi/10.1088%2F1674-1056%2F25%2F5%2F050302&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg