On global in time self-similar solutions of Smoluchowski equation with multiplicative kernel
Abstract We study the similarity solutions (SS) of Smoluchowski coagulation equation with multiplicative kernel $K(x,y)=(xy)^{s}$ for $s<\frac{1}{2}$. When $s<0$ , the SS consists of three regions with distinct asymptotic behaviours. The appropriate matching yields a global description of the...
Saved in:
Published in | IMA journal of applied mathematics Vol. 88; no. 2; pp. 405 - 428 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
01.06.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0272-4960 1464-3634 |
DOI | 10.1093/imamat/hxad012 |
Cover
Loading…
Abstract | Abstract
We study the similarity solutions (SS) of Smoluchowski coagulation equation with multiplicative kernel $K(x,y)=(xy)^{s}$ for $s<\frac{1}{2}$. When $s<0$ , the SS consists of three regions with distinct asymptotic behaviours. The appropriate matching yields a global description of the solution consisting of a Gamma distribution tail, an intermediate region described by a lognormal distribution and a region of very fast decay of the solutions to zero near the origin. When $s\in \left ( 0,\frac{1}{2}\right ) $, the SS is unbounded at the origin. It also presents three regions: a Gamma distribution tail, an intermediate region of power-like (or Pareto distribution) decay and the region close to the origin where a singularity occurs. Finally, full numerical simulations of Smoluchowski equation serve to verify our theoretical results and show the convergence of solutions to the selfsimilar regime. |
---|---|
AbstractList | We study the similarity solutions (SS) of Smoluchowski coagulation equation with multiplicative kernel $K(x,y)=(xy)^{s}$ for $s<\frac{1}{2}$. When $s<0$ , the SS consists of three regions with distinct asymptotic behaviours. The appropriate matching yields a global description of the solution consisting of a Gamma distribution tail, an intermediate region described by a lognormal distribution and a region of very fast decay of the solutions to zero near the origin. When $s\in \left ( 0,\frac{1}{2}\right ) $, the SS is unbounded at the origin. It also presents three regions: a Gamma distribution tail, an intermediate region of power-like (or Pareto distribution) decay and the region close to the origin where a singularity occurs. Finally, full numerical simulations of Smoluchowski equation serve to verify our theoretical results and show the convergence of solutions to the selfsimilar regime. Abstract We study the similarity solutions (SS) of Smoluchowski coagulation equation with multiplicative kernel $K(x,y)=(xy)^{s}$ for $s<\frac{1}{2}$. When $s<0$ , the SS consists of three regions with distinct asymptotic behaviours. The appropriate matching yields a global description of the solution consisting of a Gamma distribution tail, an intermediate region described by a lognormal distribution and a region of very fast decay of the solutions to zero near the origin. When $s\in \left ( 0,\frac{1}{2}\right ) $, the SS is unbounded at the origin. It also presents three regions: a Gamma distribution tail, an intermediate region of power-like (or Pareto distribution) decay and the region close to the origin where a singularity occurs. Finally, full numerical simulations of Smoluchowski equation serve to verify our theoretical results and show the convergence of solutions to the selfsimilar regime. |
Author | Breschi, G Fontelos, M A |
Author_xml | – sequence: 1 givenname: G surname: Breschi fullname: Breschi, G – sequence: 2 givenname: M A surname: Fontelos fullname: Fontelos, M A email: marco.fontelos@icmat.es |
BookMark | eNqFkD1PwzAQhi1UJNrCyuyVIe35o3EyooovqVIHYEOKbNempk5cYofCvyelnZAQ0-m903One0Zo0ITGIHRJYEKgZFNXy1qm6fpTroDQEzQkPOcZyxkfoCFQQTNe5nCGRjG-AQCZCRiil2WDX31Q0mPX4ORqg6PxNouudl62OAbfJReaiIPFj3Wf9Drs4sZh897J_QTvXFrjuvPJbb3Tfe_D4I1pG-PP0amVPpqLYx2j59ubp_l9tljePcyvF5lmhKWslEKLkq3YjAJY1QdLRGEFJ5SCKvIip4oZYFQL6Puc65UQVklVgLSqJGyMJoe9ug0xtsZW27a30X5VBKq9m-rgpjq66QH-C9Au_XyTWun839jVAQvd9r8T3-N5fnU |
CitedBy_id | crossref_primary_10_1103_PhysRevE_108_064110 crossref_primary_10_1080_19392699_2025_2458064 |
Cites_doi | 10.1103/PhysRevE.81.035303 10.1086/173378 10.1002/cpa.3048 10.1016/0098-1354(94)E0007-A 10.1088/0305-4470/16/10/026 10.1088/0951-7715/27/7/1709 10.1137/S1064827503429132 10.1103/PhysRevE.81.036303 10.1103/PhysRevLett.54.1396 10.1017/CBO9781107050242 10.1016/S0370-1573(03)00241-2 10.1088/0305-4470/34/47/323 10.1007/s00220-002-0680-9 10.4171/RMI/653 10.1007/BF01019497 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2023 |
Copyright_xml | – notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2023 |
DBID | AAYXX CITATION |
DOI | 10.1093/imamat/hxad012 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1464-3634 |
EndPage | 428 |
ExternalDocumentID | 10_1093_imamat_hxad012 10.1093/imamat/hxad012 |
GroupedDBID | -E4 -~X .2P .I3 0R~ 18M 1TH 29I 4.4 482 48X 5GY 5VS 5WA 6.Y 6TJ 70D 8WZ A6W AAIJN AAJKP AAJQQ AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUAY AAUQX AAVAP AAWDT ABDBF ABDTM ABEFU ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABQTQ ABSAR ABSMQ ABTAH ABWST ABXVV ABZBJ ACFRR ACGFO ACGFS ACGOD ACIWK ACMRT ACPQN ACUFI ACUTJ ACYTK ACZBC ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKPW AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFIYH AFOFC AFSHK AFXEN AFYAG AGINJ AGKEF AGKRT AGMDO AGQXC AGSYK AHXPO AI. AIAGR AIJHB AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ANFBD APIBT APJGH APWMN AQDSO ASAOO ASPBG ATDFG ATGXG ATTQO AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DILTD DU5 D~K EBS EE~ EJD ELUNK ESX F9B FEDTE FLIZI FLUFQ FOEOM FQBLK G8K GAUVT GJXCC H13 H5~ HAR HVGLF HW0 HZ~ I-F IOX J21 JAVBF KAQDR KBUDW KC5 KOP KSI KSN M-Z M43 M49 MBTAY N9A NGC NMDNZ NOMLY NU- NVLIB O0~ O9- OCL ODMLO OJQWA OJZSN OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO T9H TCN TJP TN5 TUS UPT UQL VH1 WH7 X7H XOL YAYTL YKOAZ YXANX ZCG ZKX ZY4 ~91 AAYXX ABDFA ABEJV ABGNP ABPQP ABVGC ACUHS ACUXJ ADNBA ADYJX AGORE AHGBF AJBYB AJNCP ALXQX AMVHM ANAKG CITATION JXSIZ OXVGQ |
ID | FETCH-LOGICAL-c313t-9a7c793d35200fb7c7f178f741220b86862b3e032c7078f44cd77fbab80afb913 |
ISSN | 0272-4960 |
IngestDate | Thu Apr 24 22:52:19 EDT 2025 Tue Jul 01 01:59:18 EDT 2025 Wed Aug 28 03:18:07 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | global existence smoluchowski coagulation equation similarity solutions |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights) https://academic.oup.com/pages/standard-publication-reuse-rights |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c313t-9a7c793d35200fb7c7f178f741220b86862b3e032c7078f44cd77fbab80afb913 |
OpenAccessLink | https://academic.oup.com/imamat/article-pdf/88/2/405/50501337/hxad012.pdf |
PageCount | 24 |
ParticipantIDs | crossref_primary_10_1093_imamat_hxad012 crossref_citationtrail_10_1093_imamat_hxad012 oup_primary_10_1093_imamat_hxad012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IMA journal of applied mathematics |
PublicationYear | 2023 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Breschi (2024011317022807100_ref5) 2014; 27 Abramowitz (2024011317022807100_ref1) 1972 Erasmus (2024011317022807100_ref11) 1994; 8 Lee (2024011317022807100_ref19) 2001; 34 Connaughton (2024011317022807100_ref8) 2010; 81 van Dongen (2024011317022807100_ref9) 1985; 54 Lee (2024011317022807100_ref18) 1993; 418 Barenblatt (2024011317022807100_ref4) 1996 Cañizo (2024011317022807100_ref6) 2011; 27-3 Jullien (2024011317022807100_ref17) 1987 Leyvraz (2024011317022807100_ref20) 2003; 383 Menon (2024011317022807100_ref21) 2004; 57 Ziff (2024011317022807100_ref23) 1983; 16 Smoluchowski (2024011317022807100_ref22) 1916; 17 Drake (2024011317022807100_ref10) 1972 Escobedo (2024011317022807100_ref13) 2006; 23 Connaughton (2024011317022807100_ref7) 2010; 81 Escobedo (2024011317022807100_ref14) 2002; 231 Hendriks (2024011317022807100_ref16) 1983; 31 Banasiak (2024011317022807100_ref3) 2019 Filbet (2024011317022807100_ref15) 2004; 25 Banasiak (2024011317022807100_ref2) 2019 Ernst (2024011317022807100_ref12) 1986 |
References_xml | – volume: 81 start-page: 035303 issue: R year: 2010 ident: 2024011317022807100_ref7 article-title: Aggregation–fragmentation processes and decaying three-wave turbulence publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys. doi: 10.1103/PhysRevE.81.035303 – volume-title: Aggregation and Fractal Aggregates year: 1987 ident: 2024011317022807100_ref17 – volume: 418 start-page: 147 year: 1993 ident: 2024011317022807100_ref18 article-title: N-body evolution of dense clusters of compact stars publication-title: Astrophys. J. doi: 10.1086/173378 – volume: 57 start-page: 1197 year: 2004 ident: 2024011317022807100_ref21 article-title: Approach to self-similarity in Smoluchowski’s coagulation equations publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3048 – volume: 8 start-page: 775 year: 1994 ident: 2024011317022807100_ref11 article-title: Numerical treatment of the population balance equation using a spline-Galerkin method publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(94)E0007-A – volume: 16 start-page: 2293 year: 1983 ident: 2024011317022807100_ref23 article-title: Kinetics of gelation and universality publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/16/10/026 – volume: 27 start-page: 1709 year: 2014 ident: 2024011317022807100_ref5 article-title: Selfsimilar solutions of the second kind representing gelation in finite time for the Smoluchowski equation publication-title: Nonlinearity doi: 10.1088/0951-7715/27/7/1709 – volume: 25 start-page: 2004 year: 2004 ident: 2024011317022807100_ref15 article-title: Numerical simulation of the Smoluchowski coagulation equation publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827503429132 – volume: 81 start-page: 036303 year: 2010 ident: 2024011317022807100_ref8 article-title: Dynamical scaling and the finite-capacity anomaly in three-wave turbulence publication-title: Phys. Rev. E (3) doi: 10.1103/PhysRevE.81.036303 – volume: 54 start-page: 1396 year: 1985 ident: 2024011317022807100_ref9 article-title: Dynamic scaling in the kinetics of clustering publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.54.1396 – volume: 17 start-page: 557 year: 1916 ident: 2024011317022807100_ref22 article-title: Drei Vorträge über diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen publication-title: Phys Z – volume: 23 start-page: 331 year: 2006 ident: 2024011317022807100_ref13 article-title: Dust and self-similarity for the Smoluchowski coagulation equation, Annales de l’Institut Henri Poincare (C) non linear publication-title: Analysis – volume-title: Scaling, self-similarity, and intermediate asymptotics year: 1996 ident: 2024011317022807100_ref4 doi: 10.1017/CBO9781107050242 – volume-title: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables year: 1972 ident: 2024011317022807100_ref1 – start-page: 201 volume-title: A general mathematical survey of the coagulation equation Topics in Current Aerosol Research (Part 2) year: 1972 ident: 2024011317022807100_ref10 – volume: 383 start-page: 95 year: 2003 ident: 2024011317022807100_ref20 article-title: Scaling theory and exactly solved models in the kinetics of irreversible aggregation publication-title: Phys. Rep. doi: 10.1016/S0370-1573(03)00241-2 – start-page: 289 volume-title: Kinetics of clustering in irreversible aggregation Fractals in Physics year: 1986 ident: 2024011317022807100_ref12 – volume: 34 start-page: 10219 year: 2001 ident: 2024011317022807100_ref19 article-title: A survey of numerical solutions to the coagulation equation publication-title: J. Phys. A doi: 10.1088/0305-4470/34/47/323 – volume: 231 start-page: 157 year: 2002 ident: 2024011317022807100_ref14 article-title: Gelation in coagulation and fragmentation models publication-title: Commun. Math. Phys. doi: 10.1007/s00220-002-0680-9 – volume-title: Analytic Methods for Coagulation-Fragmentation Models, Volume II (Chapman & Hall/CRC Monographs and Research Notes in Mathematics) year: 2019 ident: 2024011317022807100_ref3 – volume-title: Analytic Methods for Coagulation-Fragmentation Models, Volume I (Chapman & Hall/CRC Monographs and Research Notes in Mathematics) year: 2019 ident: 2024011317022807100_ref2 – volume: 27-3 start-page: 803 year: 2011 ident: 2024011317022807100_ref6 article-title: Regularity, local behavior and partial uniqueness of self-similar profiles for Smoluchowski’s coagulation equation publication-title: Rev. Mat. Iberoamericana doi: 10.4171/RMI/653 – volume: 31 start-page: 519 year: 1983 ident: 2024011317022807100_ref16 article-title: Coagulation equations with gelation publication-title: J. Stat. Phys. doi: 10.1007/BF01019497 |
SSID | ssj0001570 |
Score | 2.301036 |
Snippet | Abstract
We study the similarity solutions (SS) of Smoluchowski coagulation equation with multiplicative kernel $K(x,y)=(xy)^{s}$ for $s<\frac{1}{2}$. When... We study the similarity solutions (SS) of Smoluchowski coagulation equation with multiplicative kernel $K(x,y)=(xy)^{s}$ for $s<\frac{1}{2}$. When $s<0$ , the... |
SourceID | crossref oup |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 405 |
Title | On global in time self-similar solutions of Smoluchowski equation with multiplicative kernel |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdb8rI9lHYfrF1XxBjsIai1JflDj-m20A2yvrTQh0GQZImZxO5Hsg_21-8UKbbDmrXbi7HNISPdj9PpfPc7hN7IPIdNVqVEGTirgpXkRERSkMTyVCUmUoq7eufx5_TknH-6SC7aXzHL6pKFOtS_bq0r-R-twjvQq6uS_QfNNoPCC7gH_cIVNAzXe-n4tF4RerhsxbIyg7mZWTIvq9IllzYfX1amVPAEtu7HfFoOzLVn-PZh2JBUuIzefTeDqbmpQyJ98Fo_joddigkZPNeqoXxtY-1wetfLPsFt066RI8Ca-XS-cYidhjgDZW0-1N_qFzvmimaUcOG7Axwab055yglLQ7gy2Ns87-CKdownj5LOPsx90fgfJt7TX5WVhPnBzdefsohCJvY6cfZm4YeoT-FUQXuoPzx-fzxqtu44yXxQLkylYflkR36MozDCmhfjKiM7TsnZNtoKpwk89NDYQQ9M_QQ9Hrd6eYq-nNbYgwSXNXYgwV2Q4AYk-NLiLkjwCiTYgQSvgwR7kDxD56MPZ-9OSGipQTSL2YIImWmwyAVzbFtWwYONs9yCW0lppHJXLqSYiRjVjgXKcq6LLLNKqjySVomYPUe9-rI2LxAWwqYCvBtDwYeVkqtCZSzPjE5EXGgR7yKyWqKJDnzzru3JbOLzHtjEL-kkLOkuetvIX3mmlY2Sr2HF7xDau4_QS_Sohfo-6i1uvplX4GQu1EGAxm-ePIVN |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+global+in+time+self-similar+solutions+of+Smoluchowski+equation+with+multiplicative+kernel&rft.jtitle=IMA+journal+of+applied+mathematics&rft.au=Breschi%2C+G&rft.au=Fontelos%2C+M+A&rft.date=2023-06-01&rft.pub=Oxford+University+Press&rft.issn=0272-4960&rft.eissn=1464-3634&rft.volume=88&rft.issue=2&rft.spage=405&rft.epage=428&rft_id=info:doi/10.1093%2Fimamat%2Fhxad012&rft.externalDocID=10.1093%2Fimamat%2Fhxad012 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-4960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-4960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-4960&client=summon |