On global in time self-similar solutions of Smoluchowski equation with multiplicative kernel

Abstract We study the similarity solutions (SS) of Smoluchowski coagulation equation with multiplicative kernel $K(x,y)=(xy)^{s}$ for $s<\frac{1}{2}$. When $s<0$ , the SS consists of three regions with distinct asymptotic behaviours. The appropriate matching yields a global description of the...

Full description

Saved in:
Bibliographic Details
Published inIMA journal of applied mathematics Vol. 88; no. 2; pp. 405 - 428
Main Authors Breschi, G, Fontelos, M A
Format Journal Article
LanguageEnglish
Published Oxford University Press 01.06.2023
Subjects
Online AccessGet full text
ISSN0272-4960
1464-3634
DOI10.1093/imamat/hxad012

Cover

Loading…
Abstract Abstract We study the similarity solutions (SS) of Smoluchowski coagulation equation with multiplicative kernel $K(x,y)=(xy)^{s}$ for $s<\frac{1}{2}$. When $s<0$ , the SS consists of three regions with distinct asymptotic behaviours. The appropriate matching yields a global description of the solution consisting of a Gamma distribution tail, an intermediate region described by a lognormal distribution and a region of very fast decay of the solutions to zero near the origin. When $s\in \left ( 0,\frac{1}{2}\right ) $, the SS is unbounded at the origin. It also presents three regions: a Gamma distribution tail, an intermediate region of power-like (or Pareto distribution) decay and the region close to the origin where a singularity occurs. Finally, full numerical simulations of Smoluchowski equation serve to verify our theoretical results and show the convergence of solutions to the selfsimilar regime.
AbstractList We study the similarity solutions (SS) of Smoluchowski coagulation equation with multiplicative kernel $K(x,y)=(xy)^{s}$ for $s<\frac{1}{2}$. When $s<0$ , the SS consists of three regions with distinct asymptotic behaviours. The appropriate matching yields a global description of the solution consisting of a Gamma distribution tail, an intermediate region described by a lognormal distribution and a region of very fast decay of the solutions to zero near the origin. When $s\in \left ( 0,\frac{1}{2}\right ) $, the SS is unbounded at the origin. It also presents three regions: a Gamma distribution tail, an intermediate region of power-like (or Pareto distribution) decay and the region close to the origin where a singularity occurs. Finally, full numerical simulations of Smoluchowski equation serve to verify our theoretical results and show the convergence of solutions to the selfsimilar regime.
Abstract We study the similarity solutions (SS) of Smoluchowski coagulation equation with multiplicative kernel $K(x,y)=(xy)^{s}$ for $s<\frac{1}{2}$. When $s<0$ , the SS consists of three regions with distinct asymptotic behaviours. The appropriate matching yields a global description of the solution consisting of a Gamma distribution tail, an intermediate region described by a lognormal distribution and a region of very fast decay of the solutions to zero near the origin. When $s\in \left ( 0,\frac{1}{2}\right ) $, the SS is unbounded at the origin. It also presents three regions: a Gamma distribution tail, an intermediate region of power-like (or Pareto distribution) decay and the region close to the origin where a singularity occurs. Finally, full numerical simulations of Smoluchowski equation serve to verify our theoretical results and show the convergence of solutions to the selfsimilar regime.
Author Breschi, G
Fontelos, M A
Author_xml – sequence: 1
  givenname: G
  surname: Breschi
  fullname: Breschi, G
– sequence: 2
  givenname: M A
  surname: Fontelos
  fullname: Fontelos, M A
  email: marco.fontelos@icmat.es
BookMark eNqFkD1PwzAQhi1UJNrCyuyVIe35o3EyooovqVIHYEOKbNempk5cYofCvyelnZAQ0-m903One0Zo0ITGIHRJYEKgZFNXy1qm6fpTroDQEzQkPOcZyxkfoCFQQTNe5nCGRjG-AQCZCRiil2WDX31Q0mPX4ORqg6PxNouudl62OAbfJReaiIPFj3Wf9Drs4sZh897J_QTvXFrjuvPJbb3Tfe_D4I1pG-PP0amVPpqLYx2j59ubp_l9tljePcyvF5lmhKWslEKLkq3YjAJY1QdLRGEFJ5SCKvIip4oZYFQL6Puc65UQVklVgLSqJGyMJoe9ug0xtsZW27a30X5VBKq9m-rgpjq66QH-C9Au_XyTWun839jVAQvd9r8T3-N5fnU
CitedBy_id crossref_primary_10_1103_PhysRevE_108_064110
crossref_primary_10_1080_19392699_2025_2458064
Cites_doi 10.1103/PhysRevE.81.035303
10.1086/173378
10.1002/cpa.3048
10.1016/0098-1354(94)E0007-A
10.1088/0305-4470/16/10/026
10.1088/0951-7715/27/7/1709
10.1137/S1064827503429132
10.1103/PhysRevE.81.036303
10.1103/PhysRevLett.54.1396
10.1017/CBO9781107050242
10.1016/S0370-1573(03)00241-2
10.1088/0305-4470/34/47/323
10.1007/s00220-002-0680-9
10.4171/RMI/653
10.1007/BF01019497
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2023
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2023
DBID AAYXX
CITATION
DOI 10.1093/imamat/hxad012
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1464-3634
EndPage 428
ExternalDocumentID 10_1093_imamat_hxad012
10.1093/imamat/hxad012
GroupedDBID -E4
-~X
.2P
.I3
0R~
18M
1TH
29I
4.4
482
48X
5GY
5VS
5WA
6.Y
6TJ
70D
8WZ
A6W
AAIJN
AAJKP
AAJQQ
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAWDT
ABDBF
ABDTM
ABEFU
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABQTQ
ABSAR
ABSMQ
ABTAH
ABWST
ABXVV
ABZBJ
ACFRR
ACGFO
ACGFS
ACGOD
ACIWK
ACMRT
ACPQN
ACUFI
ACUTJ
ACYTK
ACZBC
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKPW
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFIYH
AFOFC
AFSHK
AFXEN
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGQXC
AGSYK
AHXPO
AI.
AIAGR
AIJHB
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ANFBD
APIBT
APJGH
APWMN
AQDSO
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DILTD
DU5
D~K
EBS
EE~
EJD
ELUNK
ESX
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FQBLK
G8K
GAUVT
GJXCC
H13
H5~
HAR
HVGLF
HW0
HZ~
I-F
IOX
J21
JAVBF
KAQDR
KBUDW
KC5
KOP
KSI
KSN
M-Z
M43
M49
MBTAY
N9A
NGC
NMDNZ
NOMLY
NU-
NVLIB
O0~
O9-
OCL
ODMLO
OJQWA
OJZSN
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
T9H
TCN
TJP
TN5
TUS
UPT
UQL
VH1
WH7
X7H
XOL
YAYTL
YKOAZ
YXANX
ZCG
ZKX
ZY4
~91
AAYXX
ABDFA
ABEJV
ABGNP
ABPQP
ABVGC
ACUHS
ACUXJ
ADNBA
ADYJX
AGORE
AHGBF
AJBYB
AJNCP
ALXQX
AMVHM
ANAKG
CITATION
JXSIZ
OXVGQ
ID FETCH-LOGICAL-c313t-9a7c793d35200fb7c7f178f741220b86862b3e032c7078f44cd77fbab80afb913
ISSN 0272-4960
IngestDate Thu Apr 24 22:52:19 EDT 2025
Tue Jul 01 01:59:18 EDT 2025
Wed Aug 28 03:18:07 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords global existence
smoluchowski coagulation equation
similarity solutions
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights)
https://academic.oup.com/pages/standard-publication-reuse-rights
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c313t-9a7c793d35200fb7c7f178f741220b86862b3e032c7078f44cd77fbab80afb913
OpenAccessLink https://academic.oup.com/imamat/article-pdf/88/2/405/50501337/hxad012.pdf
PageCount 24
ParticipantIDs crossref_primary_10_1093_imamat_hxad012
crossref_citationtrail_10_1093_imamat_hxad012
oup_primary_10_1093_imamat_hxad012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationTitle IMA journal of applied mathematics
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Breschi (2024011317022807100_ref5) 2014; 27
Abramowitz (2024011317022807100_ref1) 1972
Erasmus (2024011317022807100_ref11) 1994; 8
Lee (2024011317022807100_ref19) 2001; 34
Connaughton (2024011317022807100_ref8) 2010; 81
van Dongen (2024011317022807100_ref9) 1985; 54
Lee (2024011317022807100_ref18) 1993; 418
Barenblatt (2024011317022807100_ref4) 1996
Cañizo (2024011317022807100_ref6) 2011; 27-3
Jullien (2024011317022807100_ref17) 1987
Leyvraz (2024011317022807100_ref20) 2003; 383
Menon (2024011317022807100_ref21) 2004; 57
Ziff (2024011317022807100_ref23) 1983; 16
Smoluchowski (2024011317022807100_ref22) 1916; 17
Drake (2024011317022807100_ref10) 1972
Escobedo (2024011317022807100_ref13) 2006; 23
Connaughton (2024011317022807100_ref7) 2010; 81
Escobedo (2024011317022807100_ref14) 2002; 231
Hendriks (2024011317022807100_ref16) 1983; 31
Banasiak (2024011317022807100_ref3) 2019
Filbet (2024011317022807100_ref15) 2004; 25
Banasiak (2024011317022807100_ref2) 2019
Ernst (2024011317022807100_ref12) 1986
References_xml – volume: 81
  start-page: 035303
  issue: R
  year: 2010
  ident: 2024011317022807100_ref7
  article-title: Aggregation–fragmentation processes and decaying three-wave turbulence
  publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
  doi: 10.1103/PhysRevE.81.035303
– volume-title: Aggregation and Fractal Aggregates
  year: 1987
  ident: 2024011317022807100_ref17
– volume: 418
  start-page: 147
  year: 1993
  ident: 2024011317022807100_ref18
  article-title: N-body evolution of dense clusters of compact stars
  publication-title: Astrophys. J.
  doi: 10.1086/173378
– volume: 57
  start-page: 1197
  year: 2004
  ident: 2024011317022807100_ref21
  article-title: Approach to self-similarity in Smoluchowski’s coagulation equations
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3048
– volume: 8
  start-page: 775
  year: 1994
  ident: 2024011317022807100_ref11
  article-title: Numerical treatment of the population balance equation using a spline-Galerkin method
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(94)E0007-A
– volume: 16
  start-page: 2293
  year: 1983
  ident: 2024011317022807100_ref23
  article-title: Kinetics of gelation and universality
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/16/10/026
– volume: 27
  start-page: 1709
  year: 2014
  ident: 2024011317022807100_ref5
  article-title: Selfsimilar solutions of the second kind representing gelation in finite time for the Smoluchowski equation
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/27/7/1709
– volume: 25
  start-page: 2004
  year: 2004
  ident: 2024011317022807100_ref15
  article-title: Numerical simulation of the Smoluchowski coagulation equation
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827503429132
– volume: 81
  start-page: 036303
  year: 2010
  ident: 2024011317022807100_ref8
  article-title: Dynamical scaling and the finite-capacity anomaly in three-wave turbulence
  publication-title: Phys. Rev. E (3)
  doi: 10.1103/PhysRevE.81.036303
– volume: 54
  start-page: 1396
  year: 1985
  ident: 2024011317022807100_ref9
  article-title: Dynamic scaling in the kinetics of clustering
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.54.1396
– volume: 17
  start-page: 557
  year: 1916
  ident: 2024011317022807100_ref22
  article-title: Drei Vorträge über diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen
  publication-title: Phys Z
– volume: 23
  start-page: 331
  year: 2006
  ident: 2024011317022807100_ref13
  article-title: Dust and self-similarity for the Smoluchowski coagulation equation, Annales de l’Institut Henri Poincare (C) non linear
  publication-title: Analysis
– volume-title: Scaling, self-similarity, and intermediate asymptotics
  year: 1996
  ident: 2024011317022807100_ref4
  doi: 10.1017/CBO9781107050242
– volume-title: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
  year: 1972
  ident: 2024011317022807100_ref1
– start-page: 201
  volume-title: A general mathematical survey of the coagulation equation Topics in Current Aerosol Research (Part 2)
  year: 1972
  ident: 2024011317022807100_ref10
– volume: 383
  start-page: 95
  year: 2003
  ident: 2024011317022807100_ref20
  article-title: Scaling theory and exactly solved models in the kinetics of irreversible aggregation
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(03)00241-2
– start-page: 289
  volume-title: Kinetics of clustering in irreversible aggregation Fractals in Physics
  year: 1986
  ident: 2024011317022807100_ref12
– volume: 34
  start-page: 10219
  year: 2001
  ident: 2024011317022807100_ref19
  article-title: A survey of numerical solutions to the coagulation equation
  publication-title: J. Phys. A
  doi: 10.1088/0305-4470/34/47/323
– volume: 231
  start-page: 157
  year: 2002
  ident: 2024011317022807100_ref14
  article-title: Gelation in coagulation and fragmentation models
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-002-0680-9
– volume-title: Analytic Methods for Coagulation-Fragmentation Models, Volume II (Chapman & Hall/CRC Monographs and Research Notes in Mathematics)
  year: 2019
  ident: 2024011317022807100_ref3
– volume-title: Analytic Methods for Coagulation-Fragmentation Models, Volume I (Chapman & Hall/CRC Monographs and Research Notes in Mathematics)
  year: 2019
  ident: 2024011317022807100_ref2
– volume: 27-3
  start-page: 803
  year: 2011
  ident: 2024011317022807100_ref6
  article-title: Regularity, local behavior and partial uniqueness of self-similar profiles for Smoluchowski’s coagulation equation
  publication-title: Rev. Mat. Iberoamericana
  doi: 10.4171/RMI/653
– volume: 31
  start-page: 519
  year: 1983
  ident: 2024011317022807100_ref16
  article-title: Coagulation equations with gelation
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01019497
SSID ssj0001570
Score 2.301036
Snippet Abstract We study the similarity solutions (SS) of Smoluchowski coagulation equation with multiplicative kernel $K(x,y)=(xy)^{s}$ for $s<\frac{1}{2}$. When...
We study the similarity solutions (SS) of Smoluchowski coagulation equation with multiplicative kernel $K(x,y)=(xy)^{s}$ for $s<\frac{1}{2}$. When $s<0$ , the...
SourceID crossref
oup
SourceType Enrichment Source
Index Database
Publisher
StartPage 405
Title On global in time self-similar solutions of Smoluchowski equation with multiplicative kernel
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdb8rI9lHYfrF1XxBjsIai1JflDj-m20A2yvrTQh0GQZImZxO5Hsg_21-8UKbbDmrXbi7HNISPdj9PpfPc7hN7IPIdNVqVEGTirgpXkRERSkMTyVCUmUoq7eufx5_TknH-6SC7aXzHL6pKFOtS_bq0r-R-twjvQq6uS_QfNNoPCC7gH_cIVNAzXe-n4tF4RerhsxbIyg7mZWTIvq9IllzYfX1amVPAEtu7HfFoOzLVn-PZh2JBUuIzefTeDqbmpQyJ98Fo_joddigkZPNeqoXxtY-1wetfLPsFt066RI8Ca-XS-cYidhjgDZW0-1N_qFzvmimaUcOG7Axwab055yglLQ7gy2Ns87-CKdownj5LOPsx90fgfJt7TX5WVhPnBzdefsohCJvY6cfZm4YeoT-FUQXuoPzx-fzxqtu44yXxQLkylYflkR36MozDCmhfjKiM7TsnZNtoKpwk89NDYQQ9M_QQ9Hrd6eYq-nNbYgwSXNXYgwV2Q4AYk-NLiLkjwCiTYgQSvgwR7kDxD56MPZ-9OSGipQTSL2YIImWmwyAVzbFtWwYONs9yCW0lppHJXLqSYiRjVjgXKcq6LLLNKqjySVomYPUe9-rI2LxAWwqYCvBtDwYeVkqtCZSzPjE5EXGgR7yKyWqKJDnzzru3JbOLzHtjEL-kkLOkuetvIX3mmlY2Sr2HF7xDau4_QS_Sohfo-6i1uvplX4GQu1EGAxm-ePIVN
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+global+in+time+self-similar+solutions+of+Smoluchowski+equation+with+multiplicative+kernel&rft.jtitle=IMA+journal+of+applied+mathematics&rft.au=Breschi%2C+G&rft.au=Fontelos%2C+M+A&rft.date=2023-06-01&rft.pub=Oxford+University+Press&rft.issn=0272-4960&rft.eissn=1464-3634&rft.volume=88&rft.issue=2&rft.spage=405&rft.epage=428&rft_id=info:doi/10.1093%2Fimamat%2Fhxad012&rft.externalDocID=10.1093%2Fimamat%2Fhxad012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-4960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-4960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-4960&client=summon