On a subdiffusive tumour growth model with fractional time derivative
Abstract In this work, we present and analyse a system of coupled partial differential equations, which models tumour growth under the influence of subdiffusion, mechanical effects, nutrient supply and chemotherapy. The subdiffusion of the system is modelled by a time fractional derivative in the eq...
Saved in:
Published in | IMA journal of applied mathematics Vol. 86; no. 4; pp. 688 - 729 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
01.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
In this work, we present and analyse a system of coupled partial differential equations, which models tumour growth under the influence of subdiffusion, mechanical effects, nutrient supply and chemotherapy. The subdiffusion of the system is modelled by a time fractional derivative in the equation governing the volume fraction of the tumour cells. The mass densities of the nutrients and the chemotherapeutic agents are modelled by reaction diffusion equations. We prove the existence and uniqueness of a weak solution to the model via the Faedo–Galerkin method and the application of appropriate compactness theorems. Lastly, we propose a fully discretized system and illustrate the effects of the fractional derivative and the influence of the fractional parameter in numerical examples. |
---|---|
AbstractList | Abstract
In this work, we present and analyse a system of coupled partial differential equations, which models tumour growth under the influence of subdiffusion, mechanical effects, nutrient supply and chemotherapy. The subdiffusion of the system is modelled by a time fractional derivative in the equation governing the volume fraction of the tumour cells. The mass densities of the nutrients and the chemotherapeutic agents are modelled by reaction diffusion equations. We prove the existence and uniqueness of a weak solution to the model via the Faedo–Galerkin method and the application of appropriate compactness theorems. Lastly, we propose a fully discretized system and illustrate the effects of the fractional derivative and the influence of the fractional parameter in numerical examples. In this work, we present and analyse a system of coupled partial differential equations, which models tumour growth under the influence of subdiffusion, mechanical effects, nutrient supply and chemotherapy. The subdiffusion of the system is modelled by a time fractional derivative in the equation governing the volume fraction of the tumour cells. The mass densities of the nutrients and the chemotherapeutic agents are modelled by reaction diffusion equations. We prove the existence and uniqueness of a weak solution to the model via the Faedo–Galerkin method and the application of appropriate compactness theorems. Lastly, we propose a fully discretized system and illustrate the effects of the fractional derivative and the influence of the fractional parameter in numerical examples. |
Author | Rajendran, Mabel L Scarabosio, Laura Wohlmuth, Barbara Fritz, Marvin Kuttler, Christina |
Author_xml | – sequence: 1 givenname: Marvin surname: Fritz fullname: Fritz, Marvin – sequence: 2 givenname: Christina surname: Kuttler fullname: Kuttler, Christina – sequence: 3 givenname: Mabel L surname: Rajendran fullname: Rajendran, Mabel L email: rajendrm@ma.tum.de – sequence: 4 givenname: Barbara surname: Wohlmuth fullname: Wohlmuth, Barbara – sequence: 5 givenname: Laura surname: Scarabosio fullname: Scarabosio, Laura |
BookMark | eNqFkD1rwzAURUVJoUnatbPWDk4kS5bksYT0AwJZ2tk8y1KjYltBkpP239chmQql033DPY_LmaFJ73uD0D0lC0pKtnQddJCWuy-oCSmv0JRywTMmGJ-gKcllnvFSkBs0i_GTEEILSaZove0x4DjUjbN2iO5gcBo6PwT8Efwx7XDnG9PioxtPG0An53tocXKdwY0J7gBpZG7RtYU2mrtLztH70_pt9ZJtts-vq8dNphllKSu5BEEVVSQHoxohjWBFoURuKC9rLayUDSHcGmahEIJrCVpqphVThRSqYXPEz3918DEGYyvtEpw2pQCurSipTiqqs4rqomLEFr-wfRgr4ftv4OEM-GH_X_cH_dJ1Wg |
CitedBy_id | crossref_primary_10_1007_s41808_024_00276_6 crossref_primary_10_1093_imanum_drab025 crossref_primary_10_1016_j_cma_2023_116566 crossref_primary_10_1016_j_nonrwa_2024_104271 crossref_primary_10_1137_23M1590767 crossref_primary_10_1016_j_camwa_2022_01_002 crossref_primary_10_1016_j_camwa_2025_01_012 crossref_primary_10_1007_s11538_023_01151_6 crossref_primary_10_1016_j_camwa_2023_02_002 crossref_primary_10_1007_s40072_025_00348_1 crossref_primary_10_1016_j_matcom_2025_02_023 crossref_primary_10_1007_s40435_023_01291_6 crossref_primary_10_1080_01630563_2024_2447247 crossref_primary_10_3934_mbe_2023828 crossref_primary_10_1515_anona_2022_0262 crossref_primary_10_3390_fractalfract7040318 crossref_primary_10_1016_j_aml_2021_107799 crossref_primary_10_3389_fams_2024_1388414 |
Cites_doi | 10.1242/jcs.116392 10.1007/978-0-387-70914-7 10.7150/jca.17648 10.1016/S0893-9659(98)00143-8 10.1201/9780203494899 10.1063/1.1605946 10.1007/BF01762360 10.1515/fca-2015-0048 10.1103/PhysRevE.69.036126 10.1007/s00205-016-0969-z 10.1007/s00209-007-0225-1 10.1515/9783110571660-008 10.1137/17M1145549 10.1007/978-3-642-14574-2 10.1103/PhysRevLett.98.118101 10.1016/j.camwa.2019.08.008 10.1007/978-94-010-0732-0 10.1017/S0956792516000292 10.1088/1742-6596/7/1/005 10.1007/BF01398686 10.1051/mmnp/201611102 10.1016/j.camwa.2018.07.036 10.1007/978-3-642-23099-8_10 10.1017/S0308210500002419 10.1016/S0370-1573(00)00070-3 10.1103/PhysRevE.74.031116 10.1155/S1110757X03204083 10.1017/CBO9780511662805 10.1103/PhysRevE.53.4191 10.1007/s41808-018-0022-5 10.1137/1.9781611972597 10.1137/140979563 10.3389/fphy.2019.00093 10.1016/j.jmaa.2006.05.061 10.1142/S0218202519500519 10.1515/fca-2019-0050 10.1007/s00208-015-1356-z 10.1007/978-1-4614-5975-0 10.1619/fesi.52.1 10.1142/S0218202519500325 10.1016/j.cma.2017.08.009 10.3892/or.2016.4660 10.1137/0517050 10.1137/130910865 10.1038/nbt0897-778 10.1016/S0362-546X(00)00104-8 10.1137/17M1160318 10.1007/978-0-8176-4558-8_17 10.1103/PhysRevB.27.844 10.1142/S1793048014500052 10.1007/978-1-4939-7493-1_11 10.1142/S021820251650055X |
ContentType | Journal Article |
Copyright | The Author(s) 2021. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2021 |
Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2021 |
DBID | AAYXX CITATION |
DOI | 10.1093/imamat/hxab009 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1464-3634 |
EndPage | 729 |
ExternalDocumentID | 10_1093_imamat_hxab009 10.1093/imamat/hxab009 |
GroupedDBID | -E4 -~X .2P .I3 0R~ 18M 1TH 29I 4.4 482 48X 5GY 5VS 5WA 6.Y 6TJ 70D 8WZ A6W AAIJN AAJKP AAJQQ AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUAY AAUQX AAVAP AAWDT ABDBF ABDTM ABEFU ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABQTQ ABSAR ABSMQ ABTAH ABWST ABXVV ABZBJ ACFRR ACGFO ACGFS ACGOD ACIWK ACMRT ACPQN ACUFI ACUTJ ACYTK ACZBC ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKPW AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFIYH AFOFC AFSHK AFXEN AFYAG AGINJ AGKEF AGKRT AGMDO AGQXC AGSYK AHXPO AI. AIAGR AIJHB AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ANFBD APIBT APJGH APWMN AQDSO ASAOO ASPBG ATDFG ATGXG ATTQO AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DILTD DU5 D~K EBS EE~ EJD ELUNK ESX F9B FEDTE FLIZI FLUFQ FOEOM FQBLK G8K GAUVT GJXCC H13 H5~ HAR HVGLF HW0 HZ~ I-F IOX J21 JAVBF KAQDR KBUDW KC5 KOP KSI KSN M-Z M43 M49 MBTAY N9A NGC NMDNZ NOMLY NU- NVLIB O0~ O9- OCL ODMLO OJQWA OJZSN OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO T9H TCN TJP TN5 TUS UPT UQL VH1 WH7 X7H XOL YAYTL YKOAZ YXANX ZCG ZKX ZY4 ~91 AAYXX ABAZT ABDFA ABEJV ABGNP ABPQP ABVGC ABVLG ACUHS ACUXJ ADNBA ADYJX AGORE AHGBF AJBYB AJNCP ALXQX AMVHM ANAKG CITATION JXSIZ OXVGQ |
ID | FETCH-LOGICAL-c313t-947a6181802ae8d67e6355862e149bc6f77d004fe3fa5664c7ac7c3c8385768d3 |
ISSN | 0272-4960 |
IngestDate | Thu Apr 24 22:57:51 EDT 2025 Tue Jul 01 01:59:18 EDT 2025 Wed Aug 28 03:17:28 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | mechanical deformation subdiffusive tumour growth nonlinear partial differential equation well posedness fractional time derivative |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c313t-947a6181802ae8d67e6355862e149bc6f77d004fe3fa5664c7ac7c3c8385768d3 |
OpenAccessLink | https://academic.oup.com/imamat/article-pdf/86/4/688/39458258/hxab009.pdf |
PageCount | 42 |
ParticipantIDs | crossref_citationtrail_10_1093_imamat_hxab009 crossref_primary_10_1093_imamat_hxab009 oup_primary_10_1093_imamat_hxab009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IMA journal of applied mathematics |
PublicationYear | 2021 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Kilbas (2021073007101644600_ref36) 2006 Li (2021073007101644600_ref37) 2018; 50 Preziosi (2021073007101644600_ref54) 2003 Garcke (2021073007101644600_ref23) 2019 Miranville (2021073007101644600_ref51) 2003; 2003 Bartkowiak (2021073007101644600_ref5) 2005; 34 Henry (2021073007101644600_ref27) 2006; 74 Robinson (2021073007101644600_ref56) 2001 McLean (2021073007101644600_ref48) 2020; 79 Wang (2021073007101644600_ref61) 2017; 8 Vergara (2021073007101644600_ref60) 2008; 259 Diethelm (2021073007101644600_ref11) 2010 Fritz (2021073007101644600_ref17) 2019; 29 Kemppainen (2021073007101644600_ref35) 2016; 366 Evans (2021073007101644600_ref14) 2010 Nepomnyashchy (2021073007101644600_ref52) 2016; 11 Jin (2021073007101644600_ref34) 2016; 38 Dumitru (2021073007101644600_ref13) 2012 Alnæs (2021073007101644600_ref3) 2015 Yuan (2021073007101644600_ref63) 2016; 35 Li (2021073007101644600_ref38) 2018; 50 Simon (2021073007101644600_ref58) 1986; 146 Zacher (2021073007101644600_ref65) 2009; 52 Faghihi (2021073007101644600_ref15) 2020 Garcke (2021073007101644600_ref20) 2005 Zeng (2021073007101644600_ref67) 2013; 35 Balkwill (2021073007101644600_ref4) 2012; 125 Helmlinger (2021073007101644600_ref26) 1997; 15 Iomin (2021073007101644600_ref32) 2015; 10 Quarteroni (2021073007101644600_ref55) 2008 Lubich (2021073007101644600_ref44) 1986; 17 Ciarlet (2021073007101644600_ref9) 2013 Boyer (2021073007101644600_ref6) 2013 Tahir-Kheli (2021073007101644600_ref59) 1983; 27 Gorenflo (2021073007101644600_ref24) 2015; 18 Metzler (2021073007101644600_ref49) 2000; 339 Iomin (2021073007101644600_ref30) 2005 Carrive (2021073007101644600_ref8) 1999; 12 Seki (2021073007101644600_ref57) 2003; 119 Allen (2021073007101644600_ref2) 2016; 221 Fedotov (2021073007101644600_ref16) 2007; 98 Iomin (2021073007101644600_ref29) 2005; 2 Yuste (2021073007101644600_ref64) 2004; 69 Compte (2021073007101644600_ref10) 1996; 53 Gripenberg (2021073007101644600_ref25) 1990 Lima (2021073007101644600_ref39) 2016; 26 Liu (2021073007101644600_ref42) 2018; 76 Akilandeeswari (2021073007101644600_ref1) 2017; 7 Hormuth (2021073007101644600_ref28) 2018 Brezis (2021073007101644600_ref7) 2010 Garcke (2021073007101644600_ref21) 2005 Ouedjedi (2021073007101644600_ref53) 2019; HAL-02124150 Lions (2021073007101644600_ref41) 2012 Ye (2021073007101644600_ref62) 2007; 328 McLean (2021073007101644600_ref47) 2019; 22 Lima (2021073007101644600_ref40) 2017; 327 Garcke (2021073007101644600_ref22) 2017; 28 Jiang (2021073007101644600_ref33) 2014; 9 Iomin (2021073007101644600_ref31) 2007 Logg (2021073007101644600_ref43) 2012 Miranville (2021073007101644600_ref50) 2001; 2 Lubich (2021073007101644600_ref45) 1988; 52 Manimaran (2021073007101644600_ref46) 2019; 7 Fritz (2021073007101644600_ref18) 2019; 29 Garcke (2021073007101644600_ref19) 2003; 133 Djilali (2021073007101644600_ref12) 2018; 4 Zacher (2021073007101644600_ref66) 2019 |
References_xml | – volume-title: A coupled mass transport and deformation theory of multi-constituent tumor growth. J. Mech. Phys. Solids year: 2020 ident: 2021073007101644600_ref15 – volume: 125 start-page: 5591 year: 2012 ident: 2021073007101644600_ref4 article-title: The tumor microenvironment at a glance publication-title: J. Cell Sci. doi: 10.1242/jcs.116392 – volume-title: Functional Analysis, Sobolev Spaces and Partial Differential Equations year: 2010 ident: 2021073007101644600_ref7 doi: 10.1007/978-0-387-70914-7 – volume: 8 start-page: 761 year: 2017 ident: 2021073007101644600_ref61 article-title: Role of tumor microenvironment in tumorigenesis publication-title: J. Cancer doi: 10.7150/jca.17648 – volume: 12 start-page: 23 year: 1999 ident: 2021073007101644600_ref8 article-title: The Cahn-Hilliard equation for an isotropic deformable continuum publication-title: Appl. Math. Lett. doi: 10.1016/S0893-9659(98)00143-8 – volume-title: Cancer Modelling and Simulation year: 2003 ident: 2021073007101644600_ref54 doi: 10.1201/9780203494899 – volume: 119 start-page: 7525 year: 2003 ident: 2021073007101644600_ref57 article-title: Recombination kinetics in subdiffusive media publication-title: J. Chem. Phys. doi: 10.1063/1.1605946 – volume: 146 start-page: 65 year: 1986 ident: 2021073007101644600_ref58 article-title: Compact sets in the space publication-title: Ann. Mat. Pur. Appl. doi: 10.1007/BF01762360 – volume: 18 start-page: 799 year: 2015 ident: 2021073007101644600_ref24 article-title: Time-fractional diffusion equation in the fractional Sobolev spaces publication-title: Frac. Calc. Appl. Anal. doi: 10.1515/fca-2015-0048 – volume: 69 year: 2004 ident: 2021073007101644600_ref64 article-title: Reaction front in an $\mathrm{A}+\mathrm{B}\to \mathrm{C}$ reaction-subdiffusion process publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.69.036126 – volume: 221 start-page: 603 year: 2016 ident: 2021073007101644600_ref2 article-title: A parabolic problem with a fractional time derivative publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-016-0969-z – volume: 259 start-page: 287 year: 2008 ident: 2021073007101644600_ref60 article-title: Lyapunov functions and convergence to steady state for differential equations of fractional order publication-title: Math. Z. doi: 10.1007/s00209-007-0225-1 – start-page: 159 volume-title: Time Fractional Diffusion Equations: Solution Concepts, Regularity, and Long-time Behavior year: 2019 ident: 2021073007101644600_ref66 doi: 10.1515/9783110571660-008 – volume: 7 start-page: 1570 year: 2017 ident: 2021073007101644600_ref1 article-title: Solvability of hyperbolic fractional partial differential equations publication-title: J. Appl. Anal. Comput. – volume: 50 start-page: 3963 year: 2018 ident: 2021073007101644600_ref38 article-title: Some compactness criteria for weak solutions of time fractional PDEs publication-title: SIAM J. Math. Anal. doi: 10.1137/17M1145549 – volume-title: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition using Differential Operators of Caputo Type year: 2010 ident: 2021073007101644600_ref11 doi: 10.1007/978-3-642-14574-2 – volume: 98 start-page: 118101 year: 2007 ident: 2021073007101644600_ref16 article-title: Migration and proliferation dichotomy in tumor-cell invasion publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.118101 – volume: 79 start-page: 947 year: 2020 ident: 2021073007101644600_ref48 article-title: Regularity theory for time-fractional advection–diffusion–reaction equations publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2019.08.008 – volume-title: Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors year: 2001 ident: 2021073007101644600_ref56 doi: 10.1007/978-94-010-0732-0 – volume: 28 start-page: 284 year: 2017 ident: 2021073007101644600_ref22 article-title: Well-posedness of a Cahn–Hilliard system modelling tumour growth with chemotaxis and active transport publication-title: Eur. J. Appl. Math. doi: 10.1017/S0956792516000292 – volume: 2 start-page: 82 year: 2005 ident: 2021073007101644600_ref29 article-title: Fractional transport of tumor cells publication-title: WSEAS Trans. Biol. Biomed. – volume-title: Journal of Physics: Conference Series year: 2005 ident: 2021073007101644600_ref30 article-title: Superdiffusion of cancer on a comb structure doi: 10.1088/1742-6596/7/1/005 – volume: 52 start-page: 129 year: 1988 ident: 2021073007101644600_ref45 article-title: Convolution quadrature and discretized operational calculus. I publication-title: Numerische Mathematik doi: 10.1007/BF01398686 – volume: 11 start-page: 26 year: 2016 ident: 2021073007101644600_ref52 article-title: Mathematical modelling of subdiffusion-reaction systems publication-title: Math. Model. Nat. Phenom. doi: 10.1051/mmnp/201611102 – volume-title: Mathematical Methods and Models in Phase Transitions year: 2005 ident: 2021073007101644600_ref20 article-title: Mechanical effects in the Cahn-Hilliard model: a review on mathematical results – volume: 76 start-page: 1876 year: 2018 ident: 2021073007101644600_ref42 article-title: Time-fractional Allen–Cahn and Cahn–Hilliard phase-field models and their numerical investigation publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2018.07.036 – start-page: 173 volume-title: Automated Solution of Differential Equations by the Finite Element Method year: 2012 ident: 2021073007101644600_ref43 article-title: DOLFIN: A C++/Python finite element library doi: 10.1007/978-3-642-23099-8_10 – volume: 133 start-page: 307 year: 2003 ident: 2021073007101644600_ref19 article-title: On Cahn–Hilliard systems with elasticity publication-title: Proceedings of the Royal Society of Edinburgh Section A: Mathematics doi: 10.1017/S0308210500002419 – volume: 339 start-page: 1 year: 2000 ident: 2021073007101644600_ref49 article-title: The random walk’s guide to anomalous diffusion: a fractional dynamics approach publication-title: Phys. Rep. doi: 10.1016/S0370-1573(00)00070-3 – start-page: 1 volume-title: Nonlinear Analysis: Real World Applications year: 2019 ident: 2021073007101644600_ref23 article-title: On a phase field model of Cahn-Hilliard type for tumour growth with mechanical effects – volume: 74 start-page: 031116 year: 2006 ident: 2021073007101644600_ref27 article-title: Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.74.031116 – volume-title: Partial Differential Equations year: 2010 ident: 2021073007101644600_ref14 – volume: 34 start-page: 1005 year: 2005 ident: 2021073007101644600_ref5 article-title: The Cahn-Hilliard-Gurtin system coupled with elasticity publication-title: Control Cybern. – volume: 2003 start-page: 165 year: 2003 ident: 2021073007101644600_ref51 article-title: Generalized Cahn-Hilliard equations based on a microforce balance publication-title: J. Appl. Math. doi: 10.1155/S1110757X03204083 – volume-title: Volterra Integral and Functional Equations. Encyclopedia of Mathematics and Its Applications year: 1990 ident: 2021073007101644600_ref25 doi: 10.1017/CBO9780511662805 – volume: 9 year: 2014 ident: 2021073007101644600_ref33 article-title: The anomalous diffusion of a tumor invading with different surrounding tissues publication-title: PLoS One – volume: 53 start-page: 4191 year: 1996 ident: 2021073007101644600_ref10 article-title: Stochastic foundations of fractional dynamics publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.53.4191 – volume: 4 start-page: 349 year: 2018 ident: 2021073007101644600_ref12 article-title: Galerkin method for time fractional diffusion equations publication-title: J. Elliptic Parabol. Equ. doi: 10.1007/s41808-018-0022-5 – volume-title: Linear and Nonlinear Functional Analysis with Applications year: 2013 ident: 2021073007101644600_ref9 doi: 10.1137/1.9781611972597 – volume: 38 start-page: A146 year: 2016 ident: 2021073007101644600_ref34 article-title: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data publication-title: SIAM J. Sci. Comput. doi: 10.1137/140979563 – volume-title: Fractional Calculus: Models and Numerical Methods year: 2012 ident: 2021073007101644600_ref13 – volume: 7 start-page: 93 year: 2019 ident: 2021073007101644600_ref46 article-title: Numerical solutions for time-fractional cancer invasion system with nonlocal diffusion publication-title: Front. Phys. doi: 10.3389/fphy.2019.00093 – volume: 328 start-page: 1075 year: 2007 ident: 2021073007101644600_ref62 article-title: A generalized Gronwall inequality and its application to a fractional differential equation publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2006.05.061 – volume-title: Theory and Applications of Fractional Differential Equations year: 2006 ident: 2021073007101644600_ref36 – start-page: 165 volume-title: On a Cahn-Hilliard Model for Phase Separation with Elastic Misfit year: 2005 ident: 2021073007101644600_ref21 – volume: HAL-02124150 year: 2019 ident: 2021073007101644600_ref53 article-title: Galerkin method for time fractional semilinear equations publication-title: Preprint – volume: 29 start-page: 2433 year: 2019 ident: 2021073007101644600_ref17 article-title: Local and nonlocal phase-field models of tumor growth and invasion due to ECM degradation publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202519500519 – volume: 22 start-page: 918 year: 2019 ident: 2021073007101644600_ref47 article-title: Well-posedness of time-fractional advection-diffusion-reaction equations publication-title: Fract. Calc. Appl. Anal. doi: 10.1515/fca-2019-0050 – volume: 366 start-page: 941 year: 2016 ident: 2021073007101644600_ref35 article-title: Decay estimates for time-fractional and other non-local in time subdiffusion equations in publication-title: Math. Annal. doi: 10.1007/s00208-015-1356-z – start-page: 3 year: 2015 ident: 2021073007101644600_ref3 article-title: The FEniCS project version 1.5 publication-title: Arch. Numer. Softw. – volume-title: Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models year: 2013 ident: 2021073007101644600_ref6 doi: 10.1007/978-1-4614-5975-0 – volume: 52 start-page: 1 year: 2009 ident: 2021073007101644600_ref65 article-title: Weak solutions of abstract evolutionary integro-differential equations in Hilbert spaces publication-title: Funkc. Ekvacioj doi: 10.1619/fesi.52.1 – volume: 29 start-page: 1691 year: 2019 ident: 2021073007101644600_ref18 article-title: On the unsteady Darcy-Forchheimer-Brinkman equation in local and nonlocal tumor growth models publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202519500325 – volume: 327 start-page: 277 year: 2017 ident: 2021073007101644600_ref40 article-title: Selection and validation of predictive models of radiation effects on tumor growth based on noninvasive imaging data publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2017.08.009 – volume: 35 start-page: 2499 year: 2016 ident: 2021073007101644600_ref63 article-title: Role of the tumor microenvironment in tumor progression and the clinical applications publication-title: Oncol. Rep. doi: 10.3892/or.2016.4660 – volume: 17 start-page: 704 year: 1986 ident: 2021073007101644600_ref44 article-title: Discretized fractional calculus publication-title: SIAM J. Math. Anal. doi: 10.1137/0517050 – volume: 35 start-page: A2976 year: 2013 ident: 2021073007101644600_ref67 article-title: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation publication-title: SIAM J. Sci. Comput. doi: 10.1137/130910865 – volume: 15 start-page: 778 year: 1997 ident: 2021073007101644600_ref26 article-title: Solid stress inhibits the growth of multicellular tumor spheroids publication-title: Nat. Biotechnol. doi: 10.1038/nbt0897-778 – volume-title: Non-homogeneous Boundary Value Problems and Applications I year: 2012 ident: 2021073007101644600_ref41 – volume: 2 start-page: 273 year: 2001 ident: 2021073007101644600_ref50 article-title: Long-time behavior of some models of Cahn-Hilliard equations in deformable continua publication-title: Nonlinear Anal. Real World Appl. doi: 10.1016/S0362-546X(00)00104-8 – volume: 50 start-page: 2867 year: 2018 ident: 2021073007101644600_ref37 article-title: A generalized definition of Caputo derivatives and its application to fractional ODEs publication-title: SIAM J. Math. Anal. doi: 10.1137/17M1160318 – start-page: 193 volume-title: Mathematical Modeling of Biological Systems year: 2007 ident: 2021073007101644600_ref31 article-title: Fractional transport of cancer cells due to self-entrapment by fission doi: 10.1007/978-0-8176-4558-8_17 – volume: 27 start-page: 844 year: 1983 ident: 2021073007101644600_ref59 article-title: Correlated random walk in lattices: tracer diffusion at general concentration publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.27.844 – volume: 10 start-page: 37 year: 2015 ident: 2021073007101644600_ref32 article-title: Continuous time random walk and migration–proliferation dichotomy of brain cancer publication-title: Biophys. Rev. Lett. doi: 10.1142/S1793048014500052 – volume-title: Numerical Approximation of Partial Differential Equations year: 2008 ident: 2021073007101644600_ref55 – start-page: 225 volume-title: Cancer Systems Biology. year: 2018 ident: 2021073007101644600_ref28 article-title: Mechanically coupled reaction-diffusion model to predict glioma growth: methodological details doi: 10.1007/978-1-4939-7493-1_11 – volume: 26 start-page: 2341 year: 2016 ident: 2021073007101644600_ref39 article-title: Selection, calibration, and validation of models of tumor growth publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S021820251650055X |
SSID | ssj0001570 |
Score | 2.3581235 |
Snippet | Abstract
In this work, we present and analyse a system of coupled partial differential equations, which models tumour growth under the influence of... In this work, we present and analyse a system of coupled partial differential equations, which models tumour growth under the influence of subdiffusion,... |
SourceID | crossref oup |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 688 |
Title | On a subdiffusive tumour growth model with fractional time derivative |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYWuJQDolDEq5WFkHpYGXZjb5wcl5cAacsFBLeV4zjsIjagkCDUX9Cf3XHGm4RHVeBiRZEzSjxfxvPwzBCyrQPdC0LZYZ4KQyZUpBhsQ5rpnupIxQMRJ9YPOfjlH1-I06veVav1p3FqqcijHf37zbySz3AV7gFfbZbsBzhbEYUbcA38hRE4DOO7eHyWtlX7oYhsl5OiPIeeF2DKZ-1rMK7zEba5QVdrkmEGQ5klMrHJUlnZ1-zx2VGgk0G_WUtCORV1UtV2bWSLjMtOsDbZ53Fch_ILWxM5q8sWuO7cGEq6MWmcocd1oCJ4tcrzfHk3up0U6ONxIZCmP8LrVqfhpmLLkx4TIXYJ2DEoVoUvGPed29LJXVcCe9x0KpRC1MdGf24_lugReSXqsQzWeKLg8-Fi9KRAgoT1tjYN5b_Y7aoziBh950OkMHTPz5A5DwwOkJhz_b2DvaNqV-_2JPrr3NdVBUD5LlLYdRSeKTg2abKhr5wvkgVnaNA-ouYraZl0icwPak4uk8OzlCraxA9F_FDEDy3xQy1-aI0favFDa_x8IxdHh-f7x8y11WCad3nOQiGV37U5_p4yQexLY5VOsGwNWMuR9hMpY_jJEsMTBcq-0FJpqbkOeGCN05ivkNn0LjWrhIYyVtKLNO9EQnCewBh72peJNjbn2awRNl2LoXY1523rk9vh26u_Rn5W8--x2so_Z27B0v5n0vq7yW2QLzWWN8lsnhXmO2ibefTDAeEvPzaIPw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+a+subdiffusive+tumour+growth+model+with+fractional+time+derivative&rft.jtitle=IMA+journal+of+applied+mathematics&rft.au=Fritz%2C+Marvin&rft.au=Kuttler%2C+Christina&rft.au=Rajendran%2C+Mabel+L&rft.au=Wohlmuth%2C+Barbara&rft.date=2021-08-01&rft.issn=0272-4960&rft.eissn=1464-3634&rft.volume=86&rft.issue=4&rft.spage=688&rft.epage=729&rft_id=info:doi/10.1093%2Fimamat%2Fhxab009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_imamat_hxab009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-4960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-4960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-4960&client=summon |