On a subdiffusive tumour growth model with fractional time derivative

Abstract In this work, we present and analyse a system of coupled partial differential equations, which models tumour growth under the influence of subdiffusion, mechanical effects, nutrient supply and chemotherapy. The subdiffusion of the system is modelled by a time fractional derivative in the eq...

Full description

Saved in:
Bibliographic Details
Published inIMA journal of applied mathematics Vol. 86; no. 4; pp. 688 - 729
Main Authors Fritz, Marvin, Kuttler, Christina, Rajendran, Mabel L, Wohlmuth, Barbara, Scarabosio, Laura
Format Journal Article
LanguageEnglish
Published Oxford University Press 01.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract In this work, we present and analyse a system of coupled partial differential equations, which models tumour growth under the influence of subdiffusion, mechanical effects, nutrient supply and chemotherapy. The subdiffusion of the system is modelled by a time fractional derivative in the equation governing the volume fraction of the tumour cells. The mass densities of the nutrients and the chemotherapeutic agents are modelled by reaction diffusion equations. We prove the existence and uniqueness of a weak solution to the model via the Faedo–Galerkin method and the application of appropriate compactness theorems. Lastly, we propose a fully discretized system and illustrate the effects of the fractional derivative and the influence of the fractional parameter in numerical examples.
AbstractList Abstract In this work, we present and analyse a system of coupled partial differential equations, which models tumour growth under the influence of subdiffusion, mechanical effects, nutrient supply and chemotherapy. The subdiffusion of the system is modelled by a time fractional derivative in the equation governing the volume fraction of the tumour cells. The mass densities of the nutrients and the chemotherapeutic agents are modelled by reaction diffusion equations. We prove the existence and uniqueness of a weak solution to the model via the Faedo–Galerkin method and the application of appropriate compactness theorems. Lastly, we propose a fully discretized system and illustrate the effects of the fractional derivative and the influence of the fractional parameter in numerical examples.
In this work, we present and analyse a system of coupled partial differential equations, which models tumour growth under the influence of subdiffusion, mechanical effects, nutrient supply and chemotherapy. The subdiffusion of the system is modelled by a time fractional derivative in the equation governing the volume fraction of the tumour cells. The mass densities of the nutrients and the chemotherapeutic agents are modelled by reaction diffusion equations. We prove the existence and uniqueness of a weak solution to the model via the Faedo–Galerkin method and the application of appropriate compactness theorems. Lastly, we propose a fully discretized system and illustrate the effects of the fractional derivative and the influence of the fractional parameter in numerical examples.
Author Rajendran, Mabel L
Scarabosio, Laura
Wohlmuth, Barbara
Fritz, Marvin
Kuttler, Christina
Author_xml – sequence: 1
  givenname: Marvin
  surname: Fritz
  fullname: Fritz, Marvin
– sequence: 2
  givenname: Christina
  surname: Kuttler
  fullname: Kuttler, Christina
– sequence: 3
  givenname: Mabel L
  surname: Rajendran
  fullname: Rajendran, Mabel L
  email: rajendrm@ma.tum.de
– sequence: 4
  givenname: Barbara
  surname: Wohlmuth
  fullname: Wohlmuth, Barbara
– sequence: 5
  givenname: Laura
  surname: Scarabosio
  fullname: Scarabosio, Laura
BookMark eNqFkD1rwzAURUVJoUnatbPWDk4kS5bksYT0AwJZ2tk8y1KjYltBkpP239chmQql033DPY_LmaFJ73uD0D0lC0pKtnQddJCWuy-oCSmv0JRywTMmGJ-gKcllnvFSkBs0i_GTEEILSaZove0x4DjUjbN2iO5gcBo6PwT8Efwx7XDnG9PioxtPG0An53tocXKdwY0J7gBpZG7RtYU2mrtLztH70_pt9ZJtts-vq8dNphllKSu5BEEVVSQHoxohjWBFoURuKC9rLayUDSHcGmahEIJrCVpqphVThRSqYXPEz3918DEGYyvtEpw2pQCurSipTiqqs4rqomLEFr-wfRgr4ftv4OEM-GH_X_cH_dJ1Wg
CitedBy_id crossref_primary_10_1007_s41808_024_00276_6
crossref_primary_10_1093_imanum_drab025
crossref_primary_10_1016_j_cma_2023_116566
crossref_primary_10_1016_j_nonrwa_2024_104271
crossref_primary_10_1137_23M1590767
crossref_primary_10_1016_j_camwa_2022_01_002
crossref_primary_10_1016_j_camwa_2025_01_012
crossref_primary_10_1007_s11538_023_01151_6
crossref_primary_10_1016_j_camwa_2023_02_002
crossref_primary_10_1007_s40072_025_00348_1
crossref_primary_10_1016_j_matcom_2025_02_023
crossref_primary_10_1007_s40435_023_01291_6
crossref_primary_10_1080_01630563_2024_2447247
crossref_primary_10_3934_mbe_2023828
crossref_primary_10_1515_anona_2022_0262
crossref_primary_10_3390_fractalfract7040318
crossref_primary_10_1016_j_aml_2021_107799
crossref_primary_10_3389_fams_2024_1388414
Cites_doi 10.1242/jcs.116392
10.1007/978-0-387-70914-7
10.7150/jca.17648
10.1016/S0893-9659(98)00143-8
10.1201/9780203494899
10.1063/1.1605946
10.1007/BF01762360
10.1515/fca-2015-0048
10.1103/PhysRevE.69.036126
10.1007/s00205-016-0969-z
10.1007/s00209-007-0225-1
10.1515/9783110571660-008
10.1137/17M1145549
10.1007/978-3-642-14574-2
10.1103/PhysRevLett.98.118101
10.1016/j.camwa.2019.08.008
10.1007/978-94-010-0732-0
10.1017/S0956792516000292
10.1088/1742-6596/7/1/005
10.1007/BF01398686
10.1051/mmnp/201611102
10.1016/j.camwa.2018.07.036
10.1007/978-3-642-23099-8_10
10.1017/S0308210500002419
10.1016/S0370-1573(00)00070-3
10.1103/PhysRevE.74.031116
10.1155/S1110757X03204083
10.1017/CBO9780511662805
10.1103/PhysRevE.53.4191
10.1007/s41808-018-0022-5
10.1137/1.9781611972597
10.1137/140979563
10.3389/fphy.2019.00093
10.1016/j.jmaa.2006.05.061
10.1142/S0218202519500519
10.1515/fca-2019-0050
10.1007/s00208-015-1356-z
10.1007/978-1-4614-5975-0
10.1619/fesi.52.1
10.1142/S0218202519500325
10.1016/j.cma.2017.08.009
10.3892/or.2016.4660
10.1137/0517050
10.1137/130910865
10.1038/nbt0897-778
10.1016/S0362-546X(00)00104-8
10.1137/17M1160318
10.1007/978-0-8176-4558-8_17
10.1103/PhysRevB.27.844
10.1142/S1793048014500052
10.1007/978-1-4939-7493-1_11
10.1142/S021820251650055X
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2021
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2021
DBID AAYXX
CITATION
DOI 10.1093/imamat/hxab009
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1464-3634
EndPage 729
ExternalDocumentID 10_1093_imamat_hxab009
10.1093/imamat/hxab009
GroupedDBID -E4
-~X
.2P
.I3
0R~
18M
1TH
29I
4.4
482
48X
5GY
5VS
5WA
6.Y
6TJ
70D
8WZ
A6W
AAIJN
AAJKP
AAJQQ
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAWDT
ABDBF
ABDTM
ABEFU
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABQTQ
ABSAR
ABSMQ
ABTAH
ABWST
ABXVV
ABZBJ
ACFRR
ACGFO
ACGFS
ACGOD
ACIWK
ACMRT
ACPQN
ACUFI
ACUTJ
ACYTK
ACZBC
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKPW
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFIYH
AFOFC
AFSHK
AFXEN
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGQXC
AGSYK
AHXPO
AI.
AIAGR
AIJHB
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ANFBD
APIBT
APJGH
APWMN
AQDSO
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DILTD
DU5
D~K
EBS
EE~
EJD
ELUNK
ESX
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FQBLK
G8K
GAUVT
GJXCC
H13
H5~
HAR
HVGLF
HW0
HZ~
I-F
IOX
J21
JAVBF
KAQDR
KBUDW
KC5
KOP
KSI
KSN
M-Z
M43
M49
MBTAY
N9A
NGC
NMDNZ
NOMLY
NU-
NVLIB
O0~
O9-
OCL
ODMLO
OJQWA
OJZSN
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
T9H
TCN
TJP
TN5
TUS
UPT
UQL
VH1
WH7
X7H
XOL
YAYTL
YKOAZ
YXANX
ZCG
ZKX
ZY4
~91
AAYXX
ABAZT
ABDFA
ABEJV
ABGNP
ABPQP
ABVGC
ABVLG
ACUHS
ACUXJ
ADNBA
ADYJX
AGORE
AHGBF
AJBYB
AJNCP
ALXQX
AMVHM
ANAKG
CITATION
JXSIZ
OXVGQ
ID FETCH-LOGICAL-c313t-947a6181802ae8d67e6355862e149bc6f77d004fe3fa5664c7ac7c3c8385768d3
ISSN 0272-4960
IngestDate Thu Apr 24 22:57:51 EDT 2025
Tue Jul 01 01:59:18 EDT 2025
Wed Aug 28 03:17:28 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords mechanical deformation
subdiffusive tumour growth
nonlinear partial differential equation
well posedness
fractional time derivative
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c313t-947a6181802ae8d67e6355862e149bc6f77d004fe3fa5664c7ac7c3c8385768d3
OpenAccessLink https://academic.oup.com/imamat/article-pdf/86/4/688/39458258/hxab009.pdf
PageCount 42
ParticipantIDs crossref_citationtrail_10_1093_imamat_hxab009
crossref_primary_10_1093_imamat_hxab009
oup_primary_10_1093_imamat_hxab009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationTitle IMA journal of applied mathematics
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Kilbas (2021073007101644600_ref36) 2006
Li (2021073007101644600_ref37) 2018; 50
Preziosi (2021073007101644600_ref54) 2003
Garcke (2021073007101644600_ref23) 2019
Miranville (2021073007101644600_ref51) 2003; 2003
Bartkowiak (2021073007101644600_ref5) 2005; 34
Henry (2021073007101644600_ref27) 2006; 74
Robinson (2021073007101644600_ref56) 2001
McLean (2021073007101644600_ref48) 2020; 79
Wang (2021073007101644600_ref61) 2017; 8
Vergara (2021073007101644600_ref60) 2008; 259
Diethelm (2021073007101644600_ref11) 2010
Fritz (2021073007101644600_ref17) 2019; 29
Kemppainen (2021073007101644600_ref35) 2016; 366
Evans (2021073007101644600_ref14) 2010
Nepomnyashchy (2021073007101644600_ref52) 2016; 11
Jin (2021073007101644600_ref34) 2016; 38
Dumitru (2021073007101644600_ref13) 2012
Alnæs (2021073007101644600_ref3) 2015
Yuan (2021073007101644600_ref63) 2016; 35
Li (2021073007101644600_ref38) 2018; 50
Simon (2021073007101644600_ref58) 1986; 146
Zacher (2021073007101644600_ref65) 2009; 52
Faghihi (2021073007101644600_ref15) 2020
Garcke (2021073007101644600_ref20) 2005
Zeng (2021073007101644600_ref67) 2013; 35
Balkwill (2021073007101644600_ref4) 2012; 125
Helmlinger (2021073007101644600_ref26) 1997; 15
Iomin (2021073007101644600_ref32) 2015; 10
Quarteroni (2021073007101644600_ref55) 2008
Lubich (2021073007101644600_ref44) 1986; 17
Ciarlet (2021073007101644600_ref9) 2013
Boyer (2021073007101644600_ref6) 2013
Tahir-Kheli (2021073007101644600_ref59) 1983; 27
Gorenflo (2021073007101644600_ref24) 2015; 18
Metzler (2021073007101644600_ref49) 2000; 339
Iomin (2021073007101644600_ref30) 2005
Carrive (2021073007101644600_ref8) 1999; 12
Seki (2021073007101644600_ref57) 2003; 119
Allen (2021073007101644600_ref2) 2016; 221
Fedotov (2021073007101644600_ref16) 2007; 98
Iomin (2021073007101644600_ref29) 2005; 2
Yuste (2021073007101644600_ref64) 2004; 69
Compte (2021073007101644600_ref10) 1996; 53
Gripenberg (2021073007101644600_ref25) 1990
Lima (2021073007101644600_ref39) 2016; 26
Liu (2021073007101644600_ref42) 2018; 76
Akilandeeswari (2021073007101644600_ref1) 2017; 7
Hormuth (2021073007101644600_ref28) 2018
Brezis (2021073007101644600_ref7) 2010
Garcke (2021073007101644600_ref21) 2005
Ouedjedi (2021073007101644600_ref53) 2019; HAL-02124150
Lions (2021073007101644600_ref41) 2012
Ye (2021073007101644600_ref62) 2007; 328
McLean (2021073007101644600_ref47) 2019; 22
Lima (2021073007101644600_ref40) 2017; 327
Garcke (2021073007101644600_ref22) 2017; 28
Jiang (2021073007101644600_ref33) 2014; 9
Iomin (2021073007101644600_ref31) 2007
Logg (2021073007101644600_ref43) 2012
Miranville (2021073007101644600_ref50) 2001; 2
Lubich (2021073007101644600_ref45) 1988; 52
Manimaran (2021073007101644600_ref46) 2019; 7
Fritz (2021073007101644600_ref18) 2019; 29
Garcke (2021073007101644600_ref19) 2003; 133
Djilali (2021073007101644600_ref12) 2018; 4
Zacher (2021073007101644600_ref66) 2019
References_xml – volume-title: A coupled mass transport and deformation theory of multi-constituent tumor growth. J. Mech. Phys. Solids
  year: 2020
  ident: 2021073007101644600_ref15
– volume: 125
  start-page: 5591
  year: 2012
  ident: 2021073007101644600_ref4
  article-title: The tumor microenvironment at a glance
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.116392
– volume-title: Functional Analysis, Sobolev Spaces and Partial Differential Equations
  year: 2010
  ident: 2021073007101644600_ref7
  doi: 10.1007/978-0-387-70914-7
– volume: 8
  start-page: 761
  year: 2017
  ident: 2021073007101644600_ref61
  article-title: Role of tumor microenvironment in tumorigenesis
  publication-title: J. Cancer
  doi: 10.7150/jca.17648
– volume: 12
  start-page: 23
  year: 1999
  ident: 2021073007101644600_ref8
  article-title: The Cahn-Hilliard equation for an isotropic deformable continuum
  publication-title: Appl. Math. Lett.
  doi: 10.1016/S0893-9659(98)00143-8
– volume-title: Cancer Modelling and Simulation
  year: 2003
  ident: 2021073007101644600_ref54
  doi: 10.1201/9780203494899
– volume: 119
  start-page: 7525
  year: 2003
  ident: 2021073007101644600_ref57
  article-title: Recombination kinetics in subdiffusive media
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1605946
– volume: 146
  start-page: 65
  year: 1986
  ident: 2021073007101644600_ref58
  article-title: Compact sets in the space
  publication-title: Ann. Mat. Pur. Appl.
  doi: 10.1007/BF01762360
– volume: 18
  start-page: 799
  year: 2015
  ident: 2021073007101644600_ref24
  article-title: Time-fractional diffusion equation in the fractional Sobolev spaces
  publication-title: Frac. Calc. Appl. Anal.
  doi: 10.1515/fca-2015-0048
– volume: 69
  year: 2004
  ident: 2021073007101644600_ref64
  article-title: Reaction front in an $\mathrm{A}+\mathrm{B}\to \mathrm{C}$ reaction-subdiffusion process
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.69.036126
– volume: 221
  start-page: 603
  year: 2016
  ident: 2021073007101644600_ref2
  article-title: A parabolic problem with a fractional time derivative
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-016-0969-z
– volume: 259
  start-page: 287
  year: 2008
  ident: 2021073007101644600_ref60
  article-title: Lyapunov functions and convergence to steady state for differential equations of fractional order
  publication-title: Math. Z.
  doi: 10.1007/s00209-007-0225-1
– start-page: 159
  volume-title: Time Fractional Diffusion Equations: Solution Concepts, Regularity, and Long-time Behavior
  year: 2019
  ident: 2021073007101644600_ref66
  doi: 10.1515/9783110571660-008
– volume: 7
  start-page: 1570
  year: 2017
  ident: 2021073007101644600_ref1
  article-title: Solvability of hyperbolic fractional partial differential equations
  publication-title: J. Appl. Anal. Comput.
– volume: 50
  start-page: 3963
  year: 2018
  ident: 2021073007101644600_ref38
  article-title: Some compactness criteria for weak solutions of time fractional PDEs
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/17M1145549
– volume-title: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition using Differential Operators of Caputo Type
  year: 2010
  ident: 2021073007101644600_ref11
  doi: 10.1007/978-3-642-14574-2
– volume: 98
  start-page: 118101
  year: 2007
  ident: 2021073007101644600_ref16
  article-title: Migration and proliferation dichotomy in tumor-cell invasion
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.118101
– volume: 79
  start-page: 947
  year: 2020
  ident: 2021073007101644600_ref48
  article-title: Regularity theory for time-fractional advection–diffusion–reaction equations
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2019.08.008
– volume-title: Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors
  year: 2001
  ident: 2021073007101644600_ref56
  doi: 10.1007/978-94-010-0732-0
– volume: 28
  start-page: 284
  year: 2017
  ident: 2021073007101644600_ref22
  article-title: Well-posedness of a Cahn–Hilliard system modelling tumour growth with chemotaxis and active transport
  publication-title: Eur. J. Appl. Math.
  doi: 10.1017/S0956792516000292
– volume: 2
  start-page: 82
  year: 2005
  ident: 2021073007101644600_ref29
  article-title: Fractional transport of tumor cells
  publication-title: WSEAS Trans. Biol. Biomed.
– volume-title: Journal of Physics: Conference Series
  year: 2005
  ident: 2021073007101644600_ref30
  article-title: Superdiffusion of cancer on a comb structure
  doi: 10.1088/1742-6596/7/1/005
– volume: 52
  start-page: 129
  year: 1988
  ident: 2021073007101644600_ref45
  article-title: Convolution quadrature and discretized operational calculus. I
  publication-title: Numerische Mathematik
  doi: 10.1007/BF01398686
– volume: 11
  start-page: 26
  year: 2016
  ident: 2021073007101644600_ref52
  article-title: Mathematical modelling of subdiffusion-reaction systems
  publication-title: Math. Model. Nat. Phenom.
  doi: 10.1051/mmnp/201611102
– volume-title: Mathematical Methods and Models in Phase Transitions
  year: 2005
  ident: 2021073007101644600_ref20
  article-title: Mechanical effects in the Cahn-Hilliard model: a review on mathematical results
– volume: 76
  start-page: 1876
  year: 2018
  ident: 2021073007101644600_ref42
  article-title: Time-fractional Allen–Cahn and Cahn–Hilliard phase-field models and their numerical investigation
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2018.07.036
– start-page: 173
  volume-title: Automated Solution of Differential Equations by the Finite Element Method
  year: 2012
  ident: 2021073007101644600_ref43
  article-title: DOLFIN: A C++/Python finite element library
  doi: 10.1007/978-3-642-23099-8_10
– volume: 133
  start-page: 307
  year: 2003
  ident: 2021073007101644600_ref19
  article-title: On Cahn–Hilliard systems with elasticity
  publication-title: Proceedings of the Royal Society of Edinburgh Section A: Mathematics
  doi: 10.1017/S0308210500002419
– volume: 339
  start-page: 1
  year: 2000
  ident: 2021073007101644600_ref49
  article-title: The random walk’s guide to anomalous diffusion: a fractional dynamics approach
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(00)00070-3
– start-page: 1
  volume-title: Nonlinear Analysis: Real World Applications
  year: 2019
  ident: 2021073007101644600_ref23
  article-title: On a phase field model of Cahn-Hilliard type for tumour growth with mechanical effects
– volume: 74
  start-page: 031116
  year: 2006
  ident: 2021073007101644600_ref27
  article-title: Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.74.031116
– volume-title: Partial Differential Equations
  year: 2010
  ident: 2021073007101644600_ref14
– volume: 34
  start-page: 1005
  year: 2005
  ident: 2021073007101644600_ref5
  article-title: The Cahn-Hilliard-Gurtin system coupled with elasticity
  publication-title: Control Cybern.
– volume: 2003
  start-page: 165
  year: 2003
  ident: 2021073007101644600_ref51
  article-title: Generalized Cahn-Hilliard equations based on a microforce balance
  publication-title: J. Appl. Math.
  doi: 10.1155/S1110757X03204083
– volume-title: Volterra Integral and Functional Equations. Encyclopedia of Mathematics and Its Applications
  year: 1990
  ident: 2021073007101644600_ref25
  doi: 10.1017/CBO9780511662805
– volume: 9
  year: 2014
  ident: 2021073007101644600_ref33
  article-title: The anomalous diffusion of a tumor invading with different surrounding tissues
  publication-title: PLoS One
– volume: 53
  start-page: 4191
  year: 1996
  ident: 2021073007101644600_ref10
  article-title: Stochastic foundations of fractional dynamics
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.53.4191
– volume: 4
  start-page: 349
  year: 2018
  ident: 2021073007101644600_ref12
  article-title: Galerkin method for time fractional diffusion equations
  publication-title: J. Elliptic Parabol. Equ.
  doi: 10.1007/s41808-018-0022-5
– volume-title: Linear and Nonlinear Functional Analysis with Applications
  year: 2013
  ident: 2021073007101644600_ref9
  doi: 10.1137/1.9781611972597
– volume: 38
  start-page: A146
  year: 2016
  ident: 2021073007101644600_ref34
  article-title: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/140979563
– volume-title: Fractional Calculus: Models and Numerical Methods
  year: 2012
  ident: 2021073007101644600_ref13
– volume: 7
  start-page: 93
  year: 2019
  ident: 2021073007101644600_ref46
  article-title: Numerical solutions for time-fractional cancer invasion system with nonlocal diffusion
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2019.00093
– volume: 328
  start-page: 1075
  year: 2007
  ident: 2021073007101644600_ref62
  article-title: A generalized Gronwall inequality and its application to a fractional differential equation
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2006.05.061
– volume-title: Theory and Applications of Fractional Differential Equations
  year: 2006
  ident: 2021073007101644600_ref36
– start-page: 165
  volume-title: On a Cahn-Hilliard Model for Phase Separation with Elastic Misfit
  year: 2005
  ident: 2021073007101644600_ref21
– volume: HAL-02124150
  year: 2019
  ident: 2021073007101644600_ref53
  article-title: Galerkin method for time fractional semilinear equations
  publication-title: Preprint
– volume: 29
  start-page: 2433
  year: 2019
  ident: 2021073007101644600_ref17
  article-title: Local and nonlocal phase-field models of tumor growth and invasion due to ECM degradation
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202519500519
– volume: 22
  start-page: 918
  year: 2019
  ident: 2021073007101644600_ref47
  article-title: Well-posedness of time-fractional advection-diffusion-reaction equations
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.1515/fca-2019-0050
– volume: 366
  start-page: 941
  year: 2016
  ident: 2021073007101644600_ref35
  article-title: Decay estimates for time-fractional and other non-local in time subdiffusion equations in
  publication-title: Math. Annal.
  doi: 10.1007/s00208-015-1356-z
– start-page: 3
  year: 2015
  ident: 2021073007101644600_ref3
  article-title: The FEniCS project version 1.5
  publication-title: Arch. Numer. Softw.
– volume-title: Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models
  year: 2013
  ident: 2021073007101644600_ref6
  doi: 10.1007/978-1-4614-5975-0
– volume: 52
  start-page: 1
  year: 2009
  ident: 2021073007101644600_ref65
  article-title: Weak solutions of abstract evolutionary integro-differential equations in Hilbert spaces
  publication-title: Funkc. Ekvacioj
  doi: 10.1619/fesi.52.1
– volume: 29
  start-page: 1691
  year: 2019
  ident: 2021073007101644600_ref18
  article-title: On the unsteady Darcy-Forchheimer-Brinkman equation in local and nonlocal tumor growth models
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202519500325
– volume: 327
  start-page: 277
  year: 2017
  ident: 2021073007101644600_ref40
  article-title: Selection and validation of predictive models of radiation effects on tumor growth based on noninvasive imaging data
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2017.08.009
– volume: 35
  start-page: 2499
  year: 2016
  ident: 2021073007101644600_ref63
  article-title: Role of the tumor microenvironment in tumor progression and the clinical applications
  publication-title: Oncol. Rep.
  doi: 10.3892/or.2016.4660
– volume: 17
  start-page: 704
  year: 1986
  ident: 2021073007101644600_ref44
  article-title: Discretized fractional calculus
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0517050
– volume: 35
  start-page: A2976
  year: 2013
  ident: 2021073007101644600_ref67
  article-title: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/130910865
– volume: 15
  start-page: 778
  year: 1997
  ident: 2021073007101644600_ref26
  article-title: Solid stress inhibits the growth of multicellular tumor spheroids
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0897-778
– volume-title: Non-homogeneous Boundary Value Problems and Applications I
  year: 2012
  ident: 2021073007101644600_ref41
– volume: 2
  start-page: 273
  year: 2001
  ident: 2021073007101644600_ref50
  article-title: Long-time behavior of some models of Cahn-Hilliard equations in deformable continua
  publication-title: Nonlinear Anal. Real World Appl.
  doi: 10.1016/S0362-546X(00)00104-8
– volume: 50
  start-page: 2867
  year: 2018
  ident: 2021073007101644600_ref37
  article-title: A generalized definition of Caputo derivatives and its application to fractional ODEs
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/17M1160318
– start-page: 193
  volume-title: Mathematical Modeling of Biological Systems
  year: 2007
  ident: 2021073007101644600_ref31
  article-title: Fractional transport of cancer cells due to self-entrapment by fission
  doi: 10.1007/978-0-8176-4558-8_17
– volume: 27
  start-page: 844
  year: 1983
  ident: 2021073007101644600_ref59
  article-title: Correlated random walk in lattices: tracer diffusion at general concentration
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.27.844
– volume: 10
  start-page: 37
  year: 2015
  ident: 2021073007101644600_ref32
  article-title: Continuous time random walk and migration–proliferation dichotomy of brain cancer
  publication-title: Biophys. Rev. Lett.
  doi: 10.1142/S1793048014500052
– volume-title: Numerical Approximation of Partial Differential Equations
  year: 2008
  ident: 2021073007101644600_ref55
– start-page: 225
  volume-title: Cancer Systems Biology.
  year: 2018
  ident: 2021073007101644600_ref28
  article-title: Mechanically coupled reaction-diffusion model to predict glioma growth: methodological details
  doi: 10.1007/978-1-4939-7493-1_11
– volume: 26
  start-page: 2341
  year: 2016
  ident: 2021073007101644600_ref39
  article-title: Selection, calibration, and validation of models of tumor growth
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S021820251650055X
SSID ssj0001570
Score 2.3581235
Snippet Abstract In this work, we present and analyse a system of coupled partial differential equations, which models tumour growth under the influence of...
In this work, we present and analyse a system of coupled partial differential equations, which models tumour growth under the influence of subdiffusion,...
SourceID crossref
oup
SourceType Enrichment Source
Index Database
Publisher
StartPage 688
Title On a subdiffusive tumour growth model with fractional time derivative
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYWuJQDolDEq5WFkHpYGXZjb5wcl5cAacsFBLeV4zjsIjagkCDUX9Cf3XHGm4RHVeBiRZEzSjxfxvPwzBCyrQPdC0LZYZ4KQyZUpBhsQ5rpnupIxQMRJ9YPOfjlH1-I06veVav1p3FqqcijHf37zbySz3AV7gFfbZbsBzhbEYUbcA38hRE4DOO7eHyWtlX7oYhsl5OiPIeeF2DKZ-1rMK7zEba5QVdrkmEGQ5klMrHJUlnZ1-zx2VGgk0G_WUtCORV1UtV2bWSLjMtOsDbZ53Fch_ILWxM5q8sWuO7cGEq6MWmcocd1oCJ4tcrzfHk3up0U6ONxIZCmP8LrVqfhpmLLkx4TIXYJ2DEoVoUvGPed29LJXVcCe9x0KpRC1MdGf24_lugReSXqsQzWeKLg8-Fi9KRAgoT1tjYN5b_Y7aoziBh950OkMHTPz5A5DwwOkJhz_b2DvaNqV-_2JPrr3NdVBUD5LlLYdRSeKTg2abKhr5wvkgVnaNA-ouYraZl0icwPak4uk8OzlCraxA9F_FDEDy3xQy1-aI0favFDa_x8IxdHh-f7x8y11WCad3nOQiGV37U5_p4yQexLY5VOsGwNWMuR9hMpY_jJEsMTBcq-0FJpqbkOeGCN05ivkNn0LjWrhIYyVtKLNO9EQnCewBh72peJNjbn2awRNl2LoXY1523rk9vh26u_Rn5W8--x2so_Z27B0v5n0vq7yW2QLzWWN8lsnhXmO2ibefTDAeEvPzaIPw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+a+subdiffusive+tumour+growth+model+with+fractional+time+derivative&rft.jtitle=IMA+journal+of+applied+mathematics&rft.au=Fritz%2C+Marvin&rft.au=Kuttler%2C+Christina&rft.au=Rajendran%2C+Mabel+L&rft.au=Wohlmuth%2C+Barbara&rft.date=2021-08-01&rft.issn=0272-4960&rft.eissn=1464-3634&rft.volume=86&rft.issue=4&rft.spage=688&rft.epage=729&rft_id=info:doi/10.1093%2Fimamat%2Fhxab009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_imamat_hxab009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-4960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-4960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-4960&client=summon