Multiphysics simulation and optimization of microwave-assisted regeneration of spent activated carbon for enhanced energy efficiency

Microwave (MW) heating at the molecular level represents a promising alternative to conventional thermal processing methods. However, its industrial application is hindered by localized overheating due to uneven electromagnetic field distributions within MW cavities. Traditional temperature measurem...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental research Vol. 285; no. Pt 1; p. 122292
Main Authors Li, Chenyang, Zhao, Xiaotong, Pang, Tianrui, Hu, Naixin, Zheng, Tong
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 15.11.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microwave (MW) heating at the molecular level represents a promising alternative to conventional thermal processing methods. However, its industrial application is hindered by localized overheating due to uneven electromagnetic field distributions within MW cavities. Traditional temperature measurement approaches fail to capture comprehensive temperature profiles, and research exploring MW applications at 915 MHz remains limited. This study employs a coupled multiphysics modeling approach to optimize MW regeneration processes for activated carbon (AC) at frequencies of 2450 MHz and 915 MHz. The effects of waveguide mode, relative phase difference, spatial configurations of AC columns, loading height, and power input strategies on MW energy utilization, temperature distribution, and contaminant removal were investigated. Comparative analyses between 2450 MHz and 915 MHz revealed distinct frequency-dependent heating behaviors. The results demonstrate that dual-waveguide mode outperforms single-waveguide operation, achieving 93.9 % MW utilization efficiency, elevating AC temperatures to 662.5 °C, and reducing per-fluoropentanoic acid (PFPA) decomposition time by 35 %. Dynamic phase-shifting enabled thermal redistribution, suppressing localized overheating and enhancing energy efficiency. Intermittent power input strategies improved heating uniformity compared to constant power input. A centralized placement of AC improved MW utilization from 68 % to 97 %. Loading height critically influences temperature distribution, with AC column heights of ≥5.1 cm achieving MW utilization efficiencies above 90 %. Frequency comparisons showed that 915 MHz provides superior heating uniformity for larger-scale systems (>10.2 cm), whereas 2450 MHz was more effective in smaller-scale setups (<10.2 cm). These findings offer critical insights into optimizing the MW regeneration of materials, providing a theoretical basis for scaling up industrial MW-assisted AC regeneration. [Display omitted] •Microwave heating at 915 MHz achieves deeper penetration and improved heating uniformity in large activated carbon beds.•Dual-waveguide mode significantly enhances electric field intensity and temperature distribution uniformity.•Intermittent microwave power input improves temperature uniformity compared to constant power operation.•Placement and height of activated carbon columns critically influence microwave energy utilization efficiency.
AbstractList Microwave (MW) heating at the molecular level represents a promising alternative to conventional thermal processing methods. However, its industrial application is hindered by localized overheating due to uneven electromagnetic field distributions within MW cavities. Traditional temperature measurement approaches fail to capture comprehensive temperature profiles, and research exploring MW applications at 915 MHz remains limited. This study employs a coupled multiphysics modeling approach to optimize MW regeneration processes for activated carbon (AC) at frequencies of 2450 MHz and 915 MHz. The effects of waveguide mode, relative phase difference, spatial configurations of AC columns, loading height, and power input strategies on MW energy utilization, temperature distribution, and contaminant removal were investigated. Comparative analyses between 2450 MHz and 915 MHz revealed distinct frequency-dependent heating behaviors. The results demonstrate that dual-waveguide mode outperforms single-waveguide operation, achieving 93.9 % MW utilization efficiency, elevating AC temperatures to 662.5 °C, and reducing per-fluoropentanoic acid (PFPA) decomposition time by 35 %. Dynamic phase-shifting enabled thermal redistribution, suppressing localized overheating and enhancing energy efficiency. Intermittent power input strategies improved heating uniformity compared to constant power input. A centralized placement of AC improved MW utilization from 68 % to 97 %. Loading height critically influences temperature distribution, with AC column heights of ≥5.1 cm achieving MW utilization efficiencies above 90 %. Frequency comparisons showed that 915 MHz provides superior heating uniformity for larger-scale systems (>10.2 cm), whereas 2450 MHz was more effective in smaller-scale setups (<10.2 cm). These findings offer critical insights into optimizing the MW regeneration of materials, providing a theoretical basis for scaling up industrial MW-assisted AC regeneration. [Display omitted] •Microwave heating at 915 MHz achieves deeper penetration and improved heating uniformity in large activated carbon beds.•Dual-waveguide mode significantly enhances electric field intensity and temperature distribution uniformity.•Intermittent microwave power input improves temperature uniformity compared to constant power operation.•Placement and height of activated carbon columns critically influence microwave energy utilization efficiency.
Microwave (MW) heating at the molecular level represents a promising alternative to conventional thermal processing methods. However, its industrial application is hindered by localized overheating due to uneven electromagnetic field distributions within MW cavities. Traditional temperature measurement approaches fail to capture comprehensive temperature profiles, and research exploring MW applications at 915 MHz remains limited. This study employs a coupled multiphysics modeling approach to optimize MW regeneration processes for activated carbon (AC) at frequencies of 2450 MHz and 915 MHz. The effects of waveguide mode, relative phase difference, spatial configurations of AC columns, loading height, and power input strategies on MW energy utilization, temperature distribution, and contaminant removal were investigated. Comparative analyses between 2450 MHz and 915 MHz revealed distinct frequency-dependent heating behaviors. The results demonstrate that dual-waveguide mode outperforms single-waveguide operation, achieving 93.9 % MW utilization efficiency, elevating AC temperatures to 662.5 °C, and reducing per-fluoropentanoic acid (PFPA) decomposition time by 35 %. Dynamic phase-shifting enabled thermal redistribution, suppressing localized overheating and enhancing energy efficiency. Intermittent power input strategies improved heating uniformity compared to constant power input. A centralized placement of AC improved MW utilization from 68 % to 97 %. Loading height critically influences temperature distribution, with AC column heights of ≥5.1 cm achieving MW utilization efficiencies above 90 %. Frequency comparisons showed that 915 MHz provides superior heating uniformity for larger-scale systems (> 10.2 cm), whereas 2450 MHz was more effective in smaller-scale setups (<10.2 cm). These findings offer critical insights into optimizing the MW regeneration of materials, providing a theoretical basis for scaling up industrial MW-assisted AC regeneration.Microwave (MW) heating at the molecular level represents a promising alternative to conventional thermal processing methods. However, its industrial application is hindered by localized overheating due to uneven electromagnetic field distributions within MW cavities. Traditional temperature measurement approaches fail to capture comprehensive temperature profiles, and research exploring MW applications at 915 MHz remains limited. This study employs a coupled multiphysics modeling approach to optimize MW regeneration processes for activated carbon (AC) at frequencies of 2450 MHz and 915 MHz. The effects of waveguide mode, relative phase difference, spatial configurations of AC columns, loading height, and power input strategies on MW energy utilization, temperature distribution, and contaminant removal were investigated. Comparative analyses between 2450 MHz and 915 MHz revealed distinct frequency-dependent heating behaviors. The results demonstrate that dual-waveguide mode outperforms single-waveguide operation, achieving 93.9 % MW utilization efficiency, elevating AC temperatures to 662.5 °C, and reducing per-fluoropentanoic acid (PFPA) decomposition time by 35 %. Dynamic phase-shifting enabled thermal redistribution, suppressing localized overheating and enhancing energy efficiency. Intermittent power input strategies improved heating uniformity compared to constant power input. A centralized placement of AC improved MW utilization from 68 % to 97 %. Loading height critically influences temperature distribution, with AC column heights of ≥5.1 cm achieving MW utilization efficiencies above 90 %. Frequency comparisons showed that 915 MHz provides superior heating uniformity for larger-scale systems (> 10.2 cm), whereas 2450 MHz was more effective in smaller-scale setups (<10.2 cm). These findings offer critical insights into optimizing the MW regeneration of materials, providing a theoretical basis for scaling up industrial MW-assisted AC regeneration.
Microwave (MW) heating at the molecular level represents a promising alternative to conventional thermal processing methods. However, its industrial application is hindered by localized overheating due to uneven electromagnetic field distributions within MW cavities. Traditional temperature measurement approaches fail to capture comprehensive temperature profiles, and research exploring MW applications at 915 MHz remains limited. This study employs a coupled multiphysics modeling approach to optimize MW regeneration processes for activated carbon (AC) at frequencies of 2450 MHz and 915 MHz. The effects of waveguide mode, relative phase difference, spatial configurations of AC columns, loading height, and power input strategies on MW energy utilization, temperature distribution, and contaminant removal were investigated. Comparative analyses between 2450 MHz and 915 MHz revealed distinct frequency-dependent heating behaviors. The results demonstrate that dual-waveguide mode outperforms single-waveguide operation, achieving 93.9 % MW utilization efficiency, elevating AC temperatures to 662.5 °C, and reducing per-fluoropentanoic acid (PFPA) decomposition time by 35 %. Dynamic phase-shifting enabled thermal redistribution, suppressing localized overheating and enhancing energy efficiency. Intermittent power input strategies improved heating uniformity compared to constant power input. A centralized placement of AC improved MW utilization from 68 % to 97 %. Loading height critically influences temperature distribution, with AC column heights of ≥5.1 cm achieving MW utilization efficiencies above 90 %. Frequency comparisons showed that 915 MHz provides superior heating uniformity for larger-scale systems (>10.2 cm), whereas 2450 MHz was more effective in smaller-scale setups (<10.2 cm). These findings offer critical insights into optimizing the MW regeneration of materials, providing a theoretical basis for scaling up industrial MW-assisted AC regeneration.
ArticleNumber 122292
Author Pang, Tianrui
Zhao, Xiaotong
Hu, Naixin
Li, Chenyang
Zheng, Tong
Author_xml – sequence: 1
  givenname: Chenyang
  surname: Li
  fullname: Li, Chenyang
  organization: School of Environment, Harbin Institute of Technology, Harbin, 150090, China
– sequence: 2
  givenname: Xiaotong
  surname: Zhao
  fullname: Zhao, Xiaotong
  organization: School of Environment, Harbin Institute of Technology, Harbin, 150090, China
– sequence: 3
  givenname: Tianrui
  surname: Pang
  fullname: Pang, Tianrui
  organization: School of Environment, Harbin Institute of Technology, Harbin, 150090, China
– sequence: 4
  givenname: Naixin
  surname: Hu
  fullname: Hu, Naixin
  organization: School of Environment, Harbin Institute of Technology, Harbin, 150090, China
– sequence: 5
  givenname: Tong
  surname: Zheng
  fullname: Zheng, Tong
  email: zhengtong@hit.edu.cn
  organization: School of Environment, Harbin Institute of Technology, Harbin, 150090, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40617577$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1URLeFf4BQjlyy-CNO1hckVPElteLSni17PGm9SuxgO4uWMz-cLCk99jSamecdad73gpyFGJCQt4xuGWXth_0WwyFh3nLK5ZZxzhV_QTaMqramSoozsqGUiVoJyc7JRc77pWVS0FfkvKEt62TXbcifm3kofno4Zg-5yn6cB1N8DJUJropT8aP_vQ5iX40eUvxlDlibnH0u6KqE9xgwPSF5wlAqA8UfzGkPJtll08dUYXgwAZbZSXB_rLDvPXgMcHxNXvZmyPjmsV6Suy-fb6--1dc_vn6_-nRdg2Ci1DsjOwZAhWqkcbu-5dBQ55S1HG2nmkZZYxrKLUomegDVgt1JYSWCMK4DcUner3enFH_OmIsefQYcBhMwzlkLzruGdS1nC_ruEZ3tiE5PyY8mHfV_5xagWYHFkpwT9k8Io_oUkN7rNSB9CkivAS2yj6sMlz8PHpPO_zxA5xNC0S765w_8BRerntY
Cites_doi 10.1016/j.jwpe.2024.106560
10.1080/00222739.1971.11688789
10.1016/j.scitotenv.2022.153555
10.1016/j.cej.2024.158629
10.1016/j.jfoodeng.2021.110763
10.1016/j.ijheatmasstransfer.2022.123793
10.1016/j.foodchem.2020.126932
10.3390/en15093256
10.1016/j.cej.2024.153716
10.1016/j.jenvman.2012.02.016
10.1016/j.jhazmat.2014.04.038
10.1016/j.energy.2019.116474
10.1016/j.jhazmat.2022.129120
10.1186/s12302-018-0134-4
10.1016/j.applthermaleng.2022.118775
10.1016/j.applthermaleng.2011.10.049
10.1002/ceat.201300808
10.1016/j.cej.2020.127197
10.1016/j.chemosphere.2021.131685
10.1016/j.watres.2019.115381
10.1016/j.scitotenv.2015.04.023
10.1016/j.jfoodeng.2025.112544
10.1016/j.cej.2024.156950
10.1016/j.seppur.2017.02.016
10.1016/j.jclepro.2024.143751
10.1007/s11356-015-5353-2
10.1016/j.watres.2012.09.024
10.1016/j.psep.2020.01.005
10.1016/j.applthermaleng.2014.08.048
10.1016/j.fuproc.2017.06.006
10.1016/j.jhazmat.2020.124452
10.1016/j.cej.2019.05.135
10.1016/j.fuproc.2016.10.012
10.1021/acs.est.0c08224
10.1016/j.jece.2024.113923
10.1016/j.watres.2021.117121
10.1016/j.jclepro.2024.142912
10.1016/j.fuel.2019.115966
ContentType Journal Article
Copyright 2025 Elsevier Inc.
Copyright © 2025 Elsevier Inc. All rights reserved.
Copyright © 2025. Published by Elsevier Inc.
Copyright_xml – notice: 2025 Elsevier Inc.
– notice: Copyright © 2025 Elsevier Inc. All rights reserved.
– notice: Copyright © 2025. Published by Elsevier Inc.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.envres.2025.122292
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Environmental Sciences
EISSN 1096-0953
ExternalDocumentID 40617577
10_1016_j_envres_2025_122292
S0013935125015439
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
5VS
7-5
71M
8P~
9JM
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACNCT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLECG
BLXMC
BNPGV
C45
CS3
DM4
DU5
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
L7B
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPCBC
SSJ
SSZ
T5K
TAE
TEORI
TN5
TWZ
UPT
WH7
ZCA
ZU3
~02
~G-
~KM
.GJ
29G
3O-
53G
AAQXK
AAYJJ
AAYXX
ABEFU
ABFNM
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AEGFY
AFFNX
AGQPQ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
LG5
LY8
M41
OHT
R2-
RIG
SEN
SSH
VOH
WUQ
XOL
XPP
ZGI
ZKB
ZMT
ZXP
NPM
7X8
ID FETCH-LOGICAL-c313t-8a571cc03945ad8f62c40dd9bb2eb79449baa402be513fcc96cb853b5ec3ad7c3
IEDL.DBID .~1
ISSN 0013-9351
1096-0953
IngestDate Sun Jul 06 16:30:25 EDT 2025
Mon Jul 21 06:08:13 EDT 2025
Wed Jul 16 16:48:17 EDT 2025
Sat Aug 09 17:31:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue Pt 1
Keywords Numerical simulation
Microwave regeneration
Heating uniformity
Energy absorption
2450 MHz and 915 MHz
Language English
License Copyright © 2025 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-8a571cc03945ad8f62c40dd9bb2eb79449baa402be513fcc96cb853b5ec3ad7c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 40617577
PQID 3227417621
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3227417621
pubmed_primary_40617577
crossref_primary_10_1016_j_envres_2025_122292
elsevier_sciencedirect_doi_10_1016_j_envres_2025_122292
PublicationCentury 2000
PublicationDate 2025-11-15
PublicationDateYYYYMMDD 2025-11-15
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-15
  day: 15
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Environmental research
PublicationTitleAlternate Environ Res
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Wang, Li, Zhu, Yang, Zhou, Yi (bib33) 2022; 15
Farag, Sobhy, Akyel, Doucet, Chaouki (bib14) 2012; 36
Gonçalves, Albuquerque, Pereira (bib19) 2024; 467
Du, Deng, Bei, Huang, Wang, Huang, Yu (bib12) 2014; 274
Huang, Liu, Zhang, Chen, Ren (bib21) 2023; 203
Wang, Wu, Zhang, Su, Zhang (bib34) 2024; 476
Salema, Ani, Mouris, Hutcheon (bib29) 2017; 166
Sonmez Baghirzade, Zhang, Reuther, Saleh, Venkatesan, Apul (bib32) 2021; 55
Mohd Mokhta, Ong, Salman, Nomanbhay, Salleh, Chew, Show, Chen (bib26) 2020; 190
Xiong, Yao, Lu, Omran, Qiu, Wei, Li, Yu (bib37) 2024; 495
Dickman, Aga (bib11) 2022; 436
Zhu, Yi, Yang, Duan (bib40) 2021; 407
Li, Zheng, Lu, Tian, Lu, Ye, Luo, Zhu (bib24) 2019; 256
Shariaty, Jahandar Lashaki, Hashisho, Sawada, Kuznicki, Hutcheon (bib30) 2017; 179
Altarawneh, Almatarneh, Dlugogorski (bib2) 2022; 286
Çalışkan, Bermúdez, Parra, Menéndez, Mahramanlıoğlu, Ania (bib8) 2012; 102
Ahmed, Alam, Zhou, Xu, Johir, Karmakar, Rahman, Hossen, Hasan, Moni (bib1) 2020; 136
Campañone, Bava, Mascheroni (bib9) 2014; 73
Zanella, Tessaro, Féris (bib39) 2014; 37
Brendel, Fetter, Staude, Vierke, Biegel-Engler (bib7) 2018; 30
Gagliano, Sgroi, Falciglia, Vagliasindi, Roccaro (bib17) 2020; 171
Patel, Mohanty, Panigrahi (bib27) 2024; 56
Singh, Brown, Mededovic Thagard, Holsen (bib31) 2021; 408
Huang, Liu, Chen, Tian, Wei (bib20) 2022; 214
Durán-Jiménez, Stevens, Hodgins, Uguna, Ryan, Binner, Robinson (bib13) 2019; 378
Bagotia (bib4) 2025; 69
Huang, Wang, Wu, Li (bib22) 2024; 500
Liu, Yang, Zhai, Yu, Wang, Liu, Liu, Gao, Yang (bib25) 2024; 12
Xiao, Simcik, Gulliver (bib36) 2013; 47
Bengtsson, Risman (bib6) 1971; 6
Gagliano, Falciglia, Zaker, Karanfil, Roccaro (bib16) 2021; 198
Watanabe, Takata, Takemine, Yamamoto (bib35) 2018; 25
D Ambrosio, Mohammad Gholipour Aghdam, Cintio, Konschak, Schmidt, Maier, Toma, Del Campo, Rozenbaum, Mallah, Probst, Vignoles, Bechara, Lazzeri, Annino (bib10) 2025; 45
Li, Zhang, Shu, Zheng (bib23) 2025; 503
Pham, Khan, Karim (bib28) 2020; 325
Yang, Fathy, Morgan, Chen (bib38) 2022; 314
Gadkari, Fidalgo, Gu (bib15) 2017; 156
Ghimire, Chen (bib18) 2025; 395
Baskar, Bolan, Hoang, Sooriyakumar, Kumar, Singh, Jasemizad, Padhye, Singh, Vinu, Sarkar, Kirkham, Rinklebe, Wang, Wang, Balasubramanian, Siddique (bib5) 2022; 822
Arvaniti, Stasinakis (bib3) 2015; 524–525
Ahmed (10.1016/j.envres.2025.122292_bib1) 2020; 136
Mohd Mokhta (10.1016/j.envres.2025.122292_bib26) 2020; 190
Zhu (10.1016/j.envres.2025.122292_bib40) 2021; 407
Patel (10.1016/j.envres.2025.122292_bib27) 2024; 56
Sonmez Baghirzade (10.1016/j.envres.2025.122292_bib32) 2021; 55
Baskar (10.1016/j.envres.2025.122292_bib5) 2022; 822
Gagliano (10.1016/j.envres.2025.122292_bib17) 2020; 171
Brendel (10.1016/j.envres.2025.122292_bib7) 2018; 30
Gagliano (10.1016/j.envres.2025.122292_bib16) 2021; 198
Singh (10.1016/j.envres.2025.122292_bib31) 2021; 408
D Ambrosio (10.1016/j.envres.2025.122292_bib10) 2025; 45
Watanabe (10.1016/j.envres.2025.122292_bib35) 2018; 25
Du (10.1016/j.envres.2025.122292_bib12) 2014; 274
Li (10.1016/j.envres.2025.122292_bib23) 2025; 503
Campañone (10.1016/j.envres.2025.122292_bib9) 2014; 73
Gadkari (10.1016/j.envres.2025.122292_bib15) 2017; 156
Bengtsson (10.1016/j.envres.2025.122292_bib6) 1971; 6
Durán-Jiménez (10.1016/j.envres.2025.122292_bib13) 2019; 378
Farag (10.1016/j.envres.2025.122292_bib14) 2012; 36
Huang (10.1016/j.envres.2025.122292_bib21) 2023; 203
Altarawneh (10.1016/j.envres.2025.122292_bib2) 2022; 286
Dickman (10.1016/j.envres.2025.122292_bib11) 2022; 436
Zanella (10.1016/j.envres.2025.122292_bib39) 2014; 37
Bagotia (10.1016/j.envres.2025.122292_bib4) 2025; 69
Xiao (10.1016/j.envres.2025.122292_bib36) 2013; 47
Xiong (10.1016/j.envres.2025.122292_bib37) 2024; 495
Arvaniti (10.1016/j.envres.2025.122292_bib3) 2015; 524–525
Huang (10.1016/j.envres.2025.122292_bib20) 2022; 214
Pham (10.1016/j.envres.2025.122292_bib28) 2020; 325
Shariaty (10.1016/j.envres.2025.122292_bib30) 2017; 179
Çalışkan (10.1016/j.envres.2025.122292_bib8) 2012; 102
Huang (10.1016/j.envres.2025.122292_bib22) 2024; 500
Liu (10.1016/j.envres.2025.122292_bib25) 2024; 12
Gonçalves (10.1016/j.envres.2025.122292_bib19) 2024; 467
Ghimire (10.1016/j.envres.2025.122292_bib18) 2025; 395
Salema (10.1016/j.envres.2025.122292_bib29) 2017; 166
Yang (10.1016/j.envres.2025.122292_bib38) 2022; 314
Wang (10.1016/j.envres.2025.122292_bib33) 2022; 15
Li (10.1016/j.envres.2025.122292_bib24) 2019; 256
Wang (10.1016/j.envres.2025.122292_bib34) 2024; 476
References_xml – volume: 436
  year: 2022
  ident: bib11
  article-title: A review of recent studies on toxicity, sequestration, and degradation of per- and polyfluoroalkyl substances (PFAS)
  publication-title: J. Hazard. Mater.
– volume: 476
  year: 2024
  ident: bib34
  article-title: The deactivation mechanisms, regeneration methods and devices of activated carbon in applications
  publication-title: J. Clean. Prod.
– volume: 214
  year: 2022
  ident: bib20
  article-title: Thermal desorption characteristics of the adsorbate in activated carbon based on a two-dimensional heat and mass transfer model
  publication-title: Appl. Therm. Eng.
– volume: 495
  year: 2024
  ident: bib37
  article-title: Multi-physical field coupling modeling of microwave heating and reduction behavior of zinc oxide
  publication-title: Chem. Eng. J.
– volume: 198
  year: 2021
  ident: bib16
  article-title: Microwave regeneration of granular activated carbon saturated with PFAS
  publication-title: Water Res.
– volume: 55
  start-page: 5608
  year: 2021
  end-page: 5619
  ident: bib32
  article-title: Thermal regeneration of spent granular activated carbon presents an opportunity to break the forever PFAS cycle
  publication-title: Environ. Sci. Technol.
– volume: 6
  start-page: 107
  year: 1971
  end-page: 123
  ident: bib6
  article-title: Dielectric properties of foods at 3 GHz as determined by a cavity perturbation technique
  publication-title: J. Microw. Power
– volume: 179
  start-page: 420
  year: 2017
  end-page: 427
  ident: bib30
  article-title: Effect of ETS-10 ion exchange on its dielectric properties and adsorption/microwave regeneration
  publication-title: Sep. Purif. Technol.
– volume: 274
  start-page: 443
  year: 2014
  end-page: 454
  ident: bib12
  article-title: Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents—a review
  publication-title: J. Hazard. Mater.
– volume: 395
  year: 2025
  ident: bib18
  article-title: A real-time predictive complementary relative phase shifting strategy for dual-port solid-state microwave heating process
  publication-title: J. Food Eng.
– volume: 203
  year: 2023
  ident: bib21
  article-title: Numerical simulation and experimental investigation on thermal regeneration of spent activated carbon: thermal desorption of mixed organic adsorbates in porous media
  publication-title: Int. J. Heat Mass Transf.
– volume: 156
  start-page: 473
  year: 2017
  end-page: 484
  ident: bib15
  article-title: Numerical investigation of microwave-assisted pyrolysis of lignin
  publication-title: Fuel Process. Technol.
– volume: 37
  start-page: 1447
  year: 2014
  end-page: 1459
  ident: bib39
  article-title: Desorption- and decomposition-based techniques for the regeneration of activated carbon
  publication-title: Chem. Eng. Technol.
– volume: 36
  start-page: 360
  year: 2012
  end-page: 369
  ident: bib14
  article-title: Temperature profile prediction within selected materials heated by microwaves at 2.45GHz
  publication-title: Appl. Therm. Eng.
– volume: 15
  start-page: 3256
  year: 2022
  ident: bib33
  article-title: Numerical simulation of oil shale pyrolysis under microwave irradiation based on a three-dimensional porous medium multiphysics field model
  publication-title: Energies
– volume: 408
  year: 2021
  ident: bib31
  article-title: Treatment of PFAS-containing landfill leachate using an enhanced contact plasma reactor
  publication-title: J. Hazard. Mater.
– volume: 102
  start-page: 134
  year: 2012
  end-page: 140
  ident: bib8
  article-title: Low temperature regeneration of activated carbons using microwaves: revising conventional wisdom
  publication-title: J. Environ. Manage.
– volume: 56
  year: 2024
  ident: bib27
  article-title: A sustainable waveguide-based design strategy for improving the energy efficiency of microwave hybrid heating systems: a combined theoretical and multi-physics simulation approach
  publication-title: Therm. Sci. Eng. Prog.
– volume: 256
  year: 2019
  ident: bib24
  article-title: Drying kinetics of coal under microwave irradiation based on a coupled electromagnetic, heat transfer and multiphase porous media model
  publication-title: Fuel
– volume: 69
  year: 2025
  ident: bib4
  article-title: Regeneration strategies for exhausted adsorbents used in water treatment - a critical review
  publication-title: J. Water Process Eng.
– volume: 467
  year: 2024
  ident: bib19
  article-title: Modelling and energy efficiency analysis of the microwave continuous processing of limestone
  publication-title: J. Clean. Prod.
– volume: 500
  year: 2024
  ident: bib22
  article-title: Characteristics and optimization strategy of microwave thermal regeneration of spent activated carbon based on a multi-physical field model
  publication-title: Chem. Eng. J.
– volume: 171
  year: 2020
  ident: bib17
  article-title: Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration
  publication-title: Water Res.
– volume: 166
  start-page: 164
  year: 2017
  end-page: 173
  ident: bib29
  article-title: Microwave dielectric properties of Malaysian palm oil and agricultural industrial biomass and biochar during pyrolysis process
  publication-title: Fuel Process. Technol.
– volume: 325
  year: 2020
  ident: bib28
  article-title: A mathematical model for predicting the transport process and quality changes during intermittent microwave convective drying
  publication-title: Food Chem.
– volume: 12
  year: 2024
  ident: bib25
  article-title: Removal of PFOA from water by activated carbon adsorption: influence of pore structure
  publication-title: J. Environ. Chem. Eng.
– volume: 73
  start-page: 914
  year: 2014
  end-page: 923
  ident: bib9
  article-title: Modeling and process simulation of controlled microwave heating of foods by using of the resonance phenomenon
  publication-title: Appl. Therm. Eng.
– volume: 407
  year: 2021
  ident: bib40
  article-title: Three-dimensional numerical simulation on the thermal response of oil shale subjected to microwave heating
  publication-title: Chem. Eng. J.
– volume: 822
  year: 2022
  ident: bib5
  article-title: Recovery, regeneration and sustainable management of spent adsorbents from wastewater treatment streams: a review
  publication-title: Sci. Total Environ.
– volume: 25
  start-page: 7200
  year: 2018
  end-page: 7205
  ident: bib35
  article-title: Thermal mineralization behavior of PFOA, PFHxA, and PFOS during reactivation of granular activated carbon (GAC) in nitrogen atmosphere
  publication-title: Environ. Sci. Pollut. Res.
– volume: 524–525
  start-page: 81
  year: 2015
  end-page: 92
  ident: bib3
  article-title: Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment
  publication-title: Sci. Total Environ.
– volume: 286
  year: 2022
  ident: bib2
  article-title: Thermal decomposition of perfluorinated carboxylic acids: kinetic model and theoretical requirements for PFAS incineration
  publication-title: Chemosphere
– volume: 503
  year: 2025
  ident: bib23
  article-title: Simulation of moisture removal in microwave regeneration of carbon adsorbents: comparing conventional heating and multiple microwave frequencies with economic implications
  publication-title: Chem. Eng. J.
– volume: 45
  year: 2025
  ident: bib10
  article-title: Improved densification of SiCf/SiC composites by microwave-assisted chemical vapor infiltration process based on multifrequency solid-state sources excitation
  publication-title: J. Eur. Ceram. Soc.
– volume: 378
  year: 2019
  ident: bib13
  article-title: Fast regeneration of activated carbons saturated with textile dyes: textural, thermal and dielectric characterization
  publication-title: Chem. Eng. J.
– volume: 47
  start-page: 49
  year: 2013
  end-page: 56
  ident: bib36
  article-title: Mechanisms for removal of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from drinking water by conventional and enhanced coagulation
  publication-title: Water Res.
– volume: 314
  year: 2022
  ident: bib38
  article-title: Development of a complementary-frequency strategy to improve microwave heating of gellan gel in a solid-state system
  publication-title: J. Food Eng.
– volume: 136
  start-page: 1
  year: 2020
  end-page: 14
  ident: bib1
  article-title: Advanced treatment technologies efficacies and mechanism of per- and poly-fluoroalkyl substances removal from water
  publication-title: Process Saf. Environ. Prot.
– volume: 190
  year: 2020
  ident: bib26
  article-title: Simulation studies on microwave-assisted pyrolysis of biomass for bioenergy production with special attention on waveguide number and location
  publication-title: Energy
– volume: 30
  year: 2018
  ident: bib7
  article-title: Short-chain perfluoroalkyl acids: environmental concerns and a regulatory strategy under REACH
  publication-title: Environ. Sci. Eur.
– volume: 69
  year: 2025
  ident: 10.1016/j.envres.2025.122292_bib4
  article-title: Regeneration strategies for exhausted adsorbents used in water treatment - a critical review
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2024.106560
– volume: 6
  start-page: 107
  issue: 2
  year: 1971
  ident: 10.1016/j.envres.2025.122292_bib6
  article-title: Dielectric properties of foods at 3 GHz as determined by a cavity perturbation technique
  publication-title: J. Microw. Power
  doi: 10.1080/00222739.1971.11688789
– volume: 822
  year: 2022
  ident: 10.1016/j.envres.2025.122292_bib5
  article-title: Recovery, regeneration and sustainable management of spent adsorbents from wastewater treatment streams: a review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.153555
– volume: 503
  year: 2025
  ident: 10.1016/j.envres.2025.122292_bib23
  article-title: Simulation of moisture removal in microwave regeneration of carbon adsorbents: comparing conventional heating and multiple microwave frequencies with economic implications
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.158629
– volume: 314
  year: 2022
  ident: 10.1016/j.envres.2025.122292_bib38
  article-title: Development of a complementary-frequency strategy to improve microwave heating of gellan gel in a solid-state system
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2021.110763
– volume: 203
  year: 2023
  ident: 10.1016/j.envres.2025.122292_bib21
  article-title: Numerical simulation and experimental investigation on thermal regeneration of spent activated carbon: thermal desorption of mixed organic adsorbates in porous media
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2022.123793
– volume: 325
  year: 2020
  ident: 10.1016/j.envres.2025.122292_bib28
  article-title: A mathematical model for predicting the transport process and quality changes during intermittent microwave convective drying
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2020.126932
– volume: 15
  start-page: 3256
  issue: 9
  year: 2022
  ident: 10.1016/j.envres.2025.122292_bib33
  article-title: Numerical simulation of oil shale pyrolysis under microwave irradiation based on a three-dimensional porous medium multiphysics field model
  publication-title: Energies
  doi: 10.3390/en15093256
– volume: 495
  year: 2024
  ident: 10.1016/j.envres.2025.122292_bib37
  article-title: Multi-physical field coupling modeling of microwave heating and reduction behavior of zinc oxide
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.153716
– volume: 102
  start-page: 134
  year: 2012
  ident: 10.1016/j.envres.2025.122292_bib8
  article-title: Low temperature regeneration of activated carbons using microwaves: revising conventional wisdom
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2012.02.016
– volume: 274
  start-page: 443
  year: 2014
  ident: 10.1016/j.envres.2025.122292_bib12
  article-title: Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents—a review
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2014.04.038
– volume: 190
  year: 2020
  ident: 10.1016/j.envres.2025.122292_bib26
  article-title: Simulation studies on microwave-assisted pyrolysis of biomass for bioenergy production with special attention on waveguide number and location
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116474
– volume: 436
  year: 2022
  ident: 10.1016/j.envres.2025.122292_bib11
  article-title: A review of recent studies on toxicity, sequestration, and degradation of per- and polyfluoroalkyl substances (PFAS)
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2022.129120
– volume: 56
  year: 2024
  ident: 10.1016/j.envres.2025.122292_bib27
  article-title: A sustainable waveguide-based design strategy for improving the energy efficiency of microwave hybrid heating systems: a combined theoretical and multi-physics simulation approach
  publication-title: Therm. Sci. Eng. Prog.
– volume: 30
  issue: 1
  year: 2018
  ident: 10.1016/j.envres.2025.122292_bib7
  article-title: Short-chain perfluoroalkyl acids: environmental concerns and a regulatory strategy under REACH
  publication-title: Environ. Sci. Eur.
  doi: 10.1186/s12302-018-0134-4
– volume: 214
  year: 2022
  ident: 10.1016/j.envres.2025.122292_bib20
  article-title: Thermal desorption characteristics of the adsorbate in activated carbon based on a two-dimensional heat and mass transfer model
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.118775
– volume: 36
  start-page: 360
  year: 2012
  ident: 10.1016/j.envres.2025.122292_bib14
  article-title: Temperature profile prediction within selected materials heated by microwaves at 2.45GHz
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2011.10.049
– volume: 37
  start-page: 1447
  issue: 9
  year: 2014
  ident: 10.1016/j.envres.2025.122292_bib39
  article-title: Desorption- and decomposition-based techniques for the regeneration of activated carbon
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.201300808
– volume: 407
  year: 2021
  ident: 10.1016/j.envres.2025.122292_bib40
  article-title: Three-dimensional numerical simulation on the thermal response of oil shale subjected to microwave heating
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127197
– volume: 286
  year: 2022
  ident: 10.1016/j.envres.2025.122292_bib2
  article-title: Thermal decomposition of perfluorinated carboxylic acids: kinetic model and theoretical requirements for PFAS incineration
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.131685
– volume: 171
  year: 2020
  ident: 10.1016/j.envres.2025.122292_bib17
  article-title: Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.115381
– volume: 524–525
  start-page: 81
  year: 2015
  ident: 10.1016/j.envres.2025.122292_bib3
  article-title: Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.04.023
– volume: 395
  year: 2025
  ident: 10.1016/j.envres.2025.122292_bib18
  article-title: A real-time predictive complementary relative phase shifting strategy for dual-port solid-state microwave heating process
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2025.112544
– volume: 500
  year: 2024
  ident: 10.1016/j.envres.2025.122292_bib22
  article-title: Characteristics and optimization strategy of microwave thermal regeneration of spent activated carbon based on a multi-physical field model
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.156950
– volume: 179
  start-page: 420
  year: 2017
  ident: 10.1016/j.envres.2025.122292_bib30
  article-title: Effect of ETS-10 ion exchange on its dielectric properties and adsorption/microwave regeneration
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2017.02.016
– volume: 45
  issue: 3
  year: 2025
  ident: 10.1016/j.envres.2025.122292_bib10
  article-title: Improved densification of SiCf/SiC composites by microwave-assisted chemical vapor infiltration process based on multifrequency solid-state sources excitation
  publication-title: J. Eur. Ceram. Soc.
– volume: 476
  year: 2024
  ident: 10.1016/j.envres.2025.122292_bib34
  article-title: The deactivation mechanisms, regeneration methods and devices of activated carbon in applications
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2024.143751
– volume: 25
  start-page: 7200
  issue: 8
  year: 2018
  ident: 10.1016/j.envres.2025.122292_bib35
  article-title: Thermal mineralization behavior of PFOA, PFHxA, and PFOS during reactivation of granular activated carbon (GAC) in nitrogen atmosphere
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-015-5353-2
– volume: 47
  start-page: 49
  issue: 1
  year: 2013
  ident: 10.1016/j.envres.2025.122292_bib36
  article-title: Mechanisms for removal of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from drinking water by conventional and enhanced coagulation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.09.024
– volume: 136
  start-page: 1
  year: 2020
  ident: 10.1016/j.envres.2025.122292_bib1
  article-title: Advanced treatment technologies efficacies and mechanism of per- and poly-fluoroalkyl substances removal from water
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2020.01.005
– volume: 73
  start-page: 914
  issue: 1
  year: 2014
  ident: 10.1016/j.envres.2025.122292_bib9
  article-title: Modeling and process simulation of controlled microwave heating of foods by using of the resonance phenomenon
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.08.048
– volume: 166
  start-page: 164
  year: 2017
  ident: 10.1016/j.envres.2025.122292_bib29
  article-title: Microwave dielectric properties of Malaysian palm oil and agricultural industrial biomass and biochar during pyrolysis process
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2017.06.006
– volume: 408
  year: 2021
  ident: 10.1016/j.envres.2025.122292_bib31
  article-title: Treatment of PFAS-containing landfill leachate using an enhanced contact plasma reactor
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.124452
– volume: 378
  year: 2019
  ident: 10.1016/j.envres.2025.122292_bib13
  article-title: Fast regeneration of activated carbons saturated with textile dyes: textural, thermal and dielectric characterization
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.05.135
– volume: 156
  start-page: 473
  year: 2017
  ident: 10.1016/j.envres.2025.122292_bib15
  article-title: Numerical investigation of microwave-assisted pyrolysis of lignin
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2016.10.012
– volume: 55
  start-page: 5608
  issue: 9
  year: 2021
  ident: 10.1016/j.envres.2025.122292_bib32
  article-title: Thermal regeneration of spent granular activated carbon presents an opportunity to break the forever PFAS cycle
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c08224
– volume: 12
  issue: 5
  year: 2024
  ident: 10.1016/j.envres.2025.122292_bib25
  article-title: Removal of PFOA from water by activated carbon adsorption: influence of pore structure
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2024.113923
– volume: 198
  year: 2021
  ident: 10.1016/j.envres.2025.122292_bib16
  article-title: Microwave regeneration of granular activated carbon saturated with PFAS
  publication-title: Water Res.
  doi: 10.1016/j.watres.2021.117121
– volume: 467
  year: 2024
  ident: 10.1016/j.envres.2025.122292_bib19
  article-title: Modelling and energy efficiency analysis of the microwave continuous processing of limestone
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2024.142912
– volume: 256
  year: 2019
  ident: 10.1016/j.envres.2025.122292_bib24
  article-title: Drying kinetics of coal under microwave irradiation based on a coupled electromagnetic, heat transfer and multiphase porous media model
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.115966
SSID ssj0011530
Score 2.4602346
Snippet Microwave (MW) heating at the molecular level represents a promising alternative to conventional thermal processing methods. However, its industrial...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 122292
SubjectTerms 2450 MHz and 915 MHz
Energy absorption
Heating uniformity
Microwave regeneration
Numerical simulation
Title Multiphysics simulation and optimization of microwave-assisted regeneration of spent activated carbon for enhanced energy efficiency
URI https://dx.doi.org/10.1016/j.envres.2025.122292
https://www.ncbi.nlm.nih.gov/pubmed/40617577
https://www.proquest.com/docview/3227417621
Volume 285
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFH5CcEGaplEG6zaQkbgG6tipm2NVFXWbxgkkbpbtOFCkplVTuttO_HDes5MiDhUSx8S2HPl7fu-z8z4b4FzkZeZd4RIvjErkoOwn1uQcAeGFTA1GjZy0w3-v-5Nb-fsuu9uBUauFobTKxvdHnx68dfPmshnNy8V0ShpfTrpSjNDEAwSJ-KRUZOUX_zdpHkh4RK-9xYBqt_K5kOPlqzUuanGVmGYXnG62TreFp230M4Shqy_wueGPbBg_8QB2fNWBo_GrXA0Lm_lad-BT3JVjUWx0CM9Bbxt3M2pWT2fN5V3MVAWbo_eYNbJMNi_ZjHL1_pm1T5BgkzUUbOnvwzHVbZV6gT0y0kasDZU7s7RYgkSY-eohJBcwH9SFzIezKkjo-RVur8Y3o0nS3MOQOMHFKhmYTHHneiKXmSkQztTJXlHk1qbe4nyWuTUG16HWZ1yUzuV9Z5EFWDQCYQrlxBHsVvPKfwM2cNIrdCOepyW1G5RC0UZsT1pZqlR2IWmHXy_icRu6zUN71BEuTXDpCFcXVIuRfmM2GiPCOy3PWkg1zij6TWIqP3-qNbo4pFkYJHgXjiPWm28h-qMypb5_uN8fsE9PJGfk2U_YXS2f_AnympU9DYZ7CnvDX38m1y91PPtT
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB7RcGilqiq0tGl5GKnXLfHajrNHhEDhlRNI3Czb622DlE2UDekf4Iczs_ZScUCVet1Zy5bn9dmezwb4IYpKBV_6LAirMzmqhpmzBUeF8FLmFrNGQdzh68lwfCsv7tTdBpx0XBgqq0yxP8b0NlqnL0dpNo8W0ylxfDnxSjFDEw4QxRvYpNupVA82j88vx5PnwwR06kH3kAE16Bh0bZlXqNe4rsWFYq5-cnrcOn8tQ72GQNtMdPYRPiQIyY7jKLdgI9TbsHP6l7GGwuSyzTa8jxtzLPKNPsFjS7mNGxoNa6az9H4Xs3XJ5hhAZomZyeYVm1G53h-7DhlibDKIki3Dr_am6u6XZoE9MqJHrC3JvV06lCAWZqH-3dYXsNASDFlor6sgrudnuD07vTkZZ-kphswLLlbZyCrNvR-IQipbokZzLwdlWTiXB4cuLQtnLS5FXVBcVN4XQ-8QCDi0A2FL7cUO9Op5Hb4CG3kZNEaSwPOK2o0qoWkvdiCdrHQu-5B1028W8cYN05Wi3ZuoLkPqMlFdfdCdjswLyzGYFP7R8rBTqUGnopMSW4f5Q2MwyiHSwjzB-_Al6vp5LISAtNL623_3ewBvxzfXV-bqfHL5Hd6RhNiNXO1Cb7V8CHsIc1ZuP5nxEwZn_gQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiphysics+simulation+and+optimization+of+microwave-assisted+regeneration+of+spent+activated+carbon+for+enhanced+energy+efficiency&rft.jtitle=Environmental+research&rft.au=Li%2C+Chenyang&rft.au=Zhao%2C+Xiaotong&rft.au=Pang%2C+Tianrui&rft.au=Hu%2C+Naixin&rft.date=2025-11-15&rft.pub=Elsevier+Inc&rft.issn=0013-9351&rft.volume=285&rft_id=info:doi/10.1016%2Fj.envres.2025.122292&rft.externalDocID=S0013935125015439
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-9351&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-9351&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-9351&client=summon