Multiphysics simulation and optimization of microwave-assisted regeneration of spent activated carbon for enhanced energy efficiency
Microwave (MW) heating at the molecular level represents a promising alternative to conventional thermal processing methods. However, its industrial application is hindered by localized overheating due to uneven electromagnetic field distributions within MW cavities. Traditional temperature measurem...
Saved in:
Published in | Environmental research Vol. 285; no. Pt 1; p. 122292 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
15.11.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microwave (MW) heating at the molecular level represents a promising alternative to conventional thermal processing methods. However, its industrial application is hindered by localized overheating due to uneven electromagnetic field distributions within MW cavities. Traditional temperature measurement approaches fail to capture comprehensive temperature profiles, and research exploring MW applications at 915 MHz remains limited. This study employs a coupled multiphysics modeling approach to optimize MW regeneration processes for activated carbon (AC) at frequencies of 2450 MHz and 915 MHz. The effects of waveguide mode, relative phase difference, spatial configurations of AC columns, loading height, and power input strategies on MW energy utilization, temperature distribution, and contaminant removal were investigated. Comparative analyses between 2450 MHz and 915 MHz revealed distinct frequency-dependent heating behaviors. The results demonstrate that dual-waveguide mode outperforms single-waveguide operation, achieving 93.9 % MW utilization efficiency, elevating AC temperatures to 662.5 °C, and reducing per-fluoropentanoic acid (PFPA) decomposition time by 35 %. Dynamic phase-shifting enabled thermal redistribution, suppressing localized overheating and enhancing energy efficiency. Intermittent power input strategies improved heating uniformity compared to constant power input. A centralized placement of AC improved MW utilization from 68 % to 97 %. Loading height critically influences temperature distribution, with AC column heights of ≥5.1 cm achieving MW utilization efficiencies above 90 %. Frequency comparisons showed that 915 MHz provides superior heating uniformity for larger-scale systems (>10.2 cm), whereas 2450 MHz was more effective in smaller-scale setups (<10.2 cm). These findings offer critical insights into optimizing the MW regeneration of materials, providing a theoretical basis for scaling up industrial MW-assisted AC regeneration.
[Display omitted]
•Microwave heating at 915 MHz achieves deeper penetration and improved heating uniformity in large activated carbon beds.•Dual-waveguide mode significantly enhances electric field intensity and temperature distribution uniformity.•Intermittent microwave power input improves temperature uniformity compared to constant power operation.•Placement and height of activated carbon columns critically influence microwave energy utilization efficiency. |
---|---|
AbstractList | Microwave (MW) heating at the molecular level represents a promising alternative to conventional thermal processing methods. However, its industrial application is hindered by localized overheating due to uneven electromagnetic field distributions within MW cavities. Traditional temperature measurement approaches fail to capture comprehensive temperature profiles, and research exploring MW applications at 915 MHz remains limited. This study employs a coupled multiphysics modeling approach to optimize MW regeneration processes for activated carbon (AC) at frequencies of 2450 MHz and 915 MHz. The effects of waveguide mode, relative phase difference, spatial configurations of AC columns, loading height, and power input strategies on MW energy utilization, temperature distribution, and contaminant removal were investigated. Comparative analyses between 2450 MHz and 915 MHz revealed distinct frequency-dependent heating behaviors. The results demonstrate that dual-waveguide mode outperforms single-waveguide operation, achieving 93.9 % MW utilization efficiency, elevating AC temperatures to 662.5 °C, and reducing per-fluoropentanoic acid (PFPA) decomposition time by 35 %. Dynamic phase-shifting enabled thermal redistribution, suppressing localized overheating and enhancing energy efficiency. Intermittent power input strategies improved heating uniformity compared to constant power input. A centralized placement of AC improved MW utilization from 68 % to 97 %. Loading height critically influences temperature distribution, with AC column heights of ≥5.1 cm achieving MW utilization efficiencies above 90 %. Frequency comparisons showed that 915 MHz provides superior heating uniformity for larger-scale systems (>10.2 cm), whereas 2450 MHz was more effective in smaller-scale setups (<10.2 cm). These findings offer critical insights into optimizing the MW regeneration of materials, providing a theoretical basis for scaling up industrial MW-assisted AC regeneration.
[Display omitted]
•Microwave heating at 915 MHz achieves deeper penetration and improved heating uniformity in large activated carbon beds.•Dual-waveguide mode significantly enhances electric field intensity and temperature distribution uniformity.•Intermittent microwave power input improves temperature uniformity compared to constant power operation.•Placement and height of activated carbon columns critically influence microwave energy utilization efficiency. Microwave (MW) heating at the molecular level represents a promising alternative to conventional thermal processing methods. However, its industrial application is hindered by localized overheating due to uneven electromagnetic field distributions within MW cavities. Traditional temperature measurement approaches fail to capture comprehensive temperature profiles, and research exploring MW applications at 915 MHz remains limited. This study employs a coupled multiphysics modeling approach to optimize MW regeneration processes for activated carbon (AC) at frequencies of 2450 MHz and 915 MHz. The effects of waveguide mode, relative phase difference, spatial configurations of AC columns, loading height, and power input strategies on MW energy utilization, temperature distribution, and contaminant removal were investigated. Comparative analyses between 2450 MHz and 915 MHz revealed distinct frequency-dependent heating behaviors. The results demonstrate that dual-waveguide mode outperforms single-waveguide operation, achieving 93.9 % MW utilization efficiency, elevating AC temperatures to 662.5 °C, and reducing per-fluoropentanoic acid (PFPA) decomposition time by 35 %. Dynamic phase-shifting enabled thermal redistribution, suppressing localized overheating and enhancing energy efficiency. Intermittent power input strategies improved heating uniformity compared to constant power input. A centralized placement of AC improved MW utilization from 68 % to 97 %. Loading height critically influences temperature distribution, with AC column heights of ≥5.1 cm achieving MW utilization efficiencies above 90 %. Frequency comparisons showed that 915 MHz provides superior heating uniformity for larger-scale systems (> 10.2 cm), whereas 2450 MHz was more effective in smaller-scale setups (<10.2 cm). These findings offer critical insights into optimizing the MW regeneration of materials, providing a theoretical basis for scaling up industrial MW-assisted AC regeneration.Microwave (MW) heating at the molecular level represents a promising alternative to conventional thermal processing methods. However, its industrial application is hindered by localized overheating due to uneven electromagnetic field distributions within MW cavities. Traditional temperature measurement approaches fail to capture comprehensive temperature profiles, and research exploring MW applications at 915 MHz remains limited. This study employs a coupled multiphysics modeling approach to optimize MW regeneration processes for activated carbon (AC) at frequencies of 2450 MHz and 915 MHz. The effects of waveguide mode, relative phase difference, spatial configurations of AC columns, loading height, and power input strategies on MW energy utilization, temperature distribution, and contaminant removal were investigated. Comparative analyses between 2450 MHz and 915 MHz revealed distinct frequency-dependent heating behaviors. The results demonstrate that dual-waveguide mode outperforms single-waveguide operation, achieving 93.9 % MW utilization efficiency, elevating AC temperatures to 662.5 °C, and reducing per-fluoropentanoic acid (PFPA) decomposition time by 35 %. Dynamic phase-shifting enabled thermal redistribution, suppressing localized overheating and enhancing energy efficiency. Intermittent power input strategies improved heating uniformity compared to constant power input. A centralized placement of AC improved MW utilization from 68 % to 97 %. Loading height critically influences temperature distribution, with AC column heights of ≥5.1 cm achieving MW utilization efficiencies above 90 %. Frequency comparisons showed that 915 MHz provides superior heating uniformity for larger-scale systems (> 10.2 cm), whereas 2450 MHz was more effective in smaller-scale setups (<10.2 cm). These findings offer critical insights into optimizing the MW regeneration of materials, providing a theoretical basis for scaling up industrial MW-assisted AC regeneration. Microwave (MW) heating at the molecular level represents a promising alternative to conventional thermal processing methods. However, its industrial application is hindered by localized overheating due to uneven electromagnetic field distributions within MW cavities. Traditional temperature measurement approaches fail to capture comprehensive temperature profiles, and research exploring MW applications at 915 MHz remains limited. This study employs a coupled multiphysics modeling approach to optimize MW regeneration processes for activated carbon (AC) at frequencies of 2450 MHz and 915 MHz. The effects of waveguide mode, relative phase difference, spatial configurations of AC columns, loading height, and power input strategies on MW energy utilization, temperature distribution, and contaminant removal were investigated. Comparative analyses between 2450 MHz and 915 MHz revealed distinct frequency-dependent heating behaviors. The results demonstrate that dual-waveguide mode outperforms single-waveguide operation, achieving 93.9 % MW utilization efficiency, elevating AC temperatures to 662.5 °C, and reducing per-fluoropentanoic acid (PFPA) decomposition time by 35 %. Dynamic phase-shifting enabled thermal redistribution, suppressing localized overheating and enhancing energy efficiency. Intermittent power input strategies improved heating uniformity compared to constant power input. A centralized placement of AC improved MW utilization from 68 % to 97 %. Loading height critically influences temperature distribution, with AC column heights of ≥5.1 cm achieving MW utilization efficiencies above 90 %. Frequency comparisons showed that 915 MHz provides superior heating uniformity for larger-scale systems (>10.2 cm), whereas 2450 MHz was more effective in smaller-scale setups (<10.2 cm). These findings offer critical insights into optimizing the MW regeneration of materials, providing a theoretical basis for scaling up industrial MW-assisted AC regeneration. |
ArticleNumber | 122292 |
Author | Pang, Tianrui Zhao, Xiaotong Hu, Naixin Li, Chenyang Zheng, Tong |
Author_xml | – sequence: 1 givenname: Chenyang surname: Li fullname: Li, Chenyang organization: School of Environment, Harbin Institute of Technology, Harbin, 150090, China – sequence: 2 givenname: Xiaotong surname: Zhao fullname: Zhao, Xiaotong organization: School of Environment, Harbin Institute of Technology, Harbin, 150090, China – sequence: 3 givenname: Tianrui surname: Pang fullname: Pang, Tianrui organization: School of Environment, Harbin Institute of Technology, Harbin, 150090, China – sequence: 4 givenname: Naixin surname: Hu fullname: Hu, Naixin organization: School of Environment, Harbin Institute of Technology, Harbin, 150090, China – sequence: 5 givenname: Tong surname: Zheng fullname: Zheng, Tong email: zhengtong@hit.edu.cn organization: School of Environment, Harbin Institute of Technology, Harbin, 150090, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40617577$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1v1DAQhi1URLeFf4BQjlyy-CNO1hckVPElteLSni17PGm9SuxgO4uWMz-cLCk99jSamecdad73gpyFGJCQt4xuGWXth_0WwyFh3nLK5ZZxzhV_QTaMqramSoozsqGUiVoJyc7JRc77pWVS0FfkvKEt62TXbcifm3kofno4Zg-5yn6cB1N8DJUJropT8aP_vQ5iX40eUvxlDlibnH0u6KqE9xgwPSF5wlAqA8UfzGkPJtll08dUYXgwAZbZSXB_rLDvPXgMcHxNXvZmyPjmsV6Suy-fb6--1dc_vn6_-nRdg2Ci1DsjOwZAhWqkcbu-5dBQ55S1HG2nmkZZYxrKLUomegDVgt1JYSWCMK4DcUner3enFH_OmIsefQYcBhMwzlkLzruGdS1nC_ruEZ3tiE5PyY8mHfV_5xagWYHFkpwT9k8Io_oUkN7rNSB9CkivAS2yj6sMlz8PHpPO_zxA5xNC0S765w_8BRerntY |
Cites_doi | 10.1016/j.jwpe.2024.106560 10.1080/00222739.1971.11688789 10.1016/j.scitotenv.2022.153555 10.1016/j.cej.2024.158629 10.1016/j.jfoodeng.2021.110763 10.1016/j.ijheatmasstransfer.2022.123793 10.1016/j.foodchem.2020.126932 10.3390/en15093256 10.1016/j.cej.2024.153716 10.1016/j.jenvman.2012.02.016 10.1016/j.jhazmat.2014.04.038 10.1016/j.energy.2019.116474 10.1016/j.jhazmat.2022.129120 10.1186/s12302-018-0134-4 10.1016/j.applthermaleng.2022.118775 10.1016/j.applthermaleng.2011.10.049 10.1002/ceat.201300808 10.1016/j.cej.2020.127197 10.1016/j.chemosphere.2021.131685 10.1016/j.watres.2019.115381 10.1016/j.scitotenv.2015.04.023 10.1016/j.jfoodeng.2025.112544 10.1016/j.cej.2024.156950 10.1016/j.seppur.2017.02.016 10.1016/j.jclepro.2024.143751 10.1007/s11356-015-5353-2 10.1016/j.watres.2012.09.024 10.1016/j.psep.2020.01.005 10.1016/j.applthermaleng.2014.08.048 10.1016/j.fuproc.2017.06.006 10.1016/j.jhazmat.2020.124452 10.1016/j.cej.2019.05.135 10.1016/j.fuproc.2016.10.012 10.1021/acs.est.0c08224 10.1016/j.jece.2024.113923 10.1016/j.watres.2021.117121 10.1016/j.jclepro.2024.142912 10.1016/j.fuel.2019.115966 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Inc. Copyright © 2025 Elsevier Inc. All rights reserved. Copyright © 2025. Published by Elsevier Inc. |
Copyright_xml | – notice: 2025 Elsevier Inc. – notice: Copyright © 2025 Elsevier Inc. All rights reserved. – notice: Copyright © 2025. Published by Elsevier Inc. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.envres.2025.122292 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Environmental Sciences |
EISSN | 1096-0953 |
ExternalDocumentID | 40617577 10_1016_j_envres_2025_122292 S0013935125015439 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 5VS 7-5 71M 8P~ 9JM AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACNCT ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHEUO AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLECG BLXMC BNPGV C45 CS3 DM4 DU5 EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM L7B MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPCBC SSJ SSZ T5K TAE TEORI TN5 TWZ UPT WH7 ZCA ZU3 ~02 ~G- ~KM .GJ 29G 3O- 53G AAQXK AAYJJ AAYXX ABEFU ABFNM ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AEGFY AFFNX AGQPQ ASPBG AVWKF AZFZN CAG CITATION COF EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ LG5 LY8 M41 OHT R2- RIG SEN SSH VOH WUQ XOL XPP ZGI ZKB ZMT ZXP NPM 7X8 |
ID | FETCH-LOGICAL-c313t-8a571cc03945ad8f62c40dd9bb2eb79449baa402be513fcc96cb853b5ec3ad7c3 |
IEDL.DBID | .~1 |
ISSN | 0013-9351 1096-0953 |
IngestDate | Sun Jul 06 16:30:25 EDT 2025 Mon Jul 21 06:08:13 EDT 2025 Wed Jul 16 16:48:17 EDT 2025 Sat Aug 09 17:31:57 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt 1 |
Keywords | Numerical simulation Microwave regeneration Heating uniformity Energy absorption 2450 MHz and 915 MHz |
Language | English |
License | Copyright © 2025 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c313t-8a571cc03945ad8f62c40dd9bb2eb79449baa402be513fcc96cb853b5ec3ad7c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 40617577 |
PQID | 3227417621 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3227417621 pubmed_primary_40617577 crossref_primary_10_1016_j_envres_2025_122292 elsevier_sciencedirect_doi_10_1016_j_envres_2025_122292 |
PublicationCentury | 2000 |
PublicationDate | 2025-11-15 |
PublicationDateYYYYMMDD | 2025-11-15 |
PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Environmental research |
PublicationTitleAlternate | Environ Res |
PublicationYear | 2025 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Wang, Li, Zhu, Yang, Zhou, Yi (bib33) 2022; 15 Farag, Sobhy, Akyel, Doucet, Chaouki (bib14) 2012; 36 Gonçalves, Albuquerque, Pereira (bib19) 2024; 467 Du, Deng, Bei, Huang, Wang, Huang, Yu (bib12) 2014; 274 Huang, Liu, Zhang, Chen, Ren (bib21) 2023; 203 Wang, Wu, Zhang, Su, Zhang (bib34) 2024; 476 Salema, Ani, Mouris, Hutcheon (bib29) 2017; 166 Sonmez Baghirzade, Zhang, Reuther, Saleh, Venkatesan, Apul (bib32) 2021; 55 Mohd Mokhta, Ong, Salman, Nomanbhay, Salleh, Chew, Show, Chen (bib26) 2020; 190 Xiong, Yao, Lu, Omran, Qiu, Wei, Li, Yu (bib37) 2024; 495 Dickman, Aga (bib11) 2022; 436 Zhu, Yi, Yang, Duan (bib40) 2021; 407 Li, Zheng, Lu, Tian, Lu, Ye, Luo, Zhu (bib24) 2019; 256 Shariaty, Jahandar Lashaki, Hashisho, Sawada, Kuznicki, Hutcheon (bib30) 2017; 179 Altarawneh, Almatarneh, Dlugogorski (bib2) 2022; 286 Çalışkan, Bermúdez, Parra, Menéndez, Mahramanlıoğlu, Ania (bib8) 2012; 102 Ahmed, Alam, Zhou, Xu, Johir, Karmakar, Rahman, Hossen, Hasan, Moni (bib1) 2020; 136 Campañone, Bava, Mascheroni (bib9) 2014; 73 Zanella, Tessaro, Féris (bib39) 2014; 37 Brendel, Fetter, Staude, Vierke, Biegel-Engler (bib7) 2018; 30 Gagliano, Sgroi, Falciglia, Vagliasindi, Roccaro (bib17) 2020; 171 Patel, Mohanty, Panigrahi (bib27) 2024; 56 Singh, Brown, Mededovic Thagard, Holsen (bib31) 2021; 408 Huang, Liu, Chen, Tian, Wei (bib20) 2022; 214 Durán-Jiménez, Stevens, Hodgins, Uguna, Ryan, Binner, Robinson (bib13) 2019; 378 Bagotia (bib4) 2025; 69 Huang, Wang, Wu, Li (bib22) 2024; 500 Liu, Yang, Zhai, Yu, Wang, Liu, Liu, Gao, Yang (bib25) 2024; 12 Xiao, Simcik, Gulliver (bib36) 2013; 47 Bengtsson, Risman (bib6) 1971; 6 Gagliano, Falciglia, Zaker, Karanfil, Roccaro (bib16) 2021; 198 Watanabe, Takata, Takemine, Yamamoto (bib35) 2018; 25 D Ambrosio, Mohammad Gholipour Aghdam, Cintio, Konschak, Schmidt, Maier, Toma, Del Campo, Rozenbaum, Mallah, Probst, Vignoles, Bechara, Lazzeri, Annino (bib10) 2025; 45 Li, Zhang, Shu, Zheng (bib23) 2025; 503 Pham, Khan, Karim (bib28) 2020; 325 Yang, Fathy, Morgan, Chen (bib38) 2022; 314 Gadkari, Fidalgo, Gu (bib15) 2017; 156 Ghimire, Chen (bib18) 2025; 395 Baskar, Bolan, Hoang, Sooriyakumar, Kumar, Singh, Jasemizad, Padhye, Singh, Vinu, Sarkar, Kirkham, Rinklebe, Wang, Wang, Balasubramanian, Siddique (bib5) 2022; 822 Arvaniti, Stasinakis (bib3) 2015; 524–525 Ahmed (10.1016/j.envres.2025.122292_bib1) 2020; 136 Mohd Mokhta (10.1016/j.envres.2025.122292_bib26) 2020; 190 Zhu (10.1016/j.envres.2025.122292_bib40) 2021; 407 Patel (10.1016/j.envres.2025.122292_bib27) 2024; 56 Sonmez Baghirzade (10.1016/j.envres.2025.122292_bib32) 2021; 55 Baskar (10.1016/j.envres.2025.122292_bib5) 2022; 822 Gagliano (10.1016/j.envres.2025.122292_bib17) 2020; 171 Brendel (10.1016/j.envres.2025.122292_bib7) 2018; 30 Gagliano (10.1016/j.envres.2025.122292_bib16) 2021; 198 Singh (10.1016/j.envres.2025.122292_bib31) 2021; 408 D Ambrosio (10.1016/j.envres.2025.122292_bib10) 2025; 45 Watanabe (10.1016/j.envres.2025.122292_bib35) 2018; 25 Du (10.1016/j.envres.2025.122292_bib12) 2014; 274 Li (10.1016/j.envres.2025.122292_bib23) 2025; 503 Campañone (10.1016/j.envres.2025.122292_bib9) 2014; 73 Gadkari (10.1016/j.envres.2025.122292_bib15) 2017; 156 Bengtsson (10.1016/j.envres.2025.122292_bib6) 1971; 6 Durán-Jiménez (10.1016/j.envres.2025.122292_bib13) 2019; 378 Farag (10.1016/j.envres.2025.122292_bib14) 2012; 36 Huang (10.1016/j.envres.2025.122292_bib21) 2023; 203 Altarawneh (10.1016/j.envres.2025.122292_bib2) 2022; 286 Dickman (10.1016/j.envres.2025.122292_bib11) 2022; 436 Zanella (10.1016/j.envres.2025.122292_bib39) 2014; 37 Bagotia (10.1016/j.envres.2025.122292_bib4) 2025; 69 Xiao (10.1016/j.envres.2025.122292_bib36) 2013; 47 Xiong (10.1016/j.envres.2025.122292_bib37) 2024; 495 Arvaniti (10.1016/j.envres.2025.122292_bib3) 2015; 524–525 Huang (10.1016/j.envres.2025.122292_bib20) 2022; 214 Pham (10.1016/j.envres.2025.122292_bib28) 2020; 325 Shariaty (10.1016/j.envres.2025.122292_bib30) 2017; 179 Çalışkan (10.1016/j.envres.2025.122292_bib8) 2012; 102 Huang (10.1016/j.envres.2025.122292_bib22) 2024; 500 Liu (10.1016/j.envres.2025.122292_bib25) 2024; 12 Gonçalves (10.1016/j.envres.2025.122292_bib19) 2024; 467 Ghimire (10.1016/j.envres.2025.122292_bib18) 2025; 395 Salema (10.1016/j.envres.2025.122292_bib29) 2017; 166 Yang (10.1016/j.envres.2025.122292_bib38) 2022; 314 Wang (10.1016/j.envres.2025.122292_bib33) 2022; 15 Li (10.1016/j.envres.2025.122292_bib24) 2019; 256 Wang (10.1016/j.envres.2025.122292_bib34) 2024; 476 |
References_xml | – volume: 436 year: 2022 ident: bib11 article-title: A review of recent studies on toxicity, sequestration, and degradation of per- and polyfluoroalkyl substances (PFAS) publication-title: J. Hazard. Mater. – volume: 476 year: 2024 ident: bib34 article-title: The deactivation mechanisms, regeneration methods and devices of activated carbon in applications publication-title: J. Clean. Prod. – volume: 214 year: 2022 ident: bib20 article-title: Thermal desorption characteristics of the adsorbate in activated carbon based on a two-dimensional heat and mass transfer model publication-title: Appl. Therm. Eng. – volume: 495 year: 2024 ident: bib37 article-title: Multi-physical field coupling modeling of microwave heating and reduction behavior of zinc oxide publication-title: Chem. Eng. J. – volume: 198 year: 2021 ident: bib16 article-title: Microwave regeneration of granular activated carbon saturated with PFAS publication-title: Water Res. – volume: 55 start-page: 5608 year: 2021 end-page: 5619 ident: bib32 article-title: Thermal regeneration of spent granular activated carbon presents an opportunity to break the forever PFAS cycle publication-title: Environ. Sci. Technol. – volume: 6 start-page: 107 year: 1971 end-page: 123 ident: bib6 article-title: Dielectric properties of foods at 3 GHz as determined by a cavity perturbation technique publication-title: J. Microw. Power – volume: 179 start-page: 420 year: 2017 end-page: 427 ident: bib30 article-title: Effect of ETS-10 ion exchange on its dielectric properties and adsorption/microwave regeneration publication-title: Sep. Purif. Technol. – volume: 274 start-page: 443 year: 2014 end-page: 454 ident: bib12 article-title: Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents—a review publication-title: J. Hazard. Mater. – volume: 395 year: 2025 ident: bib18 article-title: A real-time predictive complementary relative phase shifting strategy for dual-port solid-state microwave heating process publication-title: J. Food Eng. – volume: 203 year: 2023 ident: bib21 article-title: Numerical simulation and experimental investigation on thermal regeneration of spent activated carbon: thermal desorption of mixed organic adsorbates in porous media publication-title: Int. J. Heat Mass Transf. – volume: 156 start-page: 473 year: 2017 end-page: 484 ident: bib15 article-title: Numerical investigation of microwave-assisted pyrolysis of lignin publication-title: Fuel Process. Technol. – volume: 37 start-page: 1447 year: 2014 end-page: 1459 ident: bib39 article-title: Desorption- and decomposition-based techniques for the regeneration of activated carbon publication-title: Chem. Eng. Technol. – volume: 36 start-page: 360 year: 2012 end-page: 369 ident: bib14 article-title: Temperature profile prediction within selected materials heated by microwaves at 2.45GHz publication-title: Appl. Therm. Eng. – volume: 15 start-page: 3256 year: 2022 ident: bib33 article-title: Numerical simulation of oil shale pyrolysis under microwave irradiation based on a three-dimensional porous medium multiphysics field model publication-title: Energies – volume: 408 year: 2021 ident: bib31 article-title: Treatment of PFAS-containing landfill leachate using an enhanced contact plasma reactor publication-title: J. Hazard. Mater. – volume: 102 start-page: 134 year: 2012 end-page: 140 ident: bib8 article-title: Low temperature regeneration of activated carbons using microwaves: revising conventional wisdom publication-title: J. Environ. Manage. – volume: 56 year: 2024 ident: bib27 article-title: A sustainable waveguide-based design strategy for improving the energy efficiency of microwave hybrid heating systems: a combined theoretical and multi-physics simulation approach publication-title: Therm. Sci. Eng. Prog. – volume: 256 year: 2019 ident: bib24 article-title: Drying kinetics of coal under microwave irradiation based on a coupled electromagnetic, heat transfer and multiphase porous media model publication-title: Fuel – volume: 69 year: 2025 ident: bib4 article-title: Regeneration strategies for exhausted adsorbents used in water treatment - a critical review publication-title: J. Water Process Eng. – volume: 467 year: 2024 ident: bib19 article-title: Modelling and energy efficiency analysis of the microwave continuous processing of limestone publication-title: J. Clean. Prod. – volume: 500 year: 2024 ident: bib22 article-title: Characteristics and optimization strategy of microwave thermal regeneration of spent activated carbon based on a multi-physical field model publication-title: Chem. Eng. J. – volume: 171 year: 2020 ident: bib17 article-title: Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration publication-title: Water Res. – volume: 166 start-page: 164 year: 2017 end-page: 173 ident: bib29 article-title: Microwave dielectric properties of Malaysian palm oil and agricultural industrial biomass and biochar during pyrolysis process publication-title: Fuel Process. Technol. – volume: 325 year: 2020 ident: bib28 article-title: A mathematical model for predicting the transport process and quality changes during intermittent microwave convective drying publication-title: Food Chem. – volume: 12 year: 2024 ident: bib25 article-title: Removal of PFOA from water by activated carbon adsorption: influence of pore structure publication-title: J. Environ. Chem. Eng. – volume: 73 start-page: 914 year: 2014 end-page: 923 ident: bib9 article-title: Modeling and process simulation of controlled microwave heating of foods by using of the resonance phenomenon publication-title: Appl. Therm. Eng. – volume: 407 year: 2021 ident: bib40 article-title: Three-dimensional numerical simulation on the thermal response of oil shale subjected to microwave heating publication-title: Chem. Eng. J. – volume: 822 year: 2022 ident: bib5 article-title: Recovery, regeneration and sustainable management of spent adsorbents from wastewater treatment streams: a review publication-title: Sci. Total Environ. – volume: 25 start-page: 7200 year: 2018 end-page: 7205 ident: bib35 article-title: Thermal mineralization behavior of PFOA, PFHxA, and PFOS during reactivation of granular activated carbon (GAC) in nitrogen atmosphere publication-title: Environ. Sci. Pollut. Res. – volume: 524–525 start-page: 81 year: 2015 end-page: 92 ident: bib3 article-title: Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment publication-title: Sci. Total Environ. – volume: 286 year: 2022 ident: bib2 article-title: Thermal decomposition of perfluorinated carboxylic acids: kinetic model and theoretical requirements for PFAS incineration publication-title: Chemosphere – volume: 503 year: 2025 ident: bib23 article-title: Simulation of moisture removal in microwave regeneration of carbon adsorbents: comparing conventional heating and multiple microwave frequencies with economic implications publication-title: Chem. Eng. J. – volume: 45 year: 2025 ident: bib10 article-title: Improved densification of SiCf/SiC composites by microwave-assisted chemical vapor infiltration process based on multifrequency solid-state sources excitation publication-title: J. Eur. Ceram. Soc. – volume: 378 year: 2019 ident: bib13 article-title: Fast regeneration of activated carbons saturated with textile dyes: textural, thermal and dielectric characterization publication-title: Chem. Eng. J. – volume: 47 start-page: 49 year: 2013 end-page: 56 ident: bib36 article-title: Mechanisms for removal of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from drinking water by conventional and enhanced coagulation publication-title: Water Res. – volume: 314 year: 2022 ident: bib38 article-title: Development of a complementary-frequency strategy to improve microwave heating of gellan gel in a solid-state system publication-title: J. Food Eng. – volume: 136 start-page: 1 year: 2020 end-page: 14 ident: bib1 article-title: Advanced treatment technologies efficacies and mechanism of per- and poly-fluoroalkyl substances removal from water publication-title: Process Saf. Environ. Prot. – volume: 190 year: 2020 ident: bib26 article-title: Simulation studies on microwave-assisted pyrolysis of biomass for bioenergy production with special attention on waveguide number and location publication-title: Energy – volume: 30 year: 2018 ident: bib7 article-title: Short-chain perfluoroalkyl acids: environmental concerns and a regulatory strategy under REACH publication-title: Environ. Sci. Eur. – volume: 69 year: 2025 ident: 10.1016/j.envres.2025.122292_bib4 article-title: Regeneration strategies for exhausted adsorbents used in water treatment - a critical review publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2024.106560 – volume: 6 start-page: 107 issue: 2 year: 1971 ident: 10.1016/j.envres.2025.122292_bib6 article-title: Dielectric properties of foods at 3 GHz as determined by a cavity perturbation technique publication-title: J. Microw. Power doi: 10.1080/00222739.1971.11688789 – volume: 822 year: 2022 ident: 10.1016/j.envres.2025.122292_bib5 article-title: Recovery, regeneration and sustainable management of spent adsorbents from wastewater treatment streams: a review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.153555 – volume: 503 year: 2025 ident: 10.1016/j.envres.2025.122292_bib23 article-title: Simulation of moisture removal in microwave regeneration of carbon adsorbents: comparing conventional heating and multiple microwave frequencies with economic implications publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2024.158629 – volume: 314 year: 2022 ident: 10.1016/j.envres.2025.122292_bib38 article-title: Development of a complementary-frequency strategy to improve microwave heating of gellan gel in a solid-state system publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2021.110763 – volume: 203 year: 2023 ident: 10.1016/j.envres.2025.122292_bib21 article-title: Numerical simulation and experimental investigation on thermal regeneration of spent activated carbon: thermal desorption of mixed organic adsorbates in porous media publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2022.123793 – volume: 325 year: 2020 ident: 10.1016/j.envres.2025.122292_bib28 article-title: A mathematical model for predicting the transport process and quality changes during intermittent microwave convective drying publication-title: Food Chem. doi: 10.1016/j.foodchem.2020.126932 – volume: 15 start-page: 3256 issue: 9 year: 2022 ident: 10.1016/j.envres.2025.122292_bib33 article-title: Numerical simulation of oil shale pyrolysis under microwave irradiation based on a three-dimensional porous medium multiphysics field model publication-title: Energies doi: 10.3390/en15093256 – volume: 495 year: 2024 ident: 10.1016/j.envres.2025.122292_bib37 article-title: Multi-physical field coupling modeling of microwave heating and reduction behavior of zinc oxide publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2024.153716 – volume: 102 start-page: 134 year: 2012 ident: 10.1016/j.envres.2025.122292_bib8 article-title: Low temperature regeneration of activated carbons using microwaves: revising conventional wisdom publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2012.02.016 – volume: 274 start-page: 443 year: 2014 ident: 10.1016/j.envres.2025.122292_bib12 article-title: Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents—a review publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.04.038 – volume: 190 year: 2020 ident: 10.1016/j.envres.2025.122292_bib26 article-title: Simulation studies on microwave-assisted pyrolysis of biomass for bioenergy production with special attention on waveguide number and location publication-title: Energy doi: 10.1016/j.energy.2019.116474 – volume: 436 year: 2022 ident: 10.1016/j.envres.2025.122292_bib11 article-title: A review of recent studies on toxicity, sequestration, and degradation of per- and polyfluoroalkyl substances (PFAS) publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2022.129120 – volume: 56 year: 2024 ident: 10.1016/j.envres.2025.122292_bib27 article-title: A sustainable waveguide-based design strategy for improving the energy efficiency of microwave hybrid heating systems: a combined theoretical and multi-physics simulation approach publication-title: Therm. Sci. Eng. Prog. – volume: 30 issue: 1 year: 2018 ident: 10.1016/j.envres.2025.122292_bib7 article-title: Short-chain perfluoroalkyl acids: environmental concerns and a regulatory strategy under REACH publication-title: Environ. Sci. Eur. doi: 10.1186/s12302-018-0134-4 – volume: 214 year: 2022 ident: 10.1016/j.envres.2025.122292_bib20 article-title: Thermal desorption characteristics of the adsorbate in activated carbon based on a two-dimensional heat and mass transfer model publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2022.118775 – volume: 36 start-page: 360 year: 2012 ident: 10.1016/j.envres.2025.122292_bib14 article-title: Temperature profile prediction within selected materials heated by microwaves at 2.45GHz publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2011.10.049 – volume: 37 start-page: 1447 issue: 9 year: 2014 ident: 10.1016/j.envres.2025.122292_bib39 article-title: Desorption- and decomposition-based techniques for the regeneration of activated carbon publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.201300808 – volume: 407 year: 2021 ident: 10.1016/j.envres.2025.122292_bib40 article-title: Three-dimensional numerical simulation on the thermal response of oil shale subjected to microwave heating publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127197 – volume: 286 year: 2022 ident: 10.1016/j.envres.2025.122292_bib2 article-title: Thermal decomposition of perfluorinated carboxylic acids: kinetic model and theoretical requirements for PFAS incineration publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.131685 – volume: 171 year: 2020 ident: 10.1016/j.envres.2025.122292_bib17 article-title: Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration publication-title: Water Res. doi: 10.1016/j.watres.2019.115381 – volume: 524–525 start-page: 81 year: 2015 ident: 10.1016/j.envres.2025.122292_bib3 article-title: Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.04.023 – volume: 395 year: 2025 ident: 10.1016/j.envres.2025.122292_bib18 article-title: A real-time predictive complementary relative phase shifting strategy for dual-port solid-state microwave heating process publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2025.112544 – volume: 500 year: 2024 ident: 10.1016/j.envres.2025.122292_bib22 article-title: Characteristics and optimization strategy of microwave thermal regeneration of spent activated carbon based on a multi-physical field model publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2024.156950 – volume: 179 start-page: 420 year: 2017 ident: 10.1016/j.envres.2025.122292_bib30 article-title: Effect of ETS-10 ion exchange on its dielectric properties and adsorption/microwave regeneration publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2017.02.016 – volume: 45 issue: 3 year: 2025 ident: 10.1016/j.envres.2025.122292_bib10 article-title: Improved densification of SiCf/SiC composites by microwave-assisted chemical vapor infiltration process based on multifrequency solid-state sources excitation publication-title: J. Eur. Ceram. Soc. – volume: 476 year: 2024 ident: 10.1016/j.envres.2025.122292_bib34 article-title: The deactivation mechanisms, regeneration methods and devices of activated carbon in applications publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2024.143751 – volume: 25 start-page: 7200 issue: 8 year: 2018 ident: 10.1016/j.envres.2025.122292_bib35 article-title: Thermal mineralization behavior of PFOA, PFHxA, and PFOS during reactivation of granular activated carbon (GAC) in nitrogen atmosphere publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-015-5353-2 – volume: 47 start-page: 49 issue: 1 year: 2013 ident: 10.1016/j.envres.2025.122292_bib36 article-title: Mechanisms for removal of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from drinking water by conventional and enhanced coagulation publication-title: Water Res. doi: 10.1016/j.watres.2012.09.024 – volume: 136 start-page: 1 year: 2020 ident: 10.1016/j.envres.2025.122292_bib1 article-title: Advanced treatment technologies efficacies and mechanism of per- and poly-fluoroalkyl substances removal from water publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2020.01.005 – volume: 73 start-page: 914 issue: 1 year: 2014 ident: 10.1016/j.envres.2025.122292_bib9 article-title: Modeling and process simulation of controlled microwave heating of foods by using of the resonance phenomenon publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.08.048 – volume: 166 start-page: 164 year: 2017 ident: 10.1016/j.envres.2025.122292_bib29 article-title: Microwave dielectric properties of Malaysian palm oil and agricultural industrial biomass and biochar during pyrolysis process publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2017.06.006 – volume: 408 year: 2021 ident: 10.1016/j.envres.2025.122292_bib31 article-title: Treatment of PFAS-containing landfill leachate using an enhanced contact plasma reactor publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.124452 – volume: 378 year: 2019 ident: 10.1016/j.envres.2025.122292_bib13 article-title: Fast regeneration of activated carbons saturated with textile dyes: textural, thermal and dielectric characterization publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.05.135 – volume: 156 start-page: 473 year: 2017 ident: 10.1016/j.envres.2025.122292_bib15 article-title: Numerical investigation of microwave-assisted pyrolysis of lignin publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2016.10.012 – volume: 55 start-page: 5608 issue: 9 year: 2021 ident: 10.1016/j.envres.2025.122292_bib32 article-title: Thermal regeneration of spent granular activated carbon presents an opportunity to break the forever PFAS cycle publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c08224 – volume: 12 issue: 5 year: 2024 ident: 10.1016/j.envres.2025.122292_bib25 article-title: Removal of PFOA from water by activated carbon adsorption: influence of pore structure publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2024.113923 – volume: 198 year: 2021 ident: 10.1016/j.envres.2025.122292_bib16 article-title: Microwave regeneration of granular activated carbon saturated with PFAS publication-title: Water Res. doi: 10.1016/j.watres.2021.117121 – volume: 467 year: 2024 ident: 10.1016/j.envres.2025.122292_bib19 article-title: Modelling and energy efficiency analysis of the microwave continuous processing of limestone publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2024.142912 – volume: 256 year: 2019 ident: 10.1016/j.envres.2025.122292_bib24 article-title: Drying kinetics of coal under microwave irradiation based on a coupled electromagnetic, heat transfer and multiphase porous media model publication-title: Fuel doi: 10.1016/j.fuel.2019.115966 |
SSID | ssj0011530 |
Score | 2.4602346 |
Snippet | Microwave (MW) heating at the molecular level represents a promising alternative to conventional thermal processing methods. However, its industrial... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 122292 |
SubjectTerms | 2450 MHz and 915 MHz Energy absorption Heating uniformity Microwave regeneration Numerical simulation |
Title | Multiphysics simulation and optimization of microwave-assisted regeneration of spent activated carbon for enhanced energy efficiency |
URI | https://dx.doi.org/10.1016/j.envres.2025.122292 https://www.ncbi.nlm.nih.gov/pubmed/40617577 https://www.proquest.com/docview/3227417621 |
Volume | 285 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFH5CcEGaplEG6zaQkbgG6tipm2NVFXWbxgkkbpbtOFCkplVTuttO_HDes5MiDhUSx8S2HPl7fu-z8z4b4FzkZeZd4RIvjErkoOwn1uQcAeGFTA1GjZy0w3-v-5Nb-fsuu9uBUauFobTKxvdHnx68dfPmshnNy8V0ShpfTrpSjNDEAwSJ-KRUZOUX_zdpHkh4RK-9xYBqt_K5kOPlqzUuanGVmGYXnG62TreFp230M4Shqy_wueGPbBg_8QB2fNWBo_GrXA0Lm_lad-BT3JVjUWx0CM9Bbxt3M2pWT2fN5V3MVAWbo_eYNbJMNi_ZjHL1_pm1T5BgkzUUbOnvwzHVbZV6gT0y0kasDZU7s7RYgkSY-eohJBcwH9SFzIezKkjo-RVur8Y3o0nS3MOQOMHFKhmYTHHneiKXmSkQztTJXlHk1qbe4nyWuTUG16HWZ1yUzuV9Z5EFWDQCYQrlxBHsVvPKfwM2cNIrdCOepyW1G5RC0UZsT1pZqlR2IWmHXy_icRu6zUN71BEuTXDpCFcXVIuRfmM2GiPCOy3PWkg1zij6TWIqP3-qNbo4pFkYJHgXjiPWm28h-qMypb5_uN8fsE9PJGfk2U_YXS2f_AnympU9DYZ7CnvDX38m1y91PPtT |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB7RcGilqiq0tGl5GKnXLfHajrNHhEDhlRNI3Czb622DlE2UDekf4Iczs_ZScUCVet1Zy5bn9dmezwb4IYpKBV_6LAirMzmqhpmzBUeF8FLmFrNGQdzh68lwfCsv7tTdBpx0XBgqq0yxP8b0NlqnL0dpNo8W0ylxfDnxSjFDEw4QxRvYpNupVA82j88vx5PnwwR06kH3kAE16Bh0bZlXqNe4rsWFYq5-cnrcOn8tQ72GQNtMdPYRPiQIyY7jKLdgI9TbsHP6l7GGwuSyzTa8jxtzLPKNPsFjS7mNGxoNa6az9H4Xs3XJ5hhAZomZyeYVm1G53h-7DhlibDKIki3Dr_am6u6XZoE9MqJHrC3JvV06lCAWZqH-3dYXsNASDFlor6sgrudnuD07vTkZZ-kphswLLlbZyCrNvR-IQipbokZzLwdlWTiXB4cuLQtnLS5FXVBcVN4XQ-8QCDi0A2FL7cUO9Op5Hb4CG3kZNEaSwPOK2o0qoWkvdiCdrHQu-5B1028W8cYN05Wi3ZuoLkPqMlFdfdCdjswLyzGYFP7R8rBTqUGnopMSW4f5Q2MwyiHSwjzB-_Al6vp5LISAtNL623_3ewBvxzfXV-bqfHL5Hd6RhNiNXO1Cb7V8CHsIc1ZuP5nxEwZn_gQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiphysics+simulation+and+optimization+of+microwave-assisted+regeneration+of+spent+activated+carbon+for+enhanced+energy+efficiency&rft.jtitle=Environmental+research&rft.au=Li%2C+Chenyang&rft.au=Zhao%2C+Xiaotong&rft.au=Pang%2C+Tianrui&rft.au=Hu%2C+Naixin&rft.date=2025-11-15&rft.pub=Elsevier+Inc&rft.issn=0013-9351&rft.volume=285&rft_id=info:doi/10.1016%2Fj.envres.2025.122292&rft.externalDocID=S0013935125015439 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-9351&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-9351&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-9351&client=summon |