Simulation guided experimental interface shock viscosity measurement in an energetic material

Experimental measurements of interface shock viscosity in hydroxyl-terminated polybutadiene (HTPB)-ammonium perchlorate (AP) material system are performed using mechanical Raman spectroscopy (MRS) combined with laser pulse shock loading. First, HTPB-AP interface level shock wave propagation is studi...

Full description

Saved in:
Bibliographic Details
Published inModelling and simulation in materials science and engineering Vol. 27; no. 8; pp. 85003 - 85025
Main Authors Prakash, Chandra, Gunduz, I Emre, Tomar, Vikas
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Experimental measurements of interface shock viscosity in hydroxyl-terminated polybutadiene (HTPB)-ammonium perchlorate (AP) material system are performed using mechanical Raman spectroscopy (MRS) combined with laser pulse shock loading. First, HTPB-AP interface level shock wave propagation is studied using the cohesive finite element method. The difference in the shock behavior of the analyzed HTPB-AP interfaces from that of the bulk AP and HTPB material is highlighted by numerical simulations of impacting a single AP particle in an HTPB-AP sample in three different ways: (1) a flyer plate is used to impact the whole HTPB-AP sample; (2) a flat impacter is used to impact the middle of AP particle embedded in HTPB matrix directly; and (3) a HTPB-AP interface is directly impacted with an impacter of radius 1 m. Shock wave rise time at the interface is shown to differ for the three different impact modes. Based on the simulation results, a combined MRS and pulse laser-induced particle impact test is used for measuring shock viscosity at HTPB-AP interfaces. It is observed that by changing the chemical composition of the interface, shock viscosity can be altered. A modified finite element model with viscous stress based on shock viscosity values added to the stress equation is then used for the shock impact simulation of an HTPB-AP material system. A power law relation was obtained between shock wave rise time and the shock viscosity.
AbstractList Experimental measurements of interface shock viscosity in hydroxyl-terminated polybutadiene (HTPB)-ammonium perchlorate (AP) material system are performed using mechanical Raman spectroscopy (MRS) combined with laser pulse shock loading. First, HTPB-AP interface level shock wave propagation is studied using the cohesive finite element method. The difference in the shock behavior of the analyzed HTPB-AP interfaces from that of the bulk AP and HTPB material is highlighted by numerical simulations of impacting a single AP particle in an HTPB-AP sample in three different ways: (1) a flyer plate is used to impact the whole HTPB-AP sample; (2) a flat impacter is used to impact the middle of AP particle embedded in HTPB matrix directly; and (3) a HTPB-AP interface is directly impacted with an impacter of radius 1 m. Shock wave rise time at the interface is shown to differ for the three different impact modes. Based on the simulation results, a combined MRS and pulse laser-induced particle impact test is used for measuring shock viscosity at HTPB-AP interfaces. It is observed that by changing the chemical composition of the interface, shock viscosity can be altered. A modified finite element model with viscous stress based on shock viscosity values added to the stress equation is then used for the shock impact simulation of an HTPB-AP material system. A power law relation was obtained between shock wave rise time and the shock viscosity.
Author Tomar, Vikas
Gunduz, I Emre
Prakash, Chandra
Author_xml – sequence: 1
  givenname: Chandra
  orcidid: 0000-0001-9532-4283
  surname: Prakash
  fullname: Prakash, Chandra
  organization: Purdue University School of Aeronautics and Astronautics, West Lafayette, IN 47907, United States of America
– sequence: 2
  givenname: I Emre
  surname: Gunduz
  fullname: Gunduz, I Emre
  organization: Naval Postgraduate School Department of Mechanical and Aerospace Engineering, Monterey, CA 93943, United States of America
– sequence: 3
  givenname: Vikas
  orcidid: 0000-0002-2925-7681
  surname: Tomar
  fullname: Tomar, Vikas
  email: tomar@purdue.edu
  organization: Purdue University School of Aeronautics and Astronautics, West Lafayette, IN 47907, United States of America
BookMark eNp1kD1PwzAQhi1UJNrCzuiRgVA7rl1nRBVfUiUGQGJBlj8uxSVxIjtB9N-TqIgJppPunvd098zQJDQBEDqn5IoSKReUCZoJTl8X2izpUh6h6W9rgqakEDwjrGAnaJbSjhDCZb6aorcnX_eV7nwT8Lb3DhyGrxairyF0usI-dBBLbQGn98Z-4E-fbJN8t8c16NRHGLmBwjpgCBC30HmLaz2kvK5O0XGpqwRnP3WOXm5vntf32ebx7mF9vckso6zLJOWWypI7LYwgeeFILpbWUa2N0NZQKW2xYk4UxBmQxuhhUIrSsNxwnXNgc0QOe21sUopQqnb4QMe9okSNetToQo0u1EHPELk4RHzTql3TxzAcqOpUJ5WvlFREckKYal05oJd_oP9u_gYnzXlE
CODEN MSMEEU
CitedBy_id crossref_primary_10_1016_j_dt_2021_09_010
crossref_primary_10_1016_j_enmf_2021_09_001
crossref_primary_10_1038_s41598_022_05834_3
crossref_primary_10_1002_app_49287
crossref_primary_10_1007_s40870_023_00372_z
crossref_primary_10_1063_5_0011264
crossref_primary_10_1007_s40870_021_00290_y
Cites_doi 10.1016/j.engfracmech.2004.06.006
10.1007/978-3-319-56050-2_13
10.1063/1.4961619
10.1016/j.matdes.2016.09.068
10.1016/0022-5096(89)90033-1
10.1016/S0142-1123(99)00035-3
10.1179/026708402225007131
10.1007/s00193-010-0287-6
10.1007/s11837-015-1448-y
10.1007/978-1-4612-0911-9_9
10.1016/0045-7825(74)90032-2
10.1016/j.ijplas.2004.11.007
10.1063/1.326236
10.1016/S0022-5096(98)00011-8
10.1007/978-3-319-22977-5_21-1
10.1080/07370659808217511
10.1016/j.mejo.2006.09.007
10.1063/1.364269
10.1002/app.42104
10.1016/0022-5096(60)90013-2
10.1002/nme.1138
10.1016/j.ijsolstr.2018.04.016
10.1016/j.proeng.2016.12.152
10.1007/s001930050066
10.1016/S0266-3538(00)00133-0
10.1088/1361-651X/ab2224
10.1016/S0022-5096(02)00100-X
10.1007/978-3-540-27009-6_171
10.1007/978-1-4612-2292-7_2
10.1002/nag.142
10.1088/0965-0393/7/3/304
10.1007/BF00788367
10.1016/0370-1573(79)90026-7
10.1016/j.ijimpeng.2005.05.010
10.1016/0021-8928(59)90157-1
10.1007/978-1-4613-9278-1
10.1016/S0142-1123(02)00022-1
10.1557/jmr.2015.186
10.1007/978-3-319-62831-8_2
10.1016/0749-6419(90)90040-L
10.1063/1.92146
10.1063/1.336184
10.1002/nag.143
10.1063/1.1658439
10.1007/978-1-4757-4048-6_10
10.1070/PU1965v008n01ABEH003062
10.1016/j.jmps.2007.10.013
10.1016/0020-7225(95)00104-2
10.1063/1.3269720
10.1016/j.engfracmech.2018.01.010
10.1007/s10704-016-0141-7
10.1098/rspa.2012.0279
10.1103/RevModPhys.63.919
10.1007/978-3-319-41543-7_12
10.1016/j.advengsoft.2010.07.001
10.1063/1.50832
10.1115/1.2903434
10.1063/1.2832977
10.1016/j.engfracmech.2008.12.013
10.1016/B978-0-12-468750-9.50034-6
10.1088/0965-0393/16/3/035001
10.1016/j.ijplas.2008.11.008
10.1007/s10704-016-0083-0
10.1007/BF01175717
10.1007/978-1-4613-3219-0_38
10.1063/1.325340
ContentType Journal Article
Copyright 2019 IOP Publishing Ltd
Copyright_xml – notice: 2019 IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/1361-651X/ab4148
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
DocumentTitleAlternate Simulation guided experimental interface shock viscosity measurement in an energetic material
EISSN 1361-651X
ExternalDocumentID 10_1088_1361_651X_ab4148
msmsab4148
GrantInformation_xml – fundername: Air Force Office of Scientific Research
  funderid: https://doi.org/10.13039/100000181
GroupedDBID -~X
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
ADUKH
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
W28
XPP
ZMT
AAYXX
CITATION
ID FETCH-LOGICAL-c313t-815c18f5da6b6029d0264cd1aab6acb188c973d690dbe8bbaaabf6fb32b5a25e3
IEDL.DBID IOP
ISSN 0965-0393
IngestDate Fri Aug 23 02:35:10 EDT 2024
Wed Aug 21 03:33:23 EDT 2024
Thu Jan 07 13:52:07 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-815c18f5da6b6029d0264cd1aab6acb188c973d690dbe8bbaaabf6fb32b5a25e3
Notes MSMSE-103817.R2
ORCID 0000-0002-2925-7681
0000-0001-9532-4283
PageCount 23
ParticipantIDs crossref_primary_10_1088_1361_651X_ab4148
iop_journals_10_1088_1361_651X_ab4148
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Modelling and simulation in materials science and engineering
PublicationTitleAbbrev MSMS
PublicationTitleAlternate Modelling Simul. Mater. Sci. Eng
PublicationYear 2019
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 44
45
46
47
48
Prasad C D V (49) 2014; 2
Reaugh J E (30) 1997
Al’tshuler L V (13) 1965; 8
50
51
52
53
10
11
55
12
56
Prakash C (59) 2019; 27
57
14
58
16
17
18
Benson D J (65) 1999; 7
19
1
2
3
4
5
6
7
8
9
60
61
62
63
20
64
21
22
66
23
67
Murri W J (15) 1974
24
68
25
69
26
27
Tomar V (54) 2008; 16
28
29
Qu T (32) 2016; 10
70
31
33
34
35
36
37
38
39
40
41
42
43
References_xml – ident: 56
  doi: 10.1016/j.engfracmech.2004.06.006
– ident: 8
  doi: 10.1007/978-3-319-56050-2_13
– ident: 1
  doi: 10.1063/1.4961619
– ident: 47
  doi: 10.1016/j.matdes.2016.09.068
– ident: 68
  doi: 10.1016/0022-5096(89)90033-1
– ident: 19
  doi: 10.1016/S0142-1123(99)00035-3
– ident: 39
  doi: 10.1179/026708402225007131
– ident: 28
  doi: 10.1007/s00193-010-0287-6
– ident: 46
  doi: 10.1007/s11837-015-1448-y
– ident: 57
  doi: 10.1007/978-1-4612-0911-9_9
– ident: 60
  doi: 10.1016/0045-7825(74)90032-2
– ident: 63
  doi: 10.1016/j.ijplas.2004.11.007
– ident: 6
  doi: 10.1063/1.326236
– ident: 23
  doi: 10.1016/S0022-5096(98)00011-8
– ident: 33
  doi: 10.1007/978-3-319-22977-5_21-1
– ident: 26
  doi: 10.1080/07370659808217511
– ident: 48
  doi: 10.1016/j.mejo.2006.09.007
– ident: 70
  doi: 10.1063/1.364269
– ident: 38
  doi: 10.1002/app.42104
– ident: 51
  doi: 10.1016/0022-5096(60)90013-2
– ident: 52
  doi: 10.1002/nme.1138
– ident: 61
  doi: 10.1016/j.ijsolstr.2018.04.016
– ident: 45
  doi: 10.1016/j.proeng.2016.12.152
– ident: 25
  doi: 10.1007/s001930050066
– ident: 67
  doi: 10.1016/S0266-3538(00)00133-0
– volume: 27
  start-page: 065008
  issn: 0965-0393
  year: 2019
  ident: 59
  publication-title: Modell. Simul. Mater. Sci. Eng.
  doi: 10.1088/1361-651X/ab2224
  contributor:
    fullname: Prakash C
– ident: 11
  doi: 10.1016/S0022-5096(02)00100-X
– ident: 7
  doi: 10.1007/978-3-540-27009-6_171
– ident: 9
  doi: 10.1007/978-1-4612-2292-7_2
– ident: 43
  doi: 10.1002/nag.142
– year: 1997
  ident: 30
  publication-title: Topical Conf. on Shock Compression of Condensed Matter of the American Physical Society
  contributor:
    fullname: Reaugh J E
– volume: 7
  start-page: 333
  issn: 0965-0393
  year: 1999
  ident: 65
  publication-title: Modelling Simul. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/7/3/304
  contributor:
    fullname: Benson D J
– ident: 14
  doi: 10.1007/BF00788367
– ident: 2
  doi: 10.1016/0370-1573(79)90026-7
– ident: 29
  doi: 10.1016/j.ijimpeng.2005.05.010
– ident: 50
  doi: 10.1016/0021-8928(59)90157-1
– ident: 22
  doi: 10.1007/978-1-4613-9278-1
– ident: 27
  doi: 10.1016/S0142-1123(02)00022-1
– ident: 3
  doi: 10.1557/jmr.2015.186
– ident: 34
  doi: 10.1007/978-3-319-62831-8_2
– ident: 62
  doi: 10.1016/0749-6419(90)90040-L
– ident: 21
  doi: 10.1063/1.92146
– ident: 4
  doi: 10.1063/1.336184
– ident: 42
  doi: 10.1002/nag.143
– ident: 18
  doi: 10.1063/1.1658439
– ident: 5
  doi: 10.1007/978-1-4757-4048-6_10
– volume: 8
  start-page: 52
  issn: 0038-5670
  year: 1965
  ident: 13
  publication-title: Sov. Phys. Usp.
  doi: 10.1070/PU1965v008n01ABEH003062
  contributor:
    fullname: Al’tshuler L V
– ident: 40
  doi: 10.1016/j.jmps.2007.10.013
– ident: 44
  doi: 10.1016/0020-7225(95)00104-2
– ident: 69
  doi: 10.1063/1.3269720
– ident: 35
  doi: 10.1016/j.engfracmech.2018.01.010
– ident: 37
  doi: 10.1007/s10704-016-0141-7
– ident: 58
  doi: 10.1098/rspa.2012.0279
– ident: 16
  doi: 10.1103/RevModPhys.63.919
– ident: 36
  doi: 10.1007/978-3-319-41543-7_12
– ident: 41
  doi: 10.1016/j.advengsoft.2010.07.001
– ident: 24
  doi: 10.1063/1.50832
– ident: 55
  doi: 10.1115/1.2903434
– ident: 10
  doi: 10.1063/1.2832977
– ident: 53
  doi: 10.1016/j.engfracmech.2008.12.013
– ident: 12
  doi: 10.1016/B978-0-12-468750-9.50034-6
– volume: 10
  start-page: 725
  year: 2016
  ident: 32
  publication-title: Int. J. Mater. Metall. Eng.
  contributor:
    fullname: Qu T
– volume: 2
  start-page: 94
  year: 2014
  ident: 49
  publication-title: J. Energy Chem. Eng.
  contributor:
    fullname: Prasad C D V
– volume: 16
  issn: 0965-0393
  year: 2008
  ident: 54
  publication-title: Modell. Simul. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/16/3/035001
  contributor:
    fullname: Tomar V
– ident: 64
  doi: 10.1016/j.ijplas.2008.11.008
– ident: 31
  doi: 10.1007/s10704-016-0083-0
– start-page: 1
  year: 1974
  ident: 15
  publication-title: Advances in High Pressure Research
  contributor:
    fullname: Murri W J
– ident: 66
  doi: 10.1007/BF01175717
– ident: 20
  doi: 10.1007/978-1-4613-3219-0_38
– ident: 17
  doi: 10.1063/1.325340
SSID ssj0005827
Score 2.3227232
Snippet Experimental measurements of interface shock viscosity in hydroxyl-terminated polybutadiene (HTPB)-ammonium perchlorate (AP) material system are performed...
SourceID crossref
iop
SourceType Aggregation Database
Enrichment Source
Publisher
StartPage 85003
SubjectTerms cohesive finite element method
HTPB
interface
nanomechanical Raman spectroscopy
shock viscosity
Title Simulation guided experimental interface shock viscosity measurement in an energetic material
URI https://iopscience.iop.org/article/10.1088/1361-651X/ab4148
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58IOjBt_gmgh48dN00mzTBk4iigg9QYQ9KyFMX2XWxu4L-epO26ioiIr0UOqRhkk4mzTffB7CpKPHhIgmhIk0aWUoSjrFLrPWF4ipTIhY4n56xo-vGSZM2h2D3oxbmsVuF_lq4LYmCSxdWgDi-gwnDCaO4uaN0I2TzwzAaVt161G04Pr_4xHfwUq9VMJrEAtTqjPKnFr6sScPhvQNLzOEU3Lx3rkSWPNT6PV0zr994G__Z-2mYrFJPtFeazsCQ68zCxAAh4SyMFYBQk8_B7WWrXSl7obt-yzqLBsUAUKSZePLKOJTfh5CKnlu5ifivF9T-_OsYrJDqoMhsHavZDArpcTHj5-H68OBq_yippBgSQzDphfGjBnNPrWKa1VNhw9atYSxWSjNlNObciIzYsNW22nGtVXjgmdck1VSl1JEFGOk8dtwiIKM8555l2mAbAoYTRHBDSKa8oA5ztwTb74MhuyXjhixOyjmX0XkyOk-WzluCreBnWX12-S92G1_s2nk7l2kmuYyMfXUiu9Yv_7GtFRgPSZMoIS2rMNJ76ru1kJj09HoxAd8A6_ncvw
link.rule.ids 315,786,790,27957,27958,38900,53877
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB_8oFIfaqsWrbWm0D70Ye_M5pJNHkv1UKtWUOFeSsynHnLn4d4V2r_eye6KZ5EilH1Z2CG7O5OPmWTm9wP4ZDiLeLGMcZVnnSJnmaQ0ZN7HinFVGJUKnI-Oxd5556DHew3PaVULczNqpv4W3tZAwbUKm4Q42aZM0Exw2msb20Fvvj3ycRbmceQWKfra_3HykOMha85WJXiWilCbc8qnWnm0Ls3iu6eWme4SXNx_YJ1dct2ajG3L_fkLu_E__uA1vGpcUPK1Fn8DM2G4DItTwITL8KJKDHXlCvw87Q8ahi9yOen74Mk0KQBJcBO30bhAyiucWsmvfulSHthvMnjYfUQpYoYkIVynqjZH0E2uev4qnHd3z77tZQ0lQ-YYZWO0I3dURu6NsGI7Vx5DuI7z1BgrjLNUSqcK5jHk9jZIaw0-iCJalltuch7YW5gb3gzDGhBnopRRFNZRjxNHUExJx1hhouKByrAOX-4Nokc18oauTsyl1EmBOilQ1wpch8-oa90Mv_Ifch8fyQ3KQanzQkudkPu2mUZDvHtmW1uwcLLT1Yf7x9834CX6UarOcnkPc-PbSdhEX2VsP1T98Q68m-Ix
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation+guided+experimental+interface+shock+viscosity+measurement+in+an+energetic+material&rft.jtitle=Modelling+and+simulation+in+materials+science+and+engineering&rft.au=Prakash%2C+Chandra&rft.au=Gunduz%2C+I+Emre&rft.au=Tomar%2C+Vikas&rft.date=2019-12-01&rft.pub=IOP+Publishing&rft.issn=0965-0393&rft.eissn=1361-651X&rft.volume=27&rft.issue=8&rft_id=info:doi/10.1088%2F1361-651X%2Fab4148&rft.externalDocID=msmsab4148
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-0393&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-0393&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-0393&client=summon