Using non-invasive brain stimulation to modulate performance in visuomotor rotation adaptation: A scoping review
As research on the visuomotor rotation (VMR) adaptation expands its scope from behavioral science to encompass neuropsychological perspectives, an increasing number of studies have employed non-invasive brain stimulation (NIBS) techniques to explore the specific contributions of different neural str...
Saved in:
Published in | Cortex Vol. 187; pp. 144 - 158 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Italy
Elsevier Ltd
01.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As research on the visuomotor rotation (VMR) adaptation expands its scope from behavioral science to encompass neuropsychological perspectives, an increasing number of studies have employed non-invasive brain stimulation (NIBS) techniques to explore the specific contributions of different neural structures to VMR adaptation. Despite early studies suggesting that cerebellar stimulation influenced the rate of adaptation and that stimulating primary motor cortex led to an enhanced retention of newly learned adaptation, subsequent studies could not always achieve consistent results. To probe this inconsistency, we systematically comb through past studies and extract numerous details, including paradigm designs, context settings, and modulation protocols in this scoping review. In summary, the paradigm design primarily serves two purposes: to dissociate implicit and explicit adaptation and to assess the retention of motor memory, whilst context settings such as apparatus, movement-related parameters and the information provided for subjects may complicate the modulated neuropsychological processes. We also conclude key NIBS parameters such as target regions and timing in stimulation protocols. Furthermore, we recognize the potential of neurophysiological biomarkers to support future VMR studies that incorporate NIBS and advocate for the use of several newly emerging NIBS techniques to enrich the field. |
---|---|
AbstractList | As research on the visuomotor rotation (VMR) adaptation expands its scope from behavioral science to encompass neuropsychological perspectives, an increasing number of studies have employed non-invasive brain stimulation (NIBS) techniques to explore the specific contributions of different neural structures to VMR adaptation. Despite early studies suggesting that cerebellar stimulation influenced the rate of adaptation and that stimulating primary motor cortex led to an enhanced retention of newly learned adaptation, subsequent studies could not always achieve consistent results. To probe this inconsistency, we systematically comb through past studies and extract numerous details, including paradigm designs, context settings, and modulation protocols in this scoping review. In summary, the paradigm design primarily serves two purposes: to dissociate implicit and explicit adaptation and to assess the retention of motor memory, whilst context settings such as apparatus, movement-related parameters and the information provided for subjects may complicate the modulated neuropsychological processes. We also conclude key NIBS parameters such as target regions and timing in stimulation protocols. Furthermore, we recognize the potential of neurophysiological biomarkers to support future VMR studies that incorporate NIBS and advocate for the use of several newly emerging NIBS techniques to enrich the field. As research on the visuomotor rotation (VMR) adaptation expands its scope from behavioral science to encompass neuropsychological perspectives, an increasing number of studies have employed non-invasive brain stimulation (NIBS) techniques to explore the specific contributions of different neural structures to VMR adaptation. Despite early studies suggesting that cerebellar stimulation influenced the rate of adaptation and that stimulating primary motor cortex led to an enhanced retention of newly learned adaptation, subsequent studies could not always achieve consistent results. To probe this inconsistency, we systematically comb through past studies and extract numerous details, including paradigm designs, context settings, and modulation protocols in this scoping review. In summary, the paradigm design primarily serves two purposes: to dissociate implicit and explicit adaptation and to assess the retention of motor memory, whilst context settings such as apparatus, movement-related parameters and the information provided for subjects may complicate the modulated neuropsychological processes. We also conclude key NIBS parameters such as target regions and timing in stimulation protocols. Furthermore, we recognize the potential of neurophysiological biomarkers to support future VMR studies that incorporate NIBS and advocate for the use of several newly emerging NIBS techniques to enrich the field.As research on the visuomotor rotation (VMR) adaptation expands its scope from behavioral science to encompass neuropsychological perspectives, an increasing number of studies have employed non-invasive brain stimulation (NIBS) techniques to explore the specific contributions of different neural structures to VMR adaptation. Despite early studies suggesting that cerebellar stimulation influenced the rate of adaptation and that stimulating primary motor cortex led to an enhanced retention of newly learned adaptation, subsequent studies could not always achieve consistent results. To probe this inconsistency, we systematically comb through past studies and extract numerous details, including paradigm designs, context settings, and modulation protocols in this scoping review. In summary, the paradigm design primarily serves two purposes: to dissociate implicit and explicit adaptation and to assess the retention of motor memory, whilst context settings such as apparatus, movement-related parameters and the information provided for subjects may complicate the modulated neuropsychological processes. We also conclude key NIBS parameters such as target regions and timing in stimulation protocols. Furthermore, we recognize the potential of neurophysiological biomarkers to support future VMR studies that incorporate NIBS and advocate for the use of several newly emerging NIBS techniques to enrich the field. |
Author | Chen, Long Ming, Dong Liu, Yipeng Cheng, Shengcui Zhang, Lei Wang, Zhongpeng |
Author_xml | – sequence: 1 givenname: Long surname: Chen fullname: Chen, Long email: cagor@tju.edu.cn organization: Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China – sequence: 2 givenname: Yipeng orcidid: 0009-0005-4918-4714 surname: Liu fullname: Liu, Yipeng email: 2023246169@tju.edu.cn organization: Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China – sequence: 3 givenname: Zhongpeng surname: Wang fullname: Wang, Zhongpeng email: tunerl_wzp1@tju.edu.cn organization: Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China – sequence: 4 givenname: Lei surname: Zhang fullname: Zhang, Lei organization: Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China – sequence: 5 givenname: Shengcui surname: Cheng fullname: Cheng, Shengcui organization: Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China – sequence: 6 givenname: Dong surname: Ming fullname: Ming, Dong email: richardming@tju.edu.cn organization: Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40347675$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtP3TAQha0KVC60_6CqvGSTdPzCCQskhOhDQmJT1pbjTCpf3cTBdi7tv68vAZasPLa-OeM555QcTWFCQr4wqBmwi2_b2oWY8W_NgasaZA0MPpANa7WoGgb8iGygPFWtVPyEnKa0BeDQKPWRnEgQUl9otSHzQ_LTH1q0Kz_tbfJ7pF20fqIp-3HZ2ezDRHOgY-gPN6QzxiHE0U4OacH2Pi1hDDlEGkNecdvbeS0v6TVNLsyHGRH3Hp8-kePB7hJ-fjnPyMP32983P6u7-x-_bq7vKieYyJUuX-VSMY1at9CAtk4Onei1dlLItuuF4Ixjx3mPg2RMgVCgGmGHVqhmUOKMnK-6cwyPC6ZsRp8c7nZ2wrAkI4ptjdKcQUG_vqBLN2Jv5uhHG_-ZV5cKIFfAxZBSxOENYWAOYZitWcMwhzAMSAPPuldrG5Y9y-7RJOex-Nb7iC6bPvj3Bf4DZfiUyw |
Cites_doi | 10.1016/j.cortex.2020.04.033 10.1016/j.nbd.2020.105159 10.1017/S1355617716000345 10.1038/s41562-023-01798-0 10.1177/1073858414545228 10.1016/j.neubiorev.2017.06.015 10.1016/j.tics.2016.05.002 10.3389/fnhum.2024.1381935 10.1016/j.neuroimage.2019.116424 10.1007/s12311-023-01595-5 10.1523/JNEUROSCI.4218-04.2005 10.1016/j.cophys.2021.01.011 10.1523/JNEUROSCI.3916-16.2017 10.1093/brain/awy334 10.3389/fnhum.2013.00688 10.1038/nrneurol.2014.162 10.1038/s41593-020-0600-3 10.1016/j.neubiorev.2021.104520 10.3390/jintelligence11100201 10.1016/j.clinph.2017.09.007 10.7554/eLife.76639 10.3389/fncel.2017.00214 10.1126/scitranslmed.abo2044 10.1007/s00221-014-3992-z 10.1093/cercor/bht346 10.1152/jn.00447.2022 10.1371/journal.pcbi.1010005 10.1371/journal.pone.0179977 10.1007/s12311-017-0877-2 10.1177/1073858414559409 10.1523/JNEUROSCI.2570-07.2007 10.1038/s41598-018-32689-4 10.1007/s12311-014-0599-7 10.3389/fnhum.2013.00307 10.1007/s12311-016-0840-7 10.7554/eLife.65361 10.1016/j.brs.2023.01.1673 10.3389/fnins.2018.00610 10.1016/j.brs.2017.11.001 10.1111/ejn.12699 10.1038/s41598-021-83656-5 10.1016/j.neurobiolaging.2014.03.030 10.1152/jn.00301.2021 10.1186/s12984-019-0561-5 10.1016/j.neuroimage.2023.120188 10.1113/JP270484 10.1152/jn.00896.2016 10.3390/brainsci12101325 10.1016/j.neubiorev.2021.06.037 10.1523/JNEUROSCI.3619-13.2014 10.3390/brainsci12050522 10.1016/j.brs.2015.07.042 10.1093/cercor/bhq246 10.1007/s00221-018-5170-1 10.1016/j.neuroimage.2013.04.122 10.1016/j.brs.2019.03.008 10.1007/s10545-018-0181-4 10.1017/exp.2020.16 10.1007/s12311-021-01281-4 10.1016/j.brs.2008.06.002 10.1016/j.brs.2019.05.015 10.1016/j.brs.2020.02.013 10.1152/jn.00352.2018 10.1177/1073858420939552 10.1111/ejn.15490 10.1002/brb3.1754 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd Copyright © 2025 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2025 Elsevier Ltd – notice: Copyright © 2025 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.cortex.2025.04.010 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1973-8102 |
EndPage | 158 |
ExternalDocumentID | 40347675 10_1016_j_cortex_2025_04_010 S001094522500108X |
Genre | Journal Article Scoping Review |
GroupedDBID | --- --K --M --Z .GJ .~1 0R~ 1B1 1~. 1~5 4.4 41~ 457 4G. 4H- 53G 5GY 5RE 5VS 6PF 7-5 71M 85S 8P~ AABNK AADFP AAEDT AAEDW AAGJA AAGUQ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYJJ AAYWO ABCQJ ABFNM ABIVO ABJNI ABMAC ABOYX ABWVN ABXDB ACDAQ ACGFS ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADRHT ADVLN ADXHL AEBSH AEIPS AEKER AENEX AETEA AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGWIK AGYEJ AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 E3Z EBS EFJIC EJD EO9 EP2 EP3 F5P FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN GBLVA HVGLF HZ~ H~9 IHE J1W KOM M41 MO0 MOBAO N9A O-L O9- OAUVE OHT OKEIE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEL SES SJN SPCBC SSB SSH SSN SSY SSZ T5K TN5 UAP VH1 WH7 XOL XSB ZGI ZKB ZXP ~G- AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c313t-720824517e7790807ac4fb3d77c4349bd33212eb22def41150350583af9358f53 |
IEDL.DBID | .~1 |
ISSN | 0010-9452 1973-8102 |
IngestDate | Wed Jul 02 04:14:08 EDT 2025 Tue Jun 10 01:31:08 EDT 2025 Sun Jul 06 05:08:09 EDT 2025 Sat Jun 21 16:55:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Non-invasive brain stimulation Sensorimotor integration Visuomotor adaptation Methodology Motor learning |
Language | English |
License | Copyright © 2025 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c313t-720824517e7790807ac4fb3d77c4349bd33212eb22def41150350583af9358f53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0009-0005-4918-4714 |
PMID | 40347675 |
PQID | 3202857210 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_3202857210 pubmed_primary_40347675 crossref_primary_10_1016_j_cortex_2025_04_010 elsevier_sciencedirect_doi_10_1016_j_cortex_2025_04_010 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Italy |
PublicationPlace_xml | – name: Italy |
PublicationTitle | Cortex |
PublicationTitleAlternate | Cortex |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Jalali, Chowdhury, Wilson, Miall, Galea (bib18) 2018; 236 Hardwick, Celnik (bib16) 2014; 35 Paulus, Classen, Cohen, Large, Di Lazzaro, Nitsche, Pascual-Leone, Rosenow, Rothwell, Ziemann (bib37) 2008; 1 Jang, Shadmehr, Albert (bib20) 2023 Kitago, Ryan, Mazzoni, Krakauer, Haith (bib21) 2013; 7 Maresch, Mudrik, Donchin (bib31) 2021; 128 Tsay, Kim, Haith, Ivry (bib54) 2022; 11 Huang, Lu, Antal, Classen, Nitsche, Ziemann, Ridding, Hamada, Ugawa, Jaberzadeh, Suppa, Paulus, Rothwell (bib17) 2017; 128 Della-Maggiore, Landi, Villalta (bib3) 2015; 21 Harada, Hara, Matsushita, Kawakami, Kawakami, Anan, Sugata (bib15) 2020; 10 Reed, Kadosh (bib39) 2018; 41 Ferrucci, Cortese, Priori (bib6) 2015; 14 Song, Adams, Legon (bib45) 2020; 129 Spampinato, Satar, Rothwell (bib47) 2019; 12 Bikson, name, Rahman (bib2) 2013; 7 Krakauer, Ghez, Ghilardi (bib23) 2005; 25 Jalali, Miall, Galea (bib19) 2017; 118 Krakauer, Hadjiosif, Xu, Wong, Haith (bib24) 2019 Oldrati, Schutter (bib35) 2018; 17 Leow, Marinovic, Riek, Carroll (bib28) 2017; 12 Zhao, Zhang, Xu (bib70) 2024; 18 Villalta, Landi, Fló, Della-Maggiore (bib61) 2015; 25 Tzvi, Loens, Donchin (bib55) 2021; 21 Galea, Vazquez, Pasricha, de Xivry, Celnik (bib9) 2011; 21 Wong, Marvel, Taylor, Krakauer (bib68) 2019; 142 McDougle, Ivry, Taylor (bib32) 2016; 20 Grover, Fayzullina, Bullard, Levina, Reinhart (bib12) 2023; 15 St Pierre, Shinohara (bib48) 2023; 130 Mamlins, Hulst, Donchin, Timmann, Claassen (bib30) 2019; 121 Panouillères, Joundi, Brittain, Jenkinson (bib36) 2015; 593 Hamel, Trempe, Bernier (bib14) 2017; 37 Liew, Thompson, Ramirez, Butcher, Taylor, Celnik (bib29) 2018; 12 Grimaldi, Argyropoulos, Bastian, Cortes, Davis, Edwards, Ferrucci, Fregni, Galea, Hamada, Manto, Miall, Morales-Quezada, Pope, Priori, Rothwell, Tomlinson, Celnik (bib11) 2016; 22 Reuter, Booms, Leow (bib40) 2022; 134 Leow, Hammond, de Rugy (bib27) 2014; 40 Albert, Jang, Modchalingam, t Hart, Henriques, Lerner, Della-Maggiore, Haith, Krakauer, Shadmehr, Wei (bib1) 2022; 11 Ferrucci, Priori (bib7) 2014; 85 Spampinato, Celnik (bib46) 2021; 27 Labruna, Stark-Inbar, Breska, Dabit, Vanderschelden, Nitsche, Ivry (bib26) 2019; 12 Tavakoli, Yun (bib50) 2017; 11 Voets, Panouilleres, Jenkinson, Nevels (bib62) 2020; 1 Morehead, Xivry (bib34) 2021 Schween, Taube, Gollhofer, Leukel (bib44) 2014; 232 Fong, Spampinato, Michell, Mancuso, Brown, Ibáñez, Di Santo, Latorre, Bhatia, Rothwell, Rocchi (bib8) 2023; 275 Koch, Esposito, Motta, Casula, Di Lorenzo, Bonnì, Cinnera, Ponzo, Maiella, Picazio, Assogna, Sallustio, Caltagirone, Pellicciari (bib22) 2020; 208 Santos Ferreira, Teixeira Costa, Lima Ramos, Lucena, Thibaut, Fregni (bib43) 2019; 16 Underwood, Parr-Brownlie (bib56) 2021; 147 van Dun, Bodranghien, Manto, Mariën (bib57) 2016; 16 Weightman, Lalji, Lin, Galea, Jenkinson, Miall (bib67) 2023; 16 Di Pino, Pellegrino, Assenza, Capone, Ferreri, Formica, Ranieri, Tombini, Ziemann, Rothwell, Di Lazzaro (bib4) 2014; 10 Weightman, Brittain, Miall, Jenkinson (bib64) 2021; 11 Taylor, Krakauer, Ivry (bib51) 2014; 34 López-Alonso, Cheeran, Fernández-del-Olmo (bib25) 2015; 8 Rawji, Ciocca, Zacharia, Soares, Truong, Bikson, Rothwell, Bestmann (bib38) 2018; 11 Gershman, Moullet, Roby-Brami, Guigon (bib10) 2022; 18 Wang, Wei (bib63) 2022; 12 Yavari, Jamil, Samani, Vidor, Nitsche (bib69) 2018; 85 Tsay, Asmerian, Germine, Wilmer, Ivry, Nakayama (bib52) 2024; 8 Vergallito, Feroldi, Pisoni, Lauro (bib60) 2022; 12 Rossi, Bastian, Therrien (bib41) 2021; 20 Miyamoto, Wang, Smith (bib33) 2020; 23 Tsay, Haith, Ivry, Kim (bib53) 2022; 18 Szücs-Bencze, Vékony, Pesthy, Szabó, Kincses, Turi, Nemeth (bib49) 2023; 11 Ruitenberg, Koppelmans, De Dios, Gadd, Wood, Reuter-Lorenz, Kofman, Bloomberg, Mulavara, Seidler (bib42) 2018; 8 Weightman, Brittain, Miall, Jenkinson (bib65) 2022; 127 van Midden, Pirtošek, Kojović (bib58) 2023; 23 Hadipour-Niktarash, Lee, Desmond, Shadmehr (bib13) 2007; 27 Weightman, Brittain, Punt, Miall, Jenkinson (bib66) 2020; 13 Doppelmayr, Pixa, Steinberg (bib5) 2016; 22 Veldema, Gharabaghi, Jansen (bib59) 2021; 54 McDougle (10.1016/j.cortex.2025.04.010_bib32) 2016; 20 Grimaldi (10.1016/j.cortex.2025.04.010_bib11) 2016; 22 Hadipour-Niktarash (10.1016/j.cortex.2025.04.010_bib13) 2007; 27 Weightman (10.1016/j.cortex.2025.04.010_bib65) 2022; 127 Ruitenberg (10.1016/j.cortex.2025.04.010_bib42) 2018; 8 Ferrucci (10.1016/j.cortex.2025.04.010_bib7) 2014; 85 Reed (10.1016/j.cortex.2025.04.010_bib39) 2018; 41 Fong (10.1016/j.cortex.2025.04.010_bib8) 2023; 275 Maresch (10.1016/j.cortex.2025.04.010_bib31) 2021; 128 Tavakoli (10.1016/j.cortex.2025.04.010_bib50) 2017; 11 Tsay (10.1016/j.cortex.2025.04.010_bib53) 2022; 18 Wong (10.1016/j.cortex.2025.04.010_bib68) 2019; 142 Taylor (10.1016/j.cortex.2025.04.010_bib51) 2014; 34 Huang (10.1016/j.cortex.2025.04.010_bib17) 2017; 128 Kitago (10.1016/j.cortex.2025.04.010_bib21) 2013; 7 Mamlins (10.1016/j.cortex.2025.04.010_bib30) 2019; 121 Jalali (10.1016/j.cortex.2025.04.010_bib19) 2017; 118 Oldrati (10.1016/j.cortex.2025.04.010_bib35) 2018; 17 Leow (10.1016/j.cortex.2025.04.010_bib28) 2017; 12 Liew (10.1016/j.cortex.2025.04.010_bib29) 2018; 12 Rossi (10.1016/j.cortex.2025.04.010_bib41) 2021; 20 Tsay (10.1016/j.cortex.2025.04.010_bib52) 2024; 8 Grover (10.1016/j.cortex.2025.04.010_bib12) 2023; 15 Gershman (10.1016/j.cortex.2025.04.010_bib10) 2022; 18 van Dun (10.1016/j.cortex.2025.04.010_bib57) 2016; 16 Hardwick (10.1016/j.cortex.2025.04.010_bib16) 2014; 35 Weightman (10.1016/j.cortex.2025.04.010_bib66) 2020; 13 Reuter (10.1016/j.cortex.2025.04.010_bib40) 2022; 134 Underwood (10.1016/j.cortex.2025.04.010_bib56) 2021; 147 Zhao (10.1016/j.cortex.2025.04.010_bib70) 2024; 18 Villalta (10.1016/j.cortex.2025.04.010_bib61) 2015; 25 Miyamoto (10.1016/j.cortex.2025.04.010_bib33) 2020; 23 Spampinato (10.1016/j.cortex.2025.04.010_bib47) 2019; 12 Tzvi (10.1016/j.cortex.2025.04.010_bib55) 2021; 21 Krakauer (10.1016/j.cortex.2025.04.010_bib23) 2005; 25 Ferrucci (10.1016/j.cortex.2025.04.010_bib6) 2015; 14 Szücs-Bencze (10.1016/j.cortex.2025.04.010_bib49) 2023; 11 Vergallito (10.1016/j.cortex.2025.04.010_bib60) 2022; 12 Wang (10.1016/j.cortex.2025.04.010_bib63) 2022; 12 Santos Ferreira (10.1016/j.cortex.2025.04.010_bib43) 2019; 16 Di Pino (10.1016/j.cortex.2025.04.010_bib4) 2014; 10 Morehead (10.1016/j.cortex.2025.04.010_bib34) 2021 van Midden (10.1016/j.cortex.2025.04.010_bib58) 2023; 23 Veldema (10.1016/j.cortex.2025.04.010_bib59) 2021; 54 Albert (10.1016/j.cortex.2025.04.010_bib1) 2022; 11 Jalali (10.1016/j.cortex.2025.04.010_bib18) 2018; 236 López-Alonso (10.1016/j.cortex.2025.04.010_bib25) 2015; 8 Labruna (10.1016/j.cortex.2025.04.010_bib26) 2019; 12 Spampinato (10.1016/j.cortex.2025.04.010_bib46) 2021; 27 Della-Maggiore (10.1016/j.cortex.2025.04.010_bib3) 2015; 21 Yavari (10.1016/j.cortex.2025.04.010_bib69) 2018; 85 Voets (10.1016/j.cortex.2025.04.010_bib62) 2020; 1 Doppelmayr (10.1016/j.cortex.2025.04.010_bib5) 2016; 22 Panouillères (10.1016/j.cortex.2025.04.010_bib36) 2015; 593 Galea (10.1016/j.cortex.2025.04.010_bib9) 2011; 21 Paulus (10.1016/j.cortex.2025.04.010_bib37) 2008; 1 Koch (10.1016/j.cortex.2025.04.010_bib22) 2020; 208 Schween (10.1016/j.cortex.2025.04.010_bib44) 2014; 232 Song (10.1016/j.cortex.2025.04.010_bib45) 2020; 129 Rawji (10.1016/j.cortex.2025.04.010_bib38) 2018; 11 Krakauer (10.1016/j.cortex.2025.04.010_bib24) 2019 Leow (10.1016/j.cortex.2025.04.010_bib27) 2014; 40 Bikson (10.1016/j.cortex.2025.04.010_bib2) 2013; 7 Tsay (10.1016/j.cortex.2025.04.010_bib54) 2022; 11 Jang (10.1016/j.cortex.2025.04.010_bib20) 2023 St Pierre (10.1016/j.cortex.2025.04.010_bib48) 2023; 130 Hamel (10.1016/j.cortex.2025.04.010_bib14) 2017; 37 Weightman (10.1016/j.cortex.2025.04.010_bib64) 2021; 11 Weightman (10.1016/j.cortex.2025.04.010_bib67) 2023; 16 Harada (10.1016/j.cortex.2025.04.010_bib15) 2020; 10 |
References_xml | – volume: 17 start-page: 228 year: 2018 end-page: 236 ident: bib35 article-title: Targeting the human cerebellum with transcranial direct current stimulation to modulate behavior: A meta-analysis publication-title: The Cerebellum – year: 2021 ident: bib34 article-title: A synthesis of the many errors and learning processes of visuomotor adaptation publication-title: bioRxiv %∗ © 2021, posted by Cold Spring Harbor Laboratory – volume: 8 year: 2024 ident: bib52 article-title: Large-scale citizen science reveals predictors of sensorimotor adaptation publication-title: Nature Human Behaviour – volume: 54 start-page: 7493 year: 2021 end-page: 7512 ident: bib59 article-title: Non-invasive brain stimulation in modulation of mental rotation ability: A systematic review and meta-analysis publication-title: European Journal of Neuroscience – volume: 147 year: 2021 ident: bib56 article-title: Primary motor cortex in Parkinson's disease: Functional changes and opportunities for neurostimulation publication-title: Neurobiology of Disease – volume: 129 start-page: 376 year: 2020 end-page: 389 ident: bib45 article-title: Intermittent theta burst stimulation of the right dorsolateral prefrontal cortex accelerates visuomotor adaptation with delayed feedback publication-title: Cortex; a Journal Devoted To the Study of the Nervous System and Behavior – volume: 12 year: 2018 ident: bib29 article-title: Variable neural contributions to explicit and implicit learning during visuomotor adaptation publication-title: Frontiers in Neuroscience – volume: 15 year: 2023 ident: bib12 article-title: A meta-analysis suggests that tACS improves cognition in healthy, aging, and psychiatric populations publication-title: Science Translational Medicine – volume: 8 year: 2018 ident: bib42 article-title: Neural correlates of multi-day learning and savings in sensorimotor adaptation publication-title: Scientific Reports – volume: 16 start-page: 90 year: 2019 ident: bib43 article-title: Searching for the optimal tDCS target for motor rehabilitation publication-title: Journal of NeuroEngineering and Rehabilitation – volume: 1 year: 2020 ident: bib62 article-title: An implicit plan still overrides an explicit strategy during visuomotor adaptation following repetitive transcranial magnetic stimulation of the cerebellum publication-title: Experimental Results – volume: 18 year: 2022 ident: bib53 article-title: Interactions between sensory prediction error and task error during implicit motor learning publication-title: PLOS Computational Biology – volume: 236 start-page: 997 year: 2018 end-page: 1006 ident: bib18 article-title: Neural changes associated with cerebellar tDCS studied using MR spectroscopy publication-title: Experimental Brain Research – volume: 12 start-page: 992 year: 2019 end-page: 1000 ident: bib26 article-title: Individual differences in TMS sensitivity influence the efficacy of tDCS in facilitating sensorimotor adaptation publication-title: Brain Stimulation – volume: 85 start-page: 81 year: 2018 end-page: 92 ident: bib69 article-title: Basic and functional effects of transcranial electrical stimulation (tES)-An introduction publication-title: Neuroscience and Biobehavioral Reviews – volume: 10 start-page: 597 year: 2014 end-page: 608 ident: bib4 article-title: Modulation of brain plasticity in stroke: A novel model for neurorehabilitation publication-title: Nature Reviews Neurology – volume: 18 year: 2024 ident: bib70 article-title: The effect of reward on motor learning: Different stage, different effect publication-title: Frontiers in Human Neuroscience – volume: 41 start-page: 1123 year: 2018 end-page: 1130 ident: bib39 article-title: Transcranial electrical stimulation (tES) mechanisms and its effects on cortical excitability and connectivity publication-title: Journal of Inherited Metabolic Disease – volume: 16 start-page: 695 year: 2016 end-page: 741 ident: bib57 article-title: Targeting the cerebellum by noninvasive neurostimulation: A review publication-title: The Cerebellum – volume: 7 year: 2013 ident: bib2 article-title: Origins of specificity during tDCS: Anatomical, activity-selective, and input-bias mechanisms publication-title: Frontiers in Human Neuroscience – volume: 20 start-page: 535 year: 2016 end-page: 544 ident: bib32 article-title: Taking aim at the cognitive side of learning in sensorimotor adaptation tasks publication-title: Trends in Cognitive Sciences – volume: 25 start-page: 473 year: 2005 end-page: 478 ident: bib23 article-title: Adaptation to visuomotor transformations: Consolidation, interference, and forgetting publication-title: Journal of Neuroscience – volume: 21 start-page: 109 year: 2015 end-page: 125 ident: bib3 article-title: Sensorimotor adaptation: Multiple forms of plasticity in motor circuits publication-title: The Neuroscientist: a Review Journal Bringing Neurobiology, Neurology and Psychiatry – volume: 35 start-page: 2217 year: 2014 end-page: 2221 ident: bib16 article-title: Cerebellar direct current stimulation enhances motor learning in older adults publication-title: Neurobiology of Aging – volume: 40 start-page: 3243 year: 2014 end-page: 3252 ident: bib27 article-title: Anodal motor cortex stimulation paired with movement repetition increases anterograde interference but not savings publication-title: European Journal of Neuroscience – volume: 85 start-page: 918 year: 2014 end-page: 923 ident: bib7 article-title: Transcranial cerebellar direct current stimulation (tcDCS): Motor control, cognition, learning and emotions publication-title: Neuroimage – volume: 232 start-page: 3007 year: 2014 end-page: 3013 ident: bib44 article-title: Online and post-trial feedback differentially affect implicit adaptation to a visuomotor rotation publication-title: Experimental Brain Research – volume: 11 year: 2022 ident: bib1 article-title: Competition between parallel sensorimotor learning systems publication-title: Elife – volume: 18 year: 2022 ident: bib10 article-title: What is the nature of motor adaptation to dynamic perturbations? publication-title: PLOS Computational Biology – volume: 10 year: 2020 ident: bib15 article-title: Off-line effects of alpha-frequency transcranial alternating current stimulation on a visuomotor learning task publication-title: Brain and Behavior – volume: 23 start-page: 443-+ year: 2020 ident: bib33 article-title: Implicit adaptation compensates for erratic explicit strategy in human motor learning publication-title: Nature Neuroscience – volume: 1 start-page: 151 year: 2008 end-page: 163 ident: bib37 article-title: State of the art: Pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation publication-title: Brain Stimulation – volume: 12 start-page: 522 year: 2022 ident: bib60 article-title: Inter-individual variability in tDCS effects: A narrative review on the contribution of stable, variable, and contextual factors publication-title: Brain Sciences – volume: 34 start-page: 3023 year: 2014 end-page: 3032 ident: bib51 article-title: Explicit and implicit contributions to learning in a sensorimotor adaptation task publication-title: Journal of Neuroscience – start-page: 613 year: 2019 end-page: 663 ident: bib24 article-title: Motor learning publication-title: Comprehensive physiology – volume: 275 year: 2023 ident: bib8 article-title: EEG responses induced by cerebellar TMS at rest and during visuomotor adaptation publication-title: Neuroimage – volume: 37 start-page: 9197 year: 2017 end-page: 9206 ident: bib14 article-title: Disruption of M1 activity during performance Plateau impairs consolidation of motor memories publication-title: Journal of Neuroscience – volume: 128 start-page: 558 year: 2021 end-page: 568 ident: bib31 article-title: Measures of explicit and implicit in motor learning: What we know and what we don't publication-title: Neuroscience and Biobehavioral Reviews – volume: 25 start-page: 1535 year: 2015 end-page: 1543 ident: bib61 article-title: Extinction interferes with the retrieval of visuomotor memories through a mechanism involving the sensorimotor cortex publication-title: Cerebral Cortex – volume: 11 start-page: 201 year: 2023 ident: bib49 article-title: Modulating visuomotor sequence learning by repetitive transcranial magnetic stimulation: What do we know So far? publication-title: Journal of Intelligence – volume: 142 start-page: 662 year: 2019 end-page: 673 ident: bib68 article-title: Can patients with cerebellar disease switch learning mechanisms to reduce their adaptation deficits? publication-title: Brain: a Journal of Neurology – volume: 12 year: 2022 ident: bib63 article-title: Transcranial direct-current stimulation does not affect implicit sensorimotor adaptation: A randomized Sham-controlled trial publication-title: Brain Sciences – volume: 27 start-page: 13413 year: 2007 end-page: 13419 ident: bib13 article-title: Impairment of retention but not acquisition of a visuomotor skill through time-dependent disruption of primary motor cortex publication-title: The Journal of Neuroscience – volume: 21 start-page: 306 year: 2021 end-page: 313 ident: bib55 article-title: Mini-review: The role of the cerebellum in visuomotor adaptation publication-title: The Cerebellum – volume: 12 start-page: 1205 year: 2019 end-page: 1212 ident: bib47 article-title: Combining reward and M1 transcranial direct current stimulation enhances the retention of newly learnt sensorimotor mappings publication-title: Brain Stimulation – volume: 128 start-page: 2318 year: 2017 end-page: 2329 ident: bib17 article-title: Plasticity induced by non-invasive transcranial brain stimulation: A position paper publication-title: Clinical Neurophysiology – volume: 23 start-page: 1013 year: 2023 end-page: 1019 ident: bib58 article-title: The effect of taVNS on the cerebello-thalamo-cortical pathway: A TMS study publication-title: The Cerebellum – volume: 121 start-page: 2112 year: 2019 end-page: 2125 ident: bib30 article-title: No effects of cerebellar transcranial direct current stimulation on force field and visuomotor reach adaptation in young and healthy subjects publication-title: Journal of Neurophysiology – volume: 11 year: 2017 ident: bib50 article-title: Transcranial alternating current stimulation (tACS) mechanisms and protocols publication-title: Frontiers in Cellular Neuroscience – volume: 22 start-page: 928 year: 2016 end-page: 936 ident: bib5 article-title: Cerebellar, but not motor or parietal, high-density anodal transcranial direct current stimulation facilitates motor adaptation publication-title: Journal of the International Neuropsychological Society – volume: 12 year: 2017 ident: bib28 article-title: Cerebellar anodal tDCS increases implicit learning when strategic re-aiming is suppressed in sensorimotor adaptation publication-title: Plos One – volume: 20 start-page: 186 year: 2021 end-page: 197 ident: bib41 article-title: Mechanisms of proprioceptive realignment in human motor learning publication-title: Current Opinion in Physiology – volume: 16 start-page: 431 year: 2023 end-page: 441 ident: bib67 article-title: Short duration event related cerebellar TDCS enhances visuomotor adaptation [Article; Early Access] publication-title: Brain Stimulation – volume: 7 year: 2013 ident: bib21 article-title: Unlearning versus savings in visuomotor adaptation: Comparing effects of washout, passage of time, and removal of errors on motor memory publication-title: Frontiers in Human Neuroscience – volume: 208 year: 2020 ident: bib22 article-title: Improving visuo-motor learning with cerebellar theta burst stimulation: Behavioral and neurophysiological evidence publication-title: Neuroimage – volume: 11 start-page: 289 year: 2018 end-page: 298 ident: bib38 article-title: tDCS changes in motor excitability are specific to orientation of current flow publication-title: Brain Stimulation – volume: 130 start-page: 212 year: 2023 end-page: 223 ident: bib48 article-title: Transcutaneous vagus nerve stimulation at nonspecific timings during training can compromise motor adaptation in healthy humans publication-title: Journal of Neurophysiology – volume: 27 start-page: 246 year: 2021 end-page: 267 ident: bib46 article-title: Multiple motor learning processes in humans: Defining their neurophysiological bases publication-title: The Neuroscientist: a Review Journal Bringing Neurobiology, Neurology and Psychiatry – volume: 8 start-page: 1209 year: 2015 end-page: 1219 ident: bib25 article-title: Relationship between non-invasive brain stimulation-induced plasticity and capacity for motor learning publication-title: Brain Stimulation – volume: 11 year: 2021 ident: bib64 article-title: Direct and indirect effects of cathodal cerebellar TDCS on visuomotor adaptation of hand and arm movements publication-title: Scientific Reports – volume: 127 start-page: 519 year: 2022 end-page: 528 ident: bib65 article-title: Residual errors in visuomotor adaptation persist despite extended motor preparation periods publication-title: Journal of Neurophysiology – volume: 11 year: 2022 ident: bib54 article-title: Understanding implicit sensorimotor adaptation as a process of proprioceptive re-alignment publication-title: Elife – volume: 14 start-page: 27 year: 2015 end-page: 30 ident: bib6 article-title: Cerebellar tDCS: How to Do it publication-title: The Cerebellum – volume: 21 start-page: 1761 year: 2011 end-page: 1770 ident: bib9 article-title: Dissociating the roles of the cerebellum and motor cortex during adaptive learning: The motor cortex retains what the cerebellum learns publication-title: Cerebral Cortex – volume: 118 start-page: 655 year: 2017 end-page: 665 ident: bib19 article-title: No consistent effect of cerebellar transcranial direct current stimulation on visuomotor adaptation publication-title: Journal of Neurophysiology – volume: 593 start-page: 3645 year: 2015 end-page: 3655 ident: bib36 article-title: Reversing motor adaptation deficits in the ageing brain using non-invasive stimulation publication-title: Journal of Physiology-London – volume: 134 year: 2022 ident: bib40 article-title: Using EEG to study sensorimotor adaptation publication-title: Neuroscience and Biobehavioral Reviews – volume: 13 start-page: 707 year: 2020 end-page: 716 ident: bib66 article-title: Targeted tDCS selectively improves motor adaptation with the proximal and distal upper limb publication-title: Brain Stimulation – volume: 22 start-page: 83 year: 2016 end-page: 97 ident: bib11 article-title: Cerebellar transcranial direct current stimulation (ctDCS): A novel approach to understanding cerebellar function in health and disease publication-title: The Neuroscientist: a Review Journal Bringing Neurobiology, Neurology and Psychiatry – year: 2023 ident: bib20 article-title: A software tool for at-home measurement of sensorimotor adaptation publication-title: bioRxiv %∗ © 2023, posted by Cold Spring Harbor Laboratory. This pre-print is available under a creative commons license (attribution 4.0 international) – volume: 129 start-page: 376 year: 2020 ident: 10.1016/j.cortex.2025.04.010_bib45 article-title: Intermittent theta burst stimulation of the right dorsolateral prefrontal cortex accelerates visuomotor adaptation with delayed feedback publication-title: Cortex; a Journal Devoted To the Study of the Nervous System and Behavior doi: 10.1016/j.cortex.2020.04.033 – volume: 147 year: 2021 ident: 10.1016/j.cortex.2025.04.010_bib56 article-title: Primary motor cortex in Parkinson's disease: Functional changes and opportunities for neurostimulation publication-title: Neurobiology of Disease doi: 10.1016/j.nbd.2020.105159 – volume: 22 start-page: 928 issue: 9 year: 2016 ident: 10.1016/j.cortex.2025.04.010_bib5 article-title: Cerebellar, but not motor or parietal, high-density anodal transcranial direct current stimulation facilitates motor adaptation publication-title: Journal of the International Neuropsychological Society doi: 10.1017/S1355617716000345 – volume: 8 issue: 3 year: 2024 ident: 10.1016/j.cortex.2025.04.010_bib52 article-title: Large-scale citizen science reveals predictors of sensorimotor adaptation publication-title: Nature Human Behaviour doi: 10.1038/s41562-023-01798-0 – volume: 21 start-page: 109 issue: 2 year: 2015 ident: 10.1016/j.cortex.2025.04.010_bib3 article-title: Sensorimotor adaptation: Multiple forms of plasticity in motor circuits publication-title: The Neuroscientist: a Review Journal Bringing Neurobiology, Neurology and Psychiatry doi: 10.1177/1073858414545228 – volume: 85 start-page: 81 year: 2018 ident: 10.1016/j.cortex.2025.04.010_bib69 article-title: Basic and functional effects of transcranial electrical stimulation (tES)-An introduction publication-title: Neuroscience and Biobehavioral Reviews doi: 10.1016/j.neubiorev.2017.06.015 – volume: 20 start-page: 535 issue: 7 year: 2016 ident: 10.1016/j.cortex.2025.04.010_bib32 article-title: Taking aim at the cognitive side of learning in sensorimotor adaptation tasks publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2016.05.002 – volume: 18 year: 2024 ident: 10.1016/j.cortex.2025.04.010_bib70 article-title: The effect of reward on motor learning: Different stage, different effect publication-title: Frontiers in Human Neuroscience doi: 10.3389/fnhum.2024.1381935 – volume: 208 year: 2020 ident: 10.1016/j.cortex.2025.04.010_bib22 article-title: Improving visuo-motor learning with cerebellar theta burst stimulation: Behavioral and neurophysiological evidence publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116424 – volume: 23 start-page: 1013 issue: 3 year: 2023 ident: 10.1016/j.cortex.2025.04.010_bib58 article-title: The effect of taVNS on the cerebello-thalamo-cortical pathway: A TMS study publication-title: The Cerebellum doi: 10.1007/s12311-023-01595-5 – volume: 25 start-page: 473 issue: 2 year: 2005 ident: 10.1016/j.cortex.2025.04.010_bib23 article-title: Adaptation to visuomotor transformations: Consolidation, interference, and forgetting publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.4218-04.2005 – volume: 20 start-page: 186 year: 2021 ident: 10.1016/j.cortex.2025.04.010_bib41 article-title: Mechanisms of proprioceptive realignment in human motor learning publication-title: Current Opinion in Physiology doi: 10.1016/j.cophys.2021.01.011 – volume: 37 start-page: 9197 issue: 38 year: 2017 ident: 10.1016/j.cortex.2025.04.010_bib14 article-title: Disruption of M1 activity during performance Plateau impairs consolidation of motor memories publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.3916-16.2017 – volume: 142 start-page: 662 year: 2019 ident: 10.1016/j.cortex.2025.04.010_bib68 article-title: Can patients with cerebellar disease switch learning mechanisms to reduce their adaptation deficits? publication-title: Brain: a Journal of Neurology doi: 10.1093/brain/awy334 – volume: 7 year: 2013 ident: 10.1016/j.cortex.2025.04.010_bib2 article-title: Origins of specificity during tDCS: Anatomical, activity-selective, and input-bias mechanisms publication-title: Frontiers in Human Neuroscience doi: 10.3389/fnhum.2013.00688 – volume: 10 start-page: 597 issue: 10 year: 2014 ident: 10.1016/j.cortex.2025.04.010_bib4 article-title: Modulation of brain plasticity in stroke: A novel model for neurorehabilitation publication-title: Nature Reviews Neurology doi: 10.1038/nrneurol.2014.162 – volume: 23 start-page: 443-+ issue: 3 year: 2020 ident: 10.1016/j.cortex.2025.04.010_bib33 article-title: Implicit adaptation compensates for erratic explicit strategy in human motor learning publication-title: Nature Neuroscience doi: 10.1038/s41593-020-0600-3 – volume: 134 year: 2022 ident: 10.1016/j.cortex.2025.04.010_bib40 article-title: Using EEG to study sensorimotor adaptation publication-title: Neuroscience and Biobehavioral Reviews doi: 10.1016/j.neubiorev.2021.104520 – volume: 11 start-page: 201 issue: 10 year: 2023 ident: 10.1016/j.cortex.2025.04.010_bib49 article-title: Modulating visuomotor sequence learning by repetitive transcranial magnetic stimulation: What do we know So far? publication-title: Journal of Intelligence doi: 10.3390/jintelligence11100201 – volume: 128 start-page: 2318 issue: 11 year: 2017 ident: 10.1016/j.cortex.2025.04.010_bib17 article-title: Plasticity induced by non-invasive transcranial brain stimulation: A position paper publication-title: Clinical Neurophysiology doi: 10.1016/j.clinph.2017.09.007 – volume: 11 year: 2022 ident: 10.1016/j.cortex.2025.04.010_bib54 article-title: Understanding implicit sensorimotor adaptation as a process of proprioceptive re-alignment publication-title: Elife doi: 10.7554/eLife.76639 – volume: 11 year: 2017 ident: 10.1016/j.cortex.2025.04.010_bib50 article-title: Transcranial alternating current stimulation (tACS) mechanisms and protocols publication-title: Frontiers in Cellular Neuroscience doi: 10.3389/fncel.2017.00214 – year: 2023 ident: 10.1016/j.cortex.2025.04.010_bib20 article-title: A software tool for at-home measurement of sensorimotor adaptation – volume: 15 issue: 697 year: 2023 ident: 10.1016/j.cortex.2025.04.010_bib12 article-title: A meta-analysis suggests that tACS improves cognition in healthy, aging, and psychiatric populations publication-title: Science Translational Medicine doi: 10.1126/scitranslmed.abo2044 – volume: 232 start-page: 3007 issue: 9 year: 2014 ident: 10.1016/j.cortex.2025.04.010_bib44 article-title: Online and post-trial feedback differentially affect implicit adaptation to a visuomotor rotation publication-title: Experimental Brain Research doi: 10.1007/s00221-014-3992-z – volume: 25 start-page: 1535 issue: 6 year: 2015 ident: 10.1016/j.cortex.2025.04.010_bib61 article-title: Extinction interferes with the retrieval of visuomotor memories through a mechanism involving the sensorimotor cortex publication-title: Cerebral Cortex doi: 10.1093/cercor/bht346 – volume: 130 start-page: 212 issue: 1 year: 2023 ident: 10.1016/j.cortex.2025.04.010_bib48 article-title: Transcutaneous vagus nerve stimulation at nonspecific timings during training can compromise motor adaptation in healthy humans publication-title: Journal of Neurophysiology doi: 10.1152/jn.00447.2022 – volume: 18 issue: 3 year: 2022 ident: 10.1016/j.cortex.2025.04.010_bib53 article-title: Interactions between sensory prediction error and task error during implicit motor learning publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1010005 – volume: 12 issue: 7 year: 2017 ident: 10.1016/j.cortex.2025.04.010_bib28 article-title: Cerebellar anodal tDCS increases implicit learning when strategic re-aiming is suppressed in sensorimotor adaptation publication-title: Plos One doi: 10.1371/journal.pone.0179977 – volume: 17 start-page: 228 issue: 2 year: 2018 ident: 10.1016/j.cortex.2025.04.010_bib35 article-title: Targeting the human cerebellum with transcranial direct current stimulation to modulate behavior: A meta-analysis publication-title: The Cerebellum doi: 10.1007/s12311-017-0877-2 – volume: 22 start-page: 83 issue: 1 year: 2016 ident: 10.1016/j.cortex.2025.04.010_bib11 article-title: Cerebellar transcranial direct current stimulation (ctDCS): A novel approach to understanding cerebellar function in health and disease publication-title: The Neuroscientist: a Review Journal Bringing Neurobiology, Neurology and Psychiatry doi: 10.1177/1073858414559409 – volume: 27 start-page: 13413 issue: 49 year: 2007 ident: 10.1016/j.cortex.2025.04.010_bib13 article-title: Impairment of retention but not acquisition of a visuomotor skill through time-dependent disruption of primary motor cortex publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.2570-07.2007 – volume: 8 year: 2018 ident: 10.1016/j.cortex.2025.04.010_bib42 article-title: Neural correlates of multi-day learning and savings in sensorimotor adaptation publication-title: Scientific Reports doi: 10.1038/s41598-018-32689-4 – volume: 14 start-page: 27 issue: 1 year: 2015 ident: 10.1016/j.cortex.2025.04.010_bib6 article-title: Cerebellar tDCS: How to Do it publication-title: The Cerebellum doi: 10.1007/s12311-014-0599-7 – volume: 7 year: 2013 ident: 10.1016/j.cortex.2025.04.010_bib21 article-title: Unlearning versus savings in visuomotor adaptation: Comparing effects of washout, passage of time, and removal of errors on motor memory publication-title: Frontiers in Human Neuroscience doi: 10.3389/fnhum.2013.00307 – volume: 16 start-page: 695 issue: 3 year: 2016 ident: 10.1016/j.cortex.2025.04.010_bib57 article-title: Targeting the cerebellum by noninvasive neurostimulation: A review publication-title: The Cerebellum doi: 10.1007/s12311-016-0840-7 – volume: 11 year: 2022 ident: 10.1016/j.cortex.2025.04.010_bib1 article-title: Competition between parallel sensorimotor learning systems publication-title: Elife doi: 10.7554/eLife.65361 – volume: 16 start-page: 431 issue: 2 year: 2023 ident: 10.1016/j.cortex.2025.04.010_bib67 article-title: Short duration event related cerebellar TDCS enhances visuomotor adaptation [Article; Early Access] publication-title: Brain Stimulation doi: 10.1016/j.brs.2023.01.1673 – volume: 12 year: 2018 ident: 10.1016/j.cortex.2025.04.010_bib29 article-title: Variable neural contributions to explicit and implicit learning during visuomotor adaptation publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2018.00610 – volume: 11 start-page: 289 issue: 2 year: 2018 ident: 10.1016/j.cortex.2025.04.010_bib38 article-title: tDCS changes in motor excitability are specific to orientation of current flow publication-title: Brain Stimulation doi: 10.1016/j.brs.2017.11.001 – volume: 40 start-page: 3243 issue: 8 year: 2014 ident: 10.1016/j.cortex.2025.04.010_bib27 article-title: Anodal motor cortex stimulation paired with movement repetition increases anterograde interference but not savings publication-title: European Journal of Neuroscience doi: 10.1111/ejn.12699 – volume: 11 issue: 1 year: 2021 ident: 10.1016/j.cortex.2025.04.010_bib64 article-title: Direct and indirect effects of cathodal cerebellar TDCS on visuomotor adaptation of hand and arm movements publication-title: Scientific Reports doi: 10.1038/s41598-021-83656-5 – volume: 35 start-page: 2217 issue: 10 year: 2014 ident: 10.1016/j.cortex.2025.04.010_bib16 article-title: Cerebellar direct current stimulation enhances motor learning in older adults publication-title: Neurobiology of Aging doi: 10.1016/j.neurobiolaging.2014.03.030 – start-page: 613 year: 2019 ident: 10.1016/j.cortex.2025.04.010_bib24 article-title: Motor learning – volume: 127 start-page: 519 issue: 2 year: 2022 ident: 10.1016/j.cortex.2025.04.010_bib65 article-title: Residual errors in visuomotor adaptation persist despite extended motor preparation periods publication-title: Journal of Neurophysiology doi: 10.1152/jn.00301.2021 – volume: 16 start-page: 90 issue: 1 year: 2019 ident: 10.1016/j.cortex.2025.04.010_bib43 article-title: Searching for the optimal tDCS target for motor rehabilitation publication-title: Journal of NeuroEngineering and Rehabilitation doi: 10.1186/s12984-019-0561-5 – volume: 275 year: 2023 ident: 10.1016/j.cortex.2025.04.010_bib8 article-title: EEG responses induced by cerebellar TMS at rest and during visuomotor adaptation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2023.120188 – volume: 593 start-page: 3645 issue: 16 year: 2015 ident: 10.1016/j.cortex.2025.04.010_bib36 article-title: Reversing motor adaptation deficits in the ageing brain using non-invasive stimulation publication-title: Journal of Physiology-London doi: 10.1113/JP270484 – volume: 118 start-page: 655 issue: 2 year: 2017 ident: 10.1016/j.cortex.2025.04.010_bib19 article-title: No consistent effect of cerebellar transcranial direct current stimulation on visuomotor adaptation publication-title: Journal of Neurophysiology doi: 10.1152/jn.00896.2016 – volume: 12 issue: 10 year: 2022 ident: 10.1016/j.cortex.2025.04.010_bib63 article-title: Transcranial direct-current stimulation does not affect implicit sensorimotor adaptation: A randomized Sham-controlled trial publication-title: Brain Sciences doi: 10.3390/brainsci12101325 – volume: 128 start-page: 558 year: 2021 ident: 10.1016/j.cortex.2025.04.010_bib31 article-title: Measures of explicit and implicit in motor learning: What we know and what we don't publication-title: Neuroscience and Biobehavioral Reviews doi: 10.1016/j.neubiorev.2021.06.037 – volume: 34 start-page: 3023 issue: 8 year: 2014 ident: 10.1016/j.cortex.2025.04.010_bib51 article-title: Explicit and implicit contributions to learning in a sensorimotor adaptation task publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.3619-13.2014 – volume: 12 start-page: 522 issue: 5 year: 2022 ident: 10.1016/j.cortex.2025.04.010_bib60 article-title: Inter-individual variability in tDCS effects: A narrative review on the contribution of stable, variable, and contextual factors publication-title: Brain Sciences doi: 10.3390/brainsci12050522 – volume: 8 start-page: 1209 issue: 6 year: 2015 ident: 10.1016/j.cortex.2025.04.010_bib25 article-title: Relationship between non-invasive brain stimulation-induced plasticity and capacity for motor learning publication-title: Brain Stimulation doi: 10.1016/j.brs.2015.07.042 – volume: 21 start-page: 1761 issue: 8 year: 2011 ident: 10.1016/j.cortex.2025.04.010_bib9 article-title: Dissociating the roles of the cerebellum and motor cortex during adaptive learning: The motor cortex retains what the cerebellum learns publication-title: Cerebral Cortex doi: 10.1093/cercor/bhq246 – volume: 236 start-page: 997 issue: 4 year: 2018 ident: 10.1016/j.cortex.2025.04.010_bib18 article-title: Neural changes associated with cerebellar tDCS studied using MR spectroscopy publication-title: Experimental Brain Research doi: 10.1007/s00221-018-5170-1 – volume: 85 start-page: 918 year: 2014 ident: 10.1016/j.cortex.2025.04.010_bib7 article-title: Transcranial cerebellar direct current stimulation (tcDCS): Motor control, cognition, learning and emotions publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.122 – volume: 12 start-page: 992 issue: 4 year: 2019 ident: 10.1016/j.cortex.2025.04.010_bib26 article-title: Individual differences in TMS sensitivity influence the efficacy of tDCS in facilitating sensorimotor adaptation publication-title: Brain Stimulation doi: 10.1016/j.brs.2019.03.008 – volume: 41 start-page: 1123 issue: 6 year: 2018 ident: 10.1016/j.cortex.2025.04.010_bib39 article-title: Transcranial electrical stimulation (tES) mechanisms and its effects on cortical excitability and connectivity publication-title: Journal of Inherited Metabolic Disease doi: 10.1007/s10545-018-0181-4 – year: 2021 ident: 10.1016/j.cortex.2025.04.010_bib34 article-title: A synthesis of the many errors and learning processes of visuomotor adaptation – volume: 1 year: 2020 ident: 10.1016/j.cortex.2025.04.010_bib62 article-title: An implicit plan still overrides an explicit strategy during visuomotor adaptation following repetitive transcranial magnetic stimulation of the cerebellum publication-title: Experimental Results doi: 10.1017/exp.2020.16 – volume: 21 start-page: 306 issue: 2 year: 2021 ident: 10.1016/j.cortex.2025.04.010_bib55 article-title: Mini-review: The role of the cerebellum in visuomotor adaptation publication-title: The Cerebellum doi: 10.1007/s12311-021-01281-4 – volume: 1 start-page: 151 issue: 3 year: 2008 ident: 10.1016/j.cortex.2025.04.010_bib37 article-title: State of the art: Pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation publication-title: Brain Stimulation doi: 10.1016/j.brs.2008.06.002 – volume: 12 start-page: 1205 issue: 5 year: 2019 ident: 10.1016/j.cortex.2025.04.010_bib47 article-title: Combining reward and M1 transcranial direct current stimulation enhances the retention of newly learnt sensorimotor mappings publication-title: Brain Stimulation doi: 10.1016/j.brs.2019.05.015 – volume: 13 start-page: 707 issue: 3 year: 2020 ident: 10.1016/j.cortex.2025.04.010_bib66 article-title: Targeted tDCS selectively improves motor adaptation with the proximal and distal upper limb publication-title: Brain Stimulation doi: 10.1016/j.brs.2020.02.013 – volume: 121 start-page: 2112 issue: 6 year: 2019 ident: 10.1016/j.cortex.2025.04.010_bib30 article-title: No effects of cerebellar transcranial direct current stimulation on force field and visuomotor reach adaptation in young and healthy subjects publication-title: Journal of Neurophysiology doi: 10.1152/jn.00352.2018 – volume: 27 start-page: 246 issue: 3 year: 2021 ident: 10.1016/j.cortex.2025.04.010_bib46 article-title: Multiple motor learning processes in humans: Defining their neurophysiological bases publication-title: The Neuroscientist: a Review Journal Bringing Neurobiology, Neurology and Psychiatry doi: 10.1177/1073858420939552 – volume: 18 issue: 8 year: 2022 ident: 10.1016/j.cortex.2025.04.010_bib10 article-title: What is the nature of motor adaptation to dynamic perturbations? publication-title: PLOS Computational Biology – volume: 54 start-page: 7493 issue: 10 year: 2021 ident: 10.1016/j.cortex.2025.04.010_bib59 article-title: Non-invasive brain stimulation in modulation of mental rotation ability: A systematic review and meta-analysis publication-title: European Journal of Neuroscience doi: 10.1111/ejn.15490 – volume: 10 issue: 9 year: 2020 ident: 10.1016/j.cortex.2025.04.010_bib15 article-title: Off-line effects of alpha-frequency transcranial alternating current stimulation on a visuomotor learning task publication-title: Brain and Behavior doi: 10.1002/brb3.1754 |
SSID | ssj0020855 |
Score | 2.4361393 |
SecondaryResourceType | review_article |
Snippet | As research on the visuomotor rotation (VMR) adaptation expands its scope from behavioral science to encompass neuropsychological perspectives, an increasing... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 144 |
SubjectTerms | Adaptation, Physiological - physiology Brain - physiology Humans Methodology Motor Cortex - physiology Motor learning Movement - physiology Non-invasive brain stimulation Psychomotor Performance - physiology Rotation Sensorimotor integration Transcranial Magnetic Stimulation - methods Visuomotor adaptation |
Title | Using non-invasive brain stimulation to modulate performance in visuomotor rotation adaptation: A scoping review |
URI | https://dx.doi.org/10.1016/j.cortex.2025.04.010 https://www.ncbi.nlm.nih.gov/pubmed/40347675 https://www.proquest.com/docview/3202857210 |
Volume | 187 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jgvgiuvkxP0YE8S2uXdJl820Mx_zYEHGwt9C0KUxYW_aFvvi3e9e0E0ERfGmbkJI0l1zuer-7I-RS-jwKAtdlgQ8XIR3DOs2WZpGEesw6aiPwDUetwVjcT7xJifQKXxiEVea83_L0jFvnNY18NhvpdIo-vi7oJiA_ePjUnqAHu5C4yq8_NjAPTEGZZzFwGLYu3OcyjFeAgNY30BKbXhbwFP1ofz6efhM_s2Oov0d2c_mRdu0Q90nJxBVS7cagO8_e6RXNEJ3Zr_IK2R7mhvMqSTNoAAVdn03jtY-YdaoxOwSFLT7LU3jRZUJnSYglQ9MvjwIKzdbTxQqBe8mczhNrvqd-6Kf28YZ2Kfq3YB_WGeaAjPu3L70By5MtsIC7fMkkzFRTeK40GIGw7Ug_EJHmoZSB4KKjQ87hlAM9vBmaSKAcyUF4anM_Qktq5PFDUoaPMMeEgtIoJNcg62gtwhAkMBO1WkbrDnDlTmhqhBVzrFIbU0MVYLNXZWmikCbKEQpoUiOyIIT6tjYUsP0_3rwo6KZg26AtxI9NslooTBvf9kD9hTZHlqCbsQiHC4xxc_Lvfk_JDpYspOyMlJfzlTkH4WWp69nqrJOtbu_58Qnvdw-D0Sfm7fBq |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90A_VFdH5_RhDfgu2SLptvQxybc3tS2Fto2hQmbC37EP3vvWvaiaAIvpQ0TUmaSy53vd_dAVyrUCRR5Ps8CvEilWd5q94wPFFYT1lHXQS-wbDRfZGPo2C0BvelLwzBKgve73h6zq2LmttiNm-z8Zh8fH3UTVB-CKjUHK1DlaJTBRWotnv97nCldxEUyzFkj9MLpQddDvOKCNP6jopiPchjnpIr7c8n1G8SaH4SdXZguxAhWduNchfW7LQGe-0pqs-TD3bDclBn_re8BhuDwna-B1mODmCo7vPx9C0k2DozlCCC4S6fFFm82CJlkzSmO8uyL6cChs3exvMlYffSGZulzoLPwjjMXPGOtRm5uFAfzh9mH146D8_3XV7kW-CR8MWCK5ypugx8ZSkIYdNTYSQTI2KlIilky8RC4EGHqng9tokkUVKg_NQUYULG1CQQB1DBj7BHwFBvlEoYFHeMkXGMQphNGg1rTAsZcyu2x8DLOdaZC6uhS7zZq3Y00UQT7UmNNDkGVRJCf1seGjn_H29elXTTuHPIHBJObbqca8oc3wxQA8Y2h46gq7FIT0gKc3Py734vYbP7PHjST71h_xS26IlDmJ1BZTFb2nOUZRbmolirn5sU8YY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+non-invasive+brain+stimulation+to+modulate+performance+in+visuomotor+rotation+adaptation%3A+A+scoping+review&rft.jtitle=Cortex&rft.au=Chen%2C+Long&rft.au=Liu%2C+Yipeng&rft.au=Wang%2C+Zhongpeng&rft.au=Zhang%2C+Lei&rft.date=2025-06-01&rft.pub=Elsevier+Ltd&rft.issn=0010-9452&rft.volume=187&rft.spage=144&rft.epage=158&rft_id=info:doi/10.1016%2Fj.cortex.2025.04.010&rft.externalDocID=S001094522500108X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-9452&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-9452&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-9452&client=summon |