Using non-invasive brain stimulation to modulate performance in visuomotor rotation adaptation: A scoping review

As research on the visuomotor rotation (VMR) adaptation expands its scope from behavioral science to encompass neuropsychological perspectives, an increasing number of studies have employed non-invasive brain stimulation (NIBS) techniques to explore the specific contributions of different neural str...

Full description

Saved in:
Bibliographic Details
Published inCortex Vol. 187; pp. 144 - 158
Main Authors Chen, Long, Liu, Yipeng, Wang, Zhongpeng, Zhang, Lei, Cheng, Shengcui, Ming, Dong
Format Journal Article
LanguageEnglish
Published Italy Elsevier Ltd 01.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As research on the visuomotor rotation (VMR) adaptation expands its scope from behavioral science to encompass neuropsychological perspectives, an increasing number of studies have employed non-invasive brain stimulation (NIBS) techniques to explore the specific contributions of different neural structures to VMR adaptation. Despite early studies suggesting that cerebellar stimulation influenced the rate of adaptation and that stimulating primary motor cortex led to an enhanced retention of newly learned adaptation, subsequent studies could not always achieve consistent results. To probe this inconsistency, we systematically comb through past studies and extract numerous details, including paradigm designs, context settings, and modulation protocols in this scoping review. In summary, the paradigm design primarily serves two purposes: to dissociate implicit and explicit adaptation and to assess the retention of motor memory, whilst context settings such as apparatus, movement-related parameters and the information provided for subjects may complicate the modulated neuropsychological processes. We also conclude key NIBS parameters such as target regions and timing in stimulation protocols. Furthermore, we recognize the potential of neurophysiological biomarkers to support future VMR studies that incorporate NIBS and advocate for the use of several newly emerging NIBS techniques to enrich the field.
AbstractList As research on the visuomotor rotation (VMR) adaptation expands its scope from behavioral science to encompass neuropsychological perspectives, an increasing number of studies have employed non-invasive brain stimulation (NIBS) techniques to explore the specific contributions of different neural structures to VMR adaptation. Despite early studies suggesting that cerebellar stimulation influenced the rate of adaptation and that stimulating primary motor cortex led to an enhanced retention of newly learned adaptation, subsequent studies could not always achieve consistent results. To probe this inconsistency, we systematically comb through past studies and extract numerous details, including paradigm designs, context settings, and modulation protocols in this scoping review. In summary, the paradigm design primarily serves two purposes: to dissociate implicit and explicit adaptation and to assess the retention of motor memory, whilst context settings such as apparatus, movement-related parameters and the information provided for subjects may complicate the modulated neuropsychological processes. We also conclude key NIBS parameters such as target regions and timing in stimulation protocols. Furthermore, we recognize the potential of neurophysiological biomarkers to support future VMR studies that incorporate NIBS and advocate for the use of several newly emerging NIBS techniques to enrich the field.
As research on the visuomotor rotation (VMR) adaptation expands its scope from behavioral science to encompass neuropsychological perspectives, an increasing number of studies have employed non-invasive brain stimulation (NIBS) techniques to explore the specific contributions of different neural structures to VMR adaptation. Despite early studies suggesting that cerebellar stimulation influenced the rate of adaptation and that stimulating primary motor cortex led to an enhanced retention of newly learned adaptation, subsequent studies could not always achieve consistent results. To probe this inconsistency, we systematically comb through past studies and extract numerous details, including paradigm designs, context settings, and modulation protocols in this scoping review. In summary, the paradigm design primarily serves two purposes: to dissociate implicit and explicit adaptation and to assess the retention of motor memory, whilst context settings such as apparatus, movement-related parameters and the information provided for subjects may complicate the modulated neuropsychological processes. We also conclude key NIBS parameters such as target regions and timing in stimulation protocols. Furthermore, we recognize the potential of neurophysiological biomarkers to support future VMR studies that incorporate NIBS and advocate for the use of several newly emerging NIBS techniques to enrich the field.As research on the visuomotor rotation (VMR) adaptation expands its scope from behavioral science to encompass neuropsychological perspectives, an increasing number of studies have employed non-invasive brain stimulation (NIBS) techniques to explore the specific contributions of different neural structures to VMR adaptation. Despite early studies suggesting that cerebellar stimulation influenced the rate of adaptation and that stimulating primary motor cortex led to an enhanced retention of newly learned adaptation, subsequent studies could not always achieve consistent results. To probe this inconsistency, we systematically comb through past studies and extract numerous details, including paradigm designs, context settings, and modulation protocols in this scoping review. In summary, the paradigm design primarily serves two purposes: to dissociate implicit and explicit adaptation and to assess the retention of motor memory, whilst context settings such as apparatus, movement-related parameters and the information provided for subjects may complicate the modulated neuropsychological processes. We also conclude key NIBS parameters such as target regions and timing in stimulation protocols. Furthermore, we recognize the potential of neurophysiological biomarkers to support future VMR studies that incorporate NIBS and advocate for the use of several newly emerging NIBS techniques to enrich the field.
Author Chen, Long
Ming, Dong
Liu, Yipeng
Cheng, Shengcui
Zhang, Lei
Wang, Zhongpeng
Author_xml – sequence: 1
  givenname: Long
  surname: Chen
  fullname: Chen, Long
  email: cagor@tju.edu.cn
  organization: Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
– sequence: 2
  givenname: Yipeng
  orcidid: 0009-0005-4918-4714
  surname: Liu
  fullname: Liu, Yipeng
  email: 2023246169@tju.edu.cn
  organization: Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
– sequence: 3
  givenname: Zhongpeng
  surname: Wang
  fullname: Wang, Zhongpeng
  email: tunerl_wzp1@tju.edu.cn
  organization: Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
– sequence: 4
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
  organization: Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
– sequence: 5
  givenname: Shengcui
  surname: Cheng
  fullname: Cheng, Shengcui
  organization: Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
– sequence: 6
  givenname: Dong
  surname: Ming
  fullname: Ming, Dong
  email: richardming@tju.edu.cn
  organization: Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40347675$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtP3TAQha0KVC60_6CqvGSTdPzCCQskhOhDQmJT1pbjTCpf3cTBdi7tv68vAZasPLa-OeM555QcTWFCQr4wqBmwi2_b2oWY8W_NgasaZA0MPpANa7WoGgb8iGygPFWtVPyEnKa0BeDQKPWRnEgQUl9otSHzQ_LTH1q0Kz_tbfJ7pF20fqIp-3HZ2ezDRHOgY-gPN6QzxiHE0U4OacH2Pi1hDDlEGkNecdvbeS0v6TVNLsyHGRH3Hp8-kePB7hJ-fjnPyMP32983P6u7-x-_bq7vKieYyJUuX-VSMY1at9CAtk4Onei1dlLItuuF4Ixjx3mPg2RMgVCgGmGHVqhmUOKMnK-6cwyPC6ZsRp8c7nZ2wrAkI4ptjdKcQUG_vqBLN2Jv5uhHG_-ZV5cKIFfAxZBSxOENYWAOYZitWcMwhzAMSAPPuldrG5Y9y-7RJOex-Nb7iC6bPvj3Bf4DZfiUyw
Cites_doi 10.1016/j.cortex.2020.04.033
10.1016/j.nbd.2020.105159
10.1017/S1355617716000345
10.1038/s41562-023-01798-0
10.1177/1073858414545228
10.1016/j.neubiorev.2017.06.015
10.1016/j.tics.2016.05.002
10.3389/fnhum.2024.1381935
10.1016/j.neuroimage.2019.116424
10.1007/s12311-023-01595-5
10.1523/JNEUROSCI.4218-04.2005
10.1016/j.cophys.2021.01.011
10.1523/JNEUROSCI.3916-16.2017
10.1093/brain/awy334
10.3389/fnhum.2013.00688
10.1038/nrneurol.2014.162
10.1038/s41593-020-0600-3
10.1016/j.neubiorev.2021.104520
10.3390/jintelligence11100201
10.1016/j.clinph.2017.09.007
10.7554/eLife.76639
10.3389/fncel.2017.00214
10.1126/scitranslmed.abo2044
10.1007/s00221-014-3992-z
10.1093/cercor/bht346
10.1152/jn.00447.2022
10.1371/journal.pcbi.1010005
10.1371/journal.pone.0179977
10.1007/s12311-017-0877-2
10.1177/1073858414559409
10.1523/JNEUROSCI.2570-07.2007
10.1038/s41598-018-32689-4
10.1007/s12311-014-0599-7
10.3389/fnhum.2013.00307
10.1007/s12311-016-0840-7
10.7554/eLife.65361
10.1016/j.brs.2023.01.1673
10.3389/fnins.2018.00610
10.1016/j.brs.2017.11.001
10.1111/ejn.12699
10.1038/s41598-021-83656-5
10.1016/j.neurobiolaging.2014.03.030
10.1152/jn.00301.2021
10.1186/s12984-019-0561-5
10.1016/j.neuroimage.2023.120188
10.1113/JP270484
10.1152/jn.00896.2016
10.3390/brainsci12101325
10.1016/j.neubiorev.2021.06.037
10.1523/JNEUROSCI.3619-13.2014
10.3390/brainsci12050522
10.1016/j.brs.2015.07.042
10.1093/cercor/bhq246
10.1007/s00221-018-5170-1
10.1016/j.neuroimage.2013.04.122
10.1016/j.brs.2019.03.008
10.1007/s10545-018-0181-4
10.1017/exp.2020.16
10.1007/s12311-021-01281-4
10.1016/j.brs.2008.06.002
10.1016/j.brs.2019.05.015
10.1016/j.brs.2020.02.013
10.1152/jn.00352.2018
10.1177/1073858420939552
10.1111/ejn.15490
10.1002/brb3.1754
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright © 2025 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2025 Elsevier Ltd
– notice: Copyright © 2025 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cortex.2025.04.010
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1973-8102
EndPage 158
ExternalDocumentID 40347675
10_1016_j_cortex_2025_04_010
S001094522500108X
Genre Journal Article
Scoping Review
GroupedDBID ---
--K
--M
--Z
.GJ
.~1
0R~
1B1
1~.
1~5
4.4
41~
457
4G.
4H-
53G
5GY
5RE
5VS
6PF
7-5
71M
85S
8P~
AABNK
AADFP
AAEDT
AAEDW
AAGJA
AAGUQ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYJJ
AAYWO
ABCQJ
ABFNM
ABIVO
ABJNI
ABMAC
ABOYX
ABWVN
ABXDB
ACDAQ
ACGFS
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADRHT
ADVLN
ADXHL
AEBSH
AEIPS
AEKER
AENEX
AETEA
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGWIK
AGYEJ
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
E3Z
EBS
EFJIC
EJD
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
KOM
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OHT
OKEIE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEL
SES
SJN
SPCBC
SSB
SSH
SSN
SSY
SSZ
T5K
TN5
UAP
VH1
WH7
XOL
XSB
ZGI
ZKB
ZXP
~G-
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c313t-720824517e7790807ac4fb3d77c4349bd33212eb22def41150350583af9358f53
IEDL.DBID .~1
ISSN 0010-9452
1973-8102
IngestDate Wed Jul 02 04:14:08 EDT 2025
Tue Jun 10 01:31:08 EDT 2025
Sun Jul 06 05:08:09 EDT 2025
Sat Jun 21 16:55:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Non-invasive brain stimulation
Sensorimotor integration
Visuomotor adaptation
Methodology
Motor learning
Language English
License Copyright © 2025 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-720824517e7790807ac4fb3d77c4349bd33212eb22def41150350583af9358f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0009-0005-4918-4714
PMID 40347675
PQID 3202857210
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_3202857210
pubmed_primary_40347675
crossref_primary_10_1016_j_cortex_2025_04_010
elsevier_sciencedirect_doi_10_1016_j_cortex_2025_04_010
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Italy
PublicationPlace_xml – name: Italy
PublicationTitle Cortex
PublicationTitleAlternate Cortex
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jalali, Chowdhury, Wilson, Miall, Galea (bib18) 2018; 236
Hardwick, Celnik (bib16) 2014; 35
Paulus, Classen, Cohen, Large, Di Lazzaro, Nitsche, Pascual-Leone, Rosenow, Rothwell, Ziemann (bib37) 2008; 1
Jang, Shadmehr, Albert (bib20) 2023
Kitago, Ryan, Mazzoni, Krakauer, Haith (bib21) 2013; 7
Maresch, Mudrik, Donchin (bib31) 2021; 128
Tsay, Kim, Haith, Ivry (bib54) 2022; 11
Huang, Lu, Antal, Classen, Nitsche, Ziemann, Ridding, Hamada, Ugawa, Jaberzadeh, Suppa, Paulus, Rothwell (bib17) 2017; 128
Della-Maggiore, Landi, Villalta (bib3) 2015; 21
Harada, Hara, Matsushita, Kawakami, Kawakami, Anan, Sugata (bib15) 2020; 10
Reed, Kadosh (bib39) 2018; 41
Ferrucci, Cortese, Priori (bib6) 2015; 14
Song, Adams, Legon (bib45) 2020; 129
Spampinato, Satar, Rothwell (bib47) 2019; 12
Bikson, name, Rahman (bib2) 2013; 7
Krakauer, Ghez, Ghilardi (bib23) 2005; 25
Jalali, Miall, Galea (bib19) 2017; 118
Krakauer, Hadjiosif, Xu, Wong, Haith (bib24) 2019
Oldrati, Schutter (bib35) 2018; 17
Leow, Marinovic, Riek, Carroll (bib28) 2017; 12
Zhao, Zhang, Xu (bib70) 2024; 18
Villalta, Landi, Fló, Della-Maggiore (bib61) 2015; 25
Tzvi, Loens, Donchin (bib55) 2021; 21
Galea, Vazquez, Pasricha, de Xivry, Celnik (bib9) 2011; 21
Wong, Marvel, Taylor, Krakauer (bib68) 2019; 142
McDougle, Ivry, Taylor (bib32) 2016; 20
Grover, Fayzullina, Bullard, Levina, Reinhart (bib12) 2023; 15
St Pierre, Shinohara (bib48) 2023; 130
Mamlins, Hulst, Donchin, Timmann, Claassen (bib30) 2019; 121
Panouillères, Joundi, Brittain, Jenkinson (bib36) 2015; 593
Hamel, Trempe, Bernier (bib14) 2017; 37
Liew, Thompson, Ramirez, Butcher, Taylor, Celnik (bib29) 2018; 12
Grimaldi, Argyropoulos, Bastian, Cortes, Davis, Edwards, Ferrucci, Fregni, Galea, Hamada, Manto, Miall, Morales-Quezada, Pope, Priori, Rothwell, Tomlinson, Celnik (bib11) 2016; 22
Reuter, Booms, Leow (bib40) 2022; 134
Leow, Hammond, de Rugy (bib27) 2014; 40
Albert, Jang, Modchalingam, t Hart, Henriques, Lerner, Della-Maggiore, Haith, Krakauer, Shadmehr, Wei (bib1) 2022; 11
Ferrucci, Priori (bib7) 2014; 85
Spampinato, Celnik (bib46) 2021; 27
Labruna, Stark-Inbar, Breska, Dabit, Vanderschelden, Nitsche, Ivry (bib26) 2019; 12
Tavakoli, Yun (bib50) 2017; 11
Voets, Panouilleres, Jenkinson, Nevels (bib62) 2020; 1
Morehead, Xivry (bib34) 2021
Schween, Taube, Gollhofer, Leukel (bib44) 2014; 232
Fong, Spampinato, Michell, Mancuso, Brown, Ibáñez, Di Santo, Latorre, Bhatia, Rothwell, Rocchi (bib8) 2023; 275
Koch, Esposito, Motta, Casula, Di Lorenzo, Bonnì, Cinnera, Ponzo, Maiella, Picazio, Assogna, Sallustio, Caltagirone, Pellicciari (bib22) 2020; 208
Santos Ferreira, Teixeira Costa, Lima Ramos, Lucena, Thibaut, Fregni (bib43) 2019; 16
Underwood, Parr-Brownlie (bib56) 2021; 147
van Dun, Bodranghien, Manto, Mariën (bib57) 2016; 16
Weightman, Lalji, Lin, Galea, Jenkinson, Miall (bib67) 2023; 16
Di Pino, Pellegrino, Assenza, Capone, Ferreri, Formica, Ranieri, Tombini, Ziemann, Rothwell, Di Lazzaro (bib4) 2014; 10
Weightman, Brittain, Miall, Jenkinson (bib64) 2021; 11
Taylor, Krakauer, Ivry (bib51) 2014; 34
López-Alonso, Cheeran, Fernández-del-Olmo (bib25) 2015; 8
Rawji, Ciocca, Zacharia, Soares, Truong, Bikson, Rothwell, Bestmann (bib38) 2018; 11
Gershman, Moullet, Roby-Brami, Guigon (bib10) 2022; 18
Wang, Wei (bib63) 2022; 12
Yavari, Jamil, Samani, Vidor, Nitsche (bib69) 2018; 85
Tsay, Asmerian, Germine, Wilmer, Ivry, Nakayama (bib52) 2024; 8
Vergallito, Feroldi, Pisoni, Lauro (bib60) 2022; 12
Rossi, Bastian, Therrien (bib41) 2021; 20
Miyamoto, Wang, Smith (bib33) 2020; 23
Tsay, Haith, Ivry, Kim (bib53) 2022; 18
Szücs-Bencze, Vékony, Pesthy, Szabó, Kincses, Turi, Nemeth (bib49) 2023; 11
Ruitenberg, Koppelmans, De Dios, Gadd, Wood, Reuter-Lorenz, Kofman, Bloomberg, Mulavara, Seidler (bib42) 2018; 8
Weightman, Brittain, Miall, Jenkinson (bib65) 2022; 127
van Midden, Pirtošek, Kojović (bib58) 2023; 23
Hadipour-Niktarash, Lee, Desmond, Shadmehr (bib13) 2007; 27
Weightman, Brittain, Punt, Miall, Jenkinson (bib66) 2020; 13
Doppelmayr, Pixa, Steinberg (bib5) 2016; 22
Veldema, Gharabaghi, Jansen (bib59) 2021; 54
McDougle (10.1016/j.cortex.2025.04.010_bib32) 2016; 20
Grimaldi (10.1016/j.cortex.2025.04.010_bib11) 2016; 22
Hadipour-Niktarash (10.1016/j.cortex.2025.04.010_bib13) 2007; 27
Weightman (10.1016/j.cortex.2025.04.010_bib65) 2022; 127
Ruitenberg (10.1016/j.cortex.2025.04.010_bib42) 2018; 8
Ferrucci (10.1016/j.cortex.2025.04.010_bib7) 2014; 85
Reed (10.1016/j.cortex.2025.04.010_bib39) 2018; 41
Fong (10.1016/j.cortex.2025.04.010_bib8) 2023; 275
Maresch (10.1016/j.cortex.2025.04.010_bib31) 2021; 128
Tavakoli (10.1016/j.cortex.2025.04.010_bib50) 2017; 11
Tsay (10.1016/j.cortex.2025.04.010_bib53) 2022; 18
Wong (10.1016/j.cortex.2025.04.010_bib68) 2019; 142
Taylor (10.1016/j.cortex.2025.04.010_bib51) 2014; 34
Huang (10.1016/j.cortex.2025.04.010_bib17) 2017; 128
Kitago (10.1016/j.cortex.2025.04.010_bib21) 2013; 7
Mamlins (10.1016/j.cortex.2025.04.010_bib30) 2019; 121
Jalali (10.1016/j.cortex.2025.04.010_bib19) 2017; 118
Oldrati (10.1016/j.cortex.2025.04.010_bib35) 2018; 17
Leow (10.1016/j.cortex.2025.04.010_bib28) 2017; 12
Liew (10.1016/j.cortex.2025.04.010_bib29) 2018; 12
Rossi (10.1016/j.cortex.2025.04.010_bib41) 2021; 20
Tsay (10.1016/j.cortex.2025.04.010_bib52) 2024; 8
Grover (10.1016/j.cortex.2025.04.010_bib12) 2023; 15
Gershman (10.1016/j.cortex.2025.04.010_bib10) 2022; 18
van Dun (10.1016/j.cortex.2025.04.010_bib57) 2016; 16
Hardwick (10.1016/j.cortex.2025.04.010_bib16) 2014; 35
Weightman (10.1016/j.cortex.2025.04.010_bib66) 2020; 13
Reuter (10.1016/j.cortex.2025.04.010_bib40) 2022; 134
Underwood (10.1016/j.cortex.2025.04.010_bib56) 2021; 147
Zhao (10.1016/j.cortex.2025.04.010_bib70) 2024; 18
Villalta (10.1016/j.cortex.2025.04.010_bib61) 2015; 25
Miyamoto (10.1016/j.cortex.2025.04.010_bib33) 2020; 23
Spampinato (10.1016/j.cortex.2025.04.010_bib47) 2019; 12
Tzvi (10.1016/j.cortex.2025.04.010_bib55) 2021; 21
Krakauer (10.1016/j.cortex.2025.04.010_bib23) 2005; 25
Ferrucci (10.1016/j.cortex.2025.04.010_bib6) 2015; 14
Szücs-Bencze (10.1016/j.cortex.2025.04.010_bib49) 2023; 11
Vergallito (10.1016/j.cortex.2025.04.010_bib60) 2022; 12
Wang (10.1016/j.cortex.2025.04.010_bib63) 2022; 12
Santos Ferreira (10.1016/j.cortex.2025.04.010_bib43) 2019; 16
Di Pino (10.1016/j.cortex.2025.04.010_bib4) 2014; 10
Morehead (10.1016/j.cortex.2025.04.010_bib34) 2021
van Midden (10.1016/j.cortex.2025.04.010_bib58) 2023; 23
Veldema (10.1016/j.cortex.2025.04.010_bib59) 2021; 54
Albert (10.1016/j.cortex.2025.04.010_bib1) 2022; 11
Jalali (10.1016/j.cortex.2025.04.010_bib18) 2018; 236
López-Alonso (10.1016/j.cortex.2025.04.010_bib25) 2015; 8
Labruna (10.1016/j.cortex.2025.04.010_bib26) 2019; 12
Spampinato (10.1016/j.cortex.2025.04.010_bib46) 2021; 27
Della-Maggiore (10.1016/j.cortex.2025.04.010_bib3) 2015; 21
Yavari (10.1016/j.cortex.2025.04.010_bib69) 2018; 85
Voets (10.1016/j.cortex.2025.04.010_bib62) 2020; 1
Doppelmayr (10.1016/j.cortex.2025.04.010_bib5) 2016; 22
Panouillères (10.1016/j.cortex.2025.04.010_bib36) 2015; 593
Galea (10.1016/j.cortex.2025.04.010_bib9) 2011; 21
Paulus (10.1016/j.cortex.2025.04.010_bib37) 2008; 1
Koch (10.1016/j.cortex.2025.04.010_bib22) 2020; 208
Schween (10.1016/j.cortex.2025.04.010_bib44) 2014; 232
Song (10.1016/j.cortex.2025.04.010_bib45) 2020; 129
Rawji (10.1016/j.cortex.2025.04.010_bib38) 2018; 11
Krakauer (10.1016/j.cortex.2025.04.010_bib24) 2019
Leow (10.1016/j.cortex.2025.04.010_bib27) 2014; 40
Bikson (10.1016/j.cortex.2025.04.010_bib2) 2013; 7
Tsay (10.1016/j.cortex.2025.04.010_bib54) 2022; 11
Jang (10.1016/j.cortex.2025.04.010_bib20) 2023
St Pierre (10.1016/j.cortex.2025.04.010_bib48) 2023; 130
Hamel (10.1016/j.cortex.2025.04.010_bib14) 2017; 37
Weightman (10.1016/j.cortex.2025.04.010_bib64) 2021; 11
Weightman (10.1016/j.cortex.2025.04.010_bib67) 2023; 16
Harada (10.1016/j.cortex.2025.04.010_bib15) 2020; 10
References_xml – volume: 17
  start-page: 228
  year: 2018
  end-page: 236
  ident: bib35
  article-title: Targeting the human cerebellum with transcranial direct current stimulation to modulate behavior: A meta-analysis
  publication-title: The Cerebellum
– year: 2021
  ident: bib34
  article-title: A synthesis of the many errors and learning processes of visuomotor adaptation
  publication-title: bioRxiv %∗ © 2021, posted by Cold Spring Harbor Laboratory
– volume: 8
  year: 2024
  ident: bib52
  article-title: Large-scale citizen science reveals predictors of sensorimotor adaptation
  publication-title: Nature Human Behaviour
– volume: 54
  start-page: 7493
  year: 2021
  end-page: 7512
  ident: bib59
  article-title: Non-invasive brain stimulation in modulation of mental rotation ability: A systematic review and meta-analysis
  publication-title: European Journal of Neuroscience
– volume: 147
  year: 2021
  ident: bib56
  article-title: Primary motor cortex in Parkinson's disease: Functional changes and opportunities for neurostimulation
  publication-title: Neurobiology of Disease
– volume: 129
  start-page: 376
  year: 2020
  end-page: 389
  ident: bib45
  article-title: Intermittent theta burst stimulation of the right dorsolateral prefrontal cortex accelerates visuomotor adaptation with delayed feedback
  publication-title: Cortex; a Journal Devoted To the Study of the Nervous System and Behavior
– volume: 12
  year: 2018
  ident: bib29
  article-title: Variable neural contributions to explicit and implicit learning during visuomotor adaptation
  publication-title: Frontiers in Neuroscience
– volume: 15
  year: 2023
  ident: bib12
  article-title: A meta-analysis suggests that tACS improves cognition in healthy, aging, and psychiatric populations
  publication-title: Science Translational Medicine
– volume: 8
  year: 2018
  ident: bib42
  article-title: Neural correlates of multi-day learning and savings in sensorimotor adaptation
  publication-title: Scientific Reports
– volume: 16
  start-page: 90
  year: 2019
  ident: bib43
  article-title: Searching for the optimal tDCS target for motor rehabilitation
  publication-title: Journal of NeuroEngineering and Rehabilitation
– volume: 1
  year: 2020
  ident: bib62
  article-title: An implicit plan still overrides an explicit strategy during visuomotor adaptation following repetitive transcranial magnetic stimulation of the cerebellum
  publication-title: Experimental Results
– volume: 18
  year: 2022
  ident: bib53
  article-title: Interactions between sensory prediction error and task error during implicit motor learning
  publication-title: PLOS Computational Biology
– volume: 236
  start-page: 997
  year: 2018
  end-page: 1006
  ident: bib18
  article-title: Neural changes associated with cerebellar tDCS studied using MR spectroscopy
  publication-title: Experimental Brain Research
– volume: 12
  start-page: 992
  year: 2019
  end-page: 1000
  ident: bib26
  article-title: Individual differences in TMS sensitivity influence the efficacy of tDCS in facilitating sensorimotor adaptation
  publication-title: Brain Stimulation
– volume: 85
  start-page: 81
  year: 2018
  end-page: 92
  ident: bib69
  article-title: Basic and functional effects of transcranial electrical stimulation (tES)-An introduction
  publication-title: Neuroscience and Biobehavioral Reviews
– volume: 10
  start-page: 597
  year: 2014
  end-page: 608
  ident: bib4
  article-title: Modulation of brain plasticity in stroke: A novel model for neurorehabilitation
  publication-title: Nature Reviews Neurology
– volume: 18
  year: 2024
  ident: bib70
  article-title: The effect of reward on motor learning: Different stage, different effect
  publication-title: Frontiers in Human Neuroscience
– volume: 41
  start-page: 1123
  year: 2018
  end-page: 1130
  ident: bib39
  article-title: Transcranial electrical stimulation (tES) mechanisms and its effects on cortical excitability and connectivity
  publication-title: Journal of Inherited Metabolic Disease
– volume: 16
  start-page: 695
  year: 2016
  end-page: 741
  ident: bib57
  article-title: Targeting the cerebellum by noninvasive neurostimulation: A review
  publication-title: The Cerebellum
– volume: 7
  year: 2013
  ident: bib2
  article-title: Origins of specificity during tDCS: Anatomical, activity-selective, and input-bias mechanisms
  publication-title: Frontiers in Human Neuroscience
– volume: 20
  start-page: 535
  year: 2016
  end-page: 544
  ident: bib32
  article-title: Taking aim at the cognitive side of learning in sensorimotor adaptation tasks
  publication-title: Trends in Cognitive Sciences
– volume: 25
  start-page: 473
  year: 2005
  end-page: 478
  ident: bib23
  article-title: Adaptation to visuomotor transformations: Consolidation, interference, and forgetting
  publication-title: Journal of Neuroscience
– volume: 21
  start-page: 109
  year: 2015
  end-page: 125
  ident: bib3
  article-title: Sensorimotor adaptation: Multiple forms of plasticity in motor circuits
  publication-title: The Neuroscientist: a Review Journal Bringing Neurobiology, Neurology and Psychiatry
– volume: 35
  start-page: 2217
  year: 2014
  end-page: 2221
  ident: bib16
  article-title: Cerebellar direct current stimulation enhances motor learning in older adults
  publication-title: Neurobiology of Aging
– volume: 40
  start-page: 3243
  year: 2014
  end-page: 3252
  ident: bib27
  article-title: Anodal motor cortex stimulation paired with movement repetition increases anterograde interference but not savings
  publication-title: European Journal of Neuroscience
– volume: 85
  start-page: 918
  year: 2014
  end-page: 923
  ident: bib7
  article-title: Transcranial cerebellar direct current stimulation (tcDCS): Motor control, cognition, learning and emotions
  publication-title: Neuroimage
– volume: 232
  start-page: 3007
  year: 2014
  end-page: 3013
  ident: bib44
  article-title: Online and post-trial feedback differentially affect implicit adaptation to a visuomotor rotation
  publication-title: Experimental Brain Research
– volume: 11
  year: 2022
  ident: bib1
  article-title: Competition between parallel sensorimotor learning systems
  publication-title: Elife
– volume: 18
  year: 2022
  ident: bib10
  article-title: What is the nature of motor adaptation to dynamic perturbations?
  publication-title: PLOS Computational Biology
– volume: 10
  year: 2020
  ident: bib15
  article-title: Off-line effects of alpha-frequency transcranial alternating current stimulation on a visuomotor learning task
  publication-title: Brain and Behavior
– volume: 23
  start-page: 443-+
  year: 2020
  ident: bib33
  article-title: Implicit adaptation compensates for erratic explicit strategy in human motor learning
  publication-title: Nature Neuroscience
– volume: 1
  start-page: 151
  year: 2008
  end-page: 163
  ident: bib37
  article-title: State of the art: Pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation
  publication-title: Brain Stimulation
– volume: 12
  start-page: 522
  year: 2022
  ident: bib60
  article-title: Inter-individual variability in tDCS effects: A narrative review on the contribution of stable, variable, and contextual factors
  publication-title: Brain Sciences
– volume: 34
  start-page: 3023
  year: 2014
  end-page: 3032
  ident: bib51
  article-title: Explicit and implicit contributions to learning in a sensorimotor adaptation task
  publication-title: Journal of Neuroscience
– start-page: 613
  year: 2019
  end-page: 663
  ident: bib24
  article-title: Motor learning
  publication-title: Comprehensive physiology
– volume: 275
  year: 2023
  ident: bib8
  article-title: EEG responses induced by cerebellar TMS at rest and during visuomotor adaptation
  publication-title: Neuroimage
– volume: 37
  start-page: 9197
  year: 2017
  end-page: 9206
  ident: bib14
  article-title: Disruption of M1 activity during performance Plateau impairs consolidation of motor memories
  publication-title: Journal of Neuroscience
– volume: 128
  start-page: 558
  year: 2021
  end-page: 568
  ident: bib31
  article-title: Measures of explicit and implicit in motor learning: What we know and what we don't
  publication-title: Neuroscience and Biobehavioral Reviews
– volume: 25
  start-page: 1535
  year: 2015
  end-page: 1543
  ident: bib61
  article-title: Extinction interferes with the retrieval of visuomotor memories through a mechanism involving the sensorimotor cortex
  publication-title: Cerebral Cortex
– volume: 11
  start-page: 201
  year: 2023
  ident: bib49
  article-title: Modulating visuomotor sequence learning by repetitive transcranial magnetic stimulation: What do we know So far?
  publication-title: Journal of Intelligence
– volume: 142
  start-page: 662
  year: 2019
  end-page: 673
  ident: bib68
  article-title: Can patients with cerebellar disease switch learning mechanisms to reduce their adaptation deficits?
  publication-title: Brain: a Journal of Neurology
– volume: 12
  year: 2022
  ident: bib63
  article-title: Transcranial direct-current stimulation does not affect implicit sensorimotor adaptation: A randomized Sham-controlled trial
  publication-title: Brain Sciences
– volume: 27
  start-page: 13413
  year: 2007
  end-page: 13419
  ident: bib13
  article-title: Impairment of retention but not acquisition of a visuomotor skill through time-dependent disruption of primary motor cortex
  publication-title: The Journal of Neuroscience
– volume: 21
  start-page: 306
  year: 2021
  end-page: 313
  ident: bib55
  article-title: Mini-review: The role of the cerebellum in visuomotor adaptation
  publication-title: The Cerebellum
– volume: 12
  start-page: 1205
  year: 2019
  end-page: 1212
  ident: bib47
  article-title: Combining reward and M1 transcranial direct current stimulation enhances the retention of newly learnt sensorimotor mappings
  publication-title: Brain Stimulation
– volume: 128
  start-page: 2318
  year: 2017
  end-page: 2329
  ident: bib17
  article-title: Plasticity induced by non-invasive transcranial brain stimulation: A position paper
  publication-title: Clinical Neurophysiology
– volume: 23
  start-page: 1013
  year: 2023
  end-page: 1019
  ident: bib58
  article-title: The effect of taVNS on the cerebello-thalamo-cortical pathway: A TMS study
  publication-title: The Cerebellum
– volume: 121
  start-page: 2112
  year: 2019
  end-page: 2125
  ident: bib30
  article-title: No effects of cerebellar transcranial direct current stimulation on force field and visuomotor reach adaptation in young and healthy subjects
  publication-title: Journal of Neurophysiology
– volume: 11
  year: 2017
  ident: bib50
  article-title: Transcranial alternating current stimulation (tACS) mechanisms and protocols
  publication-title: Frontiers in Cellular Neuroscience
– volume: 22
  start-page: 928
  year: 2016
  end-page: 936
  ident: bib5
  article-title: Cerebellar, but not motor or parietal, high-density anodal transcranial direct current stimulation facilitates motor adaptation
  publication-title: Journal of the International Neuropsychological Society
– volume: 12
  year: 2017
  ident: bib28
  article-title: Cerebellar anodal tDCS increases implicit learning when strategic re-aiming is suppressed in sensorimotor adaptation
  publication-title: Plos One
– volume: 20
  start-page: 186
  year: 2021
  end-page: 197
  ident: bib41
  article-title: Mechanisms of proprioceptive realignment in human motor learning
  publication-title: Current Opinion in Physiology
– volume: 16
  start-page: 431
  year: 2023
  end-page: 441
  ident: bib67
  article-title: Short duration event related cerebellar TDCS enhances visuomotor adaptation [Article; Early Access]
  publication-title: Brain Stimulation
– volume: 7
  year: 2013
  ident: bib21
  article-title: Unlearning versus savings in visuomotor adaptation: Comparing effects of washout, passage of time, and removal of errors on motor memory
  publication-title: Frontiers in Human Neuroscience
– volume: 208
  year: 2020
  ident: bib22
  article-title: Improving visuo-motor learning with cerebellar theta burst stimulation: Behavioral and neurophysiological evidence
  publication-title: Neuroimage
– volume: 11
  start-page: 289
  year: 2018
  end-page: 298
  ident: bib38
  article-title: tDCS changes in motor excitability are specific to orientation of current flow
  publication-title: Brain Stimulation
– volume: 130
  start-page: 212
  year: 2023
  end-page: 223
  ident: bib48
  article-title: Transcutaneous vagus nerve stimulation at nonspecific timings during training can compromise motor adaptation in healthy humans
  publication-title: Journal of Neurophysiology
– volume: 27
  start-page: 246
  year: 2021
  end-page: 267
  ident: bib46
  article-title: Multiple motor learning processes in humans: Defining their neurophysiological bases
  publication-title: The Neuroscientist: a Review Journal Bringing Neurobiology, Neurology and Psychiatry
– volume: 8
  start-page: 1209
  year: 2015
  end-page: 1219
  ident: bib25
  article-title: Relationship between non-invasive brain stimulation-induced plasticity and capacity for motor learning
  publication-title: Brain Stimulation
– volume: 11
  year: 2021
  ident: bib64
  article-title: Direct and indirect effects of cathodal cerebellar TDCS on visuomotor adaptation of hand and arm movements
  publication-title: Scientific Reports
– volume: 127
  start-page: 519
  year: 2022
  end-page: 528
  ident: bib65
  article-title: Residual errors in visuomotor adaptation persist despite extended motor preparation periods
  publication-title: Journal of Neurophysiology
– volume: 11
  year: 2022
  ident: bib54
  article-title: Understanding implicit sensorimotor adaptation as a process of proprioceptive re-alignment
  publication-title: Elife
– volume: 14
  start-page: 27
  year: 2015
  end-page: 30
  ident: bib6
  article-title: Cerebellar tDCS: How to Do it
  publication-title: The Cerebellum
– volume: 21
  start-page: 1761
  year: 2011
  end-page: 1770
  ident: bib9
  article-title: Dissociating the roles of the cerebellum and motor cortex during adaptive learning: The motor cortex retains what the cerebellum learns
  publication-title: Cerebral Cortex
– volume: 118
  start-page: 655
  year: 2017
  end-page: 665
  ident: bib19
  article-title: No consistent effect of cerebellar transcranial direct current stimulation on visuomotor adaptation
  publication-title: Journal of Neurophysiology
– volume: 593
  start-page: 3645
  year: 2015
  end-page: 3655
  ident: bib36
  article-title: Reversing motor adaptation deficits in the ageing brain using non-invasive stimulation
  publication-title: Journal of Physiology-London
– volume: 134
  year: 2022
  ident: bib40
  article-title: Using EEG to study sensorimotor adaptation
  publication-title: Neuroscience and Biobehavioral Reviews
– volume: 13
  start-page: 707
  year: 2020
  end-page: 716
  ident: bib66
  article-title: Targeted tDCS selectively improves motor adaptation with the proximal and distal upper limb
  publication-title: Brain Stimulation
– volume: 22
  start-page: 83
  year: 2016
  end-page: 97
  ident: bib11
  article-title: Cerebellar transcranial direct current stimulation (ctDCS): A novel approach to understanding cerebellar function in health and disease
  publication-title: The Neuroscientist: a Review Journal Bringing Neurobiology, Neurology and Psychiatry
– year: 2023
  ident: bib20
  article-title: A software tool for at-home measurement of sensorimotor adaptation
  publication-title: bioRxiv %∗ © 2023, posted by Cold Spring Harbor Laboratory. This pre-print is available under a creative commons license (attribution 4.0 international)
– volume: 129
  start-page: 376
  year: 2020
  ident: 10.1016/j.cortex.2025.04.010_bib45
  article-title: Intermittent theta burst stimulation of the right dorsolateral prefrontal cortex accelerates visuomotor adaptation with delayed feedback
  publication-title: Cortex; a Journal Devoted To the Study of the Nervous System and Behavior
  doi: 10.1016/j.cortex.2020.04.033
– volume: 147
  year: 2021
  ident: 10.1016/j.cortex.2025.04.010_bib56
  article-title: Primary motor cortex in Parkinson's disease: Functional changes and opportunities for neurostimulation
  publication-title: Neurobiology of Disease
  doi: 10.1016/j.nbd.2020.105159
– volume: 22
  start-page: 928
  issue: 9
  year: 2016
  ident: 10.1016/j.cortex.2025.04.010_bib5
  article-title: Cerebellar, but not motor or parietal, high-density anodal transcranial direct current stimulation facilitates motor adaptation
  publication-title: Journal of the International Neuropsychological Society
  doi: 10.1017/S1355617716000345
– volume: 8
  issue: 3
  year: 2024
  ident: 10.1016/j.cortex.2025.04.010_bib52
  article-title: Large-scale citizen science reveals predictors of sensorimotor adaptation
  publication-title: Nature Human Behaviour
  doi: 10.1038/s41562-023-01798-0
– volume: 21
  start-page: 109
  issue: 2
  year: 2015
  ident: 10.1016/j.cortex.2025.04.010_bib3
  article-title: Sensorimotor adaptation: Multiple forms of plasticity in motor circuits
  publication-title: The Neuroscientist: a Review Journal Bringing Neurobiology, Neurology and Psychiatry
  doi: 10.1177/1073858414545228
– volume: 85
  start-page: 81
  year: 2018
  ident: 10.1016/j.cortex.2025.04.010_bib69
  article-title: Basic and functional effects of transcranial electrical stimulation (tES)-An introduction
  publication-title: Neuroscience and Biobehavioral Reviews
  doi: 10.1016/j.neubiorev.2017.06.015
– volume: 20
  start-page: 535
  issue: 7
  year: 2016
  ident: 10.1016/j.cortex.2025.04.010_bib32
  article-title: Taking aim at the cognitive side of learning in sensorimotor adaptation tasks
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/j.tics.2016.05.002
– volume: 18
  year: 2024
  ident: 10.1016/j.cortex.2025.04.010_bib70
  article-title: The effect of reward on motor learning: Different stage, different effect
  publication-title: Frontiers in Human Neuroscience
  doi: 10.3389/fnhum.2024.1381935
– volume: 208
  year: 2020
  ident: 10.1016/j.cortex.2025.04.010_bib22
  article-title: Improving visuo-motor learning with cerebellar theta burst stimulation: Behavioral and neurophysiological evidence
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116424
– volume: 23
  start-page: 1013
  issue: 3
  year: 2023
  ident: 10.1016/j.cortex.2025.04.010_bib58
  article-title: The effect of taVNS on the cerebello-thalamo-cortical pathway: A TMS study
  publication-title: The Cerebellum
  doi: 10.1007/s12311-023-01595-5
– volume: 25
  start-page: 473
  issue: 2
  year: 2005
  ident: 10.1016/j.cortex.2025.04.010_bib23
  article-title: Adaptation to visuomotor transformations: Consolidation, interference, and forgetting
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.4218-04.2005
– volume: 20
  start-page: 186
  year: 2021
  ident: 10.1016/j.cortex.2025.04.010_bib41
  article-title: Mechanisms of proprioceptive realignment in human motor learning
  publication-title: Current Opinion in Physiology
  doi: 10.1016/j.cophys.2021.01.011
– volume: 37
  start-page: 9197
  issue: 38
  year: 2017
  ident: 10.1016/j.cortex.2025.04.010_bib14
  article-title: Disruption of M1 activity during performance Plateau impairs consolidation of motor memories
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.3916-16.2017
– volume: 142
  start-page: 662
  year: 2019
  ident: 10.1016/j.cortex.2025.04.010_bib68
  article-title: Can patients with cerebellar disease switch learning mechanisms to reduce their adaptation deficits?
  publication-title: Brain: a Journal of Neurology
  doi: 10.1093/brain/awy334
– volume: 7
  year: 2013
  ident: 10.1016/j.cortex.2025.04.010_bib2
  article-title: Origins of specificity during tDCS: Anatomical, activity-selective, and input-bias mechanisms
  publication-title: Frontiers in Human Neuroscience
  doi: 10.3389/fnhum.2013.00688
– volume: 10
  start-page: 597
  issue: 10
  year: 2014
  ident: 10.1016/j.cortex.2025.04.010_bib4
  article-title: Modulation of brain plasticity in stroke: A novel model for neurorehabilitation
  publication-title: Nature Reviews Neurology
  doi: 10.1038/nrneurol.2014.162
– volume: 23
  start-page: 443-+
  issue: 3
  year: 2020
  ident: 10.1016/j.cortex.2025.04.010_bib33
  article-title: Implicit adaptation compensates for erratic explicit strategy in human motor learning
  publication-title: Nature Neuroscience
  doi: 10.1038/s41593-020-0600-3
– volume: 134
  year: 2022
  ident: 10.1016/j.cortex.2025.04.010_bib40
  article-title: Using EEG to study sensorimotor adaptation
  publication-title: Neuroscience and Biobehavioral Reviews
  doi: 10.1016/j.neubiorev.2021.104520
– volume: 11
  start-page: 201
  issue: 10
  year: 2023
  ident: 10.1016/j.cortex.2025.04.010_bib49
  article-title: Modulating visuomotor sequence learning by repetitive transcranial magnetic stimulation: What do we know So far?
  publication-title: Journal of Intelligence
  doi: 10.3390/jintelligence11100201
– volume: 128
  start-page: 2318
  issue: 11
  year: 2017
  ident: 10.1016/j.cortex.2025.04.010_bib17
  article-title: Plasticity induced by non-invasive transcranial brain stimulation: A position paper
  publication-title: Clinical Neurophysiology
  doi: 10.1016/j.clinph.2017.09.007
– volume: 11
  year: 2022
  ident: 10.1016/j.cortex.2025.04.010_bib54
  article-title: Understanding implicit sensorimotor adaptation as a process of proprioceptive re-alignment
  publication-title: Elife
  doi: 10.7554/eLife.76639
– volume: 11
  year: 2017
  ident: 10.1016/j.cortex.2025.04.010_bib50
  article-title: Transcranial alternating current stimulation (tACS) mechanisms and protocols
  publication-title: Frontiers in Cellular Neuroscience
  doi: 10.3389/fncel.2017.00214
– year: 2023
  ident: 10.1016/j.cortex.2025.04.010_bib20
  article-title: A software tool for at-home measurement of sensorimotor adaptation
– volume: 15
  issue: 697
  year: 2023
  ident: 10.1016/j.cortex.2025.04.010_bib12
  article-title: A meta-analysis suggests that tACS improves cognition in healthy, aging, and psychiatric populations
  publication-title: Science Translational Medicine
  doi: 10.1126/scitranslmed.abo2044
– volume: 232
  start-page: 3007
  issue: 9
  year: 2014
  ident: 10.1016/j.cortex.2025.04.010_bib44
  article-title: Online and post-trial feedback differentially affect implicit adaptation to a visuomotor rotation
  publication-title: Experimental Brain Research
  doi: 10.1007/s00221-014-3992-z
– volume: 25
  start-page: 1535
  issue: 6
  year: 2015
  ident: 10.1016/j.cortex.2025.04.010_bib61
  article-title: Extinction interferes with the retrieval of visuomotor memories through a mechanism involving the sensorimotor cortex
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bht346
– volume: 130
  start-page: 212
  issue: 1
  year: 2023
  ident: 10.1016/j.cortex.2025.04.010_bib48
  article-title: Transcutaneous vagus nerve stimulation at nonspecific timings during training can compromise motor adaptation in healthy humans
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00447.2022
– volume: 18
  issue: 3
  year: 2022
  ident: 10.1016/j.cortex.2025.04.010_bib53
  article-title: Interactions between sensory prediction error and task error during implicit motor learning
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1010005
– volume: 12
  issue: 7
  year: 2017
  ident: 10.1016/j.cortex.2025.04.010_bib28
  article-title: Cerebellar anodal tDCS increases implicit learning when strategic re-aiming is suppressed in sensorimotor adaptation
  publication-title: Plos One
  doi: 10.1371/journal.pone.0179977
– volume: 17
  start-page: 228
  issue: 2
  year: 2018
  ident: 10.1016/j.cortex.2025.04.010_bib35
  article-title: Targeting the human cerebellum with transcranial direct current stimulation to modulate behavior: A meta-analysis
  publication-title: The Cerebellum
  doi: 10.1007/s12311-017-0877-2
– volume: 22
  start-page: 83
  issue: 1
  year: 2016
  ident: 10.1016/j.cortex.2025.04.010_bib11
  article-title: Cerebellar transcranial direct current stimulation (ctDCS): A novel approach to understanding cerebellar function in health and disease
  publication-title: The Neuroscientist: a Review Journal Bringing Neurobiology, Neurology and Psychiatry
  doi: 10.1177/1073858414559409
– volume: 27
  start-page: 13413
  issue: 49
  year: 2007
  ident: 10.1016/j.cortex.2025.04.010_bib13
  article-title: Impairment of retention but not acquisition of a visuomotor skill through time-dependent disruption of primary motor cortex
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.2570-07.2007
– volume: 8
  year: 2018
  ident: 10.1016/j.cortex.2025.04.010_bib42
  article-title: Neural correlates of multi-day learning and savings in sensorimotor adaptation
  publication-title: Scientific Reports
  doi: 10.1038/s41598-018-32689-4
– volume: 14
  start-page: 27
  issue: 1
  year: 2015
  ident: 10.1016/j.cortex.2025.04.010_bib6
  article-title: Cerebellar tDCS: How to Do it
  publication-title: The Cerebellum
  doi: 10.1007/s12311-014-0599-7
– volume: 7
  year: 2013
  ident: 10.1016/j.cortex.2025.04.010_bib21
  article-title: Unlearning versus savings in visuomotor adaptation: Comparing effects of washout, passage of time, and removal of errors on motor memory
  publication-title: Frontiers in Human Neuroscience
  doi: 10.3389/fnhum.2013.00307
– volume: 16
  start-page: 695
  issue: 3
  year: 2016
  ident: 10.1016/j.cortex.2025.04.010_bib57
  article-title: Targeting the cerebellum by noninvasive neurostimulation: A review
  publication-title: The Cerebellum
  doi: 10.1007/s12311-016-0840-7
– volume: 11
  year: 2022
  ident: 10.1016/j.cortex.2025.04.010_bib1
  article-title: Competition between parallel sensorimotor learning systems
  publication-title: Elife
  doi: 10.7554/eLife.65361
– volume: 16
  start-page: 431
  issue: 2
  year: 2023
  ident: 10.1016/j.cortex.2025.04.010_bib67
  article-title: Short duration event related cerebellar TDCS enhances visuomotor adaptation [Article; Early Access]
  publication-title: Brain Stimulation
  doi: 10.1016/j.brs.2023.01.1673
– volume: 12
  year: 2018
  ident: 10.1016/j.cortex.2025.04.010_bib29
  article-title: Variable neural contributions to explicit and implicit learning during visuomotor adaptation
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2018.00610
– volume: 11
  start-page: 289
  issue: 2
  year: 2018
  ident: 10.1016/j.cortex.2025.04.010_bib38
  article-title: tDCS changes in motor excitability are specific to orientation of current flow
  publication-title: Brain Stimulation
  doi: 10.1016/j.brs.2017.11.001
– volume: 40
  start-page: 3243
  issue: 8
  year: 2014
  ident: 10.1016/j.cortex.2025.04.010_bib27
  article-title: Anodal motor cortex stimulation paired with movement repetition increases anterograde interference but not savings
  publication-title: European Journal of Neuroscience
  doi: 10.1111/ejn.12699
– volume: 11
  issue: 1
  year: 2021
  ident: 10.1016/j.cortex.2025.04.010_bib64
  article-title: Direct and indirect effects of cathodal cerebellar TDCS on visuomotor adaptation of hand and arm movements
  publication-title: Scientific Reports
  doi: 10.1038/s41598-021-83656-5
– volume: 35
  start-page: 2217
  issue: 10
  year: 2014
  ident: 10.1016/j.cortex.2025.04.010_bib16
  article-title: Cerebellar direct current stimulation enhances motor learning in older adults
  publication-title: Neurobiology of Aging
  doi: 10.1016/j.neurobiolaging.2014.03.030
– start-page: 613
  year: 2019
  ident: 10.1016/j.cortex.2025.04.010_bib24
  article-title: Motor learning
– volume: 127
  start-page: 519
  issue: 2
  year: 2022
  ident: 10.1016/j.cortex.2025.04.010_bib65
  article-title: Residual errors in visuomotor adaptation persist despite extended motor preparation periods
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00301.2021
– volume: 16
  start-page: 90
  issue: 1
  year: 2019
  ident: 10.1016/j.cortex.2025.04.010_bib43
  article-title: Searching for the optimal tDCS target for motor rehabilitation
  publication-title: Journal of NeuroEngineering and Rehabilitation
  doi: 10.1186/s12984-019-0561-5
– volume: 275
  year: 2023
  ident: 10.1016/j.cortex.2025.04.010_bib8
  article-title: EEG responses induced by cerebellar TMS at rest and during visuomotor adaptation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2023.120188
– volume: 593
  start-page: 3645
  issue: 16
  year: 2015
  ident: 10.1016/j.cortex.2025.04.010_bib36
  article-title: Reversing motor adaptation deficits in the ageing brain using non-invasive stimulation
  publication-title: Journal of Physiology-London
  doi: 10.1113/JP270484
– volume: 118
  start-page: 655
  issue: 2
  year: 2017
  ident: 10.1016/j.cortex.2025.04.010_bib19
  article-title: No consistent effect of cerebellar transcranial direct current stimulation on visuomotor adaptation
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00896.2016
– volume: 12
  issue: 10
  year: 2022
  ident: 10.1016/j.cortex.2025.04.010_bib63
  article-title: Transcranial direct-current stimulation does not affect implicit sensorimotor adaptation: A randomized Sham-controlled trial
  publication-title: Brain Sciences
  doi: 10.3390/brainsci12101325
– volume: 128
  start-page: 558
  year: 2021
  ident: 10.1016/j.cortex.2025.04.010_bib31
  article-title: Measures of explicit and implicit in motor learning: What we know and what we don't
  publication-title: Neuroscience and Biobehavioral Reviews
  doi: 10.1016/j.neubiorev.2021.06.037
– volume: 34
  start-page: 3023
  issue: 8
  year: 2014
  ident: 10.1016/j.cortex.2025.04.010_bib51
  article-title: Explicit and implicit contributions to learning in a sensorimotor adaptation task
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.3619-13.2014
– volume: 12
  start-page: 522
  issue: 5
  year: 2022
  ident: 10.1016/j.cortex.2025.04.010_bib60
  article-title: Inter-individual variability in tDCS effects: A narrative review on the contribution of stable, variable, and contextual factors
  publication-title: Brain Sciences
  doi: 10.3390/brainsci12050522
– volume: 8
  start-page: 1209
  issue: 6
  year: 2015
  ident: 10.1016/j.cortex.2025.04.010_bib25
  article-title: Relationship between non-invasive brain stimulation-induced plasticity and capacity for motor learning
  publication-title: Brain Stimulation
  doi: 10.1016/j.brs.2015.07.042
– volume: 21
  start-page: 1761
  issue: 8
  year: 2011
  ident: 10.1016/j.cortex.2025.04.010_bib9
  article-title: Dissociating the roles of the cerebellum and motor cortex during adaptive learning: The motor cortex retains what the cerebellum learns
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhq246
– volume: 236
  start-page: 997
  issue: 4
  year: 2018
  ident: 10.1016/j.cortex.2025.04.010_bib18
  article-title: Neural changes associated with cerebellar tDCS studied using MR spectroscopy
  publication-title: Experimental Brain Research
  doi: 10.1007/s00221-018-5170-1
– volume: 85
  start-page: 918
  year: 2014
  ident: 10.1016/j.cortex.2025.04.010_bib7
  article-title: Transcranial cerebellar direct current stimulation (tcDCS): Motor control, cognition, learning and emotions
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.122
– volume: 12
  start-page: 992
  issue: 4
  year: 2019
  ident: 10.1016/j.cortex.2025.04.010_bib26
  article-title: Individual differences in TMS sensitivity influence the efficacy of tDCS in facilitating sensorimotor adaptation
  publication-title: Brain Stimulation
  doi: 10.1016/j.brs.2019.03.008
– volume: 41
  start-page: 1123
  issue: 6
  year: 2018
  ident: 10.1016/j.cortex.2025.04.010_bib39
  article-title: Transcranial electrical stimulation (tES) mechanisms and its effects on cortical excitability and connectivity
  publication-title: Journal of Inherited Metabolic Disease
  doi: 10.1007/s10545-018-0181-4
– year: 2021
  ident: 10.1016/j.cortex.2025.04.010_bib34
  article-title: A synthesis of the many errors and learning processes of visuomotor adaptation
– volume: 1
  year: 2020
  ident: 10.1016/j.cortex.2025.04.010_bib62
  article-title: An implicit plan still overrides an explicit strategy during visuomotor adaptation following repetitive transcranial magnetic stimulation of the cerebellum
  publication-title: Experimental Results
  doi: 10.1017/exp.2020.16
– volume: 21
  start-page: 306
  issue: 2
  year: 2021
  ident: 10.1016/j.cortex.2025.04.010_bib55
  article-title: Mini-review: The role of the cerebellum in visuomotor adaptation
  publication-title: The Cerebellum
  doi: 10.1007/s12311-021-01281-4
– volume: 1
  start-page: 151
  issue: 3
  year: 2008
  ident: 10.1016/j.cortex.2025.04.010_bib37
  article-title: State of the art: Pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation
  publication-title: Brain Stimulation
  doi: 10.1016/j.brs.2008.06.002
– volume: 12
  start-page: 1205
  issue: 5
  year: 2019
  ident: 10.1016/j.cortex.2025.04.010_bib47
  article-title: Combining reward and M1 transcranial direct current stimulation enhances the retention of newly learnt sensorimotor mappings
  publication-title: Brain Stimulation
  doi: 10.1016/j.brs.2019.05.015
– volume: 13
  start-page: 707
  issue: 3
  year: 2020
  ident: 10.1016/j.cortex.2025.04.010_bib66
  article-title: Targeted tDCS selectively improves motor adaptation with the proximal and distal upper limb
  publication-title: Brain Stimulation
  doi: 10.1016/j.brs.2020.02.013
– volume: 121
  start-page: 2112
  issue: 6
  year: 2019
  ident: 10.1016/j.cortex.2025.04.010_bib30
  article-title: No effects of cerebellar transcranial direct current stimulation on force field and visuomotor reach adaptation in young and healthy subjects
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00352.2018
– volume: 27
  start-page: 246
  issue: 3
  year: 2021
  ident: 10.1016/j.cortex.2025.04.010_bib46
  article-title: Multiple motor learning processes in humans: Defining their neurophysiological bases
  publication-title: The Neuroscientist: a Review Journal Bringing Neurobiology, Neurology and Psychiatry
  doi: 10.1177/1073858420939552
– volume: 18
  issue: 8
  year: 2022
  ident: 10.1016/j.cortex.2025.04.010_bib10
  article-title: What is the nature of motor adaptation to dynamic perturbations?
  publication-title: PLOS Computational Biology
– volume: 54
  start-page: 7493
  issue: 10
  year: 2021
  ident: 10.1016/j.cortex.2025.04.010_bib59
  article-title: Non-invasive brain stimulation in modulation of mental rotation ability: A systematic review and meta-analysis
  publication-title: European Journal of Neuroscience
  doi: 10.1111/ejn.15490
– volume: 10
  issue: 9
  year: 2020
  ident: 10.1016/j.cortex.2025.04.010_bib15
  article-title: Off-line effects of alpha-frequency transcranial alternating current stimulation on a visuomotor learning task
  publication-title: Brain and Behavior
  doi: 10.1002/brb3.1754
SSID ssj0020855
Score 2.4361393
SecondaryResourceType review_article
Snippet As research on the visuomotor rotation (VMR) adaptation expands its scope from behavioral science to encompass neuropsychological perspectives, an increasing...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 144
SubjectTerms Adaptation, Physiological - physiology
Brain - physiology
Humans
Methodology
Motor Cortex - physiology
Motor learning
Movement - physiology
Non-invasive brain stimulation
Psychomotor Performance - physiology
Rotation
Sensorimotor integration
Transcranial Magnetic Stimulation - methods
Visuomotor adaptation
Title Using non-invasive brain stimulation to modulate performance in visuomotor rotation adaptation: A scoping review
URI https://dx.doi.org/10.1016/j.cortex.2025.04.010
https://www.ncbi.nlm.nih.gov/pubmed/40347675
https://www.proquest.com/docview/3202857210
Volume 187
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jgvgiuvkxP0YE8S2uXdJl820Mx_zYEHGwt9C0KUxYW_aFvvi3e9e0E0ERfGmbkJI0l1zuer-7I-RS-jwKAtdlgQ8XIR3DOs2WZpGEesw6aiPwDUetwVjcT7xJifQKXxiEVea83_L0jFvnNY18NhvpdIo-vi7oJiA_ePjUnqAHu5C4yq8_NjAPTEGZZzFwGLYu3OcyjFeAgNY30BKbXhbwFP1ofz6efhM_s2Oov0d2c_mRdu0Q90nJxBVS7cagO8_e6RXNEJ3Zr_IK2R7mhvMqSTNoAAVdn03jtY-YdaoxOwSFLT7LU3jRZUJnSYglQ9MvjwIKzdbTxQqBe8mczhNrvqd-6Kf28YZ2Kfq3YB_WGeaAjPu3L70By5MtsIC7fMkkzFRTeK40GIGw7Ug_EJHmoZSB4KKjQ87hlAM9vBmaSKAcyUF4anM_Qktq5PFDUoaPMMeEgtIoJNcg62gtwhAkMBO1WkbrDnDlTmhqhBVzrFIbU0MVYLNXZWmikCbKEQpoUiOyIIT6tjYUsP0_3rwo6KZg26AtxI9NslooTBvf9kD9hTZHlqCbsQiHC4xxc_Lvfk_JDpYspOyMlJfzlTkH4WWp69nqrJOtbu_58Qnvdw-D0Sfm7fBq
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90A_VFdH5_RhDfgu2SLptvQxybc3tS2Fto2hQmbC37EP3vvWvaiaAIvpQ0TUmaSy53vd_dAVyrUCRR5Ps8CvEilWd5q94wPFFYT1lHXQS-wbDRfZGPo2C0BvelLwzBKgve73h6zq2LmttiNm-z8Zh8fH3UTVB-CKjUHK1DlaJTBRWotnv97nCldxEUyzFkj9MLpQddDvOKCNP6jopiPchjnpIr7c8n1G8SaH4SdXZguxAhWduNchfW7LQGe-0pqs-TD3bDclBn_re8BhuDwna-B1mODmCo7vPx9C0k2DozlCCC4S6fFFm82CJlkzSmO8uyL6cChs3exvMlYffSGZulzoLPwjjMXPGOtRm5uFAfzh9mH146D8_3XV7kW-CR8MWCK5ypugx8ZSkIYdNTYSQTI2KlIilky8RC4EGHqng9tokkUVKg_NQUYULG1CQQB1DBj7BHwFBvlEoYFHeMkXGMQphNGg1rTAsZcyu2x8DLOdaZC6uhS7zZq3Y00UQT7UmNNDkGVRJCf1seGjn_H29elXTTuHPIHBJObbqca8oc3wxQA8Y2h46gq7FIT0gKc3Py734vYbP7PHjST71h_xS26IlDmJ1BZTFb2nOUZRbmolirn5sU8YY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+non-invasive+brain+stimulation+to+modulate+performance+in+visuomotor+rotation+adaptation%3A+A+scoping+review&rft.jtitle=Cortex&rft.au=Chen%2C+Long&rft.au=Liu%2C+Yipeng&rft.au=Wang%2C+Zhongpeng&rft.au=Zhang%2C+Lei&rft.date=2025-06-01&rft.pub=Elsevier+Ltd&rft.issn=0010-9452&rft.volume=187&rft.spage=144&rft.epage=158&rft_id=info:doi/10.1016%2Fj.cortex.2025.04.010&rft.externalDocID=S001094522500108X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-9452&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-9452&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-9452&client=summon