Bit-Parallel Implementations of Neural Network Activation Functions in Onboard Computing Systems
This study generalizes and further develops methods for efficiently implementing artificial neural networks (ANNs) in the onboard computers of mobile robotic systems with limited resources, including unmanned aerial vehicles (UAVs). The neural networks are sped up by constructing a new unbounded act...
Saved in:
Published in | Electronics (Basel) Vol. 14; no. 12; p. 2348 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
08.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study generalizes and further develops methods for efficiently implementing artificial neural networks (ANNs) in the onboard computers of mobile robotic systems with limited resources, including unmanned aerial vehicles (UAVs). The neural networks are sped up by constructing a new unbounded activation function called “s-parabola”, which meets the requirements of twice differentiability and reduces computational complexity over sigmoid-based functions. An additional contribution to this acceleration comes from activation functions based on bit-parallel computational circuits. A comprehensive review of modern publications in this subject area is provided. For autonomous problem-solving using ANNs directly on board an unmanned aerial vehicle, a trade-off between the speed and accuracy of the resulting solutions must be achieved. For this reason, we propose using fast bit-parallel circuits with limited digit capacity. The special representation and calculation of activation functions is performed based on the transformation of Jack Volder’s CORDIC iterative algorithms for trigonometric functions and Georgy Pukhov’s bit-analog calculations. Two statements are formulated, the proofs of which are based on the equivalence of the results obtained using the two approaches. We also provide theoretical and experimental estimates of the computational complexity of the algorithms achieved with different operand summation schemes. |
---|---|
AbstractList | This study generalizes and further develops methods for efficiently implementing artificial neural networks (ANNs) in the onboard computers of mobile robotic systems with limited resources, including unmanned aerial vehicles (UAVs). The neural networks are sped up by constructing a new unbounded activation function called “s-parabola”, which meets the requirements of twice differentiability and reduces computational complexity over sigmoid-based functions. An additional contribution to this acceleration comes from activation functions based on bit-parallel computational circuits. A comprehensive review of modern publications in this subject area is provided. For autonomous problem-solving using ANNs directly on board an unmanned aerial vehicle, a trade-off between the speed and accuracy of the resulting solutions must be achieved. For this reason, we propose using fast bit-parallel circuits with limited digit capacity. The special representation and calculation of activation functions is performed based on the transformation of Jack Volder’s CORDIC iterative algorithms for trigonometric functions and Georgy Pukhov’s bit-analog calculations. Two statements are formulated, the proofs of which are based on the equivalence of the results obtained using the two approaches. We also provide theoretical and experimental estimates of the computational complexity of the algorithms achieved with different operand summation schemes. |
Audience | Academic |
Author | Khachumov, Mikhail |
Author_xml | – sequence: 1 givenname: Mikhail orcidid: 0000-0001-5117-384X surname: Khachumov fullname: Khachumov, Mikhail |
BookMark | eNptUMtOwzAQtFCRKKVfwCUS5xTHm4d9LBWFShVFAs7BcezKJbGL7YD69xjKgQO7h1ntzOxKc45GxhqJ0GWGZwAMX8tOiuCs0cJneUYI5PQEjQmuWMoII6M_8xmaer_DsVgGFPAYvd7okD5yx7tOdsmq33eylybwoK3xiVXJgxwiGSF8WveWzEXQHz9sshyMOMq0STamsdy1ycL2-yFos02eDj7I3l-gU8U7L6e_OEEvy9vnxX263tytFvN1KiCDkJZNXmDa0qYSLVEFL1vFVImLvKVQqaptOQioSEUEVrkgGREVQKYw4UVDFMYwQVfHu3tn3wfpQ72zgzPxZQ0xE4YpUBpVs6NqyztZa6NscFzEbmWvRcxV6bif07woWcXKMhrgaBDOeu-kqvdO99wd6gzX3_HX_8QPX1Zqfdo |
Cites_doi | 10.1147/JRD.2019.2942284 10.3390/electronics13122338 10.1023/A:1008110704586 10.1109/AICAS57966.2023.10168646 10.1109/ICPR48806.2021.9412841 10.61640/ujeas.2024.0501 10.1109/ICACCS.2019.8728315 10.1093/mnras/staa2441 10.1109/ICESC57686.2023.10193390 10.1109/ACCESS.2024.3428388 10.1109/IGSC48788.2019.8957188 10.1007/3-540-45452-7_18 10.3103/S0147688224700382 10.1142/S0129054106004443 10.1007/s00453-004-1108-z 10.1109/TEC.1959.5222693 10.1109/TEVC.2025.3530416 10.1007/978-3-642-13122-6_18 10.1109/RusAutoCon58002.2023.10272855 10.32388/G6KRQE 10.1109/I2CT51068.2021.9418002 10.1109/TPDS.2022.3144614 10.1109/ACDSA59508.2024.10467957 10.1002/cta.4490100307 10.2478/ijame-2020-0024 10.1007/s11786-010-0035-4 10.3390/electronics11060945 10.1109/DAC18072.2020.9218567 10.3390/electronics14040657 10.1007/978-1-4757-3395-2_4 10.1109/TPAMI.2024.3447085 10.3390/app12105216 10.1007/s10598-019-09445-y |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.3390/electronics14122348 |
DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-9292 |
ExternalDocumentID | A845697966 10_3390_electronics14122348 |
GeographicLocations | Russia |
GeographicLocations_xml | – name: Russia |
GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c313t-6b4508d8b7cd2f5a6df9f6054d837f7dda3c37272c0f4c212c7331f02a5b2f003 |
IEDL.DBID | BENPR |
ISSN | 2079-9292 |
IngestDate | Fri Jul 25 09:12:22 EDT 2025 Tue Jul 01 05:41:56 EDT 2025 Thu Jul 03 08:37:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c313t-6b4508d8b7cd2f5a6df9f6054d837f7dda3c37272c0f4c212c7331f02a5b2f003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5117-384X |
OpenAccessLink | https://www.proquest.com/docview/3223908388?pq-origsite=%requestingapplication% |
PQID | 3223908388 |
PQPubID | 2032404 |
ParticipantIDs | proquest_journals_3223908388 gale_infotracacademiconefile_A845697966 crossref_primary_10_3390_electronics14122348 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-08 |
PublicationDateYYYYMMDD | 2025-06-08 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Electronics (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Cheng (ref_40) 2024; 46 Khachumov (ref_42) 2024; 51 ref_14 ref_36 ref_13 ref_35 ref_12 ref_34 ref_11 Pukhov (ref_17) 1982; 10 ref_31 ref_30 Abbasov (ref_16) 2024; 4 Khachumov (ref_32) 2003; 13 ref_37 Nabavinejad (ref_1) 2022; 33 Cratere (ref_39) 2024; 12 Volder (ref_4) 2000; 25 Rashidi (ref_18) 2020; 25 Vankka (ref_26) 2001; Volume 614 ref_25 ref_24 ref_46 ref_23 ref_45 ref_22 ref_44 Hyyro (ref_10) 2005; 41 ref_43 ref_41 (ref_33) 2010; 3 ref_3 ref_2 Amid (ref_38) 2019; 63 ref_29 ref_28 ref_27 Volder (ref_20) 1959; 8 ref_9 ref_8 Taghizadeh (ref_19) 2020; 649 ref_5 Zechmeister (ref_21) 2021; 500 Telpukhov (ref_15) 2019; 30 Hyyro (ref_7) 2006; 17 ref_6 |
References_xml | – volume: 13 start-page: 633 year: 2003 ident: ref_32 article-title: Bit-Parallel Structures for Image Processing and Analysis publication-title: Pattern Recognit. Image Anal. – volume: 63 start-page: 1 year: 2019 ident: ref_38 article-title: Co-design of deep neural nets and neural net accelerators for embedded vision applications publication-title: IBM J. Res. Dev. doi: 10.1147/JRD.2019.2942284 – ident: ref_28 doi: 10.3390/electronics13122338 – volume: 25 start-page: 101 year: 2000 ident: ref_4 article-title: The Birth of Cordic publication-title: J. VLSI Signal Process.-Syst. Signal Image Video Technol. doi: 10.1023/A:1008110704586 – ident: ref_5 – ident: ref_37 doi: 10.1109/AICAS57966.2023.10168646 – ident: ref_2 doi: 10.1109/ICPR48806.2021.9412841 – ident: ref_34 – volume: 4 start-page: 5 year: 2024 ident: ref_16 article-title: Differential (Pukhov) transform method analysis of transient regimes in electrical circuits publication-title: UNEC J. Eng. Appl. Sci. doi: 10.61640/ujeas.2024.0501 – ident: ref_43 doi: 10.1109/ICACCS.2019.8728315 – volume: 500 start-page: 109 year: 2021 ident: ref_21 article-title: Solving Kepler’s equation with CORDIC double iterations publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/staa2441 – ident: ref_30 doi: 10.1109/ICESC57686.2023.10193390 – volume: 12 start-page: 99537 year: 2024 ident: ref_39 article-title: On-Board Computer for CubeSats: State-of-the-Art and Future Trends publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3428388 – ident: ref_13 doi: 10.1109/IGSC48788.2019.8957188 – ident: ref_9 doi: 10.1007/3-540-45452-7_18 – ident: ref_14 – volume: 51 start-page: 471 year: 2024 ident: ref_42 article-title: Parabola as an Activation Function of Artificial Neural Networks publication-title: Sci. Technol. Inf. Proc. doi: 10.3103/S0147688224700382 – ident: ref_44 – ident: ref_23 – volume: 17 start-page: 1307 year: 2006 ident: ref_7 article-title: Bit-Parallel Computation of Local Similarity Score Matrices with Unitary Weights publication-title: Int. J. Found. Comput. Sci. doi: 10.1142/S0129054106004443 – volume: 41 start-page: 203 year: 2005 ident: ref_10 article-title: Bit-parallel witnesses and their applications to approximate string matching publication-title: Algorithmica doi: 10.1007/s00453-004-1108-z – volume: 8 start-page: 330 year: 1959 ident: ref_20 article-title: The CORDIC Trigonometric Computing Technique publication-title: IRE Trans. Electron. Comput. doi: 10.1109/TEC.1959.5222693 – ident: ref_41 doi: 10.1109/TEVC.2025.3530416 – ident: ref_6 – ident: ref_8 – ident: ref_11 doi: 10.1007/978-3-642-13122-6_18 – ident: ref_25 – ident: ref_29 – ident: ref_31 doi: 10.1109/RusAutoCon58002.2023.10272855 – ident: ref_27 – ident: ref_46 doi: 10.32388/G6KRQE – ident: ref_24 doi: 10.1109/I2CT51068.2021.9418002 – volume: 33 start-page: 2496 year: 2022 ident: ref_1 article-title: Coordinated Batching and DVFS for DNN Inference on GPU Accelerators publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2022.3144614 – ident: ref_45 doi: 10.1109/ACDSA59508.2024.10467957 – volume: 10 start-page: 265 year: 1982 ident: ref_17 article-title: Differential Transforms and Circuit Theory publication-title: J. Circuit Theory Appl. doi: 10.1002/cta.4490100307 – volume: 649 start-page: 1 year: 2020 ident: ref_19 article-title: Modified differential transform method for solving linear and nonlinear pantograph type of differential and Volterra integro-differential equations with proportional delays publication-title: Adv. Differ. Equ. – volume: 25 start-page: 122 year: 2020 ident: ref_18 article-title: A Review: Differential Transform Method for Semi-Analytical Solution of Differential Equations publication-title: Int. J. Appl. Mech. Eng. doi: 10.2478/ijame-2020-0024 – volume: 3 start-page: 407 year: 2010 ident: ref_33 article-title: BLIM: A New Bit-Parallel Pattern Matching Algorithm Overcoming Computer Word Size Limitation publication-title: Math. Comput. Sci. doi: 10.1007/s11786-010-0035-4 – ident: ref_22 – ident: ref_35 doi: 10.3390/electronics11060945 – ident: ref_12 doi: 10.1109/DAC18072.2020.9218567 – ident: ref_36 doi: 10.3390/electronics14040657 – volume: Volume 614 start-page: 23 year: 2001 ident: ref_26 article-title: CORDIC Algorithm publication-title: Direct Digital Synthesizers doi: 10.1007/978-1-4757-3395-2_4 – volume: 46 start-page: 10558 year: 2024 ident: ref_40 article-title: A Survey on Deep Neural Network Pruning: Taxonomy, Comparison, Analysis, and Recommendations publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2024.3447085 – ident: ref_3 doi: 10.3390/app12105216 – volume: 30 start-page: 177 year: 2019 ident: ref_15 article-title: Computing Observability of Gates in Combinational Logic Circuits by Bit-Parallel Simulation publication-title: Comput. Math. Model. doi: 10.1007/s10598-019-09445-y |
SSID | ssj0000913830 |
Score | 2.3209283 |
Snippet | This study generalizes and further develops methods for efficiently implementing artificial neural networks (ANNs) in the onboard computers of mobile robotic... |
SourceID | proquest gale crossref |
SourceType | Aggregation Database Index Database |
StartPage | 2348 |
SubjectTerms | Accuracy Airborne/spaceborne computers Algorithms Artificial neural networks Circuits Complexity Computers Drone aircraft Field programmable gate arrays Fourier transforms Iterative algorithms Linear algebra Mathematical analysis Mathematical functions Methods Multiplication & division Neural networks Onboard equipment Trigonometric functions Unmanned aerial vehicles |
Title | Bit-Parallel Implementations of Neural Network Activation Functions in Onboard Computing Systems |
URI | https://www.proquest.com/docview/3223908388 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTwIxEJ0oXPRg_Iwokh5MvLiB7nZ3y8mAgsQIGj8Sb2u33SYkuiCs_98ZtogH4nk302Tamc6btu8BnPO2NSY1ylPc-J7g3HpKIVjxfc3TMIisyeg18nAUDV7F3Vv45hpuc3etcpkTF4naTDT1yJu48BCey0DKq-mXR6pRdLrqJDQ2oYopWCL4qnZ7o8en3y4LsV7KoFXSDQVooLlSl5lzwdEoKf_82ZLWJ-bFbtPfhR1XJrJOOa97sJHl-7D9hzzwAN6748J7VDMSQ_lgC5bfT_eQKJ-ziWXEu4E2RuVFb9bRSyUz1sfNrPxtnLOHPJ3gMmGlvgOaZo7F_BBe-72X64Hn9BI8HfCg8KJUYLllZBpr49tQRca2LcIVYRCF2tgYFeiADl51ywqNDtMk2GhbvgpT32J4H0Eln-TZMbAw02FqWty0lRExcU9mAs3pMIoFwmlbg8uly5JpSYuRIJwgDydrPFyDC3JrQkFTzJRW7u4_Dkb0U0lHYh3XjhF61aC-9HziommerOb-5P_Pp7Dlkz4vdUlkHSrF7Ds7w6KhSBuwKfu3Dah2bob3zw23Tn4AQIHIWw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB4FOBQOqPShhkfZA1UvWHgffh0qlBZCaCDlkEjczHrXK0UqTkiMUP9Uf2NnYrvJAXHjvNZYHs9zd-f7AI544qzNrPY0t8JTnDtPa2xWhDA8C2TobE7TyNeDsDdSP2-D2xb8bWZh6FplExMXgdpODO2Rn6DhYXseyzg-nT54xBpFp6sNhUZlFv38zxO2bPNvl2f4f78I0T0f_uh5NauAZySXpRdmCosSG2eRscIFOrQucVjUK4u9mous1dJIOp40vlMGI7shWkPnCx1kwqEToNw12FBSJuRRcffi_54OYWzG0q_AjXDdP1ly2cy54vgJxDO0kgCfTwOL3NZ9C9t1Uco6lRXtQCsv3sHWClThe7j7Pi69Gz0j6pXfbIEpfF-PLRVzNnGMUD5QxqC6Vs46puFNY11MndVj44L9KrIJGiWr2CRQNKsx0z_A6FX0-BHWi0mRfwIW5CbIrM9toq2KCOkyVyjOBGGksHl3bThuVJZOKxCOFJsX0nD6jIbb8JXUmpKLljNtdD1pgC8jsKu0E2PVmETY6LVhv9F8WvvuPF1a2u7Ly4fwpje8vkqvLgf9PdgUxAxM-zPxPqyXs8f8AMuVMvu8sBEGd69tlP8AIn0BDg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB60guhBfGJ97kHxYjC72Tx6EGmtxWctouAtbnazUNBU24j41_x1zjSJehBvnhMmyWR2Z77dne8D2OENa0xilKO4EY7k3DpKIVgRQvPE9wJrUupGvuoGp3fy_N6_n4CPqheGjlVWc-J4ojYDTWvkBxh4CM8jDwGbLY9F9Nqdo-cXhxSkaKe1ktMoQuQifX9D-DY6PGvjv94VonNye3zqlAoDjva4lztBIrFAMVESaiOsrwJjGxYLfGkQt9nQGOVpj7YqtWulxllek8ShdYXyE2FxQKDdSZgKERW5NZhqnXR7N18rPMS4GXluQXXk4csffCvbjLjk-EGkOvQjHf6eFMaZrjMPc2WJyppFTC3ARJotwuwP4sIleGj1c6enhiTE8sjGDMNPZRNTNmIDy4jzA210i0PmrKkrFTXWwURa3NbP2HWWDDBEWaEtgaZZyaC-DHf_4skVqGWDLF0F5qfaT4zLTUMZGRLvZSrRnPaDUCKUt3XYr1wWPxeUHDFCGfJw_IuH67BHbo1pwOZDpVXZd4API-qruBlhDdkIEfbVYaPyfFyO5FH8HXdrf1_ehmkMyPjyrHuxDjOCZIJpsSbagFo-fE03sXbJk60ySBg8_HdcfgIEPgag |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bit-Parallel+Implementations+of+Neural+Network+Activation+Functions+in+Onboard+Computing+Systems&rft.jtitle=Electronics+%28Basel%29&rft.au=Khachumov+Mikhail&rft.date=2025-06-08&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=14&rft.issue=12&rft.spage=2348&rft_id=info:doi/10.3390%2Felectronics14122348&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |