SASD-MCL: Semi-supervised alignment self-distillation with mixed contrastive learning for cross-subject EEG emotion recognition
Electroencephalography (EEG) serves as a valuable technique for objective emotion recognition, with promising applications across diverse fields. However, a major obstacle to the general application of EEG-based emotion recognition systems is the lack of labeled data. To overcome this limitation, we...
Saved in:
Published in | Neural networks Vol. 190; p. 107614 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.10.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electroencephalography (EEG) serves as a valuable technique for objective emotion recognition, with promising applications across diverse fields. However, a major obstacle to the general application of EEG-based emotion recognition systems is the lack of labeled data. To overcome this limitation, we propose a semi-supervised alignment self-knowledge distillation with a mixed contrastive learning model (SASD-MCL) for cross-subject EEG emotion recognition, addressing the issue of limited labeled data. Firstly, we utilize mixed contrastive data augmentation methods to enhance data diversity and richness. Secondly, we introduce semi-supervised similarity alignment techniques to effectively combine labeled and unlabeled data, thereby improving the model’s generalization and robustness. Then, we utilize unsupervised self-knowledge distillation to convey intricate complex knowledge, expediting the adaptation process to the features of the target domain. Finally, we use semi-supervised multi-domain adaptation algorithms to successfully deal with data distribution disparities across various domains (labeled, unlabeled source and target domains), boosting the model’s robustness and performance in cross-subject emotion recognition. Extensive experiments employing a semi-supervised cross-subject leave-one-subject-out validation methodology on the SEED and SEED-IV benchmark datasets demonstrate that our proposed model outperforms existing methods under various imperfect labeling scenarios. The model effectively resolves label scarcity issues in cross-subject emotion recognition using EEG, achieving average performance increases of 5.93% on SEED and 5.32% on SEED-IV. |
---|---|
AbstractList | Electroencephalography (EEG) serves as a valuable technique for objective emotion recognition, with promising applications across diverse fields. However, a major obstacle to the general application of EEG-based emotion recognition systems is the lack of labeled data. To overcome this limitation, we propose a semi-supervised alignment self-knowledge distillation with a mixed contrastive learning model (SASD-MCL) for cross-subject EEG emotion recognition, addressing the issue of limited labeled data. Firstly, we utilize mixed contrastive data augmentation methods to enhance data diversity and richness. Secondly, we introduce semi-supervised similarity alignment techniques to effectively combine labeled and unlabeled data, thereby improving the model's generalization and robustness. Then, we utilize unsupervised self-knowledge distillation to convey intricate complex knowledge, expediting the adaptation process to the features of the target domain. Finally, we use semi-supervised multi-domain adaptation algorithms to successfully deal with data distribution disparities across various domains (labeled, unlabeled source and target domains), boosting the model's robustness and performance in cross-subject emotion recognition. Extensive experiments employing a semi-supervised cross-subject leave-one-subject-out validation methodology on the SEED and SEED-IV benchmark datasets demonstrate that our proposed model outperforms existing methods under various imperfect labeling scenarios. The model effectively resolves label scarcity issues in cross-subject emotion recognition using EEG, achieving average performance increases of 5.93% on SEED and 5.32% on SEED-IV.Electroencephalography (EEG) serves as a valuable technique for objective emotion recognition, with promising applications across diverse fields. However, a major obstacle to the general application of EEG-based emotion recognition systems is the lack of labeled data. To overcome this limitation, we propose a semi-supervised alignment self-knowledge distillation with a mixed contrastive learning model (SASD-MCL) for cross-subject EEG emotion recognition, addressing the issue of limited labeled data. Firstly, we utilize mixed contrastive data augmentation methods to enhance data diversity and richness. Secondly, we introduce semi-supervised similarity alignment techniques to effectively combine labeled and unlabeled data, thereby improving the model's generalization and robustness. Then, we utilize unsupervised self-knowledge distillation to convey intricate complex knowledge, expediting the adaptation process to the features of the target domain. Finally, we use semi-supervised multi-domain adaptation algorithms to successfully deal with data distribution disparities across various domains (labeled, unlabeled source and target domains), boosting the model's robustness and performance in cross-subject emotion recognition. Extensive experiments employing a semi-supervised cross-subject leave-one-subject-out validation methodology on the SEED and SEED-IV benchmark datasets demonstrate that our proposed model outperforms existing methods under various imperfect labeling scenarios. The model effectively resolves label scarcity issues in cross-subject emotion recognition using EEG, achieving average performance increases of 5.93% on SEED and 5.32% on SEED-IV. Electroencephalography (EEG) serves as a valuable technique for objective emotion recognition, with promising applications across diverse fields. However, a major obstacle to the general application of EEG-based emotion recognition systems is the lack of labeled data. To overcome this limitation, we propose a semi-supervised alignment self-knowledge distillation with a mixed contrastive learning model (SASD-MCL) for cross-subject EEG emotion recognition, addressing the issue of limited labeled data. Firstly, we utilize mixed contrastive data augmentation methods to enhance data diversity and richness. Secondly, we introduce semi-supervised similarity alignment techniques to effectively combine labeled and unlabeled data, thereby improving the model's generalization and robustness. Then, we utilize unsupervised self-knowledge distillation to convey intricate complex knowledge, expediting the adaptation process to the features of the target domain. Finally, we use semi-supervised multi-domain adaptation algorithms to successfully deal with data distribution disparities across various domains (labeled, unlabeled source and target domains), boosting the model's robustness and performance in cross-subject emotion recognition. Extensive experiments employing a semi-supervised cross-subject leave-one-subject-out validation methodology on the SEED and SEED-IV benchmark datasets demonstrate that our proposed model outperforms existing methods under various imperfect labeling scenarios. The model effectively resolves label scarcity issues in cross-subject emotion recognition using EEG, achieving average performance increases of 5.93% on SEED and 5.32% on SEED-IV. |
ArticleNumber | 107614 |
Author | Cai, Xingxing Chen, Wenyun Cheng, Cheng Zhang, Yong |
Author_xml | – sequence: 1 givenname: Yong surname: Zhang fullname: Zhang, Yong organization: School of Information Engineering, Huzhou University, Huzhou, 313000, China – sequence: 2 givenname: Wenyun surname: Chen fullname: Chen, Wenyun organization: School of Information Engineering, Huzhou University, Huzhou, 313000, China – sequence: 3 givenname: Xingxing surname: Cai fullname: Cai, Xingxing organization: School of Information Engineering, Huzhou University, Huzhou, 313000, China – sequence: 4 givenname: Cheng orcidid: 0000-0002-2138-6286 surname: Cheng fullname: Cheng, Cheng email: chengcheng@lnnu.edu.cn organization: Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40460464$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1uEzEUhS1URNPCGyDkJZsJ_huPwwKpCmlBCmIRWFsznuvgaMYOtieFFa9ep1NYIlmydf2dI517rtCFDx4Qek3JkhIq3x2WHiYPeckIq8uokVQ8QwuqmlXFGsUu0IKoFa8kUeQSXaV0IIRIJfgLdCmIkOWIBfqzu9l9rL6st-_xDkZXpekI8eQS9Lgd3N6P4DNOMNiqdym7YWizCx7fu_wDj-5XwUzwObbl7wR4gDZ65_fYhohNDCkVw-4AJuPN5g7DGB7VEUzYe3d-v0TPbTskePV0X6Pvt5tv60_V9uvd5_XNtjKc8lzJpqWW14q11oiWKsu7TnJpDGfGgBFcStarxhDBDK2lJb3tJaGqth3pVmbFr9Hb2fcYw88JUtajSwZKHg9hSpozWtcNVYIU9M0TOnUj9PoY3djG3_rv0gogZuAxYQT7D6FEn7vRBz13o8_d6LmbIvswy6DkPDmIOhkH3kDvykKy7oP7v8EDlhKazA |
Cites_doi | 10.1016/j.knosys.2021.107982 10.7717/peerj-cs.751 10.1109/TAMD.2015.2431497 10.1109/TAFFC.2022.3210441 10.1109/TNSRE.2023.3236687 10.1109/TNSRE.2021.3111689 10.1016/j.knosys.2019.105330 10.1109/JSEN.2022.3168572 10.3390/s23041932 10.1016/j.compbiomed.2022.105606 10.1109/CVPR42600.2020.00047 10.1109/TNSRE.2023.3263570 10.1016/j.brainresbull.2024.110901 10.1109/TAFFC.2024.3357656 10.1016/j.jksuci.2021.03.009 10.1109/TCDS.2021.3098842 10.1145/3524499 10.1109/TCSS.2022.3153660 10.1016/j.eij.2019.10.002 10.1016/j.ins.2022.07.121 10.1109/CVPR42600.2020.01288 10.1088/1741-2552/ad3c28 10.1109/TNSRE.2023.3236434 10.1109/TCYB.2018.2797176 10.1109/TCDS.2019.2949306 10.1016/j.compbiomed.2022.105303 10.1109/TAFFC.2022.3170369 10.1109/TII.2022.3217120 10.1109/TAFFC.2018.2817622 10.1016/j.neucom.2021.05.064 10.1016/j.compbiomed.2022.105519 10.1109/TAFFC.2020.3013711 10.1016/j.compbiomed.2022.106002 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd Copyright © 2025 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2025 Elsevier Ltd – notice: Copyright © 2025 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.neunet.2025.107614 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1879-2782 |
ExternalDocumentID | 40460464 10_1016_j_neunet_2025_107614 S0893608025004940 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYFN AAYWO ABAOU ABBOA ABCQJ ABDPE ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADGUI ADJOM ADMUD ADNMO ADRHT AEBSH AECPX AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- AAYXX CITATION RIG AGRNS BNPGV CGR CUY CVF ECM EIF NPM 7X8 SSH |
ID | FETCH-LOGICAL-c313t-67a1f3582afc4a18f3bb636cc32ccec43662d87c042c156f0dfd60185fb0b9c93 |
IEDL.DBID | .~1 |
ISSN | 0893-6080 1879-2782 |
IngestDate | Wed Jul 02 02:46:21 EDT 2025 Sat Aug 09 01:32:28 EDT 2025 Thu Aug 14 00:04:20 EDT 2025 Sat Aug 30 17:12:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Emotion recognition Electroencephalography (EEG) Multi-domain adaptation Semi-supervised learning Knowledge distillation |
Language | English |
License | Copyright © 2025 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c313t-67a1f3582afc4a18f3bb636cc32ccec43662d87c042c156f0dfd60185fb0b9c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2138-6286 |
PMID | 40460464 |
PQID | 3215571840 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3215571840 pubmed_primary_40460464 crossref_primary_10_1016_j_neunet_2025_107614 elsevier_sciencedirect_doi_10_1016_j_neunet_2025_107614 |
PublicationCentury | 2000 |
PublicationDate | 2025-10-01 |
PublicationDateYYYYMMDD | 2025-10-01 |
PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neural networks |
PublicationTitleAlternate | Neural Netw |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Du, Ma, Zhang, Li, Lai, Zhao (b6) 2020; 13 Islam, Ahmad (b10) 2019 Van der Maaten, Hinton (b28) 2008; 9 She, Zhang, Fang, Ma, Zhang (b34) 2023; 72 Zhou, Ye, Zhang, Luo, Zhang, Li (b52) 2023 Zhang, Davoodnia, Etemad (b43) 2022; 13 Zhang, Liu, Zhong (b47) 2022; 14 Li, Zhang, Tiwari, Song, Hu, Yang (b23) 2022; 55 Chen, Vong, Wang, Wang, Pang (b4) 2022; 239 Li, Hua, Xu, Shu, Xu, Kuang (b17) 2022; 145 Song, Zheng, Song, Cui (b36) 2018; 11 Li, Ouyang, Yuan, Li, Guo, Qu (b19) 2022; 22 Chen, J., Lei, B., Song, Q., Ying, H., Chen, D. Z., & Wu, J. (2020). A hierarchical graph network for 3d object detection on point clouds. In Xie, Oniga (b39) 2023; 23 Zheng, W.-L., & Lu, B.-L. (2016). Personalizing EEG-based affective models with transfer learning. In Jiménez-Guarneros, Fuentes-Pineda (b12) 2024 Liang, Zhou, Zhang, Li, Huang, Zhang (b24) 2021; 29 Li, Chen, Niu, Xu, Dong, Jin (b15) 2024; 21 Jin, Luo, Zheng, Lu (b13) 2017 Mirzaee, Kordestani, Rueda, Saif (b29) 2023 Rahman, Hossain, Hossain, Ahmmed (b32) 2020; 21 Anuragi, Sisodia, Pachori (b1) 2022; 610 Zhang, Chung, Wang (b41) 2019; 37 Zhang, Pan, Zhang, Zhang, Li, Zhang (b48) 2023 Niu, Ma, Sun, Li, Gao (b30) 2023; 31 Dadebayev, Goh, Tan (b5) 2022; 34 Zhang, Li, Zhou, Zhou, Zhang, Ren (b46) 2019 Gao, Sun, Meng, Zhang (b7) 2022; 146 Ye, Zhang, Zhang, Teng, Zhang, Li (b40) 2023 Ma, Zhao, Meng, Zhang, She, Zhang (b27) 2023; 31 Jiang, Meng, Wang, Wu (b11) 2023 Luo, Wu, Wang, Chen, Yang (b26) 2021; 456 Li, Qiu, Shen, Liu, He (b21) 2019; 50 Wang, Ma, Cammon, Fang, Gao, Zhang (b37) 2023; 31 Shi, Jiao, Lu (b35) 2013 Zhang, Guo, Xu, Hu, Chen, Zhang (b45) 2024; 208 Zhang, Chung, Wang (b42) 2020; 193 Li, Chen, Li, Fu, Wu, Ji (b14) 2022 12 865–12 874. Li, Qiu, Du, Wang, He (b20) 2020; 12 Zheng, Lu (b50) 2015; 7 Li, Wang, Zhang, Liu, Song, Cheng (b22) 2022; 143 Zheng, Liu, Lu, Lu, Cichocki (b49) 2018; 49 Peng, Liu, Kong, Nie, Lu, Cichocki (b31) 2022; 19 Gu, Cai, Gao, Jiang, Ning, Qian (b8) 2022; 9 Zhang, Etemad (b44) 2022 Li, Huan, Hou, Tian, Zhang, Song (b18) 2021; 14 (pp. 392–401). Han, Z., Fu, Z., & Yang, J. (2020). Learning the redundancy-free features for generalized zero-shot object recognition. In Li, Fan, Shao, Song (b16) 2024 (pp. 2732–2738). Azam, Ahmad, Haq (b2) 2021; 7 Salimnia (b33) 2023 Wu, Xia, Nie, Zhang, Fan (b38) 2022; 149 Liu, Hu, Zhang, Wu, Wang, Ma (b25) 2023 Zhou (10.1016/j.neunet.2025.107614_b52) 2023 Zhang (10.1016/j.neunet.2025.107614_b45) 2024; 208 Li (10.1016/j.neunet.2025.107614_b15) 2024; 21 Salimnia (10.1016/j.neunet.2025.107614_b33) 2023 Liu (10.1016/j.neunet.2025.107614_b25) 2023 Wang (10.1016/j.neunet.2025.107614_b37) 2023; 31 Li (10.1016/j.neunet.2025.107614_b23) 2022; 55 Anuragi (10.1016/j.neunet.2025.107614_b1) 2022; 610 She (10.1016/j.neunet.2025.107614_b34) 2023; 72 Li (10.1016/j.neunet.2025.107614_b21) 2019; 50 Chen (10.1016/j.neunet.2025.107614_b4) 2022; 239 Jiménez-Guarneros (10.1016/j.neunet.2025.107614_b12) 2024 Shi (10.1016/j.neunet.2025.107614_b35) 2013 Li (10.1016/j.neunet.2025.107614_b16) 2024 Jin (10.1016/j.neunet.2025.107614_b13) 2017 Rahman (10.1016/j.neunet.2025.107614_b32) 2020; 21 Zhang (10.1016/j.neunet.2025.107614_b47) 2022; 14 Zhang (10.1016/j.neunet.2025.107614_b41) 2019; 37 Dadebayev (10.1016/j.neunet.2025.107614_b5) 2022; 34 Li (10.1016/j.neunet.2025.107614_b19) 2022; 22 Van der Maaten (10.1016/j.neunet.2025.107614_b28) 2008; 9 Gu (10.1016/j.neunet.2025.107614_b8) 2022; 9 Song (10.1016/j.neunet.2025.107614_b36) 2018; 11 Du (10.1016/j.neunet.2025.107614_b6) 2020; 13 Li (10.1016/j.neunet.2025.107614_b20) 2020; 12 Zhang (10.1016/j.neunet.2025.107614_b46) 2019 Islam (10.1016/j.neunet.2025.107614_b10) 2019 Ma (10.1016/j.neunet.2025.107614_b27) 2023; 31 Zhang (10.1016/j.neunet.2025.107614_b43) 2022; 13 Peng (10.1016/j.neunet.2025.107614_b31) 2022; 19 Wu (10.1016/j.neunet.2025.107614_b38) 2022; 149 Zhang (10.1016/j.neunet.2025.107614_b48) 2023 Li (10.1016/j.neunet.2025.107614_b22) 2022; 143 10.1016/j.neunet.2025.107614_b9 Li (10.1016/j.neunet.2025.107614_b17) 2022; 145 Xie (10.1016/j.neunet.2025.107614_b39) 2023; 23 Ye (10.1016/j.neunet.2025.107614_b40) 2023 10.1016/j.neunet.2025.107614_b3 Niu (10.1016/j.neunet.2025.107614_b30) 2023; 31 10.1016/j.neunet.2025.107614_b51 Azam (10.1016/j.neunet.2025.107614_b2) 2021; 7 Zheng (10.1016/j.neunet.2025.107614_b50) 2015; 7 Zhang (10.1016/j.neunet.2025.107614_b42) 2020; 193 Gao (10.1016/j.neunet.2025.107614_b7) 2022; 146 Mirzaee (10.1016/j.neunet.2025.107614_b29) 2023 Liang (10.1016/j.neunet.2025.107614_b24) 2021; 29 Li (10.1016/j.neunet.2025.107614_b18) 2021; 14 Li (10.1016/j.neunet.2025.107614_b14) 2022 Luo (10.1016/j.neunet.2025.107614_b26) 2021; 456 Zheng (10.1016/j.neunet.2025.107614_b49) 2018; 49 Zhang (10.1016/j.neunet.2025.107614_b44) 2022 Jiang (10.1016/j.neunet.2025.107614_b11) 2023 |
References_xml | – volume: 13 start-page: 2185 year: 2022 end-page: 2200 ident: b43 article-title: Parse: Pairwise alignment of representations in semi-supervised EEG learning for emotion recognition publication-title: IEEE Transactions on Affective Computing – year: 2023 ident: b11 article-title: Deep source semi-supervised transfer learning (ds3tl) for cross-subject EEG classification publication-title: IEEE Transactions on Biomedical Engineering – volume: 12 start-page: 344 year: 2020 end-page: 353 ident: b20 article-title: Domain adaptation for EEG emotion recognition based on latent representation similarity publication-title: IEEE Transactions on Cognitive and Developmental Systems – volume: 50 start-page: 3281 year: 2019 end-page: 3293 ident: b21 article-title: Multisource transfer learning for cross-subject EEG emotion recognition publication-title: IEEE Transactions on Cybernetics – volume: 146 year: 2022 ident: b7 article-title: EEG emotion recognition based on enhanced spd matrix and manifold dimensionality reduction publication-title: Computers in Biology and Medicine – year: 2023 ident: b33 article-title: Attention-based multi-source-free domain adaptation for EEG emotion recognition – volume: 610 start-page: 508 year: 2022 end-page: 524 ident: b1 article-title: EEG-based cross-subject emotion recognition using fourier-bessel series expansion based empirical wavelet transform and nca feature selection method publication-title: Information Sciences – volume: 7 year: 2021 ident: b2 article-title: Automatic emotion recognition in healthcare data using supervised machine learning publication-title: PeerJ Computer Science – year: 2023 ident: b52 article-title: EEGmatch: Learning with incomplete labels for semi-supervised EEG-based cross-subject emotion recognition – volume: 9 year: 2008 ident: b28 article-title: Visualizing data using t-sne publication-title: Journal of Machine Learning Research – year: 2022 ident: b14 article-title: Gmss: Graph-based multi-task self-supervised learning for EEG emotion recognition publication-title: IEEE Transactions on Affective Computing – volume: 72 start-page: 1 year: 2023 end-page: 12 ident: b34 article-title: Multisource associate domain adaptation for cross-subject and cross-session EEG emotion recognition publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 37 start-page: 8535 year: 2019 end-page: 8550 ident: b41 article-title: Takagi-sugeno-kang fuzzy systems with dynamic rule weights publication-title: Journal of Intelligent & Fuzzy Systems – volume: 21 start-page: 23 year: 2020 end-page: 35 ident: b32 article-title: Employing pca and t-statistical approach for feature extraction and classification of emotion from multichannel EEG signal publication-title: Egyptian Informatics Journal – start-page: 1 year: 2019 end-page: 6 ident: b10 article-title: Wavelet analysis based classification of emotion from EEG signal publication-title: 2019 international conference on electrical, computer and communication engineering – volume: 31 start-page: 917 year: 2023 end-page: 925 ident: b30 article-title: A brain network analysis-based double way deep neural network for emotion recognition publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 239 year: 2022 ident: b4 article-title: Easy domain adaptation for cross-subject multi-view emotion recognition publication-title: Knowledge-Based Systems – volume: 31 start-page: 936 year: 2023 end-page: 943 ident: b27 article-title: Cross-subject emotion recognition based on domain similarity of EEG signal transfer learning publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 7 start-page: 162 year: 2015 end-page: 175 ident: b50 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Transactions on Autonomous Mental Development – volume: 193 year: 2020 ident: b42 article-title: Clustering by transmission learning from data density to label manifold with statistical diffusion publication-title: Knowledge-Based Systems – volume: 143 year: 2022 ident: b22 article-title: Emotion recognition from EEG based on multi-task learning with capsule network and attention mechanism publication-title: Computers in Biology and Medicine – start-page: 3265 year: 2023 end-page: 3270 ident: b29 article-title: Robust emotion recognition in EEG signals based on a combination of multiple domain adaptation techniques publication-title: 2023 IEEE international conference on systems, man, and cybernetics – volume: 11 start-page: 532 year: 2018 end-page: 541 ident: b36 article-title: EEG emotion recognition using dynamical graph convolutional neural networks publication-title: IEEE Transactions on Affective Computing – start-page: 222 year: 2017 end-page: 225 ident: b13 article-title: EEG-based emotion recognition using domain adaptation network publication-title: 2017 international conference on orange technologies – reference: (pp. 392–401). – reference: (pp. 2732–2738). – start-page: 1 year: 2019 end-page: 11 ident: b46 article-title: A view-reduction based multi-view tsk fuzzy system and its application for textile color classification publication-title: Journal of Ambient Intelligence and Humanized Computing – volume: 22 year: 2022 ident: b19 article-title: An EEG data processing approach for emotion recognition publication-title: IEEE Sensors Journal – year: 2023 ident: b48 article-title: Unsupervised time-aware sampling network with deep reinforcement learning for EEG-based emotion recognition publication-title: IEEE Transactions on Affective Computing – volume: 23 start-page: 1932 year: 2023 ident: b39 article-title: Classification of motor imagery EEG signals based on data augmentation and convolutional neural networks publication-title: Sensors – volume: 208 year: 2024 ident: b45 article-title: Mgfkd: A semi-supervised multi-source domain adaptation algorithm for cross-subject EEG emotion recognition publication-title: Brain Research Bulletin – volume: 13 start-page: 1528 year: 2020 end-page: 1540 ident: b6 article-title: An efficient lstm network for emotion recognition from multichannel EEG signals publication-title: IEEE Transactions on Affective Computing – reference: Han, Z., Fu, Z., & Yang, J. (2020). Learning the redundancy-free features for generalized zero-shot object recognition. In – volume: 19 start-page: 8104 year: 2022 end-page: 8115 ident: b31 article-title: Joint EEG feature transfer and semisupervised cross-subject emotion recognition publication-title: IEEE Transactions on Industrial Informatics – reference: Zheng, W.-L., & Lu, B.-L. (2016). Personalizing EEG-based affective models with transfer learning. In – volume: 456 start-page: 312 year: 2021 end-page: 326 ident: b26 article-title: Progressive low-rank subspace alignment based on semi-supervised joint domain adaption for personalized emotion recognition publication-title: Neurocomputing – start-page: 6627 year: 2013 end-page: 6630 ident: b35 article-title: Differential entropy feature for EEG-based vigilance estimation publication-title: 2013 35th annual international conference of the IEEE engineering in medicine and biology society – volume: 9 start-page: 1604 year: 2022 end-page: 1612 ident: b8 article-title: Multi-source domain transfer discriminative dictionary learning modeling for electroencephalogram-based emotion recognition publication-title: IEEE Transactions on Computational Social Systems – year: 2023 ident: b40 article-title: Semi-supervised dual-stream self-attentive adversarial graph contrastive learning for cross-subject EEG-based emotion recognition – reference: Chen, J., Lei, B., Song, Q., Ying, H., Chen, D. Z., & Wu, J. (2020). A hierarchical graph network for 3d object detection on point clouds. In – volume: 49 start-page: 1110 year: 2018 end-page: 1122 ident: b49 article-title: Emotionmeter: A multimodal framework for recognizing human emotions publication-title: IEEE Transactions on Cybernetics – start-page: 1241 year: 2022 end-page: 1245 ident: b44 article-title: Holistic semi-supervised approaches for EEG representation learning publication-title: ICASSP 2022-2022 IEEE international conference on acoustics, speech and signal processing – volume: 34 start-page: 4385 year: 2022 end-page: 4401 ident: b5 article-title: EEG-based emotion recognition: Review of commercial EEG devices and machine learning techniques publication-title: Journal of King Saud University-Computer and Information Sciences – volume: 21 year: 2024 ident: b15 article-title: Mslte: multiple self-supervised learning tasks for enhancing EEG emotion recognition publication-title: Journal of Neural Engineering – reference: . 12 865–12 874. – volume: 29 start-page: 1913 year: 2021 end-page: 1925 ident: b24 article-title: EEGfusenet: Hybrid unsupervised deep feature characterization and fusion for high-dimensional EEG with an application to emotion recognition publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – year: 2024 ident: b16 article-title: Generalized contrastive partial label learning for cross-subject EEG-based emotion recognition publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 14 start-page: 833 year: 2021 end-page: 846 ident: b18 article-title: Can emotion be transferred?—a review on transfer learning for EEG-based emotion recognition publication-title: IEEE Transactions on Cognitive and Developmental Systems – volume: 149 year: 2022 ident: b38 article-title: Simultaneously exploring multi-scale and asymmetric EEG features for emotion recognition publication-title: Computers in Biology and Medicine – volume: 31 start-page: 1952 year: 2023 end-page: 1962 ident: b37 article-title: Self-supervised EEG emotion recognition models based on cnn publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – year: 2023 ident: b25 article-title: Itransformer: Inverted transformers are effective for time series forecasting – year: 2024 ident: b12 article-title: Cfda-csf: A multi-modal domain adaptation method for cross-subject emotion recognition publication-title: IEEE Transactions on Affective Computing – volume: 145 year: 2022 ident: b17 article-title: Cross-subject EEG emotion recognition combined with connectivity features and meta-transfer learning publication-title: Computers in Biology and Medicine – volume: 55 start-page: 1 year: 2022 end-page: 57 ident: b23 article-title: EEG based emotion recognition: A tutorial and review publication-title: ACM Computing Surveys – volume: 14 start-page: 2048 year: 2022 end-page: 2063 ident: b47 article-title: Ganser: A self-supervised data augmentation framework for EEG-based emotion recognition publication-title: IEEE Transactions on Affective Computing – volume: 37 start-page: 8535 issue: 6 year: 2019 ident: 10.1016/j.neunet.2025.107614_b41 article-title: Takagi-sugeno-kang fuzzy systems with dynamic rule weights publication-title: Journal of Intelligent & Fuzzy Systems – volume: 239 year: 2022 ident: 10.1016/j.neunet.2025.107614_b4 article-title: Easy domain adaptation for cross-subject multi-view emotion recognition publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.107982 – start-page: 3265 year: 2023 ident: 10.1016/j.neunet.2025.107614_b29 article-title: Robust emotion recognition in EEG signals based on a combination of multiple domain adaptation techniques – volume: 7 year: 2021 ident: 10.1016/j.neunet.2025.107614_b2 article-title: Automatic emotion recognition in healthcare data using supervised machine learning publication-title: PeerJ Computer Science doi: 10.7717/peerj-cs.751 – volume: 7 start-page: 162 issue: 3 year: 2015 ident: 10.1016/j.neunet.2025.107614_b50 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Transactions on Autonomous Mental Development doi: 10.1109/TAMD.2015.2431497 – volume: 13 start-page: 2185 issue: 4 year: 2022 ident: 10.1016/j.neunet.2025.107614_b43 article-title: Parse: Pairwise alignment of representations in semi-supervised EEG learning for emotion recognition publication-title: IEEE Transactions on Affective Computing doi: 10.1109/TAFFC.2022.3210441 – volume: 9 issue: 11 year: 2008 ident: 10.1016/j.neunet.2025.107614_b28 article-title: Visualizing data using t-sne publication-title: Journal of Machine Learning Research – volume: 31 start-page: 936 year: 2023 ident: 10.1016/j.neunet.2025.107614_b27 article-title: Cross-subject emotion recognition based on domain similarity of EEG signal transfer learning publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2023.3236687 – volume: 29 start-page: 1913 year: 2021 ident: 10.1016/j.neunet.2025.107614_b24 article-title: EEGfusenet: Hybrid unsupervised deep feature characterization and fusion for high-dimensional EEG with an application to emotion recognition publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2021.3111689 – volume: 193 year: 2020 ident: 10.1016/j.neunet.2025.107614_b42 article-title: Clustering by transmission learning from data density to label manifold with statistical diffusion publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2019.105330 – year: 2023 ident: 10.1016/j.neunet.2025.107614_b33 – year: 2023 ident: 10.1016/j.neunet.2025.107614_b25 – volume: 22 issue: 11 year: 2022 ident: 10.1016/j.neunet.2025.107614_b19 article-title: An EEG data processing approach for emotion recognition publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2022.3168572 – volume: 23 start-page: 1932 issue: 4 year: 2023 ident: 10.1016/j.neunet.2025.107614_b39 article-title: Classification of motor imagery EEG signals based on data augmentation and convolutional neural networks publication-title: Sensors doi: 10.3390/s23041932 – year: 2023 ident: 10.1016/j.neunet.2025.107614_b48 article-title: Unsupervised time-aware sampling network with deep reinforcement learning for EEG-based emotion recognition publication-title: IEEE Transactions on Affective Computing – ident: 10.1016/j.neunet.2025.107614_b51 – volume: 146 year: 2022 ident: 10.1016/j.neunet.2025.107614_b7 article-title: EEG emotion recognition based on enhanced spd matrix and manifold dimensionality reduction publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2022.105606 – ident: 10.1016/j.neunet.2025.107614_b3 doi: 10.1109/CVPR42600.2020.00047 – volume: 31 start-page: 1952 year: 2023 ident: 10.1016/j.neunet.2025.107614_b37 article-title: Self-supervised EEG emotion recognition models based on cnn publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2023.3263570 – volume: 208 year: 2024 ident: 10.1016/j.neunet.2025.107614_b45 article-title: Mgfkd: A semi-supervised multi-source domain adaptation algorithm for cross-subject EEG emotion recognition publication-title: Brain Research Bulletin doi: 10.1016/j.brainresbull.2024.110901 – year: 2024 ident: 10.1016/j.neunet.2025.107614_b12 article-title: Cfda-csf: A multi-modal domain adaptation method for cross-subject emotion recognition publication-title: IEEE Transactions on Affective Computing doi: 10.1109/TAFFC.2024.3357656 – volume: 34 start-page: 4385 issue: 7 year: 2022 ident: 10.1016/j.neunet.2025.107614_b5 article-title: EEG-based emotion recognition: Review of commercial EEG devices and machine learning techniques publication-title: Journal of King Saud University-Computer and Information Sciences doi: 10.1016/j.jksuci.2021.03.009 – volume: 14 start-page: 833 issue: 3 year: 2021 ident: 10.1016/j.neunet.2025.107614_b18 article-title: Can emotion be transferred?—a review on transfer learning for EEG-based emotion recognition publication-title: IEEE Transactions on Cognitive and Developmental Systems doi: 10.1109/TCDS.2021.3098842 – volume: 55 start-page: 1 issue: 4 year: 2022 ident: 10.1016/j.neunet.2025.107614_b23 article-title: EEG based emotion recognition: A tutorial and review publication-title: ACM Computing Surveys doi: 10.1145/3524499 – volume: 9 start-page: 1604 issue: 6 year: 2022 ident: 10.1016/j.neunet.2025.107614_b8 article-title: Multi-source domain transfer discriminative dictionary learning modeling for electroencephalogram-based emotion recognition publication-title: IEEE Transactions on Computational Social Systems doi: 10.1109/TCSS.2022.3153660 – start-page: 1 year: 2019 ident: 10.1016/j.neunet.2025.107614_b10 article-title: Wavelet analysis based classification of emotion from EEG signal – volume: 21 start-page: 23 issue: 1 year: 2020 ident: 10.1016/j.neunet.2025.107614_b32 article-title: Employing pca and t-statistical approach for feature extraction and classification of emotion from multichannel EEG signal publication-title: Egyptian Informatics Journal doi: 10.1016/j.eij.2019.10.002 – volume: 610 start-page: 508 year: 2022 ident: 10.1016/j.neunet.2025.107614_b1 article-title: EEG-based cross-subject emotion recognition using fourier-bessel series expansion based empirical wavelet transform and nca feature selection method publication-title: Information Sciences doi: 10.1016/j.ins.2022.07.121 – ident: 10.1016/j.neunet.2025.107614_b9 doi: 10.1109/CVPR42600.2020.01288 – start-page: 222 year: 2017 ident: 10.1016/j.neunet.2025.107614_b13 article-title: EEG-based emotion recognition using domain adaptation network – volume: 21 issue: 2 year: 2024 ident: 10.1016/j.neunet.2025.107614_b15 article-title: Mslte: multiple self-supervised learning tasks for enhancing EEG emotion recognition publication-title: Journal of Neural Engineering doi: 10.1088/1741-2552/ad3c28 – volume: 72 start-page: 1 year: 2023 ident: 10.1016/j.neunet.2025.107614_b34 article-title: Multisource associate domain adaptation for cross-subject and cross-session EEG emotion recognition publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 31 start-page: 917 year: 2023 ident: 10.1016/j.neunet.2025.107614_b30 article-title: A brain network analysis-based double way deep neural network for emotion recognition publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2023.3236434 – volume: 49 start-page: 1110 issue: 3 year: 2018 ident: 10.1016/j.neunet.2025.107614_b49 article-title: Emotionmeter: A multimodal framework for recognizing human emotions publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2018.2797176 – volume: 12 start-page: 344 issue: 2 year: 2020 ident: 10.1016/j.neunet.2025.107614_b20 article-title: Domain adaptation for EEG emotion recognition based on latent representation similarity publication-title: IEEE Transactions on Cognitive and Developmental Systems doi: 10.1109/TCDS.2019.2949306 – year: 2024 ident: 10.1016/j.neunet.2025.107614_b16 article-title: Generalized contrastive partial label learning for cross-subject EEG-based emotion recognition publication-title: IEEE Transactions on Instrumentation and Measurement – year: 2023 ident: 10.1016/j.neunet.2025.107614_b11 article-title: Deep source semi-supervised transfer learning (ds3tl) for cross-subject EEG classification publication-title: IEEE Transactions on Biomedical Engineering – volume: 143 year: 2022 ident: 10.1016/j.neunet.2025.107614_b22 article-title: Emotion recognition from EEG based on multi-task learning with capsule network and attention mechanism publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2022.105303 – volume: 14 start-page: 2048 issue: 3 year: 2022 ident: 10.1016/j.neunet.2025.107614_b47 article-title: Ganser: A self-supervised data augmentation framework for EEG-based emotion recognition publication-title: IEEE Transactions on Affective Computing doi: 10.1109/TAFFC.2022.3170369 – volume: 19 start-page: 8104 issue: 7 year: 2022 ident: 10.1016/j.neunet.2025.107614_b31 article-title: Joint EEG feature transfer and semisupervised cross-subject emotion recognition publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2022.3217120 – year: 2023 ident: 10.1016/j.neunet.2025.107614_b40 – start-page: 6627 year: 2013 ident: 10.1016/j.neunet.2025.107614_b35 article-title: Differential entropy feature for EEG-based vigilance estimation – volume: 11 start-page: 532 issue: 3 year: 2018 ident: 10.1016/j.neunet.2025.107614_b36 article-title: EEG emotion recognition using dynamical graph convolutional neural networks publication-title: IEEE Transactions on Affective Computing doi: 10.1109/TAFFC.2018.2817622 – start-page: 1241 year: 2022 ident: 10.1016/j.neunet.2025.107614_b44 article-title: Holistic semi-supervised approaches for EEG representation learning – volume: 456 start-page: 312 year: 2021 ident: 10.1016/j.neunet.2025.107614_b26 article-title: Progressive low-rank subspace alignment based on semi-supervised joint domain adaption for personalized emotion recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.05.064 – start-page: 1 year: 2019 ident: 10.1016/j.neunet.2025.107614_b46 article-title: A view-reduction based multi-view tsk fuzzy system and its application for textile color classification publication-title: Journal of Ambient Intelligence and Humanized Computing – volume: 145 year: 2022 ident: 10.1016/j.neunet.2025.107614_b17 article-title: Cross-subject EEG emotion recognition combined with connectivity features and meta-transfer learning publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2022.105519 – volume: 50 start-page: 3281 issue: 7 year: 2019 ident: 10.1016/j.neunet.2025.107614_b21 article-title: Multisource transfer learning for cross-subject EEG emotion recognition publication-title: IEEE Transactions on Cybernetics – year: 2022 ident: 10.1016/j.neunet.2025.107614_b14 article-title: Gmss: Graph-based multi-task self-supervised learning for EEG emotion recognition publication-title: IEEE Transactions on Affective Computing – volume: 13 start-page: 1528 issue: 3 year: 2020 ident: 10.1016/j.neunet.2025.107614_b6 article-title: An efficient lstm network for emotion recognition from multichannel EEG signals publication-title: IEEE Transactions on Affective Computing doi: 10.1109/TAFFC.2020.3013711 – volume: 149 year: 2022 ident: 10.1016/j.neunet.2025.107614_b38 article-title: Simultaneously exploring multi-scale and asymmetric EEG features for emotion recognition publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2022.106002 – year: 2023 ident: 10.1016/j.neunet.2025.107614_b52 |
SSID | ssj0006843 |
Score | 2.471204 |
Snippet | Electroencephalography (EEG) serves as a valuable technique for objective emotion recognition, with promising applications across diverse fields. However, a... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 107614 |
SubjectTerms | Algorithms Electroencephalography (EEG) Electroencephalography - methods Emotion recognition Emotions - physiology Humans Knowledge distillation Machine Learning Multi-domain adaptation Pattern Recognition, Automated - methods Semi-supervised learning Supervised Machine Learning |
Title | SASD-MCL: Semi-supervised alignment self-distillation with mixed contrastive learning for cross-subject EEG emotion recognition |
URI | https://dx.doi.org/10.1016/j.neunet.2025.107614 https://www.ncbi.nlm.nih.gov/pubmed/40460464 https://www.proquest.com/docview/3215571840 |
Volume | 190 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaK9rLLtu6ZrS1UYFctcSRLTm9Bmi7r65IV6E2QaKlI0TrBnAA7rX-9pGV32KEYsKMF2RZEkfwofRQZ-xI1SHSlIxEzUEJlKhfOUSJwNAOvR5nLgLYGLi717EqdXufXW2zS5cIQrbK1_cmmN9a6bem3s9lfLRb9-QBdraZU0by55ITidqUMrfKvv__QPHSRmHPYWVDvLn2u4XhVYVMFYlQOc2zCiF49556eg5-NGzp5zV62-JGP0xB32Vao3rBXXW0G3qrqW_YwH8-PxcXk_IjPw_1C1JsVWYU6lByR903DAeB1uIuiJC2_S5Q4Ttuy_H7xC7s1JHZXkznkbW2JG44Qlzcjxw962sLh0-k3HlItIP7ERlpW79jVyfTHZCbaYgsCZCbXQhuXRUqbdRGUy4oovddSA8ghQAAltR6WhQFUcsCYLw7KWGIwV-TRD_wIRvI9266WVfjIuIFhaQwgsgOpEJC5QivvAwZeOcRC6h4T3RzbVbpTw3Zks1ubZGJJJjbJpMdMJwj719qwaPb_8eZhJzeLakNnIa4Ky01tJUKd3FB422MfkkCfxqLosFhp9em___uZvaCnRPrbY9vrn5uwj-Bl7Q-a1XnAdsbfz2aXj1UX72I |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9swDCWK9LBdtnWf2dZWBXYVEkey7OwWZGnTNsklLdCbIMlSkaF1gjkBdttfH2nZAXYoBvRqS7YgiuSj9CgCfAvKCXSlQx4SJ7lMZMqNoUTgkPWtGiYmcbQ1MF-o6a28ukvvDmDc5sIQrbKx_dGm19a6edJrZrO3Wa16yz66WkWpoml9yQnG7Yd0O1XagcPR5fV0sTfIKo_kOWzPqUObQVfTvEq_Kz2RKgcpPsKgXj7loZ5CoLUnOn8DrxoIyUZxlEdw4Mu38Lotz8AabX0Hf5aj5Q8-H8--s6V_XPFqtyHDUPmCIfi-r2kArPIPgRek6A-RFcdoZ5Y9rn5js5rHbiqyiKwpL3HPEOWyeuT4QUu7OGwyuWA-lgNie0LSunwPt-eTm_GUN_UWuBOJ2HKVmSRQ5qwJTpokD8JaJZRzYuCcd1IoNSjyzKGeOwz7Qr8IBcZzeRps3w7dUHyATrku_SdgmRsUWeYQ3DkhEZOZXElrPcZeqQu5UF3g7RzrTbxWQ7d8s586ykSTTHSUSReyVhD6n-Wh0fL_p-dZKzeNmkPHIab0612lBaKdNKMItwsfo0D3Y5F0XiyV_Pzs_57Ci-nNfKZnl4vrL_CS3kQO4FfobH_t_DFima09adbqX4ht8hM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SASD-MCL%3A+Semi-supervised+alignment+self-distillation+with+mixed+contrastive+learning+for+cross-subject+EEG+emotion+recognition&rft.jtitle=Neural+networks&rft.au=Zhang%2C+Yong&rft.au=Chen%2C+Wenyun&rft.au=Cai%2C+Xingxing&rft.au=Cheng%2C+Cheng&rft.date=2025-10-01&rft.eissn=1879-2782&rft.volume=190&rft.spage=107614&rft_id=info:doi/10.1016%2Fj.neunet.2025.107614&rft_id=info%3Apmid%2F40460464&rft.externalDocID=40460464 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |