SASD-MCL: Semi-supervised alignment self-distillation with mixed contrastive learning for cross-subject EEG emotion recognition

Electroencephalography (EEG) serves as a valuable technique for objective emotion recognition, with promising applications across diverse fields. However, a major obstacle to the general application of EEG-based emotion recognition systems is the lack of labeled data. To overcome this limitation, we...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 190; p. 107614
Main Authors Zhang, Yong, Chen, Wenyun, Cai, Xingxing, Cheng, Cheng
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.10.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electroencephalography (EEG) serves as a valuable technique for objective emotion recognition, with promising applications across diverse fields. However, a major obstacle to the general application of EEG-based emotion recognition systems is the lack of labeled data. To overcome this limitation, we propose a semi-supervised alignment self-knowledge distillation with a mixed contrastive learning model (SASD-MCL) for cross-subject EEG emotion recognition, addressing the issue of limited labeled data. Firstly, we utilize mixed contrastive data augmentation methods to enhance data diversity and richness. Secondly, we introduce semi-supervised similarity alignment techniques to effectively combine labeled and unlabeled data, thereby improving the model’s generalization and robustness. Then, we utilize unsupervised self-knowledge distillation to convey intricate complex knowledge, expediting the adaptation process to the features of the target domain. Finally, we use semi-supervised multi-domain adaptation algorithms to successfully deal with data distribution disparities across various domains (labeled, unlabeled source and target domains), boosting the model’s robustness and performance in cross-subject emotion recognition. Extensive experiments employing a semi-supervised cross-subject leave-one-subject-out validation methodology on the SEED and SEED-IV benchmark datasets demonstrate that our proposed model outperforms existing methods under various imperfect labeling scenarios. The model effectively resolves label scarcity issues in cross-subject emotion recognition using EEG, achieving average performance increases of 5.93% on SEED and 5.32% on SEED-IV.
AbstractList Electroencephalography (EEG) serves as a valuable technique for objective emotion recognition, with promising applications across diverse fields. However, a major obstacle to the general application of EEG-based emotion recognition systems is the lack of labeled data. To overcome this limitation, we propose a semi-supervised alignment self-knowledge distillation with a mixed contrastive learning model (SASD-MCL) for cross-subject EEG emotion recognition, addressing the issue of limited labeled data. Firstly, we utilize mixed contrastive data augmentation methods to enhance data diversity and richness. Secondly, we introduce semi-supervised similarity alignment techniques to effectively combine labeled and unlabeled data, thereby improving the model's generalization and robustness. Then, we utilize unsupervised self-knowledge distillation to convey intricate complex knowledge, expediting the adaptation process to the features of the target domain. Finally, we use semi-supervised multi-domain adaptation algorithms to successfully deal with data distribution disparities across various domains (labeled, unlabeled source and target domains), boosting the model's robustness and performance in cross-subject emotion recognition. Extensive experiments employing a semi-supervised cross-subject leave-one-subject-out validation methodology on the SEED and SEED-IV benchmark datasets demonstrate that our proposed model outperforms existing methods under various imperfect labeling scenarios. The model effectively resolves label scarcity issues in cross-subject emotion recognition using EEG, achieving average performance increases of 5.93% on SEED and 5.32% on SEED-IV.Electroencephalography (EEG) serves as a valuable technique for objective emotion recognition, with promising applications across diverse fields. However, a major obstacle to the general application of EEG-based emotion recognition systems is the lack of labeled data. To overcome this limitation, we propose a semi-supervised alignment self-knowledge distillation with a mixed contrastive learning model (SASD-MCL) for cross-subject EEG emotion recognition, addressing the issue of limited labeled data. Firstly, we utilize mixed contrastive data augmentation methods to enhance data diversity and richness. Secondly, we introduce semi-supervised similarity alignment techniques to effectively combine labeled and unlabeled data, thereby improving the model's generalization and robustness. Then, we utilize unsupervised self-knowledge distillation to convey intricate complex knowledge, expediting the adaptation process to the features of the target domain. Finally, we use semi-supervised multi-domain adaptation algorithms to successfully deal with data distribution disparities across various domains (labeled, unlabeled source and target domains), boosting the model's robustness and performance in cross-subject emotion recognition. Extensive experiments employing a semi-supervised cross-subject leave-one-subject-out validation methodology on the SEED and SEED-IV benchmark datasets demonstrate that our proposed model outperforms existing methods under various imperfect labeling scenarios. The model effectively resolves label scarcity issues in cross-subject emotion recognition using EEG, achieving average performance increases of 5.93% on SEED and 5.32% on SEED-IV.
Electroencephalography (EEG) serves as a valuable technique for objective emotion recognition, with promising applications across diverse fields. However, a major obstacle to the general application of EEG-based emotion recognition systems is the lack of labeled data. To overcome this limitation, we propose a semi-supervised alignment self-knowledge distillation with a mixed contrastive learning model (SASD-MCL) for cross-subject EEG emotion recognition, addressing the issue of limited labeled data. Firstly, we utilize mixed contrastive data augmentation methods to enhance data diversity and richness. Secondly, we introduce semi-supervised similarity alignment techniques to effectively combine labeled and unlabeled data, thereby improving the model's generalization and robustness. Then, we utilize unsupervised self-knowledge distillation to convey intricate complex knowledge, expediting the adaptation process to the features of the target domain. Finally, we use semi-supervised multi-domain adaptation algorithms to successfully deal with data distribution disparities across various domains (labeled, unlabeled source and target domains), boosting the model's robustness and performance in cross-subject emotion recognition. Extensive experiments employing a semi-supervised cross-subject leave-one-subject-out validation methodology on the SEED and SEED-IV benchmark datasets demonstrate that our proposed model outperforms existing methods under various imperfect labeling scenarios. The model effectively resolves label scarcity issues in cross-subject emotion recognition using EEG, achieving average performance increases of 5.93% on SEED and 5.32% on SEED-IV.
ArticleNumber 107614
Author Cai, Xingxing
Chen, Wenyun
Cheng, Cheng
Zhang, Yong
Author_xml – sequence: 1
  givenname: Yong
  surname: Zhang
  fullname: Zhang, Yong
  organization: School of Information Engineering, Huzhou University, Huzhou, 313000, China
– sequence: 2
  givenname: Wenyun
  surname: Chen
  fullname: Chen, Wenyun
  organization: School of Information Engineering, Huzhou University, Huzhou, 313000, China
– sequence: 3
  givenname: Xingxing
  surname: Cai
  fullname: Cai, Xingxing
  organization: School of Information Engineering, Huzhou University, Huzhou, 313000, China
– sequence: 4
  givenname: Cheng
  orcidid: 0000-0002-2138-6286
  surname: Cheng
  fullname: Cheng, Cheng
  email: chengcheng@lnnu.edu.cn
  organization: Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40460464$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1uEzEUhS1URNPCGyDkJZsJ_huPwwKpCmlBCmIRWFsznuvgaMYOtieFFa9ep1NYIlmydf2dI517rtCFDx4Qek3JkhIq3x2WHiYPeckIq8uokVQ8QwuqmlXFGsUu0IKoFa8kUeQSXaV0IIRIJfgLdCmIkOWIBfqzu9l9rL6st-_xDkZXpekI8eQS9Lgd3N6P4DNOMNiqdym7YWizCx7fu_wDj-5XwUzwObbl7wR4gDZ65_fYhohNDCkVw-4AJuPN5g7DGB7VEUzYe3d-v0TPbTskePV0X6Pvt5tv60_V9uvd5_XNtjKc8lzJpqWW14q11oiWKsu7TnJpDGfGgBFcStarxhDBDK2lJb3tJaGqth3pVmbFr9Hb2fcYw88JUtajSwZKHg9hSpozWtcNVYIU9M0TOnUj9PoY3djG3_rv0gogZuAxYQT7D6FEn7vRBz13o8_d6LmbIvswy6DkPDmIOhkH3kDvykKy7oP7v8EDlhKazA
Cites_doi 10.1016/j.knosys.2021.107982
10.7717/peerj-cs.751
10.1109/TAMD.2015.2431497
10.1109/TAFFC.2022.3210441
10.1109/TNSRE.2023.3236687
10.1109/TNSRE.2021.3111689
10.1016/j.knosys.2019.105330
10.1109/JSEN.2022.3168572
10.3390/s23041932
10.1016/j.compbiomed.2022.105606
10.1109/CVPR42600.2020.00047
10.1109/TNSRE.2023.3263570
10.1016/j.brainresbull.2024.110901
10.1109/TAFFC.2024.3357656
10.1016/j.jksuci.2021.03.009
10.1109/TCDS.2021.3098842
10.1145/3524499
10.1109/TCSS.2022.3153660
10.1016/j.eij.2019.10.002
10.1016/j.ins.2022.07.121
10.1109/CVPR42600.2020.01288
10.1088/1741-2552/ad3c28
10.1109/TNSRE.2023.3236434
10.1109/TCYB.2018.2797176
10.1109/TCDS.2019.2949306
10.1016/j.compbiomed.2022.105303
10.1109/TAFFC.2022.3170369
10.1109/TII.2022.3217120
10.1109/TAFFC.2018.2817622
10.1016/j.neucom.2021.05.064
10.1016/j.compbiomed.2022.105519
10.1109/TAFFC.2020.3013711
10.1016/j.compbiomed.2022.106002
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright © 2025 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2025 Elsevier Ltd
– notice: Copyright © 2025 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neunet.2025.107614
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
ExternalDocumentID 40460464
10_1016_j_neunet_2025_107614
S0893608025004940
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYFN
AAYWO
ABAOU
ABBOA
ABCQJ
ABDPE
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADGUI
ADJOM
ADMUD
ADNMO
ADRHT
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AAYXX
CITATION
RIG
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
SSH
ID FETCH-LOGICAL-c313t-67a1f3582afc4a18f3bb636cc32ccec43662d87c042c156f0dfd60185fb0b9c93
IEDL.DBID .~1
ISSN 0893-6080
1879-2782
IngestDate Wed Jul 02 02:46:21 EDT 2025
Sat Aug 09 01:32:28 EDT 2025
Thu Aug 14 00:04:20 EDT 2025
Sat Aug 30 17:12:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Emotion recognition
Electroencephalography (EEG)
Multi-domain adaptation
Semi-supervised learning
Knowledge distillation
Language English
License Copyright © 2025 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-67a1f3582afc4a18f3bb636cc32ccec43662d87c042c156f0dfd60185fb0b9c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2138-6286
PMID 40460464
PQID 3215571840
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3215571840
pubmed_primary_40460464
crossref_primary_10_1016_j_neunet_2025_107614
elsevier_sciencedirect_doi_10_1016_j_neunet_2025_107614
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Du, Ma, Zhang, Li, Lai, Zhao (b6) 2020; 13
Islam, Ahmad (b10) 2019
Van der Maaten, Hinton (b28) 2008; 9
She, Zhang, Fang, Ma, Zhang (b34) 2023; 72
Zhou, Ye, Zhang, Luo, Zhang, Li (b52) 2023
Zhang, Davoodnia, Etemad (b43) 2022; 13
Zhang, Liu, Zhong (b47) 2022; 14
Li, Zhang, Tiwari, Song, Hu, Yang (b23) 2022; 55
Chen, Vong, Wang, Wang, Pang (b4) 2022; 239
Li, Hua, Xu, Shu, Xu, Kuang (b17) 2022; 145
Song, Zheng, Song, Cui (b36) 2018; 11
Li, Ouyang, Yuan, Li, Guo, Qu (b19) 2022; 22
Chen, J., Lei, B., Song, Q., Ying, H., Chen, D. Z., & Wu, J. (2020). A hierarchical graph network for 3d object detection on point clouds. In
Xie, Oniga (b39) 2023; 23
Zheng, W.-L., & Lu, B.-L. (2016). Personalizing EEG-based affective models with transfer learning. In
Jiménez-Guarneros, Fuentes-Pineda (b12) 2024
Liang, Zhou, Zhang, Li, Huang, Zhang (b24) 2021; 29
Li, Chen, Niu, Xu, Dong, Jin (b15) 2024; 21
Jin, Luo, Zheng, Lu (b13) 2017
Mirzaee, Kordestani, Rueda, Saif (b29) 2023
Rahman, Hossain, Hossain, Ahmmed (b32) 2020; 21
Anuragi, Sisodia, Pachori (b1) 2022; 610
Zhang, Chung, Wang (b41) 2019; 37
Zhang, Pan, Zhang, Zhang, Li, Zhang (b48) 2023
Niu, Ma, Sun, Li, Gao (b30) 2023; 31
Dadebayev, Goh, Tan (b5) 2022; 34
Zhang, Li, Zhou, Zhou, Zhang, Ren (b46) 2019
Gao, Sun, Meng, Zhang (b7) 2022; 146
Ye, Zhang, Zhang, Teng, Zhang, Li (b40) 2023
Ma, Zhao, Meng, Zhang, She, Zhang (b27) 2023; 31
Jiang, Meng, Wang, Wu (b11) 2023
Luo, Wu, Wang, Chen, Yang (b26) 2021; 456
Li, Qiu, Shen, Liu, He (b21) 2019; 50
Wang, Ma, Cammon, Fang, Gao, Zhang (b37) 2023; 31
Shi, Jiao, Lu (b35) 2013
Zhang, Guo, Xu, Hu, Chen, Zhang (b45) 2024; 208
Zhang, Chung, Wang (b42) 2020; 193
Li, Chen, Li, Fu, Wu, Ji (b14) 2022
12 865–12 874.
Li, Qiu, Du, Wang, He (b20) 2020; 12
Zheng, Lu (b50) 2015; 7
Li, Wang, Zhang, Liu, Song, Cheng (b22) 2022; 143
Zheng, Liu, Lu, Lu, Cichocki (b49) 2018; 49
Peng, Liu, Kong, Nie, Lu, Cichocki (b31) 2022; 19
Gu, Cai, Gao, Jiang, Ning, Qian (b8) 2022; 9
Zhang, Etemad (b44) 2022
Li, Huan, Hou, Tian, Zhang, Song (b18) 2021; 14
(pp. 392–401).
Han, Z., Fu, Z., & Yang, J. (2020). Learning the redundancy-free features for generalized zero-shot object recognition. In
Li, Fan, Shao, Song (b16) 2024
(pp. 2732–2738).
Azam, Ahmad, Haq (b2) 2021; 7
Salimnia (b33) 2023
Wu, Xia, Nie, Zhang, Fan (b38) 2022; 149
Liu, Hu, Zhang, Wu, Wang, Ma (b25) 2023
Zhou (10.1016/j.neunet.2025.107614_b52) 2023
Zhang (10.1016/j.neunet.2025.107614_b45) 2024; 208
Li (10.1016/j.neunet.2025.107614_b15) 2024; 21
Salimnia (10.1016/j.neunet.2025.107614_b33) 2023
Liu (10.1016/j.neunet.2025.107614_b25) 2023
Wang (10.1016/j.neunet.2025.107614_b37) 2023; 31
Li (10.1016/j.neunet.2025.107614_b23) 2022; 55
Anuragi (10.1016/j.neunet.2025.107614_b1) 2022; 610
She (10.1016/j.neunet.2025.107614_b34) 2023; 72
Li (10.1016/j.neunet.2025.107614_b21) 2019; 50
Chen (10.1016/j.neunet.2025.107614_b4) 2022; 239
Jiménez-Guarneros (10.1016/j.neunet.2025.107614_b12) 2024
Shi (10.1016/j.neunet.2025.107614_b35) 2013
Li (10.1016/j.neunet.2025.107614_b16) 2024
Jin (10.1016/j.neunet.2025.107614_b13) 2017
Rahman (10.1016/j.neunet.2025.107614_b32) 2020; 21
Zhang (10.1016/j.neunet.2025.107614_b47) 2022; 14
Zhang (10.1016/j.neunet.2025.107614_b41) 2019; 37
Dadebayev (10.1016/j.neunet.2025.107614_b5) 2022; 34
Li (10.1016/j.neunet.2025.107614_b19) 2022; 22
Van der Maaten (10.1016/j.neunet.2025.107614_b28) 2008; 9
Gu (10.1016/j.neunet.2025.107614_b8) 2022; 9
Song (10.1016/j.neunet.2025.107614_b36) 2018; 11
Du (10.1016/j.neunet.2025.107614_b6) 2020; 13
Li (10.1016/j.neunet.2025.107614_b20) 2020; 12
Zhang (10.1016/j.neunet.2025.107614_b46) 2019
Islam (10.1016/j.neunet.2025.107614_b10) 2019
Ma (10.1016/j.neunet.2025.107614_b27) 2023; 31
Zhang (10.1016/j.neunet.2025.107614_b43) 2022; 13
Peng (10.1016/j.neunet.2025.107614_b31) 2022; 19
Wu (10.1016/j.neunet.2025.107614_b38) 2022; 149
Zhang (10.1016/j.neunet.2025.107614_b48) 2023
Li (10.1016/j.neunet.2025.107614_b22) 2022; 143
10.1016/j.neunet.2025.107614_b9
Li (10.1016/j.neunet.2025.107614_b17) 2022; 145
Xie (10.1016/j.neunet.2025.107614_b39) 2023; 23
Ye (10.1016/j.neunet.2025.107614_b40) 2023
10.1016/j.neunet.2025.107614_b3
Niu (10.1016/j.neunet.2025.107614_b30) 2023; 31
10.1016/j.neunet.2025.107614_b51
Azam (10.1016/j.neunet.2025.107614_b2) 2021; 7
Zheng (10.1016/j.neunet.2025.107614_b50) 2015; 7
Zhang (10.1016/j.neunet.2025.107614_b42) 2020; 193
Gao (10.1016/j.neunet.2025.107614_b7) 2022; 146
Mirzaee (10.1016/j.neunet.2025.107614_b29) 2023
Liang (10.1016/j.neunet.2025.107614_b24) 2021; 29
Li (10.1016/j.neunet.2025.107614_b18) 2021; 14
Li (10.1016/j.neunet.2025.107614_b14) 2022
Luo (10.1016/j.neunet.2025.107614_b26) 2021; 456
Zheng (10.1016/j.neunet.2025.107614_b49) 2018; 49
Zhang (10.1016/j.neunet.2025.107614_b44) 2022
Jiang (10.1016/j.neunet.2025.107614_b11) 2023
References_xml – volume: 13
  start-page: 2185
  year: 2022
  end-page: 2200
  ident: b43
  article-title: Parse: Pairwise alignment of representations in semi-supervised EEG learning for emotion recognition
  publication-title: IEEE Transactions on Affective Computing
– year: 2023
  ident: b11
  article-title: Deep source semi-supervised transfer learning (ds3tl) for cross-subject EEG classification
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 12
  start-page: 344
  year: 2020
  end-page: 353
  ident: b20
  article-title: Domain adaptation for EEG emotion recognition based on latent representation similarity
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
– volume: 50
  start-page: 3281
  year: 2019
  end-page: 3293
  ident: b21
  article-title: Multisource transfer learning for cross-subject EEG emotion recognition
  publication-title: IEEE Transactions on Cybernetics
– volume: 146
  year: 2022
  ident: b7
  article-title: EEG emotion recognition based on enhanced spd matrix and manifold dimensionality reduction
  publication-title: Computers in Biology and Medicine
– year: 2023
  ident: b33
  article-title: Attention-based multi-source-free domain adaptation for EEG emotion recognition
– volume: 610
  start-page: 508
  year: 2022
  end-page: 524
  ident: b1
  article-title: EEG-based cross-subject emotion recognition using fourier-bessel series expansion based empirical wavelet transform and nca feature selection method
  publication-title: Information Sciences
– volume: 7
  year: 2021
  ident: b2
  article-title: Automatic emotion recognition in healthcare data using supervised machine learning
  publication-title: PeerJ Computer Science
– year: 2023
  ident: b52
  article-title: EEGmatch: Learning with incomplete labels for semi-supervised EEG-based cross-subject emotion recognition
– volume: 9
  year: 2008
  ident: b28
  article-title: Visualizing data using t-sne
  publication-title: Journal of Machine Learning Research
– year: 2022
  ident: b14
  article-title: Gmss: Graph-based multi-task self-supervised learning for EEG emotion recognition
  publication-title: IEEE Transactions on Affective Computing
– volume: 72
  start-page: 1
  year: 2023
  end-page: 12
  ident: b34
  article-title: Multisource associate domain adaptation for cross-subject and cross-session EEG emotion recognition
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 37
  start-page: 8535
  year: 2019
  end-page: 8550
  ident: b41
  article-title: Takagi-sugeno-kang fuzzy systems with dynamic rule weights
  publication-title: Journal of Intelligent & Fuzzy Systems
– volume: 21
  start-page: 23
  year: 2020
  end-page: 35
  ident: b32
  article-title: Employing pca and t-statistical approach for feature extraction and classification of emotion from multichannel EEG signal
  publication-title: Egyptian Informatics Journal
– start-page: 1
  year: 2019
  end-page: 6
  ident: b10
  article-title: Wavelet analysis based classification of emotion from EEG signal
  publication-title: 2019 international conference on electrical, computer and communication engineering
– volume: 31
  start-page: 917
  year: 2023
  end-page: 925
  ident: b30
  article-title: A brain network analysis-based double way deep neural network for emotion recognition
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 239
  year: 2022
  ident: b4
  article-title: Easy domain adaptation for cross-subject multi-view emotion recognition
  publication-title: Knowledge-Based Systems
– volume: 31
  start-page: 936
  year: 2023
  end-page: 943
  ident: b27
  article-title: Cross-subject emotion recognition based on domain similarity of EEG signal transfer learning
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 7
  start-page: 162
  year: 2015
  end-page: 175
  ident: b50
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Transactions on Autonomous Mental Development
– volume: 193
  year: 2020
  ident: b42
  article-title: Clustering by transmission learning from data density to label manifold with statistical diffusion
  publication-title: Knowledge-Based Systems
– volume: 143
  year: 2022
  ident: b22
  article-title: Emotion recognition from EEG based on multi-task learning with capsule network and attention mechanism
  publication-title: Computers in Biology and Medicine
– start-page: 3265
  year: 2023
  end-page: 3270
  ident: b29
  article-title: Robust emotion recognition in EEG signals based on a combination of multiple domain adaptation techniques
  publication-title: 2023 IEEE international conference on systems, man, and cybernetics
– volume: 11
  start-page: 532
  year: 2018
  end-page: 541
  ident: b36
  article-title: EEG emotion recognition using dynamical graph convolutional neural networks
  publication-title: IEEE Transactions on Affective Computing
– start-page: 222
  year: 2017
  end-page: 225
  ident: b13
  article-title: EEG-based emotion recognition using domain adaptation network
  publication-title: 2017 international conference on orange technologies
– reference: (pp. 392–401).
– reference: (pp. 2732–2738).
– start-page: 1
  year: 2019
  end-page: 11
  ident: b46
  article-title: A view-reduction based multi-view tsk fuzzy system and its application for textile color classification
  publication-title: Journal of Ambient Intelligence and Humanized Computing
– volume: 22
  year: 2022
  ident: b19
  article-title: An EEG data processing approach for emotion recognition
  publication-title: IEEE Sensors Journal
– year: 2023
  ident: b48
  article-title: Unsupervised time-aware sampling network with deep reinforcement learning for EEG-based emotion recognition
  publication-title: IEEE Transactions on Affective Computing
– volume: 23
  start-page: 1932
  year: 2023
  ident: b39
  article-title: Classification of motor imagery EEG signals based on data augmentation and convolutional neural networks
  publication-title: Sensors
– volume: 208
  year: 2024
  ident: b45
  article-title: Mgfkd: A semi-supervised multi-source domain adaptation algorithm for cross-subject EEG emotion recognition
  publication-title: Brain Research Bulletin
– volume: 13
  start-page: 1528
  year: 2020
  end-page: 1540
  ident: b6
  article-title: An efficient lstm network for emotion recognition from multichannel EEG signals
  publication-title: IEEE Transactions on Affective Computing
– reference: Han, Z., Fu, Z., & Yang, J. (2020). Learning the redundancy-free features for generalized zero-shot object recognition. In
– volume: 19
  start-page: 8104
  year: 2022
  end-page: 8115
  ident: b31
  article-title: Joint EEG feature transfer and semisupervised cross-subject emotion recognition
  publication-title: IEEE Transactions on Industrial Informatics
– reference: Zheng, W.-L., & Lu, B.-L. (2016). Personalizing EEG-based affective models with transfer learning. In
– volume: 456
  start-page: 312
  year: 2021
  end-page: 326
  ident: b26
  article-title: Progressive low-rank subspace alignment based on semi-supervised joint domain adaption for personalized emotion recognition
  publication-title: Neurocomputing
– start-page: 6627
  year: 2013
  end-page: 6630
  ident: b35
  article-title: Differential entropy feature for EEG-based vigilance estimation
  publication-title: 2013 35th annual international conference of the IEEE engineering in medicine and biology society
– volume: 9
  start-page: 1604
  year: 2022
  end-page: 1612
  ident: b8
  article-title: Multi-source domain transfer discriminative dictionary learning modeling for electroencephalogram-based emotion recognition
  publication-title: IEEE Transactions on Computational Social Systems
– year: 2023
  ident: b40
  article-title: Semi-supervised dual-stream self-attentive adversarial graph contrastive learning for cross-subject EEG-based emotion recognition
– reference: Chen, J., Lei, B., Song, Q., Ying, H., Chen, D. Z., & Wu, J. (2020). A hierarchical graph network for 3d object detection on point clouds. In
– volume: 49
  start-page: 1110
  year: 2018
  end-page: 1122
  ident: b49
  article-title: Emotionmeter: A multimodal framework for recognizing human emotions
  publication-title: IEEE Transactions on Cybernetics
– start-page: 1241
  year: 2022
  end-page: 1245
  ident: b44
  article-title: Holistic semi-supervised approaches for EEG representation learning
  publication-title: ICASSP 2022-2022 IEEE international conference on acoustics, speech and signal processing
– volume: 34
  start-page: 4385
  year: 2022
  end-page: 4401
  ident: b5
  article-title: EEG-based emotion recognition: Review of commercial EEG devices and machine learning techniques
  publication-title: Journal of King Saud University-Computer and Information Sciences
– volume: 21
  year: 2024
  ident: b15
  article-title: Mslte: multiple self-supervised learning tasks for enhancing EEG emotion recognition
  publication-title: Journal of Neural Engineering
– reference: . 12 865–12 874.
– volume: 29
  start-page: 1913
  year: 2021
  end-page: 1925
  ident: b24
  article-title: EEGfusenet: Hybrid unsupervised deep feature characterization and fusion for high-dimensional EEG with an application to emotion recognition
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– year: 2024
  ident: b16
  article-title: Generalized contrastive partial label learning for cross-subject EEG-based emotion recognition
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 14
  start-page: 833
  year: 2021
  end-page: 846
  ident: b18
  article-title: Can emotion be transferred?—a review on transfer learning for EEG-based emotion recognition
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
– volume: 149
  year: 2022
  ident: b38
  article-title: Simultaneously exploring multi-scale and asymmetric EEG features for emotion recognition
  publication-title: Computers in Biology and Medicine
– volume: 31
  start-page: 1952
  year: 2023
  end-page: 1962
  ident: b37
  article-title: Self-supervised EEG emotion recognition models based on cnn
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– year: 2023
  ident: b25
  article-title: Itransformer: Inverted transformers are effective for time series forecasting
– year: 2024
  ident: b12
  article-title: Cfda-csf: A multi-modal domain adaptation method for cross-subject emotion recognition
  publication-title: IEEE Transactions on Affective Computing
– volume: 145
  year: 2022
  ident: b17
  article-title: Cross-subject EEG emotion recognition combined with connectivity features and meta-transfer learning
  publication-title: Computers in Biology and Medicine
– volume: 55
  start-page: 1
  year: 2022
  end-page: 57
  ident: b23
  article-title: EEG based emotion recognition: A tutorial and review
  publication-title: ACM Computing Surveys
– volume: 14
  start-page: 2048
  year: 2022
  end-page: 2063
  ident: b47
  article-title: Ganser: A self-supervised data augmentation framework for EEG-based emotion recognition
  publication-title: IEEE Transactions on Affective Computing
– volume: 37
  start-page: 8535
  issue: 6
  year: 2019
  ident: 10.1016/j.neunet.2025.107614_b41
  article-title: Takagi-sugeno-kang fuzzy systems with dynamic rule weights
  publication-title: Journal of Intelligent & Fuzzy Systems
– volume: 239
  year: 2022
  ident: 10.1016/j.neunet.2025.107614_b4
  article-title: Easy domain adaptation for cross-subject multi-view emotion recognition
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.107982
– start-page: 3265
  year: 2023
  ident: 10.1016/j.neunet.2025.107614_b29
  article-title: Robust emotion recognition in EEG signals based on a combination of multiple domain adaptation techniques
– volume: 7
  year: 2021
  ident: 10.1016/j.neunet.2025.107614_b2
  article-title: Automatic emotion recognition in healthcare data using supervised machine learning
  publication-title: PeerJ Computer Science
  doi: 10.7717/peerj-cs.751
– volume: 7
  start-page: 162
  issue: 3
  year: 2015
  ident: 10.1016/j.neunet.2025.107614_b50
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Transactions on Autonomous Mental Development
  doi: 10.1109/TAMD.2015.2431497
– volume: 13
  start-page: 2185
  issue: 4
  year: 2022
  ident: 10.1016/j.neunet.2025.107614_b43
  article-title: Parse: Pairwise alignment of representations in semi-supervised EEG learning for emotion recognition
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/TAFFC.2022.3210441
– volume: 9
  issue: 11
  year: 2008
  ident: 10.1016/j.neunet.2025.107614_b28
  article-title: Visualizing data using t-sne
  publication-title: Journal of Machine Learning Research
– volume: 31
  start-page: 936
  year: 2023
  ident: 10.1016/j.neunet.2025.107614_b27
  article-title: Cross-subject emotion recognition based on domain similarity of EEG signal transfer learning
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2023.3236687
– volume: 29
  start-page: 1913
  year: 2021
  ident: 10.1016/j.neunet.2025.107614_b24
  article-title: EEGfusenet: Hybrid unsupervised deep feature characterization and fusion for high-dimensional EEG with an application to emotion recognition
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2021.3111689
– volume: 193
  year: 2020
  ident: 10.1016/j.neunet.2025.107614_b42
  article-title: Clustering by transmission learning from data density to label manifold with statistical diffusion
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.105330
– year: 2023
  ident: 10.1016/j.neunet.2025.107614_b33
– year: 2023
  ident: 10.1016/j.neunet.2025.107614_b25
– volume: 22
  issue: 11
  year: 2022
  ident: 10.1016/j.neunet.2025.107614_b19
  article-title: An EEG data processing approach for emotion recognition
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2022.3168572
– volume: 23
  start-page: 1932
  issue: 4
  year: 2023
  ident: 10.1016/j.neunet.2025.107614_b39
  article-title: Classification of motor imagery EEG signals based on data augmentation and convolutional neural networks
  publication-title: Sensors
  doi: 10.3390/s23041932
– year: 2023
  ident: 10.1016/j.neunet.2025.107614_b48
  article-title: Unsupervised time-aware sampling network with deep reinforcement learning for EEG-based emotion recognition
  publication-title: IEEE Transactions on Affective Computing
– ident: 10.1016/j.neunet.2025.107614_b51
– volume: 146
  year: 2022
  ident: 10.1016/j.neunet.2025.107614_b7
  article-title: EEG emotion recognition based on enhanced spd matrix and manifold dimensionality reduction
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2022.105606
– ident: 10.1016/j.neunet.2025.107614_b3
  doi: 10.1109/CVPR42600.2020.00047
– volume: 31
  start-page: 1952
  year: 2023
  ident: 10.1016/j.neunet.2025.107614_b37
  article-title: Self-supervised EEG emotion recognition models based on cnn
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2023.3263570
– volume: 208
  year: 2024
  ident: 10.1016/j.neunet.2025.107614_b45
  article-title: Mgfkd: A semi-supervised multi-source domain adaptation algorithm for cross-subject EEG emotion recognition
  publication-title: Brain Research Bulletin
  doi: 10.1016/j.brainresbull.2024.110901
– year: 2024
  ident: 10.1016/j.neunet.2025.107614_b12
  article-title: Cfda-csf: A multi-modal domain adaptation method for cross-subject emotion recognition
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/TAFFC.2024.3357656
– volume: 34
  start-page: 4385
  issue: 7
  year: 2022
  ident: 10.1016/j.neunet.2025.107614_b5
  article-title: EEG-based emotion recognition: Review of commercial EEG devices and machine learning techniques
  publication-title: Journal of King Saud University-Computer and Information Sciences
  doi: 10.1016/j.jksuci.2021.03.009
– volume: 14
  start-page: 833
  issue: 3
  year: 2021
  ident: 10.1016/j.neunet.2025.107614_b18
  article-title: Can emotion be transferred?—a review on transfer learning for EEG-based emotion recognition
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
  doi: 10.1109/TCDS.2021.3098842
– volume: 55
  start-page: 1
  issue: 4
  year: 2022
  ident: 10.1016/j.neunet.2025.107614_b23
  article-title: EEG based emotion recognition: A tutorial and review
  publication-title: ACM Computing Surveys
  doi: 10.1145/3524499
– volume: 9
  start-page: 1604
  issue: 6
  year: 2022
  ident: 10.1016/j.neunet.2025.107614_b8
  article-title: Multi-source domain transfer discriminative dictionary learning modeling for electroencephalogram-based emotion recognition
  publication-title: IEEE Transactions on Computational Social Systems
  doi: 10.1109/TCSS.2022.3153660
– start-page: 1
  year: 2019
  ident: 10.1016/j.neunet.2025.107614_b10
  article-title: Wavelet analysis based classification of emotion from EEG signal
– volume: 21
  start-page: 23
  issue: 1
  year: 2020
  ident: 10.1016/j.neunet.2025.107614_b32
  article-title: Employing pca and t-statistical approach for feature extraction and classification of emotion from multichannel EEG signal
  publication-title: Egyptian Informatics Journal
  doi: 10.1016/j.eij.2019.10.002
– volume: 610
  start-page: 508
  year: 2022
  ident: 10.1016/j.neunet.2025.107614_b1
  article-title: EEG-based cross-subject emotion recognition using fourier-bessel series expansion based empirical wavelet transform and nca feature selection method
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2022.07.121
– ident: 10.1016/j.neunet.2025.107614_b9
  doi: 10.1109/CVPR42600.2020.01288
– start-page: 222
  year: 2017
  ident: 10.1016/j.neunet.2025.107614_b13
  article-title: EEG-based emotion recognition using domain adaptation network
– volume: 21
  issue: 2
  year: 2024
  ident: 10.1016/j.neunet.2025.107614_b15
  article-title: Mslte: multiple self-supervised learning tasks for enhancing EEG emotion recognition
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/ad3c28
– volume: 72
  start-page: 1
  year: 2023
  ident: 10.1016/j.neunet.2025.107614_b34
  article-title: Multisource associate domain adaptation for cross-subject and cross-session EEG emotion recognition
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 31
  start-page: 917
  year: 2023
  ident: 10.1016/j.neunet.2025.107614_b30
  article-title: A brain network analysis-based double way deep neural network for emotion recognition
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2023.3236434
– volume: 49
  start-page: 1110
  issue: 3
  year: 2018
  ident: 10.1016/j.neunet.2025.107614_b49
  article-title: Emotionmeter: A multimodal framework for recognizing human emotions
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2018.2797176
– volume: 12
  start-page: 344
  issue: 2
  year: 2020
  ident: 10.1016/j.neunet.2025.107614_b20
  article-title: Domain adaptation for EEG emotion recognition based on latent representation similarity
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
  doi: 10.1109/TCDS.2019.2949306
– year: 2024
  ident: 10.1016/j.neunet.2025.107614_b16
  article-title: Generalized contrastive partial label learning for cross-subject EEG-based emotion recognition
  publication-title: IEEE Transactions on Instrumentation and Measurement
– year: 2023
  ident: 10.1016/j.neunet.2025.107614_b11
  article-title: Deep source semi-supervised transfer learning (ds3tl) for cross-subject EEG classification
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 143
  year: 2022
  ident: 10.1016/j.neunet.2025.107614_b22
  article-title: Emotion recognition from EEG based on multi-task learning with capsule network and attention mechanism
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2022.105303
– volume: 14
  start-page: 2048
  issue: 3
  year: 2022
  ident: 10.1016/j.neunet.2025.107614_b47
  article-title: Ganser: A self-supervised data augmentation framework for EEG-based emotion recognition
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/TAFFC.2022.3170369
– volume: 19
  start-page: 8104
  issue: 7
  year: 2022
  ident: 10.1016/j.neunet.2025.107614_b31
  article-title: Joint EEG feature transfer and semisupervised cross-subject emotion recognition
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2022.3217120
– year: 2023
  ident: 10.1016/j.neunet.2025.107614_b40
– start-page: 6627
  year: 2013
  ident: 10.1016/j.neunet.2025.107614_b35
  article-title: Differential entropy feature for EEG-based vigilance estimation
– volume: 11
  start-page: 532
  issue: 3
  year: 2018
  ident: 10.1016/j.neunet.2025.107614_b36
  article-title: EEG emotion recognition using dynamical graph convolutional neural networks
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/TAFFC.2018.2817622
– start-page: 1241
  year: 2022
  ident: 10.1016/j.neunet.2025.107614_b44
  article-title: Holistic semi-supervised approaches for EEG representation learning
– volume: 456
  start-page: 312
  year: 2021
  ident: 10.1016/j.neunet.2025.107614_b26
  article-title: Progressive low-rank subspace alignment based on semi-supervised joint domain adaption for personalized emotion recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.05.064
– start-page: 1
  year: 2019
  ident: 10.1016/j.neunet.2025.107614_b46
  article-title: A view-reduction based multi-view tsk fuzzy system and its application for textile color classification
  publication-title: Journal of Ambient Intelligence and Humanized Computing
– volume: 145
  year: 2022
  ident: 10.1016/j.neunet.2025.107614_b17
  article-title: Cross-subject EEG emotion recognition combined with connectivity features and meta-transfer learning
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2022.105519
– volume: 50
  start-page: 3281
  issue: 7
  year: 2019
  ident: 10.1016/j.neunet.2025.107614_b21
  article-title: Multisource transfer learning for cross-subject EEG emotion recognition
  publication-title: IEEE Transactions on Cybernetics
– year: 2022
  ident: 10.1016/j.neunet.2025.107614_b14
  article-title: Gmss: Graph-based multi-task self-supervised learning for EEG emotion recognition
  publication-title: IEEE Transactions on Affective Computing
– volume: 13
  start-page: 1528
  issue: 3
  year: 2020
  ident: 10.1016/j.neunet.2025.107614_b6
  article-title: An efficient lstm network for emotion recognition from multichannel EEG signals
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/TAFFC.2020.3013711
– volume: 149
  year: 2022
  ident: 10.1016/j.neunet.2025.107614_b38
  article-title: Simultaneously exploring multi-scale and asymmetric EEG features for emotion recognition
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2022.106002
– year: 2023
  ident: 10.1016/j.neunet.2025.107614_b52
SSID ssj0006843
Score 2.471204
Snippet Electroencephalography (EEG) serves as a valuable technique for objective emotion recognition, with promising applications across diverse fields. However, a...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 107614
SubjectTerms Algorithms
Electroencephalography (EEG)
Electroencephalography - methods
Emotion recognition
Emotions - physiology
Humans
Knowledge distillation
Machine Learning
Multi-domain adaptation
Pattern Recognition, Automated - methods
Semi-supervised learning
Supervised Machine Learning
Title SASD-MCL: Semi-supervised alignment self-distillation with mixed contrastive learning for cross-subject EEG emotion recognition
URI https://dx.doi.org/10.1016/j.neunet.2025.107614
https://www.ncbi.nlm.nih.gov/pubmed/40460464
https://www.proquest.com/docview/3215571840
Volume 190
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaK9rLLtu6ZrS1UYFctcSRLTm9Bmi7r65IV6E2QaKlI0TrBnAA7rX-9pGV32KEYsKMF2RZEkfwofRQZ-xI1SHSlIxEzUEJlKhfOUSJwNAOvR5nLgLYGLi717EqdXufXW2zS5cIQrbK1_cmmN9a6bem3s9lfLRb9-QBdraZU0by55ITidqUMrfKvv__QPHSRmHPYWVDvLn2u4XhVYVMFYlQOc2zCiF49556eg5-NGzp5zV62-JGP0xB32Vao3rBXXW0G3qrqW_YwH8-PxcXk_IjPw_1C1JsVWYU6lByR903DAeB1uIuiJC2_S5Q4Ttuy_H7xC7s1JHZXkznkbW2JG44Qlzcjxw962sLh0-k3HlItIP7ERlpW79jVyfTHZCbaYgsCZCbXQhuXRUqbdRGUy4oovddSA8ghQAAltR6WhQFUcsCYLw7KWGIwV-TRD_wIRvI9266WVfjIuIFhaQwgsgOpEJC5QivvAwZeOcRC6h4T3RzbVbpTw3Zks1ubZGJJJjbJpMdMJwj719qwaPb_8eZhJzeLakNnIa4Ky01tJUKd3FB422MfkkCfxqLosFhp9em___uZvaCnRPrbY9vrn5uwj-Bl7Q-a1XnAdsbfz2aXj1UX72I
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9swDCWK9LBdtnWf2dZWBXYVEkey7OwWZGnTNsklLdCbIMlSkaF1gjkBdttfH2nZAXYoBvRqS7YgiuSj9CgCfAvKCXSlQx4SJ7lMZMqNoUTgkPWtGiYmcbQ1MF-o6a28ukvvDmDc5sIQrbKx_dGm19a6edJrZrO3Wa16yz66WkWpoml9yQnG7Yd0O1XagcPR5fV0sTfIKo_kOWzPqUObQVfTvEq_Kz2RKgcpPsKgXj7loZ5CoLUnOn8DrxoIyUZxlEdw4Mu38Lotz8AabX0Hf5aj5Q8-H8--s6V_XPFqtyHDUPmCIfi-r2kArPIPgRek6A-RFcdoZ5Y9rn5js5rHbiqyiKwpL3HPEOWyeuT4QUu7OGwyuWA-lgNie0LSunwPt-eTm_GUN_UWuBOJ2HKVmSRQ5qwJTpokD8JaJZRzYuCcd1IoNSjyzKGeOwz7Qr8IBcZzeRps3w7dUHyATrku_SdgmRsUWeYQ3DkhEZOZXElrPcZeqQu5UF3g7RzrTbxWQ7d8s586ykSTTHSUSReyVhD6n-Wh0fL_p-dZKzeNmkPHIab0612lBaKdNKMItwsfo0D3Y5F0XiyV_Pzs_57Ci-nNfKZnl4vrL_CS3kQO4FfobH_t_DFima09adbqX4ht8hM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SASD-MCL%3A+Semi-supervised+alignment+self-distillation+with+mixed+contrastive+learning+for+cross-subject+EEG+emotion+recognition&rft.jtitle=Neural+networks&rft.au=Zhang%2C+Yong&rft.au=Chen%2C+Wenyun&rft.au=Cai%2C+Xingxing&rft.au=Cheng%2C+Cheng&rft.date=2025-10-01&rft.eissn=1879-2782&rft.volume=190&rft.spage=107614&rft_id=info:doi/10.1016%2Fj.neunet.2025.107614&rft_id=info%3Apmid%2F40460464&rft.externalDocID=40460464
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon