Bayesian Analysis of Mixed-effect Regression Models Driven by Ordinary Differential Equations

Non-linear regression models with regression functions specified by ordinary differential equations (ODEs) involving some unknown parameters are used to model dynamical systems appearing in pharmacokinetics and pharmacodynamics, viral dynamics, engineering, and many other fields. We consider the sit...

Full description

Saved in:
Bibliographic Details
Published inSankhyā. Series B (2008) Vol. 83; no. 1; pp. 3 - 29
Main Authors Tan, Qianwen, Ghosal, Subhashis
Format Journal Article
LanguageEnglish
Published New Delhi Springer Science + Business Media 01.05.2021
Springer India
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Non-linear regression models with regression functions specified by ordinary differential equations (ODEs) involving some unknown parameters are used to model dynamical systems appearing in pharmacokinetics and pharmacodynamics, viral dynamics, engineering, and many other fields. We consider the situation where multiple subjects are involved, each of which follow the same ODE model, with different parameters related by a linear regression model in certain observable covariates in the presence of a random effect. We follow a Bayesian two-step method, where first a nonparametric spline model is used and then a posterior on the parameter of interest is induced by a suitable projection map depending on the system of ODEs. Our main contribution is accommodating mixed effects within the Bayesian two-step method by using a further projection on the space of linear combinations of covariates. We describe efficient posterior computational techniques based on direct sampling and optimization. We show that the parameters of interest are estimable at the parametric rate and Bayesian credible sets have the correct frequentist coverage in large samples. By an extensive simulation study, we show the effectiveness of the proposed method. We apply the proposed method to an intravenous glucose tolerance test study.
AbstractList Non-linear regression models with regression functions specified by ordinary differential equations (ODEs) involving some unknown parameters are used to model dynamical systems appearing in pharmacokinetics and pharmacodynamics, viral dynamics, engineering, and many other fields. We consider the situation where multiple subjects are involved, each of which follow the same ODE model, with different parameters related by a linear regression model in certain observable covariates in the presence of a random effect. We follow a Bayesian two-step method, where first a nonparametric spline model is used and then a posterior on the parameter of interest is induced by a suitable projection map depending on the system of ODEs. Our main contribution is accommodating mixed effects within the Bayesian two-step method by using a further projection on the space of linear combinations of covariates. We describe efficient posterior computational techniques based on direct sampling and optimization. We show that the parameters of interest are estimable at the parametric rate and Bayesian credible sets have the correct frequentist coverage in large samples. By an extensive simulation study, we show the effectiveness of the proposed method. We apply the proposed method to an intravenous glucose tolerance test study.
Author Ghosal, Subhashis
Tan, Qianwen
Author_xml – sequence: 1
  givenname: Qianwen
  surname: Tan
  fullname: Tan, Qianwen
– sequence: 2
  givenname: Subhashis
  surname: Ghosal
  fullname: Ghosal, Subhashis
BookMark eNp9kMtKAzEUhoMoWGtfQBDyAqPJZJrLsrb1Ai0F0aWEdHKmpIwZTabivL2xI124aBYnWZzvnD_fBTr1jQeErii5oYSI20jZWNCMUJWRVFTGT9CAKMEzyVRxenhLfo5GMW5JOmPJGFMD9HZnOojOeDzxpu6ii7ip8NJ9g82gqqBs8TNsAsToGo-XjYU64llwX-DxusOrYJ03ocMzl5oD-NaZGs8_d6ZN_fESnVWmjjD6u4fo9X7-Mn3MFquHp-lkkZWMsjYbQ65MkQsrSC6p5ABmLUrFKSkpU2MB1EolCmukFUpQEJSL3JB1nr5kVQFsiPJ-bhmaGANU-iO495RLU6J_HenekU569N6R5gmS_6DStfvcbTCuPo6yHo1pj99A0NtmF5LAeJy67qltbJtwiFhIwTmnBfsBqN-HMQ
CitedBy_id crossref_primary_10_2478_amns_2022_2_0132
Cites_doi 10.1198/1085711032697
10.1214/15-AOS1398
10.1016/j.jmva.2017.03.003
10.1111/j.1541-0420.2009.01342.x
10.1111/j.1467-9868.2007.00610.x
10.1137/0903003
10.3150/11-BEJ362
10.1214/15-EJS1099
10.1137/0111030
10.1016/0169-2607(86)90106-9
10.1111/j.1541-0420.2005.00447.x
10.1146/annurev.pa.32.040192.001153
10.5705/ss.2009.156
10.1007/s002850050007
10.1111/sjos.12159
10.1090/qam/10666
10.3150/16-BEJ856
10.1186/1742-4682-8-12
10.1080/01621459.2013.841583
10.1007/s11222-012-9357-1
10.1198/jasa.2011.ap10194
10.1214/07-EJS132
10.1007/978-1-4612-6333-3
10.1002/sim.6136
10.1017/9781139029834
ContentType Journal Article
Copyright 2019, Indian Statistical Institute
Indian Statistical Institute 2019
Copyright_xml – notice: 2019, Indian Statistical Institute
– notice: Indian Statistical Institute 2019
DBID AAYXX
CITATION
DOI 10.1007/s13571-019-00199-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 0976-8394
EndPage 29
ExternalDocumentID 10_1007_s13571_019_00199_6
48766614
GroupedDBID 0R~
2JN
2KG
406
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
AAYZH
AAZMS
ABAKF
ABBHK
ABBRH
ABDBE
ABDZT
ABECU
ABFAN
ABHLI
ABJNI
ABJOX
ABMQK
ABQDR
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ABYWD
ACAOD
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACMTB
ACOKC
ACPIV
ACTMH
ACYDH
ACZOJ
ADHIR
ADKPE
ADODI
ADTPH
ADYFF
ADZKW
AEFQL
AEJHL
AEJRE
AELLO
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEUPB
AEVLU
AEXYK
AFDZB
AFQWF
AFVYC
AFWTZ
AFZKB
AGAYW
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHFUP
AHYZX
AIGIU
AIIXL
AILAN
AITGF
AJZVZ
AKBRZ
ALMA_UNASSIGNED_HOLDINGS
ALRMG
AMKLP
AMXSW
ANMIH
AOCGG
AOOXX
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
CSCUP
DDRTE
DNIVK
DPUIP
DQDLB
DSRWC
EBLON
ECEWR
EIOEI
ESBYG
FERAY
FIGPU
FNLPD
FRRFC
GGCAI
GJIRD
GNWQR
GQ7
HMJXF
HQ6
HRMNR
I0C
IKXTQ
IPSME
ITM
IWAJR
J-C
J0Z
JAA
JBSCW
JENOY
JMS
JPL
JST
JZLTJ
KOV
LLZTM
NPVJJ
NQJWS
O93
O9J
PQQKQ
PT4
RLLFE
ROL
RSV
SA0
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
ZMTXR
-EM
AAAVM
AAKYL
AARHV
AAYTO
ACBXY
ACDIW
ADINQ
ADRFC
ADULT
AEKMD
AELPN
AFLOW
AHSBF
AIHAF
AJBLW
BAPOH
FEDTE
FINBP
FSGXE
GGRSB
GIFXF
HVGLF
HZ~
JAAYA
JBMMH
JBZCM
JHFFW
JKQEH
JLEZI
JLXEF
JSODD
O9-
RIG
RNS
AAWIL
AAYXX
ABAWQ
ACHJO
AGLNM
CITATION
ID FETCH-LOGICAL-c313t-5e29a427d7028186eeab7c9610c13957e1d8974da8d7971e71672a0b2386d94e3
IEDL.DBID AGYKE
ISSN 0976-8386
IngestDate Tue Jul 01 00:31:23 EDT 2025
Thu Apr 24 23:02:50 EDT 2025
Fri Feb 21 02:48:30 EST 2025
Thu Jul 03 21:36:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Primary 62J02
Secondary 62G20
ODE models
Two-step method
62G08
Random effects
Longitudinal data
Bayesian inference
62F15
B-splines
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-5e29a427d7028186eeab7c9610c13957e1d8974da8d7971e71672a0b2386d94e3
ORCID 0000-0002-1710-9761
PageCount 27
ParticipantIDs crossref_primary_10_1007_s13571_019_00199_6
crossref_citationtrail_10_1007_s13571_019_00199_6
springer_journals_10_1007_s13571_019_00199_6
jstor_primary_48766614
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210501
20210500
2021-05-00
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 5
  year: 2021
  text: 20210501
  day: 1
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
PublicationSubtitle The Indian Journal of Statistics - Official Journal of Indian Statistical Institute
PublicationTitle Sankhyā. Series B (2008)
PublicationTitleAbbrev Sankhya B
PublicationYear 2021
Publisher Springer Science + Business Media
Springer India
Publisher_xml – name: Springer Science + Business Media
– name: Springer India
References Hahn, Ljunggren, Larsen, Nyström (CR13) 2011; 8
Bhaumik, Ghosal (CR3) 2017; 157
Bhaumik, Ghosal (CR1) 2015; 9
Levenberg (CR15) 1944; 2
CR17
Gugushvili, Klaasen (CR12) 2012; 18
CR11
Brunel, Clairon, d’Alché-Buc (CR5) 2014; 109
Fang, Wu, Zhu (CR10) 2011; 21
Donnet, Foulley, Samson (CR9) 2010; 66
Yoo, Ghosal (CR25) 2016; 44
Lu, Liang, Li, Wu (CR16) 2011; 106
Bhaumik, Ghosal (CR2) 2017; 23
Pacini, Bergman (CR19) 1986; 23
Shen, Ghosal (CR22) 2015; 42
Davidian, Giltinan (CR6) 2003; 8
Zhou, Shen, Wolfe (CR26) 1998; 26
Wang, Cao, Ramsay, Burger, Laporte, Rockstroh (CR24) 2014; 24
Sheiner, Ludden (CR21) 1992; 32
Huang, Liu, Wu (CR14) 2006; 62
Brunel (CR4) 2008; 2
De Gaetano, Arino (CR8) 2000; 40
De Boor (CR7) 1978
Marquardt (CR18) 1963; 11
Varah (CR23) 1982; 3
Ramsay, Hooker, Cao, Campbell (CR20) 2007; 69
M Davidian (199_CR6) 2003; 8
G Pacini (199_CR19) 1986; 23
NJ Brunel (199_CR4) 2008; 2
A De Gaetano (199_CR8) 2000; 40
L Wang (199_CR24) 2014; 24
199_CR11
JO Ramsay (199_CR20) 2007; 69
NJ Brunel (199_CR5) 2014; 109
S Donnet (199_CR9) 2010; 66
K Levenberg (199_CR15) 1944; 2
WW Yoo (199_CR25) 2016; 44
RJ Hahn (199_CR13) 2011; 8
S Zhou (199_CR26) 1998; 26
Y Fang (199_CR10) 2011; 21
LB Sheiner (199_CR21) 1992; 32
T Lu (199_CR16) 2011; 106
P Bhaumik (199_CR2) 2017; 23
W Shen (199_CR22) 2015; 42
P Bhaumik (199_CR1) 2015; 9
J Varah (199_CR23) 1982; 3
P Bhaumik (199_CR3) 2017; 157
C De Boor (199_CR7) 1978
D Marquardt (199_CR18) 1963; 11
S Gugushvili (199_CR12) 2012; 18
Y Huang (199_CR14) 2006; 62
199_CR17
References_xml – volume: 8
  start-page: 387
  issue: 4
  year: 2003
  ident: CR6
  article-title: Nonlinear models for repeated measurement data: An overview and update
  publication-title: J. Agric. Biol. Environ. Stat.
  doi: 10.1198/1085711032697
– volume: 44
  start-page: 1069
  issue: 3
  year: 2016
  end-page: 1102
  ident: CR25
  article-title: Supremum norm posterior contraction and credible sets for nonparametric multivariate regression
  publication-title: Ann. Stat.
  doi: 10.1214/15-AOS1398
– volume: 157
  start-page: 103
  year: 2017
  end-page: 114
  ident: CR3
  article-title: Bayesian inference for higher-order ordinary differential equation models
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2017.03.003
– volume: 66
  start-page: 733
  year: 2010
  end-page: 741
  ident: CR9
  article-title: Bayesian analysis of growth curves using mixed models defined by stochastic differential equations
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2009.01342.x
– volume: 69
  start-page: 741
  year: 2007
  end-page: 796
  ident: CR20
  article-title: Parameter estimation for differential equations: A generalized smoothing approach
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.1467-9868.2007.00610.x
– volume: 3
  start-page: 28
  year: 1982
  end-page: 46
  ident: CR23
  article-title: A spline least squares method for numerical parameter estimation in differential equations
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0903003
– volume: 18
  start-page: 1061
  year: 2012
  end-page: 1098
  ident: CR12
  article-title: $\sqrt {n}$n-consistent parameter estimation for systems of ordinary differential equations: bypassing numerical integration via smoothing
  publication-title: Bernoulli
  doi: 10.3150/11-BEJ362
– volume: 9
  start-page: 3124
  year: 2015
  end-page: 3154
  ident: CR1
  article-title: Bayesian two-step estimation in differential equation models
  publication-title: Electronic Journal of Statistics
  doi: 10.1214/15-EJS1099
– volume: 11
  start-page: 431
  issue: 2
  year: 1963
  end-page: 441
  ident: CR18
  article-title: An algorithm for least-squares estimation of nonlinear parameters
  publication-title: J. Soc. Ind. Appl. Math.
  doi: 10.1137/0111030
– volume: 23
  start-page: 113
  issue: 2
  year: 1986
  end-page: 122
  ident: CR19
  article-title: MINMOD: a computer program to calculate insulin sensitivity and pancreatic responsivity from the frequently sampled intravenous glucose tolerance test
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/0169-2607(86)90106-9
– volume: 62
  start-page: 413
  year: 2006
  end-page: 423
  ident: CR14
  article-title: Hierarchical Bayesian methods for estimation of parameters in a longitudinal HIV dynamic system
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2005.00447.x
– volume: 32
  start-page: 185
  issue: 1
  year: 1992
  end-page: 209
  ident: CR21
  article-title: Population pharmacokinetics/pharmacodynamics
  publication-title: Annu. Rev. Pharmacol. Toxicol.
  doi: 10.1146/annurev.pa.32.040192.001153
– volume: 21
  start-page: 1145
  issue: 3
  year: 2011
  end-page: 1170
  ident: CR10
  article-title: A two-stage estimation method for random coefficient differential equation models with application to longitudinal HIV dynamic data
  publication-title: Stat. Sin.
  doi: 10.5705/ss.2009.156
– volume: 40
  start-page: 136
  issue: 2
  year: 2000
  end-page: 168
  ident: CR8
  article-title: Mathematical modelling of the intravenous glucose tolerance test
  publication-title: J. Math. Biol.
  doi: 10.1007/s002850050007
– volume: 42
  start-page: 1194
  issue: 1
  year: 2015
  end-page: 1213
  ident: CR22
  article-title: Adaptive Bayesian procedures using random series priors
  publication-title: Scand. J. Stat.
  doi: 10.1111/sjos.12159
– volume: 2
  start-page: 164
  issue: 2
  year: 1944
  end-page: 168
  ident: CR15
  article-title: A method for the solution of certain non-linear problems in least squares
  publication-title: Q. Appl. Math.
  doi: 10.1090/qam/10666
– volume: 23
  start-page: 3537
  year: 2017
  end-page: 3570
  ident: CR2
  article-title: Efficient Bayesian estimation and uncertainty quantification in ordinary differential equation models
  publication-title: Bernoulli
  doi: 10.3150/16-BEJ856
– volume: 26
  start-page: 1760
  issue: 5
  year: 1998
  end-page: 1782
  ident: CR26
  article-title: Local asymptotics for regression splines and confidence regions
  publication-title: Ann. Stat.
– volume: 8
  start-page: 12
  year: 2011
  ident: CR13
  article-title: A simple intravenous glucose tolerance test for assessment of insulin sensitivity
  publication-title: Theor. Biol. Med. Model.
  doi: 10.1186/1742-4682-8-12
– volume: 109
  start-page: 173
  year: 2014
  end-page: 185
  ident: CR5
  article-title: Parametric estimation of ordinary differential equations with orthogonality conditions
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2013.841583
– volume: 24
  start-page: 111
  year: 2014
  end-page: 121
  ident: CR24
  article-title: Estimating mixed-effects differential equation models
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-012-9357-1
– ident: CR17
– ident: CR11
– volume: 106
  start-page: 1242
  year: 2011
  end-page: 1258
  ident: CR16
  article-title: High-dimensional ODEs coupled with mixed-effects modeling techniques for dynamic gene regulatory network identification
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2011.ap10194
– volume: 2
  start-page: 1935
  year: 2008
  end-page: 7524
  ident: CR4
  article-title: Parameter estimation of ODEs via nonparametric estimators
  publication-title: Electronic Journal of Statistics
  doi: 10.1214/07-EJS132
– start-page: 27
  year: 1978
  end-page: 27
  ident: CR7
  publication-title: A Practical Guide to Splines
  doi: 10.1007/978-1-4612-6333-3
– volume: 23
  start-page: 113
  issue: 2
  year: 1986
  ident: 199_CR19
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/0169-2607(86)90106-9
– volume: 106
  start-page: 1242
  year: 2011
  ident: 199_CR16
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2011.ap10194
– volume: 157
  start-page: 103
  year: 2017
  ident: 199_CR3
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2017.03.003
– volume: 44
  start-page: 1069
  issue: 3
  year: 2016
  ident: 199_CR25
  publication-title: Ann. Stat.
  doi: 10.1214/15-AOS1398
– volume: 18
  start-page: 1061
  year: 2012
  ident: 199_CR12
  publication-title: Bernoulli
  doi: 10.3150/11-BEJ362
– volume: 9
  start-page: 3124
  year: 2015
  ident: 199_CR1
  publication-title: Electronic Journal of Statistics
  doi: 10.1214/15-EJS1099
– volume: 2
  start-page: 1935
  year: 2008
  ident: 199_CR4
  publication-title: Electronic Journal of Statistics
  doi: 10.1214/07-EJS132
– volume: 23
  start-page: 3537
  year: 2017
  ident: 199_CR2
  publication-title: Bernoulli
  doi: 10.3150/16-BEJ856
– ident: 199_CR17
  doi: 10.1002/sim.6136
– volume: 2
  start-page: 164
  issue: 2
  year: 1944
  ident: 199_CR15
  publication-title: Q. Appl. Math.
  doi: 10.1090/qam/10666
– volume: 32
  start-page: 185
  issue: 1
  year: 1992
  ident: 199_CR21
  publication-title: Annu. Rev. Pharmacol. Toxicol.
  doi: 10.1146/annurev.pa.32.040192.001153
– volume: 66
  start-page: 733
  year: 2010
  ident: 199_CR9
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2009.01342.x
– volume: 26
  start-page: 1760
  issue: 5
  year: 1998
  ident: 199_CR26
  publication-title: Ann. Stat.
– volume: 8
  start-page: 12
  year: 2011
  ident: 199_CR13
  publication-title: Theor. Biol. Med. Model.
  doi: 10.1186/1742-4682-8-12
– volume: 11
  start-page: 431
  issue: 2
  year: 1963
  ident: 199_CR18
  publication-title: J. Soc. Ind. Appl. Math.
  doi: 10.1137/0111030
– volume: 109
  start-page: 173
  year: 2014
  ident: 199_CR5
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2013.841583
– volume: 8
  start-page: 387
  issue: 4
  year: 2003
  ident: 199_CR6
  publication-title: J. Agric. Biol. Environ. Stat.
  doi: 10.1198/1085711032697
– volume: 62
  start-page: 413
  year: 2006
  ident: 199_CR14
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2005.00447.x
– volume: 21
  start-page: 1145
  issue: 3
  year: 2011
  ident: 199_CR10
  publication-title: Stat. Sin.
  doi: 10.5705/ss.2009.156
– volume: 3
  start-page: 28
  year: 1982
  ident: 199_CR23
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0903003
– start-page: 27
  volume-title: A Practical Guide to Splines
  year: 1978
  ident: 199_CR7
  doi: 10.1007/978-1-4612-6333-3
– volume: 69
  start-page: 741
  year: 2007
  ident: 199_CR20
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.1467-9868.2007.00610.x
– ident: 199_CR11
  doi: 10.1017/9781139029834
– volume: 24
  start-page: 111
  year: 2014
  ident: 199_CR24
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-012-9357-1
– volume: 40
  start-page: 136
  issue: 2
  year: 2000
  ident: 199_CR8
  publication-title: J. Math. Biol.
  doi: 10.1007/s002850050007
– volume: 42
  start-page: 1194
  issue: 1
  year: 2015
  ident: 199_CR22
  publication-title: Scand. J. Stat.
  doi: 10.1111/sjos.12159
SSID ssj0000583339
Score 2.1509202
Snippet Non-linear regression models with regression functions specified by ordinary differential equations (ODEs) involving some unknown parameters are used to model...
SourceID crossref
springer
jstor
SourceType Enrichment Source
Index Database
Publisher
StartPage 3
SubjectTerms Mathematics and Statistics
Statistics
Title Bayesian Analysis of Mixed-effect Regression Models Driven by Ordinary Differential Equations
URI https://www.jstor.org/stable/48766614
https://link.springer.com/article/10.1007/s13571-019-00199-6
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH5ovdSDS7W4MwdvOiXrTHJ0L0oVxEI9SMgsFbG0alKw_nrfZJIWFwTPeTMks34v73vfA9iXIYJkP3RoKgNBA2niu9oXVEim8EYXzCvKdHauWbsbXPbCXpkUllVs9yokWZzUs2Q3P-TG9Y2pwSUxZfOwgPjDCWqwcHRxfzX7t-KYVCLfyuxxRiM_YmW-zO8dfbmTLC3xR2C0uG_Ol6FbvamlmTy3xrloyY9vIo7__ZQVWCoBKDmyK2YV5vSwAYudqXpr1oC6QaBWwHkNHo7TiTaZlqTSLyGjPuk8vWtFLRmE3OpHy6YdElNabZCR0zdziBIxITe4AE3GLzktK7HgiTIgZ69WYTxbh-752d1Jm5Y1Gaj0XT-nofbiNPC44o7RkWJap4LLGEGYdE3IT7sqQhdFpZHiMXc1umPcSx2ByICpONB-E2rD0VBvAOnj8z5zXc4cGXieEykX7bSS6MMgCmKb4FazkshSsNzUzRgkM6llM44JDmFSjGOCbQ6mbV6sXMef1s1isqem6L0xA1g24bCauKTc09kf_Wz9z3wb6p5hxhS0yR2o5W9jvYvQJhd75Ur-BLgZ6rU
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BOQAH9oodH7iBUVY7ObK0lKUgISrBAUXxUoSoCjStRPl6xnHSikVInDOxEntiv8m8eQOwK0MEyX7o0FQGggbS5He1L6iQTOGJLpiXt-lsXrFGKzi_C--KorCsZLuXKcl8px4Xu_khN6FvTA0uiSmbhKkAY3D066nD0_uL8b8Vx5QS-VZmjzMa-REr6mV-H-jLmWRpiT8So_l5U5-HVvmklmbyfDDoiwP58U3E8b-vsgBzBQAlh9ZjFmFCd5dgtjlSb82WYMYgUCvgvAwPR-lQm0pLUuqXkJc2aT69a0UtGYTc6EfLpu0S01qtk5GTntlEiRiSa3RAU_FLTopOLLijdEjtzSqMZyvQqtdujxu06MlApe_6fRpqL04DjyvuGB0ppnUquIwRhEnXpPy0qyIMUVQaKR5zV2M4xr3UEYgMmIoD7Veh0n3p6lUgbbzeZq7LmSMDz3Mi5aKdVhJjGERBbA3cclUSWQiWm74ZnWQstWzmMcEpTPJ5TPCevdE9r1au40_rar7YI1OM3pgBLGuwXy5cUnzT2R_jrP_PfAemG7fNy-Ty7OpiA2Y8w5LJKZSbUOn3BnoLYU5fbBde_QnnY-2k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JSsRAEC10BNGDu7jbB2_amrU7OarjuI6KKOhBQnoZEYe4TAT16-1KJzNuCOI51U3S66tUvVcAKzI0INkPHZrKQNBAYnxX-4IKyZS50QXzijKdzWO2dxEcXIaXH1j8RbZ7FZK0nAZUacryjQfV2ugR3_yQoxscU8QoMWX9MBCgtl0NBjZ3rw57_1kcpBX5VnKPMxr5ESu5Mz939Ol-simK34Kkxd3TGIW0emubcnK3_pyLdfn2RdDxP581BiMlMCWbdiWNQ5_OJmC42VV17UzAECJTK-w8Cddb6atGBiapdE3IfYs0b1-0ojZJhJzpG5tlmxEsudbukPoTHq5EvJITszCRCUzqZYUWc9K0yc6jVR7vTMFFY-d8e4-WtRqo9F0_p6H24jTwuOIO6ksxrVPBZWzAmXQxFKhdFRnXRaWR4jF3tXHTuJc6wiAGpuJA-9NQy-4zPQOkZZ63mOty5sjA85xIucZOK2l8G4OO2Cy41QwlshQyx3oa7aQnwYzjmJghTIpxTEyb1W6bByvj8av1dDHxXVPj1TEEMrOwVk1iUu71zi_9zP3NfBkGT-uN5Gj_-HAehjxMnikyKxeglj8960WDfnKxVC7wd_Qv9og
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+Analysis+of+Mixed-effect+Regression+Models+Driven+by+Ordinary+Differential+Equations&rft.jtitle=Sankhy%C4%81.+Series+B+%282008%29&rft.au=Tan%2C+Qianwen&rft.au=Ghosal%2C+Subhashis&rft.date=2021-05-01&rft.issn=0976-8386&rft.eissn=0976-8394&rft.volume=83&rft.issue=1&rft.spage=3&rft.epage=29&rft_id=info:doi/10.1007%2Fs13571-019-00199-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13571_019_00199_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0976-8386&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0976-8386&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0976-8386&client=summon