Bayesian Analysis of Mixed-effect Regression Models Driven by Ordinary Differential Equations
Non-linear regression models with regression functions specified by ordinary differential equations (ODEs) involving some unknown parameters are used to model dynamical systems appearing in pharmacokinetics and pharmacodynamics, viral dynamics, engineering, and many other fields. We consider the sit...
Saved in:
Published in | Sankhyā. Series B (2008) Vol. 83; no. 1; pp. 3 - 29 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New Delhi
Springer Science + Business Media
01.05.2021
Springer India |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Non-linear regression models with regression functions specified by ordinary differential equations (ODEs) involving some unknown parameters are used to model dynamical systems appearing in pharmacokinetics and pharmacodynamics, viral dynamics, engineering, and many other fields. We consider the situation where multiple subjects are involved, each of which follow the same ODE model, with different parameters related by a linear regression model in certain observable covariates in the presence of a random effect. We follow a Bayesian two-step method, where first a nonparametric spline model is used and then a posterior on the parameter of interest is induced by a suitable projection map depending on the system of ODEs. Our main contribution is accommodating mixed effects within the Bayesian two-step method by using a further projection on the space of linear combinations of covariates. We describe efficient posterior computational techniques based on direct sampling and optimization. We show that the parameters of interest are estimable at the parametric rate and Bayesian credible sets have the correct frequentist coverage in large samples. By an extensive simulation study, we show the effectiveness of the proposed method. We apply the proposed method to an intravenous glucose tolerance test study. |
---|---|
AbstractList | Non-linear regression models with regression functions specified by ordinary differential equations (ODEs) involving some unknown parameters are used to model dynamical systems appearing in pharmacokinetics and pharmacodynamics, viral dynamics, engineering, and many other fields. We consider the situation where multiple subjects are involved, each of which follow the same ODE model, with different parameters related by a linear regression model in certain observable covariates in the presence of a random effect. We follow a Bayesian two-step method, where first a nonparametric spline model is used and then a posterior on the parameter of interest is induced by a suitable projection map depending on the system of ODEs. Our main contribution is accommodating mixed effects within the Bayesian two-step method by using a further projection on the space of linear combinations of covariates. We describe efficient posterior computational techniques based on direct sampling and optimization. We show that the parameters of interest are estimable at the parametric rate and Bayesian credible sets have the correct frequentist coverage in large samples. By an extensive simulation study, we show the effectiveness of the proposed method. We apply the proposed method to an intravenous glucose tolerance test study. |
Author | Ghosal, Subhashis Tan, Qianwen |
Author_xml | – sequence: 1 givenname: Qianwen surname: Tan fullname: Tan, Qianwen – sequence: 2 givenname: Subhashis surname: Ghosal fullname: Ghosal, Subhashis |
BookMark | eNp9kMtKAzEUhoMoWGtfQBDyAqPJZJrLsrb1Ai0F0aWEdHKmpIwZTabivL2xI124aBYnWZzvnD_fBTr1jQeErii5oYSI20jZWNCMUJWRVFTGT9CAKMEzyVRxenhLfo5GMW5JOmPJGFMD9HZnOojOeDzxpu6ii7ip8NJ9g82gqqBs8TNsAsToGo-XjYU64llwX-DxusOrYJ03ocMzl5oD-NaZGs8_d6ZN_fESnVWmjjD6u4fo9X7-Mn3MFquHp-lkkZWMsjYbQ65MkQsrSC6p5ABmLUrFKSkpU2MB1EolCmukFUpQEJSL3JB1nr5kVQFsiPJ-bhmaGANU-iO495RLU6J_HenekU569N6R5gmS_6DStfvcbTCuPo6yHo1pj99A0NtmF5LAeJy67qltbJtwiFhIwTmnBfsBqN-HMQ |
CitedBy_id | crossref_primary_10_2478_amns_2022_2_0132 |
Cites_doi | 10.1198/1085711032697 10.1214/15-AOS1398 10.1016/j.jmva.2017.03.003 10.1111/j.1541-0420.2009.01342.x 10.1111/j.1467-9868.2007.00610.x 10.1137/0903003 10.3150/11-BEJ362 10.1214/15-EJS1099 10.1137/0111030 10.1016/0169-2607(86)90106-9 10.1111/j.1541-0420.2005.00447.x 10.1146/annurev.pa.32.040192.001153 10.5705/ss.2009.156 10.1007/s002850050007 10.1111/sjos.12159 10.1090/qam/10666 10.3150/16-BEJ856 10.1186/1742-4682-8-12 10.1080/01621459.2013.841583 10.1007/s11222-012-9357-1 10.1198/jasa.2011.ap10194 10.1214/07-EJS132 10.1007/978-1-4612-6333-3 10.1002/sim.6136 10.1017/9781139029834 |
ContentType | Journal Article |
Copyright | 2019, Indian Statistical Institute Indian Statistical Institute 2019 |
Copyright_xml | – notice: 2019, Indian Statistical Institute – notice: Indian Statistical Institute 2019 |
DBID | AAYXX CITATION |
DOI | 10.1007/s13571-019-00199-6 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 0976-8394 |
EndPage | 29 |
ExternalDocumentID | 10_1007_s13571_019_00199_6 48766614 |
GroupedDBID | 0R~ 2JN 2KG 406 AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAYIU AAYQN AAYZH AAZMS ABAKF ABBHK ABBRH ABDBE ABDZT ABECU ABFAN ABHLI ABJNI ABJOX ABMQK ABQDR ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ABYWD ACAOD ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACMTB ACOKC ACPIV ACTMH ACYDH ACZOJ ADHIR ADKPE ADODI ADTPH ADYFF ADZKW AEFQL AEJHL AEJRE AELLO AEMSY AEOHA AEPYU AESKC AETCA AEUPB AEVLU AEXYK AFDZB AFQWF AFVYC AFWTZ AFZKB AGAYW AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHFUP AHYZX AIGIU AIIXL AILAN AITGF AJZVZ AKBRZ ALMA_UNASSIGNED_HOLDINGS ALRMG AMKLP AMXSW ANMIH AOCGG AOOXX ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN CSCUP DDRTE DNIVK DPUIP DQDLB DSRWC EBLON ECEWR EIOEI ESBYG FERAY FIGPU FNLPD FRRFC GGCAI GJIRD GNWQR GQ7 HMJXF HQ6 HRMNR I0C IKXTQ IPSME ITM IWAJR J-C J0Z JAA JBSCW JENOY JMS JPL JST JZLTJ KOV LLZTM NPVJJ NQJWS O93 O9J PQQKQ PT4 RLLFE ROL RSV SA0 SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 ZMTXR -EM AAAVM AAKYL AARHV AAYTO ACBXY ACDIW ADINQ ADRFC ADULT AEKMD AELPN AFLOW AHSBF AIHAF AJBLW BAPOH FEDTE FINBP FSGXE GGRSB GIFXF HVGLF HZ~ JAAYA JBMMH JBZCM JHFFW JKQEH JLEZI JLXEF JSODD O9- RIG RNS AAWIL AAYXX ABAWQ ACHJO AGLNM CITATION |
ID | FETCH-LOGICAL-c313t-5e29a427d7028186eeab7c9610c13957e1d8974da8d7971e71672a0b2386d94e3 |
IEDL.DBID | AGYKE |
ISSN | 0976-8386 |
IngestDate | Tue Jul 01 00:31:23 EDT 2025 Thu Apr 24 23:02:50 EDT 2025 Fri Feb 21 02:48:30 EST 2025 Thu Jul 03 21:36:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Primary 62J02 Secondary 62G20 ODE models Two-step method 62G08 Random effects Longitudinal data Bayesian inference 62F15 B-splines |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c313t-5e29a427d7028186eeab7c9610c13957e1d8974da8d7971e71672a0b2386d94e3 |
ORCID | 0000-0002-1710-9761 |
PageCount | 27 |
ParticipantIDs | crossref_primary_10_1007_s13571_019_00199_6 crossref_citationtrail_10_1007_s13571_019_00199_6 springer_journals_10_1007_s13571_019_00199_6 jstor_primary_48766614 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210501 20210500 2021-05-00 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 5 year: 2021 text: 20210501 day: 1 |
PublicationDecade | 2020 |
PublicationPlace | New Delhi |
PublicationPlace_xml | – name: New Delhi |
PublicationSubtitle | The Indian Journal of Statistics - Official Journal of Indian Statistical Institute |
PublicationTitle | Sankhyā. Series B (2008) |
PublicationTitleAbbrev | Sankhya B |
PublicationYear | 2021 |
Publisher | Springer Science + Business Media Springer India |
Publisher_xml | – name: Springer Science + Business Media – name: Springer India |
References | Hahn, Ljunggren, Larsen, Nyström (CR13) 2011; 8 Bhaumik, Ghosal (CR3) 2017; 157 Bhaumik, Ghosal (CR1) 2015; 9 Levenberg (CR15) 1944; 2 CR17 Gugushvili, Klaasen (CR12) 2012; 18 CR11 Brunel, Clairon, d’Alché-Buc (CR5) 2014; 109 Fang, Wu, Zhu (CR10) 2011; 21 Donnet, Foulley, Samson (CR9) 2010; 66 Yoo, Ghosal (CR25) 2016; 44 Lu, Liang, Li, Wu (CR16) 2011; 106 Bhaumik, Ghosal (CR2) 2017; 23 Pacini, Bergman (CR19) 1986; 23 Shen, Ghosal (CR22) 2015; 42 Davidian, Giltinan (CR6) 2003; 8 Zhou, Shen, Wolfe (CR26) 1998; 26 Wang, Cao, Ramsay, Burger, Laporte, Rockstroh (CR24) 2014; 24 Sheiner, Ludden (CR21) 1992; 32 Huang, Liu, Wu (CR14) 2006; 62 Brunel (CR4) 2008; 2 De Gaetano, Arino (CR8) 2000; 40 De Boor (CR7) 1978 Marquardt (CR18) 1963; 11 Varah (CR23) 1982; 3 Ramsay, Hooker, Cao, Campbell (CR20) 2007; 69 M Davidian (199_CR6) 2003; 8 G Pacini (199_CR19) 1986; 23 NJ Brunel (199_CR4) 2008; 2 A De Gaetano (199_CR8) 2000; 40 L Wang (199_CR24) 2014; 24 199_CR11 JO Ramsay (199_CR20) 2007; 69 NJ Brunel (199_CR5) 2014; 109 S Donnet (199_CR9) 2010; 66 K Levenberg (199_CR15) 1944; 2 WW Yoo (199_CR25) 2016; 44 RJ Hahn (199_CR13) 2011; 8 S Zhou (199_CR26) 1998; 26 Y Fang (199_CR10) 2011; 21 LB Sheiner (199_CR21) 1992; 32 T Lu (199_CR16) 2011; 106 P Bhaumik (199_CR2) 2017; 23 W Shen (199_CR22) 2015; 42 P Bhaumik (199_CR1) 2015; 9 J Varah (199_CR23) 1982; 3 P Bhaumik (199_CR3) 2017; 157 C De Boor (199_CR7) 1978 D Marquardt (199_CR18) 1963; 11 S Gugushvili (199_CR12) 2012; 18 Y Huang (199_CR14) 2006; 62 199_CR17 |
References_xml | – volume: 8 start-page: 387 issue: 4 year: 2003 ident: CR6 article-title: Nonlinear models for repeated measurement data: An overview and update publication-title: J. Agric. Biol. Environ. Stat. doi: 10.1198/1085711032697 – volume: 44 start-page: 1069 issue: 3 year: 2016 end-page: 1102 ident: CR25 article-title: Supremum norm posterior contraction and credible sets for nonparametric multivariate regression publication-title: Ann. Stat. doi: 10.1214/15-AOS1398 – volume: 157 start-page: 103 year: 2017 end-page: 114 ident: CR3 article-title: Bayesian inference for higher-order ordinary differential equation models publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2017.03.003 – volume: 66 start-page: 733 year: 2010 end-page: 741 ident: CR9 article-title: Bayesian analysis of growth curves using mixed models defined by stochastic differential equations publication-title: Biometrics doi: 10.1111/j.1541-0420.2009.01342.x – volume: 69 start-page: 741 year: 2007 end-page: 796 ident: CR20 article-title: Parameter estimation for differential equations: A generalized smoothing approach publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.1467-9868.2007.00610.x – volume: 3 start-page: 28 year: 1982 end-page: 46 ident: CR23 article-title: A spline least squares method for numerical parameter estimation in differential equations publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0903003 – volume: 18 start-page: 1061 year: 2012 end-page: 1098 ident: CR12 article-title: $\sqrt {n}$n-consistent parameter estimation for systems of ordinary differential equations: bypassing numerical integration via smoothing publication-title: Bernoulli doi: 10.3150/11-BEJ362 – volume: 9 start-page: 3124 year: 2015 end-page: 3154 ident: CR1 article-title: Bayesian two-step estimation in differential equation models publication-title: Electronic Journal of Statistics doi: 10.1214/15-EJS1099 – volume: 11 start-page: 431 issue: 2 year: 1963 end-page: 441 ident: CR18 article-title: An algorithm for least-squares estimation of nonlinear parameters publication-title: J. Soc. Ind. Appl. Math. doi: 10.1137/0111030 – volume: 23 start-page: 113 issue: 2 year: 1986 end-page: 122 ident: CR19 article-title: MINMOD: a computer program to calculate insulin sensitivity and pancreatic responsivity from the frequently sampled intravenous glucose tolerance test publication-title: Comput. Methods Programs Biomed. doi: 10.1016/0169-2607(86)90106-9 – volume: 62 start-page: 413 year: 2006 end-page: 423 ident: CR14 article-title: Hierarchical Bayesian methods for estimation of parameters in a longitudinal HIV dynamic system publication-title: Biometrics doi: 10.1111/j.1541-0420.2005.00447.x – volume: 32 start-page: 185 issue: 1 year: 1992 end-page: 209 ident: CR21 article-title: Population pharmacokinetics/pharmacodynamics publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev.pa.32.040192.001153 – volume: 21 start-page: 1145 issue: 3 year: 2011 end-page: 1170 ident: CR10 article-title: A two-stage estimation method for random coefficient differential equation models with application to longitudinal HIV dynamic data publication-title: Stat. Sin. doi: 10.5705/ss.2009.156 – volume: 40 start-page: 136 issue: 2 year: 2000 end-page: 168 ident: CR8 article-title: Mathematical modelling of the intravenous glucose tolerance test publication-title: J. Math. Biol. doi: 10.1007/s002850050007 – volume: 42 start-page: 1194 issue: 1 year: 2015 end-page: 1213 ident: CR22 article-title: Adaptive Bayesian procedures using random series priors publication-title: Scand. J. Stat. doi: 10.1111/sjos.12159 – volume: 2 start-page: 164 issue: 2 year: 1944 end-page: 168 ident: CR15 article-title: A method for the solution of certain non-linear problems in least squares publication-title: Q. Appl. Math. doi: 10.1090/qam/10666 – volume: 23 start-page: 3537 year: 2017 end-page: 3570 ident: CR2 article-title: Efficient Bayesian estimation and uncertainty quantification in ordinary differential equation models publication-title: Bernoulli doi: 10.3150/16-BEJ856 – volume: 26 start-page: 1760 issue: 5 year: 1998 end-page: 1782 ident: CR26 article-title: Local asymptotics for regression splines and confidence regions publication-title: Ann. Stat. – volume: 8 start-page: 12 year: 2011 ident: CR13 article-title: A simple intravenous glucose tolerance test for assessment of insulin sensitivity publication-title: Theor. Biol. Med. Model. doi: 10.1186/1742-4682-8-12 – volume: 109 start-page: 173 year: 2014 end-page: 185 ident: CR5 article-title: Parametric estimation of ordinary differential equations with orthogonality conditions publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2013.841583 – volume: 24 start-page: 111 year: 2014 end-page: 121 ident: CR24 article-title: Estimating mixed-effects differential equation models publication-title: Stat. Comput. doi: 10.1007/s11222-012-9357-1 – ident: CR17 – ident: CR11 – volume: 106 start-page: 1242 year: 2011 end-page: 1258 ident: CR16 article-title: High-dimensional ODEs coupled with mixed-effects modeling techniques for dynamic gene regulatory network identification publication-title: J. Am. Stat. Assoc. doi: 10.1198/jasa.2011.ap10194 – volume: 2 start-page: 1935 year: 2008 end-page: 7524 ident: CR4 article-title: Parameter estimation of ODEs via nonparametric estimators publication-title: Electronic Journal of Statistics doi: 10.1214/07-EJS132 – start-page: 27 year: 1978 end-page: 27 ident: CR7 publication-title: A Practical Guide to Splines doi: 10.1007/978-1-4612-6333-3 – volume: 23 start-page: 113 issue: 2 year: 1986 ident: 199_CR19 publication-title: Comput. Methods Programs Biomed. doi: 10.1016/0169-2607(86)90106-9 – volume: 106 start-page: 1242 year: 2011 ident: 199_CR16 publication-title: J. Am. Stat. Assoc. doi: 10.1198/jasa.2011.ap10194 – volume: 157 start-page: 103 year: 2017 ident: 199_CR3 publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2017.03.003 – volume: 44 start-page: 1069 issue: 3 year: 2016 ident: 199_CR25 publication-title: Ann. Stat. doi: 10.1214/15-AOS1398 – volume: 18 start-page: 1061 year: 2012 ident: 199_CR12 publication-title: Bernoulli doi: 10.3150/11-BEJ362 – volume: 9 start-page: 3124 year: 2015 ident: 199_CR1 publication-title: Electronic Journal of Statistics doi: 10.1214/15-EJS1099 – volume: 2 start-page: 1935 year: 2008 ident: 199_CR4 publication-title: Electronic Journal of Statistics doi: 10.1214/07-EJS132 – volume: 23 start-page: 3537 year: 2017 ident: 199_CR2 publication-title: Bernoulli doi: 10.3150/16-BEJ856 – ident: 199_CR17 doi: 10.1002/sim.6136 – volume: 2 start-page: 164 issue: 2 year: 1944 ident: 199_CR15 publication-title: Q. Appl. Math. doi: 10.1090/qam/10666 – volume: 32 start-page: 185 issue: 1 year: 1992 ident: 199_CR21 publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev.pa.32.040192.001153 – volume: 66 start-page: 733 year: 2010 ident: 199_CR9 publication-title: Biometrics doi: 10.1111/j.1541-0420.2009.01342.x – volume: 26 start-page: 1760 issue: 5 year: 1998 ident: 199_CR26 publication-title: Ann. Stat. – volume: 8 start-page: 12 year: 2011 ident: 199_CR13 publication-title: Theor. Biol. Med. Model. doi: 10.1186/1742-4682-8-12 – volume: 11 start-page: 431 issue: 2 year: 1963 ident: 199_CR18 publication-title: J. Soc. Ind. Appl. Math. doi: 10.1137/0111030 – volume: 109 start-page: 173 year: 2014 ident: 199_CR5 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2013.841583 – volume: 8 start-page: 387 issue: 4 year: 2003 ident: 199_CR6 publication-title: J. Agric. Biol. Environ. Stat. doi: 10.1198/1085711032697 – volume: 62 start-page: 413 year: 2006 ident: 199_CR14 publication-title: Biometrics doi: 10.1111/j.1541-0420.2005.00447.x – volume: 21 start-page: 1145 issue: 3 year: 2011 ident: 199_CR10 publication-title: Stat. Sin. doi: 10.5705/ss.2009.156 – volume: 3 start-page: 28 year: 1982 ident: 199_CR23 publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0903003 – start-page: 27 volume-title: A Practical Guide to Splines year: 1978 ident: 199_CR7 doi: 10.1007/978-1-4612-6333-3 – volume: 69 start-page: 741 year: 2007 ident: 199_CR20 publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.1467-9868.2007.00610.x – ident: 199_CR11 doi: 10.1017/9781139029834 – volume: 24 start-page: 111 year: 2014 ident: 199_CR24 publication-title: Stat. Comput. doi: 10.1007/s11222-012-9357-1 – volume: 40 start-page: 136 issue: 2 year: 2000 ident: 199_CR8 publication-title: J. Math. Biol. doi: 10.1007/s002850050007 – volume: 42 start-page: 1194 issue: 1 year: 2015 ident: 199_CR22 publication-title: Scand. J. Stat. doi: 10.1111/sjos.12159 |
SSID | ssj0000583339 |
Score | 2.1509202 |
Snippet | Non-linear regression models with regression functions specified by ordinary differential equations (ODEs) involving some unknown parameters are used to model... |
SourceID | crossref springer jstor |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 3 |
SubjectTerms | Mathematics and Statistics Statistics |
Title | Bayesian Analysis of Mixed-effect Regression Models Driven by Ordinary Differential Equations |
URI | https://www.jstor.org/stable/48766614 https://link.springer.com/article/10.1007/s13571-019-00199-6 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH5ovdSDS7W4MwdvOiXrTHJ0L0oVxEI9SMgsFbG0alKw_nrfZJIWFwTPeTMks34v73vfA9iXIYJkP3RoKgNBA2niu9oXVEim8EYXzCvKdHauWbsbXPbCXpkUllVs9yokWZzUs2Q3P-TG9Y2pwSUxZfOwgPjDCWqwcHRxfzX7t-KYVCLfyuxxRiM_YmW-zO8dfbmTLC3xR2C0uG_Ol6FbvamlmTy3xrloyY9vIo7__ZQVWCoBKDmyK2YV5vSwAYudqXpr1oC6QaBWwHkNHo7TiTaZlqTSLyGjPuk8vWtFLRmE3OpHy6YdElNabZCR0zdziBIxITe4AE3GLzktK7HgiTIgZ69WYTxbh-752d1Jm5Y1Gaj0XT-nofbiNPC44o7RkWJap4LLGEGYdE3IT7sqQhdFpZHiMXc1umPcSx2ByICpONB-E2rD0VBvAOnj8z5zXc4cGXieEykX7bSS6MMgCmKb4FazkshSsNzUzRgkM6llM44JDmFSjGOCbQ6mbV6sXMef1s1isqem6L0xA1g24bCauKTc09kf_Wz9z3wb6p5hxhS0yR2o5W9jvYvQJhd75Ur-BLgZ6rU |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BOQAH9oodH7iBUVY7ObK0lKUgISrBAUXxUoSoCjStRPl6xnHSikVInDOxEntiv8m8eQOwK0MEyX7o0FQGggbS5He1L6iQTOGJLpiXt-lsXrFGKzi_C--KorCsZLuXKcl8px4Xu_khN6FvTA0uiSmbhKkAY3D066nD0_uL8b8Vx5QS-VZmjzMa-REr6mV-H-jLmWRpiT8So_l5U5-HVvmklmbyfDDoiwP58U3E8b-vsgBzBQAlh9ZjFmFCd5dgtjlSb82WYMYgUCvgvAwPR-lQm0pLUuqXkJc2aT69a0UtGYTc6EfLpu0S01qtk5GTntlEiRiSa3RAU_FLTopOLLijdEjtzSqMZyvQqtdujxu06MlApe_6fRpqL04DjyvuGB0ppnUquIwRhEnXpPy0qyIMUVQaKR5zV2M4xr3UEYgMmIoD7Veh0n3p6lUgbbzeZq7LmSMDz3Mi5aKdVhJjGERBbA3cclUSWQiWm74ZnWQstWzmMcEpTPJ5TPCevdE9r1au40_rar7YI1OM3pgBLGuwXy5cUnzT2R_jrP_PfAemG7fNy-Ty7OpiA2Y8w5LJKZSbUOn3BnoLYU5fbBde_QnnY-2k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JSsRAEC10BNGDu7jbB2_amrU7OarjuI6KKOhBQnoZEYe4TAT16-1KJzNuCOI51U3S66tUvVcAKzI0INkPHZrKQNBAYnxX-4IKyZS50QXzijKdzWO2dxEcXIaXH1j8RbZ7FZK0nAZUacryjQfV2ugR3_yQoxscU8QoMWX9MBCgtl0NBjZ3rw57_1kcpBX5VnKPMxr5ESu5Mz939Ol-simK34Kkxd3TGIW0emubcnK3_pyLdfn2RdDxP581BiMlMCWbdiWNQ5_OJmC42VV17UzAECJTK-w8Cddb6atGBiapdE3IfYs0b1-0ojZJhJzpG5tlmxEsudbukPoTHq5EvJITszCRCUzqZYUWc9K0yc6jVR7vTMFFY-d8e4-WtRqo9F0_p6H24jTwuOIO6ksxrVPBZWzAmXQxFKhdFRnXRaWR4jF3tXHTuJc6wiAGpuJA-9NQy-4zPQOkZZ63mOty5sjA85xIucZOK2l8G4OO2Cy41QwlshQyx3oa7aQnwYzjmJghTIpxTEyb1W6bByvj8av1dDHxXVPj1TEEMrOwVk1iUu71zi_9zP3NfBkGT-uN5Gj_-HAehjxMnikyKxeglj8960WDfnKxVC7wd_Qv9og |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+Analysis+of+Mixed-effect+Regression+Models+Driven+by+Ordinary+Differential+Equations&rft.jtitle=Sankhy%C4%81.+Series+B+%282008%29&rft.au=Tan%2C+Qianwen&rft.au=Ghosal%2C+Subhashis&rft.date=2021-05-01&rft.issn=0976-8386&rft.eissn=0976-8394&rft.volume=83&rft.issue=1&rft.spage=3&rft.epage=29&rft_id=info:doi/10.1007%2Fs13571-019-00199-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13571_019_00199_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0976-8386&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0976-8386&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0976-8386&client=summon |