CRISPR-Cas12a powered hybrid nanoparticle for extracellular vesicle aggregation and in-situ microRNA detection

Efficient extracellular vesicle (EV) enrichment and timely internal RNA detection for cancer diagnostics are highly desirable and remain a challenge. Here, we report a rapid EV aggregation induced in-situ microRNA detection technology based on cationic lipid-polymer hybrid nanoparticles encapsulatin...

Full description

Saved in:
Bibliographic Details
Published inBiosensors & bioelectronics Vol. 245; p. 115856
Main Authors Zhang, Tenghua, Xie, Zihui, Zheng, Xiaohe, Liang, Yuxin, Lu, Yao, Zhong, Hankang, Qian, Feiyang, Zhu, Yuqing, Sun, Ruiting, Sheng, Yan, Hu, Jiaming
Format Journal Article
LanguageEnglish
Published 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Efficient extracellular vesicle (EV) enrichment and timely internal RNA detection for cancer diagnostics are highly desirable and remain a challenge. Here, we report a rapid EV aggregation induced in-situ microRNA detection technology based on cationic lipid-polymer hybrid nanoparticles encapsulating cascade system of catalytic hairpin assembly and CRISPR-Cas12a (CLHN-CCC), allowing for EV enrichment in three-dimensional space and in-situ detection of internal microRNAs in one step within 30 min. The enrichment efficiency (>90%) of CLHN-CCC is demonstrated in artificial EVs, cell-secreted EVs and serum EVs, which is 5-fold higher than that of traditional ultracentrifugation. The sensitive detection of artificial EVs and internal miR-1290 was achieved with the limit of detection of 10 particles/μL and 0.07 amol, respectively. After lyophilization, CLHN-CCC shows no obvious loss of performance within 6 months, making it much more robust and user friendly. This technique could sensitively (sensitivity = 92.9%) and selectively (selectivity = 85.7%) identify low amount miR-1290 in serum EVs, distinguishing early-stage pancreatic cancer patients from healthy subjects, showing high potential for clinical applications.Efficient extracellular vesicle (EV) enrichment and timely internal RNA detection for cancer diagnostics are highly desirable and remain a challenge. Here, we report a rapid EV aggregation induced in-situ microRNA detection technology based on cationic lipid-polymer hybrid nanoparticles encapsulating cascade system of catalytic hairpin assembly and CRISPR-Cas12a (CLHN-CCC), allowing for EV enrichment in three-dimensional space and in-situ detection of internal microRNAs in one step within 30 min. The enrichment efficiency (>90%) of CLHN-CCC is demonstrated in artificial EVs, cell-secreted EVs and serum EVs, which is 5-fold higher than that of traditional ultracentrifugation. The sensitive detection of artificial EVs and internal miR-1290 was achieved with the limit of detection of 10 particles/μL and 0.07 amol, respectively. After lyophilization, CLHN-CCC shows no obvious loss of performance within 6 months, making it much more robust and user friendly. This technique could sensitively (sensitivity = 92.9%) and selectively (selectivity = 85.7%) identify low amount miR-1290 in serum EVs, distinguishing early-stage pancreatic cancer patients from healthy subjects, showing high potential for clinical applications.
AbstractList Efficient extracellular vesicle (EV) enrichment and timely internal RNA detection for cancer diagnostics are highly desirable and remain a challenge. Here, we report a rapid EV aggregation induced in-situ microRNA detection technology based on cationic lipid-polymer hybrid nanoparticles encapsulating cascade system of catalytic hairpin assembly and CRISPR-Cas12a (CLHN-CCC), allowing for EV enrichment in three-dimensional space and in-situ detection of internal microRNAs in one step within 30 min. The enrichment efficiency (>90%) of CLHN-CCC is demonstrated in artificial EVs, cell-secreted EVs and serum EVs, which is 5-fold higher than that of traditional ultracentrifugation. The sensitive detection of artificial EVs and internal miR-1290 was achieved with the limit of detection of 10 particles/μL and 0.07 amol, respectively. After lyophilization, CLHN-CCC shows no obvious loss of performance within 6 months, making it much more robust and user friendly. This technique could sensitively (sensitivity = 92.9%) and selectively (selectivity = 85.7%) identify low amount miR-1290 in serum EVs, distinguishing early-stage pancreatic cancer patients from healthy subjects, showing high potential for clinical applications.Efficient extracellular vesicle (EV) enrichment and timely internal RNA detection for cancer diagnostics are highly desirable and remain a challenge. Here, we report a rapid EV aggregation induced in-situ microRNA detection technology based on cationic lipid-polymer hybrid nanoparticles encapsulating cascade system of catalytic hairpin assembly and CRISPR-Cas12a (CLHN-CCC), allowing for EV enrichment in three-dimensional space and in-situ detection of internal microRNAs in one step within 30 min. The enrichment efficiency (>90%) of CLHN-CCC is demonstrated in artificial EVs, cell-secreted EVs and serum EVs, which is 5-fold higher than that of traditional ultracentrifugation. The sensitive detection of artificial EVs and internal miR-1290 was achieved with the limit of detection of 10 particles/μL and 0.07 amol, respectively. After lyophilization, CLHN-CCC shows no obvious loss of performance within 6 months, making it much more robust and user friendly. This technique could sensitively (sensitivity = 92.9%) and selectively (selectivity = 85.7%) identify low amount miR-1290 in serum EVs, distinguishing early-stage pancreatic cancer patients from healthy subjects, showing high potential for clinical applications.
Efficient extracellular vesicle (EV) enrichment and timely internal RNA detection for cancer diagnostics are highly desirable and remain a challenge. Here, we report a rapid EV aggregation induced in-situ microRNA detection technology based on cationic lipid-polymer hybrid nanoparticles encapsulating cascade system of catalytic hairpin assembly and CRISPR-Cas12a (CLHN-CCC), allowing for EV enrichment in three-dimensional space and in-situ detection of internal microRNAs in one step within 30 min. The enrichment efficiency (>90%) of CLHN-CCC is demonstrated in artificial EVs, cell-secreted EVs and serum EVs, which is 5-fold higher than that of traditional ultracentrifugation. The sensitive detection of artificial EVs and internal miR-1290 was achieved with the limit of detection of 10 particles/μL and 0.07 amol, respectively. After lyophilization, CLHN-CCC shows no obvious loss of performance within 6 months, making it much more robust and user friendly. This technique could sensitively (sensitivity = 92.9%) and selectively (selectivity = 85.7%) identify low amount miR-1290 in serum EVs, distinguishing early-stage pancreatic cancer patients from healthy subjects, showing high potential for clinical applications.
ArticleNumber 115856
Author Lu, Yao
Zheng, Xiaohe
Liang, Yuxin
Sheng, Yan
Hu, Jiaming
Zhang, Tenghua
Zhu, Yuqing
Xie, Zihui
Qian, Feiyang
Zhong, Hankang
Sun, Ruiting
Author_xml – sequence: 1
  givenname: Tenghua
  surname: Zhang
  fullname: Zhang, Tenghua
– sequence: 2
  givenname: Zihui
  surname: Xie
  fullname: Xie, Zihui
– sequence: 3
  givenname: Xiaohe
  surname: Zheng
  fullname: Zheng, Xiaohe
– sequence: 4
  givenname: Yuxin
  surname: Liang
  fullname: Liang, Yuxin
– sequence: 5
  givenname: Yao
  surname: Lu
  fullname: Lu, Yao
– sequence: 6
  givenname: Hankang
  surname: Zhong
  fullname: Zhong, Hankang
– sequence: 7
  givenname: Feiyang
  surname: Qian
  fullname: Qian, Feiyang
– sequence: 8
  givenname: Yuqing
  surname: Zhu
  fullname: Zhu, Yuqing
– sequence: 9
  givenname: Ruiting
  surname: Sun
  fullname: Sun, Ruiting
– sequence: 10
  givenname: Yan
  surname: Sheng
  fullname: Sheng, Yan
– sequence: 11
  givenname: Jiaming
  orcidid: 0000-0001-5028-3123
  surname: Hu
  fullname: Hu, Jiaming
BookMark eNqFUU1PwzAMjdCQ2AZ_gFOOXDry0aTpcZr4mIQADThHWeqOTF0ykg7Yv6dlnDiALMsHv2f7-Y3QwAcPCJ1TMqGEysv1ZOlCmjDC-IRSoYQ8QkOqCp7ljIsBGpJSyExIyU_QKKU1IaSgJRkiP1vMnx4X2cwkygzehg-IUOHX_TK6Cnvjw9bE1tkGcB0ihs82GgtNs2tMxO-QvjtmtYqwMq0LHhtfYeez5Nod3jgbw-J-iitowfbtU3RcmybB2U8do5frq-fZbXb3cDOfTe8yyylvM1FUlJEuqWWcdAuVlKaUdb4sqyoHo4QlQuW2kEVlmbIgStOJK5aFyusaDB-ji8PcbQxvO0it3rjU3208hF3SnApOS1508R-UqZKrnDIuO6g6QDtZKUWotXXtt-zuK67RlOjeDb3WvRu6d0Mf3Oio7Bd1G93GxP1fpC-7rJIK
CitedBy_id crossref_primary_10_1002_advs_202401069
crossref_primary_10_1002_advs_202409202
crossref_primary_10_1016_j_talanta_2024_125938
crossref_primary_10_1016_j_cej_2024_158797
crossref_primary_10_1016_j_talanta_2024_127013
crossref_primary_10_3390_plants13223247
crossref_primary_10_1021_acs_molpharmaceut_4c00863
crossref_primary_10_1038_s12276_024_01201_6
crossref_primary_10_20517_cdr_2024_107
crossref_primary_10_1186_s12967_024_05908_y
crossref_primary_10_1016_j_cej_2023_148212
crossref_primary_10_3389_fonc_2024_1415260
crossref_primary_10_1016_j_bios_2024_117042
Cites_doi 10.1016/j.omtn.2019.04.027
10.1186/s13058-016-0753-x
10.1093/nar/gkr504
10.1038/s41556-018-0250-9
10.1126/science.aat5011
10.1016/j.canlet.2018.02.002
10.1016/S0169-409X(98)00004-0
10.1016/j.molliq.2023.122854
10.1038/s41577-022-00763-8
10.1002/ange.201901997
10.1021/bi00449a033
10.7150/jca.38048
10.1038/s41598-018-34597-z
10.1016/j.cell.2015.09.038
10.1016/j.seppur.2023.124088
10.1016/j.molliq.2021.115468
10.1016/j.cej.2015.03.073
10.1073/pnas.93.21.11493
10.1016/j.colsurfa.2023.131859
10.1016/j.biomaterials.2015.03.014
10.1016/j.ccell.2014.09.005
10.1038/nature06451
10.1126/science.1148532
10.1021/nn300500u
10.1021/acsnano.2c11298
10.3390/nano9071025
10.1016/j.apsusc.2023.157008
10.1038/s41467-016-0009-6
10.2144/fsoa-2019-0116
10.1016/j.microc.2020.105868
10.1021/jacs.8b03956
10.1038/s41571-018-0036-9
10.1016/j.bios.2016.06.058
10.1021/acs.analchem.9b02181
10.1016/j.cej.2016.04.071
10.1016/j.jconrel.2011.07.035
10.1038/nbt.1807
10.1038/nsmb.1455
10.1158/1078-0432.CCR-12-3092
10.1016/j.cell.2019.02.029
10.1016/0005-2736(95)80017-A
10.1016/j.isci.2019.100782
10.1016/j.colsurfa.2023.131415
10.1016/j.biomaterials.2014.12.028
10.1126/science.281.5373.78
10.1073/pnas.1214046110
10.1038/s41422-018-0022-x
10.1016/j.jclepro.2019.05.125
10.1021/acsami.8b12725
10.7150/thno.33683
10.3390/ijms19020346
10.1021/ac401983w
10.1016/j.molliq.2023.122763
10.1016/j.addr.2006.09.017
10.1073/pnas.1408301111
10.1016/j.cell.2013.02.022
10.1159/000495328
10.1016/j.molliq.2019.03.119
10.1016/S0092-8674(03)00112-0
10.1016/j.colsurfa.2023.131794
10.1039/C4AY02142H
10.1016/j.bios.2019.111749
10.1016/j.molcel.2021.12.002
10.1016/0009-3084(86)90068-X
10.1038/nbt.2842
10.1021/jacs.9b13960
10.1038/s41551-021-00760-7
10.1039/D0AN00393J
10.1016/j.cej.2016.06.040
10.1021/bc900470y
10.1016/j.ccell.2016.10.009
10.1016/j.microc.2020.105765
10.1038/nrm.2017.125
10.1016/j.cell.2013.06.044
ContentType Journal Article
Copyright Copyright © 2023 Elsevier B.V. All rights reserved.
Copyright_xml – notice: Copyright © 2023 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.bios.2023.115856
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1873-4235
ExternalDocumentID 10_1016_j_bios_2023_115856
GroupedDBID ---
--K
--M
.HR
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABGSF
ABJNI
ABMAC
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADECG
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AFXIZ
AFZHZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJQLL
AJSZI
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CITATION
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HMU
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LX3
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SCB
SCC
SCH
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSK
SST
SSU
SSZ
T5K
TN5
WUQ
XPP
Y6R
YK3
ZMT
~G-
~KM
7X8
7S9
L.6
ID FETCH-LOGICAL-c313t-57d120d121c230ace866a96f4b9dd4ea85c0584c767dc28ce59a5667b784ffea3
ISSN 0956-5663
1873-4235
IngestDate Fri Jul 11 01:22:20 EDT 2025
Fri Jul 11 12:30:52 EDT 2025
Tue Jul 01 01:43:10 EDT 2025
Thu Apr 24 23:04:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c313t-57d120d121c230ace866a96f4b9dd4ea85c0584c767dc28ce59a5667b784ffea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5028-3123
PQID 2893841236
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3153193737
proquest_miscellaneous_2893841236
crossref_citationtrail_10_1016_j_bios_2023_115856
crossref_primary_10_1016_j_bios_2023_115856
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Biosensors & bioelectronics
PublicationYear 2024
References Rehan (10.1016/j.bios.2023.115856_bib48) 2023; 673
Jahn (10.1016/j.bios.2023.115856_bib25) 2003; 112
Salman (10.1016/j.bios.2023.115856_bib50) 2023; 622
Buzas (10.1016/j.bios.2023.115856_bib11) 2023; 23
Zelphati (10.1016/j.bios.2023.115856_bib72) 1996; 93
Lee (10.1016/j.bios.2023.115856_bib37) 2015; 54
Qi (10.1016/j.bios.2023.115856_bib45) 2013; 152
Li (10.1016/j.bios.2023.115856_bib38) 2013; 19
Csiszár (10.1016/j.bios.2023.115856_bib15) 2010; 21
Lee (10.1016/j.bios.2023.115856_bib36) 2016; 86
Qian (10.1016/j.bios.2023.115856_bib46) 2022; 16
Zetsche (10.1016/j.bios.2023.115856_bib73) 2015; 163
Gilbert (10.1016/j.bios.2023.115856_bib20) 2013; 154
Hu (10.1016/j.bios.2023.115856_bib24) 2017; 8
Chernomordik (10.1016/j.bios.2023.115856_bib12) 2008; 15
Wrobel (10.1016/j.bios.2023.115856_bib64) 1995; 1235
Kolašinac (10.1016/j.bios.2023.115856_bib32) 2018; 19
Hannafon (10.1016/j.bios.2023.115856_bib21) 2016; 18
Mönkkönen (10.1016/j.bios.2023.115856_bib44) 1998; 34
Xie (10.1016/j.bios.2023.115856_bib67) 2022
Zhao (10.1016/j.bios.2023.115856_bib77) 2015; 46
Wu (10.1016/j.bios.2023.115856_bib66) 2013; 85
Shahat (10.1016/j.bios.2023.115856_bib53) 2015; 273
Van Niel (10.1016/j.bios.2023.115856_bib57) 2018; 19
Alvarez-Erviti (10.1016/j.bios.2023.115856_bib2) 2011; 29
Kaminski (10.1016/j.bios.2023.115856_bib28) 2021; 5
Li (10.1016/j.bios.2023.115856_bib40) 2018; 28
Mathieu (10.1016/j.bios.2023.115856_bib42) 2019; 21
Salman (10.1016/j.bios.2023.115856_bib49) 2021; 162
Knott (10.1016/j.bios.2023.115856_bib30) 2018; 361
Kolašinac (10.1016/j.bios.2023.115856_bib31) 2019; 9
Tavano (10.1016/j.bios.2023.115856_bib56) 2018; 8
Sheikh (10.1016/j.bios.2023.115856_bib54) 2023; 389
Salman (10.1016/j.bios.2023.115856_bib51) 2021; 160
Zhang (10.1016/j.bios.2023.115856_bib75) 2007; 318
Awual (10.1016/j.bios.2023.115856_bib8) 2023; 319
Li (10.1016/j.bios.2023.115856_bib39) 2011; 39
Duzgunes (10.1016/j.bios.2023.115856_bib18) 1989; 28
Bhome (10.1016/j.bios.2023.115856_bib10) 2018; 420
Rasee (10.1016/j.bios.2023.115856_bib47) 2023; 41
Awual (10.1016/j.bios.2023.115856_bib7) 2019; 231
Liu (10.1016/j.bios.2023.115856_bib41) 2022; 2
Jiang (10.1016/j.bios.2023.115856_bib27) 2014; 6
Zhao (10.1016/j.bios.2023.115856_bib76) 2020; 142
Kubra (10.1016/j.bios.2023.115856_bib34) 2023; 667
Dilsiz (10.1016/j.bios.2023.115856_bib17) 2020; 6
Yin (10.1016/j.bios.2023.115856_bib71) 2008; 451
Zhai (10.1016/j.bios.2023.115856_bib74) 2018; 10
Awual (10.1016/j.bios.2023.115856_bib4) 2016; 300
Cho (10.1016/j.bios.2023.115856_bib14) 2019; 146
Jeppesen (10.1016/j.bios.2023.115856_bib26) 2019; 177
Sander (10.1016/j.bios.2023.115856_bib52) 2014; 32
Awual (10.1016/j.bios.2023.115856_bib3) 2016; 303
Waliullah (10.1016/j.bios.2023.115856_bib58) 2023; 388
Karunanayake Mudiyanselage (10.1016/j.bios.2023.115856_bib29) 2018; 140
Melo (10.1016/j.bios.2023.115856_bib43) 2014; 26
He (10.1016/j.bios.2023.115856_bib23) 2019; 9
Hasan (10.1016/j.bios.2023.115856_bib22) 2023; 673
Wang (10.1016/j.bios.2023.115856_bib59) 2020; 145
Williams (10.1016/j.bios.2023.115856_bib62) 2013; 110
Abdelwahed (10.1016/j.bios.2023.115856_bib1) 2006; 58
Gao (10.1016/j.bios.2023.115856_bib19) 2019; 131
Wang (10.1016/j.bios.2023.115856_bib60) 2019; 16
Awual (10.1016/j.bios.2023.115856_bib5) 2019; 7
Becker (10.1016/j.bios.2023.115856_bib9) 2016; 30
de Oliveira (10.1016/j.bios.2023.115856_bib16) 2020; 23
Xu (10.1016/j.bios.2023.115856_bib68) 2018; 15
Chevillet (10.1016/j.bios.2023.115856_bib13) 2014; 111
Koltover (10.1016/j.bios.2023.115856_bib33) 1998; 281
Kubra (10.1016/j.bios.2023.115856_bib35) 2021; 328
Wilschut (10.1016/j.bios.2023.115856_bib63) 1986; 40
Yang (10.1016/j.bios.2023.115856_bib70) 2012; 6
Wu (10.1016/j.bios.2023.115856_bib65) 2019; 91
Awual (10.1016/j.bios.2023.115856_bib6) 2019; 283
Ta (10.1016/j.bios.2023.115856_bib55) 2018; 51
Yang (10.1016/j.bios.2023.115856_bib69) 2011; 156
Wei (10.1016/j.bios.2023.115856_bib61) 2020; 11
References_xml – volume: 16
  start-page: 791
  year: 2019
  ident: 10.1016/j.bios.2023.115856_bib60
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2019.04.027
– volume: 18
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.bios.2023.115856_bib21
  publication-title: Breast Cancer Res.
  doi: 10.1186/s13058-016-0753-x
– volume: 41
  year: 2023
  ident: 10.1016/j.bios.2023.115856_bib47
  publication-title: Surface. Interfac.
– volume: 39
  issue: 16
  year: 2011
  ident: 10.1016/j.bios.2023.115856_bib39
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr504
– volume: 21
  start-page: 9
  issue: 1
  year: 2019
  ident: 10.1016/j.bios.2023.115856_bib42
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0250-9
– volume: 361
  start-page: 866
  issue: 6405
  year: 2018
  ident: 10.1016/j.bios.2023.115856_bib30
  publication-title: Science
  doi: 10.1126/science.aat5011
– volume: 420
  start-page: 228
  year: 2018
  ident: 10.1016/j.bios.2023.115856_bib10
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2018.02.002
– volume: 34
  start-page: 37
  issue: 1
  year: 1998
  ident: 10.1016/j.bios.2023.115856_bib44
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/S0169-409X(98)00004-0
– volume: 389
  year: 2023
  ident: 10.1016/j.bios.2023.115856_bib54
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2023.122854
– volume: 23
  start-page: 236
  issue: 4
  year: 2023
  ident: 10.1016/j.bios.2023.115856_bib11
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-022-00763-8
– volume: 131
  start-page: 8811
  issue: 26
  year: 2019
  ident: 10.1016/j.bios.2023.115856_bib19
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201901997
– volume: 28
  start-page: 9179
  issue: 23
  year: 1989
  ident: 10.1016/j.bios.2023.115856_bib18
  publication-title: Biochemistry
  doi: 10.1021/bi00449a033
– volume: 11
  start-page: 1325
  issue: 6
  year: 2020
  ident: 10.1016/j.bios.2023.115856_bib61
  publication-title: J. Cancer
  doi: 10.7150/jca.38048
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.bios.2023.115856_bib56
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-34597-z
– volume: 163
  start-page: 759
  issue: 3
  year: 2015
  ident: 10.1016/j.bios.2023.115856_bib73
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.038
– volume: 319
  year: 2023
  ident: 10.1016/j.bios.2023.115856_bib8
  publication-title: Purif. Technol.
  doi: 10.1016/j.seppur.2023.124088
– volume: 328
  year: 2021
  ident: 10.1016/j.bios.2023.115856_bib35
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2021.115468
– volume: 273
  start-page: 286
  year: 2015
  ident: 10.1016/j.bios.2023.115856_bib53
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.03.073
– volume: 93
  start-page: 11493
  issue: 21
  year: 1996
  ident: 10.1016/j.bios.2023.115856_bib72
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.93.21.11493
– volume: 673
  year: 2023
  ident: 10.1016/j.bios.2023.115856_bib48
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2023.131859
– volume: 54
  start-page: 116
  year: 2015
  ident: 10.1016/j.bios.2023.115856_bib37
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.03.014
– volume: 26
  start-page: 707
  issue: 5
  year: 2014
  ident: 10.1016/j.bios.2023.115856_bib43
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2014.09.005
– volume: 451
  start-page: 318
  issue: 7176
  year: 2008
  ident: 10.1016/j.bios.2023.115856_bib71
  publication-title: Nature
  doi: 10.1038/nature06451
– volume: 318
  start-page: 1121
  issue: 5853
  year: 2007
  ident: 10.1016/j.bios.2023.115856_bib75
  publication-title: Science
  doi: 10.1126/science.1148532
– volume: 6
  start-page: 4955
  issue: 6
  year: 2012
  ident: 10.1016/j.bios.2023.115856_bib70
  publication-title: ACS Nano
  doi: 10.1021/nn300500u
– volume: 16
  start-page: 19980
  issue: 12
  year: 2022
  ident: 10.1016/j.bios.2023.115856_bib46
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c11298
– volume: 9
  start-page: 1025
  issue: 7
  year: 2019
  ident: 10.1016/j.bios.2023.115856_bib31
  publication-title: Nanomaterials
  doi: 10.3390/nano9071025
– volume: 622
  year: 2023
  ident: 10.1016/j.bios.2023.115856_bib50
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2023.157008
– volume: 8
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.bios.2023.115856_bib24
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-016-0009-6
– volume: 6
  start-page: FSO465
  issue: 4
  year: 2020
  ident: 10.1016/j.bios.2023.115856_bib17
  publication-title: Future Sci. OA
  doi: 10.2144/fsoa-2019-0116
– volume: 162
  year: 2021
  ident: 10.1016/j.bios.2023.115856_bib49
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2020.105868
– volume: 140
  start-page: 8739
  issue: 28
  year: 2018
  ident: 10.1016/j.bios.2023.115856_bib29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b03956
– volume: 15
  start-page: 617
  issue: 10
  year: 2018
  ident: 10.1016/j.bios.2023.115856_bib68
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/s41571-018-0036-9
– year: 2022
  ident: 10.1016/j.bios.2023.115856_bib67
  publication-title: Anal. Chem.
– volume: 86
  start-page: 202
  year: 2016
  ident: 10.1016/j.bios.2023.115856_bib36
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2016.06.058
– volume: 91
  start-page: 10172
  issue: 15
  year: 2019
  ident: 10.1016/j.bios.2023.115856_bib65
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b02181
– volume: 300
  start-page: 264
  year: 2016
  ident: 10.1016/j.bios.2023.115856_bib4
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.04.071
– volume: 156
  start-page: 203
  issue: 2
  year: 2011
  ident: 10.1016/j.bios.2023.115856_bib69
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2011.07.035
– volume: 29
  start-page: 341
  issue: 4
  year: 2011
  ident: 10.1016/j.bios.2023.115856_bib2
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1807
– volume: 15
  start-page: 675
  issue: 7
  year: 2008
  ident: 10.1016/j.bios.2023.115856_bib12
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1455
– volume: 19
  start-page: 3600
  issue: 13
  year: 2013
  ident: 10.1016/j.bios.2023.115856_bib38
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-12-3092
– volume: 177
  start-page: 428
  issue: 2
  year: 2019
  ident: 10.1016/j.bios.2023.115856_bib26
  publication-title: Cell
  doi: 10.1016/j.cell.2019.02.029
– volume: 1235
  start-page: 296
  issue: 2
  year: 1995
  ident: 10.1016/j.bios.2023.115856_bib64
  publication-title: Biochim. Biophys. Acta Biomembr.
  doi: 10.1016/0005-2736(95)80017-A
– volume: 23
  start-page: 22
  issue: 1
  year: 2020
  ident: 10.1016/j.bios.2023.115856_bib16
  publication-title: iScience
  doi: 10.1016/j.isci.2019.100782
– volume: 7
  issue: 3
  year: 2019
  ident: 10.1016/j.bios.2023.115856_bib5
  publication-title: J. Environ. Chem. Eng.
– volume: 667
  year: 2023
  ident: 10.1016/j.bios.2023.115856_bib34
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2023.131415
– volume: 46
  start-page: 13
  year: 2015
  ident: 10.1016/j.bios.2023.115856_bib77
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.12.028
– volume: 281
  start-page: 78
  issue: 5373
  year: 1998
  ident: 10.1016/j.bios.2023.115856_bib33
  publication-title: Science
  doi: 10.1126/science.281.5373.78
– volume: 110
  start-page: 4255
  issue: 11
  year: 2013
  ident: 10.1016/j.bios.2023.115856_bib62
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1214046110
– volume: 28
  start-page: 491
  issue: 4
  year: 2018
  ident: 10.1016/j.bios.2023.115856_bib40
  publication-title: Cell Res.
  doi: 10.1038/s41422-018-0022-x
– volume: 231
  start-page: 214
  year: 2019
  ident: 10.1016/j.bios.2023.115856_bib7
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.05.125
– volume: 10
  start-page: 39478
  issue: 46
  year: 2018
  ident: 10.1016/j.bios.2023.115856_bib74
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b12725
– volume: 9
  start-page: 4494
  issue: 15
  year: 2019
  ident: 10.1016/j.bios.2023.115856_bib23
  publication-title: Theranostics
  doi: 10.7150/thno.33683
– volume: 19
  start-page: 346
  issue: 2
  year: 2018
  ident: 10.1016/j.bios.2023.115856_bib32
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19020346
– volume: 85
  start-page: 11265
  issue: 23
  year: 2013
  ident: 10.1016/j.bios.2023.115856_bib66
  publication-title: Anal. Chem.
  doi: 10.1021/ac401983w
– volume: 388
  year: 2023
  ident: 10.1016/j.bios.2023.115856_bib58
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2023.122763
– volume: 58
  start-page: 1688
  issue: 15
  year: 2006
  ident: 10.1016/j.bios.2023.115856_bib1
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2006.09.017
– volume: 111
  start-page: 14888
  issue: 41
  year: 2014
  ident: 10.1016/j.bios.2023.115856_bib13
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1408301111
– volume: 152
  start-page: 1173
  issue: 5
  year: 2013
  ident: 10.1016/j.bios.2023.115856_bib45
  publication-title: Cell
  doi: 10.1016/j.cell.2013.02.022
– volume: 51
  start-page: 711
  issue: 2
  year: 2018
  ident: 10.1016/j.bios.2023.115856_bib55
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000495328
– volume: 283
  start-page: 704
  year: 2019
  ident: 10.1016/j.bios.2023.115856_bib6
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2019.03.119
– volume: 112
  start-page: 519
  issue: 4
  year: 2003
  ident: 10.1016/j.bios.2023.115856_bib25
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00112-0
– volume: 673
  year: 2023
  ident: 10.1016/j.bios.2023.115856_bib22
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2023.131794
– volume: 6
  start-page: 9477
  issue: 23
  year: 2014
  ident: 10.1016/j.bios.2023.115856_bib27
  publication-title: Anal. Methods
  doi: 10.1039/C4AY02142H
– volume: 146
  year: 2019
  ident: 10.1016/j.bios.2023.115856_bib14
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2019.111749
– volume: 2
  start-page: 333
  year: 2022
  ident: 10.1016/j.bios.2023.115856_bib41
  publication-title: Mol. Cell. 82
  doi: 10.1016/j.molcel.2021.12.002
– volume: 40
  start-page: 145
  issue: 2
  year: 1986
  ident: 10.1016/j.bios.2023.115856_bib63
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/0009-3084(86)90068-X
– volume: 32
  start-page: 347
  issue: 4
  year: 2014
  ident: 10.1016/j.bios.2023.115856_bib52
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2842
– volume: 142
  start-page: 4996
  issue: 11
  year: 2020
  ident: 10.1016/j.bios.2023.115856_bib76
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b13960
– volume: 5
  start-page: 643
  issue: 7
  year: 2021
  ident: 10.1016/j.bios.2023.115856_bib28
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-021-00760-7
– volume: 145
  start-page: 3289
  issue: 9
  year: 2020
  ident: 10.1016/j.bios.2023.115856_bib59
  publication-title: Analyst
  doi: 10.1039/D0AN00393J
– volume: 303
  start-page: 539
  year: 2016
  ident: 10.1016/j.bios.2023.115856_bib3
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.06.040
– volume: 21
  start-page: 537
  issue: 3
  year: 2010
  ident: 10.1016/j.bios.2023.115856_bib15
  publication-title: Bioconjugate Chem.
  doi: 10.1021/bc900470y
– volume: 30
  start-page: 836
  issue: 6
  year: 2016
  ident: 10.1016/j.bios.2023.115856_bib9
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.10.009
– volume: 160
  year: 2021
  ident: 10.1016/j.bios.2023.115856_bib51
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2020.105765
– volume: 19
  start-page: 213
  issue: 4
  year: 2018
  ident: 10.1016/j.bios.2023.115856_bib57
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.125
– volume: 154
  start-page: 442
  issue: 2
  year: 2013
  ident: 10.1016/j.bios.2023.115856_bib20
  publication-title: Cell
  doi: 10.1016/j.cell.2013.06.044
SSID ssj0007190
Score 2.5176556
Snippet Efficient extracellular vesicle (EV) enrichment and timely internal RNA detection for cancer diagnostics are highly desirable and remain a challenge. Here, we...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 115856
SubjectTerms biosensors
blood serum
detection limit
diagnostic techniques
freeze drying
microRNA
nanoparticles
pancreatic neoplasms
ultracentrifugation
Title CRISPR-Cas12a powered hybrid nanoparticle for extracellular vesicle aggregation and in-situ microRNA detection
URI https://www.proquest.com/docview/2893841236
https://www.proquest.com/docview/3153193737
Volume 245
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKEBI8IBggNj5kJN6iVE3sxMnjVIEGggmVTipPke04bSZIpjUZGw_87Zxj52swxHhIFKUXJ_X9cr673AdCr4nIgLMhdUNCA5d6Urk639GNZOQFURz5sdKG4sej8PCYvl8Fq8nk-zC7pBJT-eOPeSX_w1U4B3zVWbI34Gw3KJyAY-Av7IHDsP8nHs8X7z5_WrhzvvV87pzqhmegP24udRaWU_ACDGJzkSnsfVGdce2obyJPz9W2-YWvweJeGxiYSkzuNq9q55uO1FscHTipqppwrWL0_Tcvt2AA6049GjsiL_t-Op2W3jmjl6pYb-puAVjZbyL5ps57WmVoVzkvNx3aPuR2iC_1ha0Rbl0UPm2jmge-xtAFvZEMxa5Pg4HgBMU0MhXGf5Ppxr1wMoW_ouur-2TaE48LaF9Z2LpwwzaS7STRYyR6jMSMcQvd9sG-0AJy-rOPDWKecc61z22zrUxg4NXnGGs04wW90VKWD9B9a17gA8P2h2iiil10xzQcvdxF9wblJx-hYoQfbPGDDX7wED8Y8INH-MEWP3iAHwz4wRY_uMUP7vDzGB2_fbOcH7q2_4YriUcqN2Cp589g8yQYqnCDKAx5HGZUxGlKFY8COQP9VbKQpdKPdEIfh9ligkU0yxQnT9BOURbqKcJgFVCRzaiYMUl5oISImVKCwGEYSp_tIa-dw0Ta4vS6R8rX5Hre7SGnu-bUlGb5K_WrljUJSFA9W7xQZQ1EoLJHVFchup6GeHqtIoyw_Rvd9Rm6278Qz9FOdVarF6DFVuJlg7hfQjCd9Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CRISPR-Cas12a+powered+hybrid+nanoparticle+for+extracellular+vesicle+aggregation+and+in-situ+microRNA+detection&rft.jtitle=Biosensors+%26+bioelectronics&rft.au=Zhang%2C+Tenghua&rft.au=Xie%2C+Zihui&rft.au=Zheng%2C+Xiaohe&rft.au=Liang%2C+Yuxin&rft.date=2024-02-01&rft.issn=0956-5663&rft.volume=245&rft.spage=115856&rft_id=info:doi/10.1016%2Fj.bios.2023.115856&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bios_2023_115856
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5663&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5663&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5663&client=summon