CRISPR-Cas12a powered hybrid nanoparticle for extracellular vesicle aggregation and in-situ microRNA detection
Efficient extracellular vesicle (EV) enrichment and timely internal RNA detection for cancer diagnostics are highly desirable and remain a challenge. Here, we report a rapid EV aggregation induced in-situ microRNA detection technology based on cationic lipid-polymer hybrid nanoparticles encapsulatin...
Saved in:
Published in | Biosensors & bioelectronics Vol. 245; p. 115856 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Efficient extracellular vesicle (EV) enrichment and timely internal RNA detection for cancer diagnostics are highly desirable and remain a challenge. Here, we report a rapid EV aggregation induced in-situ microRNA detection technology based on cationic lipid-polymer hybrid nanoparticles encapsulating cascade system of catalytic hairpin assembly and CRISPR-Cas12a (CLHN-CCC), allowing for EV enrichment in three-dimensional space and in-situ detection of internal microRNAs in one step within 30 min. The enrichment efficiency (>90%) of CLHN-CCC is demonstrated in artificial EVs, cell-secreted EVs and serum EVs, which is 5-fold higher than that of traditional ultracentrifugation. The sensitive detection of artificial EVs and internal miR-1290 was achieved with the limit of detection of 10 particles/μL and 0.07 amol, respectively. After lyophilization, CLHN-CCC shows no obvious loss of performance within 6 months, making it much more robust and user friendly. This technique could sensitively (sensitivity = 92.9%) and selectively (selectivity = 85.7%) identify low amount miR-1290 in serum EVs, distinguishing early-stage pancreatic cancer patients from healthy subjects, showing high potential for clinical applications.Efficient extracellular vesicle (EV) enrichment and timely internal RNA detection for cancer diagnostics are highly desirable and remain a challenge. Here, we report a rapid EV aggregation induced in-situ microRNA detection technology based on cationic lipid-polymer hybrid nanoparticles encapsulating cascade system of catalytic hairpin assembly and CRISPR-Cas12a (CLHN-CCC), allowing for EV enrichment in three-dimensional space and in-situ detection of internal microRNAs in one step within 30 min. The enrichment efficiency (>90%) of CLHN-CCC is demonstrated in artificial EVs, cell-secreted EVs and serum EVs, which is 5-fold higher than that of traditional ultracentrifugation. The sensitive detection of artificial EVs and internal miR-1290 was achieved with the limit of detection of 10 particles/μL and 0.07 amol, respectively. After lyophilization, CLHN-CCC shows no obvious loss of performance within 6 months, making it much more robust and user friendly. This technique could sensitively (sensitivity = 92.9%) and selectively (selectivity = 85.7%) identify low amount miR-1290 in serum EVs, distinguishing early-stage pancreatic cancer patients from healthy subjects, showing high potential for clinical applications. |
---|---|
AbstractList | Efficient extracellular vesicle (EV) enrichment and timely internal RNA detection for cancer diagnostics are highly desirable and remain a challenge. Here, we report a rapid EV aggregation induced in-situ microRNA detection technology based on cationic lipid-polymer hybrid nanoparticles encapsulating cascade system of catalytic hairpin assembly and CRISPR-Cas12a (CLHN-CCC), allowing for EV enrichment in three-dimensional space and in-situ detection of internal microRNAs in one step within 30 min. The enrichment efficiency (>90%) of CLHN-CCC is demonstrated in artificial EVs, cell-secreted EVs and serum EVs, which is 5-fold higher than that of traditional ultracentrifugation. The sensitive detection of artificial EVs and internal miR-1290 was achieved with the limit of detection of 10 particles/μL and 0.07 amol, respectively. After lyophilization, CLHN-CCC shows no obvious loss of performance within 6 months, making it much more robust and user friendly. This technique could sensitively (sensitivity = 92.9%) and selectively (selectivity = 85.7%) identify low amount miR-1290 in serum EVs, distinguishing early-stage pancreatic cancer patients from healthy subjects, showing high potential for clinical applications.Efficient extracellular vesicle (EV) enrichment and timely internal RNA detection for cancer diagnostics are highly desirable and remain a challenge. Here, we report a rapid EV aggregation induced in-situ microRNA detection technology based on cationic lipid-polymer hybrid nanoparticles encapsulating cascade system of catalytic hairpin assembly and CRISPR-Cas12a (CLHN-CCC), allowing for EV enrichment in three-dimensional space and in-situ detection of internal microRNAs in one step within 30 min. The enrichment efficiency (>90%) of CLHN-CCC is demonstrated in artificial EVs, cell-secreted EVs and serum EVs, which is 5-fold higher than that of traditional ultracentrifugation. The sensitive detection of artificial EVs and internal miR-1290 was achieved with the limit of detection of 10 particles/μL and 0.07 amol, respectively. After lyophilization, CLHN-CCC shows no obvious loss of performance within 6 months, making it much more robust and user friendly. This technique could sensitively (sensitivity = 92.9%) and selectively (selectivity = 85.7%) identify low amount miR-1290 in serum EVs, distinguishing early-stage pancreatic cancer patients from healthy subjects, showing high potential for clinical applications. Efficient extracellular vesicle (EV) enrichment and timely internal RNA detection for cancer diagnostics are highly desirable and remain a challenge. Here, we report a rapid EV aggregation induced in-situ microRNA detection technology based on cationic lipid-polymer hybrid nanoparticles encapsulating cascade system of catalytic hairpin assembly and CRISPR-Cas12a (CLHN-CCC), allowing for EV enrichment in three-dimensional space and in-situ detection of internal microRNAs in one step within 30 min. The enrichment efficiency (>90%) of CLHN-CCC is demonstrated in artificial EVs, cell-secreted EVs and serum EVs, which is 5-fold higher than that of traditional ultracentrifugation. The sensitive detection of artificial EVs and internal miR-1290 was achieved with the limit of detection of 10 particles/μL and 0.07 amol, respectively. After lyophilization, CLHN-CCC shows no obvious loss of performance within 6 months, making it much more robust and user friendly. This technique could sensitively (sensitivity = 92.9%) and selectively (selectivity = 85.7%) identify low amount miR-1290 in serum EVs, distinguishing early-stage pancreatic cancer patients from healthy subjects, showing high potential for clinical applications. |
ArticleNumber | 115856 |
Author | Lu, Yao Zheng, Xiaohe Liang, Yuxin Sheng, Yan Hu, Jiaming Zhang, Tenghua Zhu, Yuqing Xie, Zihui Qian, Feiyang Zhong, Hankang Sun, Ruiting |
Author_xml | – sequence: 1 givenname: Tenghua surname: Zhang fullname: Zhang, Tenghua – sequence: 2 givenname: Zihui surname: Xie fullname: Xie, Zihui – sequence: 3 givenname: Xiaohe surname: Zheng fullname: Zheng, Xiaohe – sequence: 4 givenname: Yuxin surname: Liang fullname: Liang, Yuxin – sequence: 5 givenname: Yao surname: Lu fullname: Lu, Yao – sequence: 6 givenname: Hankang surname: Zhong fullname: Zhong, Hankang – sequence: 7 givenname: Feiyang surname: Qian fullname: Qian, Feiyang – sequence: 8 givenname: Yuqing surname: Zhu fullname: Zhu, Yuqing – sequence: 9 givenname: Ruiting surname: Sun fullname: Sun, Ruiting – sequence: 10 givenname: Yan surname: Sheng fullname: Sheng, Yan – sequence: 11 givenname: Jiaming orcidid: 0000-0001-5028-3123 surname: Hu fullname: Hu, Jiaming |
BookMark | eNqFUU1PwzAMjdCQ2AZ_gFOOXDry0aTpcZr4mIQADThHWeqOTF0ykg7Yv6dlnDiALMsHv2f7-Y3QwAcPCJ1TMqGEysv1ZOlCmjDC-IRSoYQ8QkOqCp7ljIsBGpJSyExIyU_QKKU1IaSgJRkiP1vMnx4X2cwkygzehg-IUOHX_TK6Cnvjw9bE1tkGcB0ihs82GgtNs2tMxO-QvjtmtYqwMq0LHhtfYeez5Nod3jgbw-J-iitowfbtU3RcmybB2U8do5frq-fZbXb3cDOfTe8yyylvM1FUlJEuqWWcdAuVlKaUdb4sqyoHo4QlQuW2kEVlmbIgStOJK5aFyusaDB-ji8PcbQxvO0it3rjU3208hF3SnApOS1508R-UqZKrnDIuO6g6QDtZKUWotXXtt-zuK67RlOjeDb3WvRu6d0Mf3Oio7Bd1G93GxP1fpC-7rJIK |
CitedBy_id | crossref_primary_10_1002_advs_202401069 crossref_primary_10_1002_advs_202409202 crossref_primary_10_1016_j_talanta_2024_125938 crossref_primary_10_1016_j_cej_2024_158797 crossref_primary_10_1016_j_talanta_2024_127013 crossref_primary_10_3390_plants13223247 crossref_primary_10_1021_acs_molpharmaceut_4c00863 crossref_primary_10_1038_s12276_024_01201_6 crossref_primary_10_20517_cdr_2024_107 crossref_primary_10_1186_s12967_024_05908_y crossref_primary_10_1016_j_cej_2023_148212 crossref_primary_10_3389_fonc_2024_1415260 crossref_primary_10_1016_j_bios_2024_117042 |
Cites_doi | 10.1016/j.omtn.2019.04.027 10.1186/s13058-016-0753-x 10.1093/nar/gkr504 10.1038/s41556-018-0250-9 10.1126/science.aat5011 10.1016/j.canlet.2018.02.002 10.1016/S0169-409X(98)00004-0 10.1016/j.molliq.2023.122854 10.1038/s41577-022-00763-8 10.1002/ange.201901997 10.1021/bi00449a033 10.7150/jca.38048 10.1038/s41598-018-34597-z 10.1016/j.cell.2015.09.038 10.1016/j.seppur.2023.124088 10.1016/j.molliq.2021.115468 10.1016/j.cej.2015.03.073 10.1073/pnas.93.21.11493 10.1016/j.colsurfa.2023.131859 10.1016/j.biomaterials.2015.03.014 10.1016/j.ccell.2014.09.005 10.1038/nature06451 10.1126/science.1148532 10.1021/nn300500u 10.1021/acsnano.2c11298 10.3390/nano9071025 10.1016/j.apsusc.2023.157008 10.1038/s41467-016-0009-6 10.2144/fsoa-2019-0116 10.1016/j.microc.2020.105868 10.1021/jacs.8b03956 10.1038/s41571-018-0036-9 10.1016/j.bios.2016.06.058 10.1021/acs.analchem.9b02181 10.1016/j.cej.2016.04.071 10.1016/j.jconrel.2011.07.035 10.1038/nbt.1807 10.1038/nsmb.1455 10.1158/1078-0432.CCR-12-3092 10.1016/j.cell.2019.02.029 10.1016/0005-2736(95)80017-A 10.1016/j.isci.2019.100782 10.1016/j.colsurfa.2023.131415 10.1016/j.biomaterials.2014.12.028 10.1126/science.281.5373.78 10.1073/pnas.1214046110 10.1038/s41422-018-0022-x 10.1016/j.jclepro.2019.05.125 10.1021/acsami.8b12725 10.7150/thno.33683 10.3390/ijms19020346 10.1021/ac401983w 10.1016/j.molliq.2023.122763 10.1016/j.addr.2006.09.017 10.1073/pnas.1408301111 10.1016/j.cell.2013.02.022 10.1159/000495328 10.1016/j.molliq.2019.03.119 10.1016/S0092-8674(03)00112-0 10.1016/j.colsurfa.2023.131794 10.1039/C4AY02142H 10.1016/j.bios.2019.111749 10.1016/j.molcel.2021.12.002 10.1016/0009-3084(86)90068-X 10.1038/nbt.2842 10.1021/jacs.9b13960 10.1038/s41551-021-00760-7 10.1039/D0AN00393J 10.1016/j.cej.2016.06.040 10.1021/bc900470y 10.1016/j.ccell.2016.10.009 10.1016/j.microc.2020.105765 10.1038/nrm.2017.125 10.1016/j.cell.2013.06.044 |
ContentType | Journal Article |
Copyright | Copyright © 2023 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: Copyright © 2023 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.bios.2023.115856 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1873-4235 |
ExternalDocumentID | 10_1016_j_bios_2023_115856 |
GroupedDBID | --- --K --M .HR .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AATTM AAXKI AAXUO AAYWO AAYXX ABFNM ABGSF ABJNI ABMAC ABUDA ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADECG ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AFXIZ AFZHZ AGCQF AGHFR AGQPQ AGRDE AGRNS AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AJQLL AJSZI AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CITATION CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HLW HMU HVGLF HZ~ IHE J1W JJJVA KOM LX3 M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBG SCB SCC SCH SDF SDG SDP SES SEW SPC SPCBC SSH SSK SST SSU SSZ T5K TN5 WUQ XPP Y6R YK3 ZMT ~G- ~KM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c313t-57d120d121c230ace866a96f4b9dd4ea85c0584c767dc28ce59a5667b784ffea3 |
ISSN | 0956-5663 1873-4235 |
IngestDate | Fri Jul 11 01:22:20 EDT 2025 Fri Jul 11 12:30:52 EDT 2025 Tue Jul 01 01:43:10 EDT 2025 Thu Apr 24 23:04:29 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c313t-57d120d121c230ace866a96f4b9dd4ea85c0584c767dc28ce59a5667b784ffea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5028-3123 |
PQID | 2893841236 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3153193737 proquest_miscellaneous_2893841236 crossref_citationtrail_10_1016_j_bios_2023_115856 crossref_primary_10_1016_j_bios_2023_115856 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Biosensors & bioelectronics |
PublicationYear | 2024 |
References | Rehan (10.1016/j.bios.2023.115856_bib48) 2023; 673 Jahn (10.1016/j.bios.2023.115856_bib25) 2003; 112 Salman (10.1016/j.bios.2023.115856_bib50) 2023; 622 Buzas (10.1016/j.bios.2023.115856_bib11) 2023; 23 Zelphati (10.1016/j.bios.2023.115856_bib72) 1996; 93 Lee (10.1016/j.bios.2023.115856_bib37) 2015; 54 Qi (10.1016/j.bios.2023.115856_bib45) 2013; 152 Li (10.1016/j.bios.2023.115856_bib38) 2013; 19 Csiszár (10.1016/j.bios.2023.115856_bib15) 2010; 21 Lee (10.1016/j.bios.2023.115856_bib36) 2016; 86 Qian (10.1016/j.bios.2023.115856_bib46) 2022; 16 Zetsche (10.1016/j.bios.2023.115856_bib73) 2015; 163 Gilbert (10.1016/j.bios.2023.115856_bib20) 2013; 154 Hu (10.1016/j.bios.2023.115856_bib24) 2017; 8 Chernomordik (10.1016/j.bios.2023.115856_bib12) 2008; 15 Wrobel (10.1016/j.bios.2023.115856_bib64) 1995; 1235 Kolašinac (10.1016/j.bios.2023.115856_bib32) 2018; 19 Hannafon (10.1016/j.bios.2023.115856_bib21) 2016; 18 Mönkkönen (10.1016/j.bios.2023.115856_bib44) 1998; 34 Xie (10.1016/j.bios.2023.115856_bib67) 2022 Zhao (10.1016/j.bios.2023.115856_bib77) 2015; 46 Wu (10.1016/j.bios.2023.115856_bib66) 2013; 85 Shahat (10.1016/j.bios.2023.115856_bib53) 2015; 273 Van Niel (10.1016/j.bios.2023.115856_bib57) 2018; 19 Alvarez-Erviti (10.1016/j.bios.2023.115856_bib2) 2011; 29 Kaminski (10.1016/j.bios.2023.115856_bib28) 2021; 5 Li (10.1016/j.bios.2023.115856_bib40) 2018; 28 Mathieu (10.1016/j.bios.2023.115856_bib42) 2019; 21 Salman (10.1016/j.bios.2023.115856_bib49) 2021; 162 Knott (10.1016/j.bios.2023.115856_bib30) 2018; 361 Kolašinac (10.1016/j.bios.2023.115856_bib31) 2019; 9 Tavano (10.1016/j.bios.2023.115856_bib56) 2018; 8 Sheikh (10.1016/j.bios.2023.115856_bib54) 2023; 389 Salman (10.1016/j.bios.2023.115856_bib51) 2021; 160 Zhang (10.1016/j.bios.2023.115856_bib75) 2007; 318 Awual (10.1016/j.bios.2023.115856_bib8) 2023; 319 Li (10.1016/j.bios.2023.115856_bib39) 2011; 39 Duzgunes (10.1016/j.bios.2023.115856_bib18) 1989; 28 Bhome (10.1016/j.bios.2023.115856_bib10) 2018; 420 Rasee (10.1016/j.bios.2023.115856_bib47) 2023; 41 Awual (10.1016/j.bios.2023.115856_bib7) 2019; 231 Liu (10.1016/j.bios.2023.115856_bib41) 2022; 2 Jiang (10.1016/j.bios.2023.115856_bib27) 2014; 6 Zhao (10.1016/j.bios.2023.115856_bib76) 2020; 142 Kubra (10.1016/j.bios.2023.115856_bib34) 2023; 667 Dilsiz (10.1016/j.bios.2023.115856_bib17) 2020; 6 Yin (10.1016/j.bios.2023.115856_bib71) 2008; 451 Zhai (10.1016/j.bios.2023.115856_bib74) 2018; 10 Awual (10.1016/j.bios.2023.115856_bib4) 2016; 300 Cho (10.1016/j.bios.2023.115856_bib14) 2019; 146 Jeppesen (10.1016/j.bios.2023.115856_bib26) 2019; 177 Sander (10.1016/j.bios.2023.115856_bib52) 2014; 32 Awual (10.1016/j.bios.2023.115856_bib3) 2016; 303 Waliullah (10.1016/j.bios.2023.115856_bib58) 2023; 388 Karunanayake Mudiyanselage (10.1016/j.bios.2023.115856_bib29) 2018; 140 Melo (10.1016/j.bios.2023.115856_bib43) 2014; 26 He (10.1016/j.bios.2023.115856_bib23) 2019; 9 Hasan (10.1016/j.bios.2023.115856_bib22) 2023; 673 Wang (10.1016/j.bios.2023.115856_bib59) 2020; 145 Williams (10.1016/j.bios.2023.115856_bib62) 2013; 110 Abdelwahed (10.1016/j.bios.2023.115856_bib1) 2006; 58 Gao (10.1016/j.bios.2023.115856_bib19) 2019; 131 Wang (10.1016/j.bios.2023.115856_bib60) 2019; 16 Awual (10.1016/j.bios.2023.115856_bib5) 2019; 7 Becker (10.1016/j.bios.2023.115856_bib9) 2016; 30 de Oliveira (10.1016/j.bios.2023.115856_bib16) 2020; 23 Xu (10.1016/j.bios.2023.115856_bib68) 2018; 15 Chevillet (10.1016/j.bios.2023.115856_bib13) 2014; 111 Koltover (10.1016/j.bios.2023.115856_bib33) 1998; 281 Kubra (10.1016/j.bios.2023.115856_bib35) 2021; 328 Wilschut (10.1016/j.bios.2023.115856_bib63) 1986; 40 Yang (10.1016/j.bios.2023.115856_bib70) 2012; 6 Wu (10.1016/j.bios.2023.115856_bib65) 2019; 91 Awual (10.1016/j.bios.2023.115856_bib6) 2019; 283 Ta (10.1016/j.bios.2023.115856_bib55) 2018; 51 Yang (10.1016/j.bios.2023.115856_bib69) 2011; 156 Wei (10.1016/j.bios.2023.115856_bib61) 2020; 11 |
References_xml | – volume: 16 start-page: 791 year: 2019 ident: 10.1016/j.bios.2023.115856_bib60 publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2019.04.027 – volume: 18 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.bios.2023.115856_bib21 publication-title: Breast Cancer Res. doi: 10.1186/s13058-016-0753-x – volume: 41 year: 2023 ident: 10.1016/j.bios.2023.115856_bib47 publication-title: Surface. Interfac. – volume: 39 issue: 16 year: 2011 ident: 10.1016/j.bios.2023.115856_bib39 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr504 – volume: 21 start-page: 9 issue: 1 year: 2019 ident: 10.1016/j.bios.2023.115856_bib42 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0250-9 – volume: 361 start-page: 866 issue: 6405 year: 2018 ident: 10.1016/j.bios.2023.115856_bib30 publication-title: Science doi: 10.1126/science.aat5011 – volume: 420 start-page: 228 year: 2018 ident: 10.1016/j.bios.2023.115856_bib10 publication-title: Cancer Lett. doi: 10.1016/j.canlet.2018.02.002 – volume: 34 start-page: 37 issue: 1 year: 1998 ident: 10.1016/j.bios.2023.115856_bib44 publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/S0169-409X(98)00004-0 – volume: 389 year: 2023 ident: 10.1016/j.bios.2023.115856_bib54 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2023.122854 – volume: 23 start-page: 236 issue: 4 year: 2023 ident: 10.1016/j.bios.2023.115856_bib11 publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-022-00763-8 – volume: 131 start-page: 8811 issue: 26 year: 2019 ident: 10.1016/j.bios.2023.115856_bib19 publication-title: Angew. Chem. doi: 10.1002/ange.201901997 – volume: 28 start-page: 9179 issue: 23 year: 1989 ident: 10.1016/j.bios.2023.115856_bib18 publication-title: Biochemistry doi: 10.1021/bi00449a033 – volume: 11 start-page: 1325 issue: 6 year: 2020 ident: 10.1016/j.bios.2023.115856_bib61 publication-title: J. Cancer doi: 10.7150/jca.38048 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.bios.2023.115856_bib56 publication-title: Sci. Rep. doi: 10.1038/s41598-018-34597-z – volume: 163 start-page: 759 issue: 3 year: 2015 ident: 10.1016/j.bios.2023.115856_bib73 publication-title: Cell doi: 10.1016/j.cell.2015.09.038 – volume: 319 year: 2023 ident: 10.1016/j.bios.2023.115856_bib8 publication-title: Purif. Technol. doi: 10.1016/j.seppur.2023.124088 – volume: 328 year: 2021 ident: 10.1016/j.bios.2023.115856_bib35 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2021.115468 – volume: 273 start-page: 286 year: 2015 ident: 10.1016/j.bios.2023.115856_bib53 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.03.073 – volume: 93 start-page: 11493 issue: 21 year: 1996 ident: 10.1016/j.bios.2023.115856_bib72 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.93.21.11493 – volume: 673 year: 2023 ident: 10.1016/j.bios.2023.115856_bib48 publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2023.131859 – volume: 54 start-page: 116 year: 2015 ident: 10.1016/j.bios.2023.115856_bib37 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.03.014 – volume: 26 start-page: 707 issue: 5 year: 2014 ident: 10.1016/j.bios.2023.115856_bib43 publication-title: Cancer Cell doi: 10.1016/j.ccell.2014.09.005 – volume: 451 start-page: 318 issue: 7176 year: 2008 ident: 10.1016/j.bios.2023.115856_bib71 publication-title: Nature doi: 10.1038/nature06451 – volume: 318 start-page: 1121 issue: 5853 year: 2007 ident: 10.1016/j.bios.2023.115856_bib75 publication-title: Science doi: 10.1126/science.1148532 – volume: 6 start-page: 4955 issue: 6 year: 2012 ident: 10.1016/j.bios.2023.115856_bib70 publication-title: ACS Nano doi: 10.1021/nn300500u – volume: 16 start-page: 19980 issue: 12 year: 2022 ident: 10.1016/j.bios.2023.115856_bib46 publication-title: ACS Nano doi: 10.1021/acsnano.2c11298 – volume: 9 start-page: 1025 issue: 7 year: 2019 ident: 10.1016/j.bios.2023.115856_bib31 publication-title: Nanomaterials doi: 10.3390/nano9071025 – volume: 622 year: 2023 ident: 10.1016/j.bios.2023.115856_bib50 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2023.157008 – volume: 8 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.bios.2023.115856_bib24 publication-title: Nat. Commun. doi: 10.1038/s41467-016-0009-6 – volume: 6 start-page: FSO465 issue: 4 year: 2020 ident: 10.1016/j.bios.2023.115856_bib17 publication-title: Future Sci. OA doi: 10.2144/fsoa-2019-0116 – volume: 162 year: 2021 ident: 10.1016/j.bios.2023.115856_bib49 publication-title: Microchem. J. doi: 10.1016/j.microc.2020.105868 – volume: 140 start-page: 8739 issue: 28 year: 2018 ident: 10.1016/j.bios.2023.115856_bib29 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b03956 – volume: 15 start-page: 617 issue: 10 year: 2018 ident: 10.1016/j.bios.2023.115856_bib68 publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/s41571-018-0036-9 – year: 2022 ident: 10.1016/j.bios.2023.115856_bib67 publication-title: Anal. Chem. – volume: 86 start-page: 202 year: 2016 ident: 10.1016/j.bios.2023.115856_bib36 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.06.058 – volume: 91 start-page: 10172 issue: 15 year: 2019 ident: 10.1016/j.bios.2023.115856_bib65 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b02181 – volume: 300 start-page: 264 year: 2016 ident: 10.1016/j.bios.2023.115856_bib4 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.04.071 – volume: 156 start-page: 203 issue: 2 year: 2011 ident: 10.1016/j.bios.2023.115856_bib69 publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2011.07.035 – volume: 29 start-page: 341 issue: 4 year: 2011 ident: 10.1016/j.bios.2023.115856_bib2 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1807 – volume: 15 start-page: 675 issue: 7 year: 2008 ident: 10.1016/j.bios.2023.115856_bib12 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1455 – volume: 19 start-page: 3600 issue: 13 year: 2013 ident: 10.1016/j.bios.2023.115856_bib38 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-12-3092 – volume: 177 start-page: 428 issue: 2 year: 2019 ident: 10.1016/j.bios.2023.115856_bib26 publication-title: Cell doi: 10.1016/j.cell.2019.02.029 – volume: 1235 start-page: 296 issue: 2 year: 1995 ident: 10.1016/j.bios.2023.115856_bib64 publication-title: Biochim. Biophys. Acta Biomembr. doi: 10.1016/0005-2736(95)80017-A – volume: 23 start-page: 22 issue: 1 year: 2020 ident: 10.1016/j.bios.2023.115856_bib16 publication-title: iScience doi: 10.1016/j.isci.2019.100782 – volume: 7 issue: 3 year: 2019 ident: 10.1016/j.bios.2023.115856_bib5 publication-title: J. Environ. Chem. Eng. – volume: 667 year: 2023 ident: 10.1016/j.bios.2023.115856_bib34 publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2023.131415 – volume: 46 start-page: 13 year: 2015 ident: 10.1016/j.bios.2023.115856_bib77 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.12.028 – volume: 281 start-page: 78 issue: 5373 year: 1998 ident: 10.1016/j.bios.2023.115856_bib33 publication-title: Science doi: 10.1126/science.281.5373.78 – volume: 110 start-page: 4255 issue: 11 year: 2013 ident: 10.1016/j.bios.2023.115856_bib62 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1214046110 – volume: 28 start-page: 491 issue: 4 year: 2018 ident: 10.1016/j.bios.2023.115856_bib40 publication-title: Cell Res. doi: 10.1038/s41422-018-0022-x – volume: 231 start-page: 214 year: 2019 ident: 10.1016/j.bios.2023.115856_bib7 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.05.125 – volume: 10 start-page: 39478 issue: 46 year: 2018 ident: 10.1016/j.bios.2023.115856_bib74 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b12725 – volume: 9 start-page: 4494 issue: 15 year: 2019 ident: 10.1016/j.bios.2023.115856_bib23 publication-title: Theranostics doi: 10.7150/thno.33683 – volume: 19 start-page: 346 issue: 2 year: 2018 ident: 10.1016/j.bios.2023.115856_bib32 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19020346 – volume: 85 start-page: 11265 issue: 23 year: 2013 ident: 10.1016/j.bios.2023.115856_bib66 publication-title: Anal. Chem. doi: 10.1021/ac401983w – volume: 388 year: 2023 ident: 10.1016/j.bios.2023.115856_bib58 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2023.122763 – volume: 58 start-page: 1688 issue: 15 year: 2006 ident: 10.1016/j.bios.2023.115856_bib1 publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2006.09.017 – volume: 111 start-page: 14888 issue: 41 year: 2014 ident: 10.1016/j.bios.2023.115856_bib13 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1408301111 – volume: 152 start-page: 1173 issue: 5 year: 2013 ident: 10.1016/j.bios.2023.115856_bib45 publication-title: Cell doi: 10.1016/j.cell.2013.02.022 – volume: 51 start-page: 711 issue: 2 year: 2018 ident: 10.1016/j.bios.2023.115856_bib55 publication-title: Cell. Physiol. Biochem. doi: 10.1159/000495328 – volume: 283 start-page: 704 year: 2019 ident: 10.1016/j.bios.2023.115856_bib6 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2019.03.119 – volume: 112 start-page: 519 issue: 4 year: 2003 ident: 10.1016/j.bios.2023.115856_bib25 publication-title: Cell doi: 10.1016/S0092-8674(03)00112-0 – volume: 673 year: 2023 ident: 10.1016/j.bios.2023.115856_bib22 publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2023.131794 – volume: 6 start-page: 9477 issue: 23 year: 2014 ident: 10.1016/j.bios.2023.115856_bib27 publication-title: Anal. Methods doi: 10.1039/C4AY02142H – volume: 146 year: 2019 ident: 10.1016/j.bios.2023.115856_bib14 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2019.111749 – volume: 2 start-page: 333 year: 2022 ident: 10.1016/j.bios.2023.115856_bib41 publication-title: Mol. Cell. 82 doi: 10.1016/j.molcel.2021.12.002 – volume: 40 start-page: 145 issue: 2 year: 1986 ident: 10.1016/j.bios.2023.115856_bib63 publication-title: Chem. Phys. Lipids doi: 10.1016/0009-3084(86)90068-X – volume: 32 start-page: 347 issue: 4 year: 2014 ident: 10.1016/j.bios.2023.115856_bib52 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2842 – volume: 142 start-page: 4996 issue: 11 year: 2020 ident: 10.1016/j.bios.2023.115856_bib76 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b13960 – volume: 5 start-page: 643 issue: 7 year: 2021 ident: 10.1016/j.bios.2023.115856_bib28 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-021-00760-7 – volume: 145 start-page: 3289 issue: 9 year: 2020 ident: 10.1016/j.bios.2023.115856_bib59 publication-title: Analyst doi: 10.1039/D0AN00393J – volume: 303 start-page: 539 year: 2016 ident: 10.1016/j.bios.2023.115856_bib3 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.06.040 – volume: 21 start-page: 537 issue: 3 year: 2010 ident: 10.1016/j.bios.2023.115856_bib15 publication-title: Bioconjugate Chem. doi: 10.1021/bc900470y – volume: 30 start-page: 836 issue: 6 year: 2016 ident: 10.1016/j.bios.2023.115856_bib9 publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.10.009 – volume: 160 year: 2021 ident: 10.1016/j.bios.2023.115856_bib51 publication-title: Microchem. J. doi: 10.1016/j.microc.2020.105765 – volume: 19 start-page: 213 issue: 4 year: 2018 ident: 10.1016/j.bios.2023.115856_bib57 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.125 – volume: 154 start-page: 442 issue: 2 year: 2013 ident: 10.1016/j.bios.2023.115856_bib20 publication-title: Cell doi: 10.1016/j.cell.2013.06.044 |
SSID | ssj0007190 |
Score | 2.5176556 |
Snippet | Efficient extracellular vesicle (EV) enrichment and timely internal RNA detection for cancer diagnostics are highly desirable and remain a challenge. Here, we... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 115856 |
SubjectTerms | biosensors blood serum detection limit diagnostic techniques freeze drying microRNA nanoparticles pancreatic neoplasms ultracentrifugation |
Title | CRISPR-Cas12a powered hybrid nanoparticle for extracellular vesicle aggregation and in-situ microRNA detection |
URI | https://www.proquest.com/docview/2893841236 https://www.proquest.com/docview/3153193737 |
Volume | 245 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKEBI8IBggNj5kJN6iVE3sxMnjVIEGggmVTipPke04bSZIpjUZGw_87Zxj52swxHhIFKUXJ_X9cr673AdCr4nIgLMhdUNCA5d6Urk639GNZOQFURz5sdKG4sej8PCYvl8Fq8nk-zC7pBJT-eOPeSX_w1U4B3zVWbI34Gw3KJyAY-Av7IHDsP8nHs8X7z5_WrhzvvV87pzqhmegP24udRaWU_ACDGJzkSnsfVGdce2obyJPz9W2-YWvweJeGxiYSkzuNq9q55uO1FscHTipqppwrWL0_Tcvt2AA6049GjsiL_t-Op2W3jmjl6pYb-puAVjZbyL5ps57WmVoVzkvNx3aPuR2iC_1ha0Rbl0UPm2jmge-xtAFvZEMxa5Pg4HgBMU0MhXGf5Ppxr1wMoW_ouur-2TaE48LaF9Z2LpwwzaS7STRYyR6jMSMcQvd9sG-0AJy-rOPDWKecc61z22zrUxg4NXnGGs04wW90VKWD9B9a17gA8P2h2iiil10xzQcvdxF9wblJx-hYoQfbPGDDX7wED8Y8INH-MEWP3iAHwz4wRY_uMUP7vDzGB2_fbOcH7q2_4YriUcqN2Cp589g8yQYqnCDKAx5HGZUxGlKFY8COQP9VbKQpdKPdEIfh9ligkU0yxQnT9BOURbqKcJgFVCRzaiYMUl5oISImVKCwGEYSp_tIa-dw0Ta4vS6R8rX5Hre7SGnu-bUlGb5K_WrljUJSFA9W7xQZQ1EoLJHVFchup6GeHqtIoyw_Rvd9Rm6278Qz9FOdVarF6DFVuJlg7hfQjCd9Q |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CRISPR-Cas12a+powered+hybrid+nanoparticle+for+extracellular+vesicle+aggregation+and+in-situ+microRNA+detection&rft.jtitle=Biosensors+%26+bioelectronics&rft.au=Zhang%2C+Tenghua&rft.au=Xie%2C+Zihui&rft.au=Zheng%2C+Xiaohe&rft.au=Liang%2C+Yuxin&rft.date=2024-02-01&rft.issn=0956-5663&rft.volume=245&rft.spage=115856&rft_id=info:doi/10.1016%2Fj.bios.2023.115856&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bios_2023_115856 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5663&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5663&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5663&client=summon |