Fault tolerant deterministic secure quantum communication using logical Bell states against collective noise

This study proposes two novel fault tolerant deterministic secure quantum communication (DSQC) schemes resistant to collective noise using logical Bell states. Either DSQC scheme is constructed based on a new coding function, which is designed by exploiting the property of the corresponding logical...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 24; no. 4; pp. 53 - 62
Main Author 王朝 刘建伟 陈秀波 毕亚港 尚涛
Format Journal Article
LanguageEnglish
Published 01.04.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study proposes two novel fault tolerant deterministic secure quantum communication (DSQC) schemes resistant to collective noise using logical Bell states. Either DSQC scheme is constructed based on a new coding function, which is designed by exploiting the property of the corresponding logical Bell states immune to collective-dephasing noise and collective-rotation noise, respectively. The secret message can be encoded by two simple unitary operations and decoded by merely performing Bell measurements, which can make the proposed scheme more convenient in practical applications. Moreover, the strategy of one-step quanta transmission, together with the technique of decoy logical qubits checking not only reduces the influence of other noise existing in a quantum channel, but also guarantees the security of the communication between two legitimate users. The final analysis shows that the proposed schemes are feasible and robust against various well-known attacks over the collective noise channel.
AbstractList This study proposes two novel fault tolerant deterministic secure quantum communication (DSQC) schemes resistant to collective noise using logical Bell states. Either DSQC scheme is constructed based on a new coding function, which is designed by exploiting the property of the corresponding logical Bell states immune to collective-dephasing noise and collective-rotation noise, respectively. The secret message can be encoded by two simple unitary operations and decoded by merely performing Bell measurements, which can make the proposed scheme more convenient in practical applications. Moreover, the strategy of one-step quanta transmission, together with the technique of decoy logical qubits checking not only reduces the influence of other noise existing in a quantum channel, but also guarantees the security of the communication between two legitimate users. The final analysis shows that the proposed schemes are feasible and robust against various well-known attacks over the collective noise channel.
This study proposes two novel fault tolerant deterministic secure quantum communication (DSQC) schemes resistant to collective noise using logical Bell states. Either DSQC scheme is constructed based on a new coding function, which is designed by exploiting the property of the corresponding logical Bell states immune to collective-dephasing noise and collective-rotation noise, respectively. The secret message can be encoded by two simple unitary operations and decoded by merely performing Bell measurements, which can make the proposed scheme more convenient in practical applications. Moreover, the strategy of one-step quanta transmission, together with the technique of decoy logical qubits checking not only reduces the influence of other noise existing in a quantum channel, but also guarantees the security of the communication between two legitimate users. The final analysis shows that the proposed schemes are feasible and robust against various well-known attacks over the collective noise channel.
Author 王朝 刘建伟 陈秀波 毕亚港 尚涛
AuthorAffiliation School of Electronic and Information Engineering, Beihang University, Beijing 100191, China Air Force Command College, Beijing 100097, China information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China State Key Laboratory of Information Security (Institute of Information Engineering, Chinese Academy of Sciences), Beijing 100093, China
Author_xml – sequence: 1
  fullname: 王朝 刘建伟 陈秀波 毕亚港 尚涛
BookMark eNqFkE1rHDEMhk1JIZu0PyFgeuplsv7QeLzklIakKQR6ac_G49VsXTx21vYE8u_rzYYceslJIL2PkJ4zchJTREIuOLvkTOs1VwN0nPVqLWANawZMMvhAVoL1upNawglZvWVOyVkpfxlTnAm5IuHOLqHSmgJmGyvdYsU8--hL9Y4WdEtGul_aaJmpS_O8RO9s9SnSpfi4oyHtWiPQbxgCLdVWLNTurI-ltnwI6Kp_QhqTL_iJfJxsKPj5tZ6T33e3v27uu4ef33_cXD90TnJZO5iU4xur9Lhl1orW03I7bqZhOygFmoveOUQ9gtUjBzUIwUCzkUk3aQQAeU6-Hvc-5rRfsFQz--LagTZiWorhg1ZNzkaJFr06Rl1OpWScjPP15b-arQ-GM3NwbA7-zMGfEWDAHB03uv-Pfsx-tvn5Xe7LK_cnxd2-eXwD24e9AFBa_gPDjI7o
CitedBy_id crossref_primary_10_1007_s11128_020_02795_2
crossref_primary_10_1142_S0217979216501782
crossref_primary_10_3390_sym13091672
crossref_primary_10_1142_S0217984920503054
crossref_primary_10_7498_aps_67_20180598
Cites_doi 10.1007s10773-014-2054-42014
10.1063/1.2794433
10.1007/s11128-013-0593-x
10.1007/s11433-011-4245-9
10.1007/s10773-012-1286-4
10.1063/1.1738173
10.1016/j.physleta.2005.10.050
10.1142/S0219749910006174
10.1007/s11433-011-4265-5
10.1007/s11433-009-0303-y
10.1088/1674-1056/17/7/005
10.1103/PhysRevLett.89.187901
10.1103/PhysRevA.85.012334
10.1016/j.optcom.2009.01.005
10.1016/j.optcom.2010.08.073
10.1140/epjd/e2010-10189-8
10.1103/PhysRevLett.92.107901
10.1103/PhysRevA.80.032321
10.1007/s11128-013-0582-0
10.1140/epjd/e2012-30626-x
10.1016/j.optcom.2010.11.053
10.1088/0256-307X/23/10/010
10.1103/PhysRevLett.91.087901
10.1103/PhysRevLett.92.017901
10.1088/1674-1056/18/10/007
10.1002/bltj.1949.28.issue-4
10.1103/PhysRevA.65.032302
10.1007/s11434-012-5516-1
10.1088/0253-6102/58/1/10
10.1103/PhysRevA.72.050304
10.1016/j.optcom.2010.07.022
10.1016/j.optcom.2010.04.015
10.1103/PhysRevA.68.042317
10.1016/j.physleta.2006.08.016
10.1007/s10773-012-1273-9
10.1103/PhysRevA.78.022321
10.1140/epjd/e2010-10320-y
10.1007/s11128-013-0611-z
10.1103/PhysRevA.73.022338
10.12693/APhysPolA.101.357
10.1103/PhysRevLett.92.077902
10.1103/PhysRevLett.94.140501
10.1016/j.optcom.2009.07.012
10.1103/PhysRevA.71.044305
10.1142/S0219749911006879
10.1007/s11128-011-0236-z
10.1103/PhysRevA.60.157
10.1142/S021974990900595X
10.1103/PhysRevA.69.052319
10.1007/s11433-011-4432-8
10.1088/0256-307X/22/1/006
10.1007/s11128-012-0417-4
10.1016/j.optcom.2009.08.063
10.1016/j.optcom.2011.03.081
10.1103/PhysRevA.74.054302
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1088/1674-1056/24/4/040304
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Fault tolerant deterministic secure quantum communication using logical Bell states against collective noise
EISSN 2058-3834
1741-4199
EndPage 62
ExternalDocumentID 10_1088_1674_1056_24_4_040304
664524468
GroupedDBID 02O
1JI
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NT-
NT.
PJBAE
Q02
RIN
RNS
ROL
RPA
RW3
SY9
TCJ
TGP
UCJ
W28
~WA
-SA
-S~
AAYXX
ACARI
ADEQX
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
U1G
U5K
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c313t-4f6c19a68bd0aa231383db9f7d76648125ccee8b4a8b1467220480b03cf8e4443
ISSN 1674-1056
IngestDate Fri Jul 11 01:23:13 EDT 2025
Thu Apr 24 23:10:23 EDT 2025
Tue Jul 01 02:55:09 EDT 2025
Wed Feb 14 10:30:59 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c313t-4f6c19a68bd0aa231383db9f7d76648125ccee8b4a8b1467220480b03cf8e4443
Notes collective noise, deterministic secure quantum communication, logical Bell states
This study proposes two novel fault tolerant deterministic secure quantum communication (DSQC) schemes resistant to collective noise using logical Bell states. Either DSQC scheme is constructed based on a new coding function, which is designed by exploiting the property of the corresponding logical Bell states immune to collective-dephasing noise and collective-rotation noise, respectively. The secret message can be encoded by two simple unitary operations and decoded by merely performing Bell measurements, which can make the proposed scheme more convenient in practical applications. Moreover, the strategy of one-step quanta transmission, together with the technique of decoy logical qubits checking not only reduces the influence of other noise existing in a quantum channel, but also guarantees the security of the communication between two legitimate users. The final analysis shows that the proposed schemes are feasible and robust against various well-known attacks over the collective noise channel.
11-5639/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1786205962
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1786205962
crossref_citationtrail_10_1088_1674_1056_24_4_040304
crossref_primary_10_1088_1674_1056_24_4_040304
chongqing_primary_664524468
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-04-01
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics B
PublicationTitleAlternate Chinese Physics
PublicationYear 2015
References 44
Tian P G (8); 62
45
46
47
48
Bennett C H (1) 1984
Huang W (49) 2012; 21
Nielsen M A (36) 2000
Yan L L (18) 2013; 30
Li C Y (15) 2008; 17
Chen X B (67) 2012; 86
Li D (30) 2010; 41
Beige A (21) 2002; 101
Gu B (13) 2011; 20
51
10
54
11
Kao S H (19) 2013; 22
55
12
56
57
58
59
16
17
2
3
6
9
60
61
62
63
20
Yang J (50) 2010; 19
64
22
66
23
68
25
69
26
Liu W J (29) 2009; 18
Wang G Y (28) 2006; 23
Man Z X (27) 2005; 22
Li C Y (53) 2011; 28
Zhu C H (4) 2010; 27
Yang S (65) 2012; 58
70
71
72
31
Lin S (14) 2011; 28
32
33
34
Chen D (7) 2014; 63
35
37
38
39
Yang Y G (52) 2011; 83
Shukla C (24) 2012; 67
Chen M J (5) 2011; 20
40
41
42
43
References_xml – ident: 59
  doi: 10.1007s10773-014-2054-42014
– ident: 37
  doi: 10.1063/1.2794433
– ident: 41
  doi: 10.1007/s11128-013-0593-x
– ident: 46
  doi: 10.1007/s11433-011-4245-9
– ident: 48
  doi: 10.1007/s10773-012-1286-4
– volume: 41
  start-page: 1203
  year: 2010
  ident: 30
  publication-title: Acta Phys. Pol. B
– ident: 62
  doi: 10.1063/1.1738173
– ident: 71
  doi: 10.1016/j.physleta.2005.10.050
– volume: 62
  ident: 8
  publication-title: Acta Phys. Sin.
– volume: 20
  issn: 1674-1056
  year: 2011
  ident: 5
  publication-title: Chin. Phys. B
– ident: 44
  doi: 10.1142/S0219749910006174
– ident: 45
  doi: 10.1007/s11433-011-4265-5
– ident: 57
  doi: 10.1007/s11433-009-0303-y
– volume: 86
  issn: 1402-4896
  year: 2012
  ident: 67
  publication-title: Phys. Scr.
– volume: 17
  start-page: 2352
  issn: 1674-1056
  year: 2008
  ident: 15
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/17/7/005
– ident: 61
  doi: 10.1103/PhysRevLett.89.187901
– ident: 3
  doi: 10.1103/PhysRevA.85.012334
– ident: 56
  doi: 10.1016/j.optcom.2009.01.005
– ident: 40
  doi: 10.1016/j.optcom.2010.08.073
– ident: 25
  doi: 10.1140/epjd/e2010-10189-8
– ident: 60
  doi: 10.1103/PhysRevLett.92.107901
– volume: 22
  issn: 1674-1056
  year: 2013
  ident: 19
  publication-title: Chin. Phys. B
– ident: 33
  doi: 10.1103/PhysRevA.80.032321
– volume: 28
  issn: 0256-307X
  year: 2011
  ident: 14
  publication-title: Chin. Phys. Lett.
– ident: 58
  doi: 10.1007/s11128-013-0582-0
– volume: 30
  issn: 0256-307X
  year: 2013
  ident: 18
  publication-title: Chin. Phys. Lett.
– ident: 35
  doi: 10.1140/epjd/e2012-30626-x
– volume: 67
  start-page: 661
  issn: 0020-7748
  year: 2012
  ident: 24
  publication-title: Int. J. Theor. Phys.
– ident: 12
  doi: 10.1016/j.optcom.2010.11.053
– volume: 23
  start-page: 2658
  issn: 0256-307X
  year: 2006
  ident: 28
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/23/10/010
– volume: 83
  issn: 1402-4896
  year: 2011
  ident: 52
  publication-title: Phys. Scr.
– year: 2000
  ident: 36
  publication-title: Quantum Computation and Quantum Information
– ident: 38
  doi: 10.1103/PhysRevLett.91.087901
– ident: 32
  doi: 10.1103/PhysRevLett.92.017901
– volume: 27
  issn: 0256-307X
  year: 2010
  ident: 4
  publication-title: Chin. Phys. Lett.
– volume: 18
  start-page: 4105
  issn: 1674-1056
  year: 2009
  ident: 29
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/18/10/007
– ident: 63
  doi: 10.1002/bltj.1949.28.issue-4
– year: 1984
  ident: 1
  publication-title: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing
– volume: 21
  issn: 1674-1056
  year: 2012
  ident: 49
  publication-title: Chin. Phys. B
– ident: 9
  doi: 10.1103/PhysRevA.65.032302
– ident: 34
  doi: 10.1007/s11434-012-5516-1
– volume: 58
  start-page: 51
  issn: 0253-6102
  year: 2012
  ident: 65
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/58/1/10
– ident: 39
  doi: 10.1103/PhysRevA.72.050304
– ident: 70
  doi: 10.1016/j.optcom.2010.07.022
– ident: 55
  doi: 10.1016/j.optcom.2010.04.015
– ident: 10
  doi: 10.1103/PhysRevA.68.042317
– ident: 69
  doi: 10.1016/j.physleta.2006.08.016
– ident: 26
  doi: 10.1007/s10773-012-1273-9
– ident: 31
  doi: 10.1103/PhysRevA.78.022321
– ident: 6
  doi: 10.1140/epjd/e2010-10320-y
– volume: 19
  issn: 1674-1056
  year: 2010
  ident: 50
  publication-title: Chin. Phys. B
– ident: 47
  doi: 10.1007/s11128-013-0611-z
– ident: 11
  doi: 10.1103/PhysRevA.73.022338
– volume: 101
  start-page: 357
  issn: 0587-4246
  year: 2002
  ident: 21
  publication-title: Acta Phys. Pol. A
  doi: 10.12693/APhysPolA.101.357
– volume: 63
  issn: 0372-736X
  year: 2014
  ident: 7
  publication-title: Acta Phys. Sin.
– volume: 28
  issn: 0256-307X
  year: 2011
  ident: 53
  publication-title: Chin. Phys. Lett.
– ident: 2
  doi: 10.1103/PhysRevLett.92.077902
– volume: 20
  issn: 1674-1056
  year: 2011
  ident: 13
  publication-title: Chin. Phys. B
– ident: 22
  doi: 10.1103/PhysRevLett.94.140501
– ident: 42
  doi: 10.1016/j.optcom.2009.07.012
– ident: 17
  doi: 10.1103/PhysRevA.71.044305
– ident: 23
  doi: 10.1142/S0219749911006879
– ident: 64
  doi: 10.1007/s11128-011-0236-z
– ident: 20
  doi: 10.1103/PhysRevA.60.157
– ident: 43
  doi: 10.1142/S021974990900595X
– ident: 16
  doi: 10.1103/PhysRevA.69.052319
– ident: 51
  doi: 10.1007/s11433-011-4432-8
– volume: 22
  start-page: 18
  issn: 0256-307X
  year: 2005
  ident: 27
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/22/1/006
– ident: 68
  doi: 10.1007/s11128-012-0417-4
– ident: 54
  doi: 10.1016/j.optcom.2009.08.063
– ident: 66
  doi: 10.1016/j.optcom.2011.03.081
– ident: 72
  doi: 10.1103/PhysRevA.74.054302
SSID ssj0061023
ssib054405859
ssib000804704
Score 2.0447354
Snippet This study proposes two novel fault tolerant deterministic secure quantum communication (DSQC) schemes resistant to collective noise using logical Bell states....
This study proposes two novel fault tolerant deterministic secure quantum communication (DSQC) schemes resistant to collective noise using logical Bell states....
SourceID proquest
crossref
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 53
SubjectTerms Bells
Channels
Decoys
Fault tolerance
Fault tolerant
Noise
Qubits (quantum computing)
Strategy
安全性
容错
旋转噪声
相位噪声
贝尔
逻辑
量子通信
集体
Title Fault tolerant deterministic secure quantum communication using logical Bell states against collective noise
URI http://lib.cqvip.com/qk/85823A/201504/664524468.html
https://www.proquest.com/docview/1786205962
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWRUhcEE9RFpCR8CnKNk0cxz4mu4kWDsBhV9pb5DjOUqmkQNMLv48fxozzaCsQr0tkOR47yvfJM7ZnxoS8rqNKJVaEfmht5HObGF8aXfuN0nWQVLWNjHOQfScurvjb6_j66Oj7ntfStqtOzbdfxpX8D6pQB7hilOw_IDt1ChVQBnzhCQjD868wLvR21YH1uLKgcTqvHlxbXO5lb4M76RajJkGtfELf8V0kiLd1WwTjvIdBOp4LLdp4-kYvwWT0kCD9ZOi16-XmwGOI5ZxlkqXnLI-ZylgGhYRJxVKFBRUwKTKWFyw7YypluWQSGi1YLpgSTCZDazm50bqKHFthExA697BrKZmSWMhAPHWjwrsC3immUB7l0gS9NUAui1gaelhKC6Zi1zx14wv3tYXrMwvGKhgp29_0WMR7vjL9PC0SDhokHrJou7owiKUfjXujy_29Cjc390mJBy3fq4Cf9AfMubiVMfaO4TIcb4fCMy6Op8g7tTk5Mwo8G4ZVtbxFboewWMF7NN68_zDaAwKTY-Cyf-x0jCOTcj7VzUM-5_N-CMzy8XHd3nwBIhxaS4fGgrOALu-Te8PShaY9Dx-QI9s-JHecC7HZPCIrx0Y6spEesJH2bKQDG-kBG6ljIx3YSJGNtGcjHdhId2ykjo2PyVWRX55d-MNdHr6JFlHn80aYhdJCVnWgNSwqAKi6Uk1SJ_D_wMqMDZhrsuJaVqi8Q0woHVRBZBppOefRE3Lcrlv7lFBdxXWopBRNxLkypoqbBrBXNlFWL7idkZPp_5Wf-5wt5QTSjPDxj5ZmSIOPt7GsSueOIWWJoJQIShnykpc9KDNyOomNff5B4NUIVwkzNh7D6daut5tykUgRuluvnv32S0_I3R31n5Pj7uvWvgALuKteOoL9AD-Oll0
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+tolerant+deterministic+secure+quantum+communication+using+logical+Bell+states+against+collective+noise&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86B%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E7%8E%8B%E6%9C%9D+%E5%88%98%E5%BB%BA%E4%BC%9F+%E9%99%88%E7%A7%80%E6%B3%A2+%E6%AF%95%E4%BA%9A%E6%B8%AF+%E5%B0%9A%E6%B6%9B&rft.date=2015-04-01&rft.issn=1674-1056&rft.eissn=2058-3834&rft.issue=4&rft.spage=53&rft.epage=62&rft_id=info:doi/10.1088%2F1674-1056%2F24%2F4%2F040304&rft.externalDocID=664524468
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg