Fault tolerant deterministic secure quantum communication using logical Bell states against collective noise
This study proposes two novel fault tolerant deterministic secure quantum communication (DSQC) schemes resistant to collective noise using logical Bell states. Either DSQC scheme is constructed based on a new coding function, which is designed by exploiting the property of the corresponding logical...
Saved in:
Published in | Chinese physics B Vol. 24; no. 4; pp. 53 - 62 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.04.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study proposes two novel fault tolerant deterministic secure quantum communication (DSQC) schemes resistant to collective noise using logical Bell states. Either DSQC scheme is constructed based on a new coding function, which is designed by exploiting the property of the corresponding logical Bell states immune to collective-dephasing noise and collective-rotation noise, respectively. The secret message can be encoded by two simple unitary operations and decoded by merely performing Bell measurements, which can make the proposed scheme more convenient in practical applications. Moreover, the strategy of one-step quanta transmission, together with the technique of decoy logical qubits checking not only reduces the influence of other noise existing in a quantum channel, but also guarantees the security of the communication between two legitimate users. The final analysis shows that the proposed schemes are feasible and robust against various well-known attacks over the collective noise channel. |
---|---|
AbstractList | This study proposes two novel fault tolerant deterministic secure quantum communication (DSQC) schemes resistant to collective noise using logical Bell states. Either DSQC scheme is constructed based on a new coding function, which is designed by exploiting the property of the corresponding logical Bell states immune to collective-dephasing noise and collective-rotation noise, respectively. The secret message can be encoded by two simple unitary operations and decoded by merely performing Bell measurements, which can make the proposed scheme more convenient in practical applications. Moreover, the strategy of one-step quanta transmission, together with the technique of decoy logical qubits checking not only reduces the influence of other noise existing in a quantum channel, but also guarantees the security of the communication between two legitimate users. The final analysis shows that the proposed schemes are feasible and robust against various well-known attacks over the collective noise channel. This study proposes two novel fault tolerant deterministic secure quantum communication (DSQC) schemes resistant to collective noise using logical Bell states. Either DSQC scheme is constructed based on a new coding function, which is designed by exploiting the property of the corresponding logical Bell states immune to collective-dephasing noise and collective-rotation noise, respectively. The secret message can be encoded by two simple unitary operations and decoded by merely performing Bell measurements, which can make the proposed scheme more convenient in practical applications. Moreover, the strategy of one-step quanta transmission, together with the technique of decoy logical qubits checking not only reduces the influence of other noise existing in a quantum channel, but also guarantees the security of the communication between two legitimate users. The final analysis shows that the proposed schemes are feasible and robust against various well-known attacks over the collective noise channel. |
Author | 王朝 刘建伟 陈秀波 毕亚港 尚涛 |
AuthorAffiliation | School of Electronic and Information Engineering, Beihang University, Beijing 100191, China Air Force Command College, Beijing 100097, China information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China State Key Laboratory of Information Security (Institute of Information Engineering, Chinese Academy of Sciences), Beijing 100093, China |
Author_xml | – sequence: 1 fullname: 王朝 刘建伟 陈秀波 毕亚港 尚涛 |
BookMark | eNqFkE1rHDEMhk1JIZu0PyFgeuplsv7QeLzklIakKQR6ac_G49VsXTx21vYE8u_rzYYceslJIL2PkJ4zchJTREIuOLvkTOs1VwN0nPVqLWANawZMMvhAVoL1upNawglZvWVOyVkpfxlTnAm5IuHOLqHSmgJmGyvdYsU8--hL9Y4WdEtGul_aaJmpS_O8RO9s9SnSpfi4oyHtWiPQbxgCLdVWLNTurI-ltnwI6Kp_QhqTL_iJfJxsKPj5tZ6T33e3v27uu4ef33_cXD90TnJZO5iU4xur9Lhl1orW03I7bqZhOygFmoveOUQ9gtUjBzUIwUCzkUk3aQQAeU6-Hvc-5rRfsFQz--LagTZiWorhg1ZNzkaJFr06Rl1OpWScjPP15b-arQ-GM3NwbA7-zMGfEWDAHB03uv-Pfsx-tvn5Xe7LK_cnxd2-eXwD24e9AFBa_gPDjI7o |
CitedBy_id | crossref_primary_10_1007_s11128_020_02795_2 crossref_primary_10_1142_S0217979216501782 crossref_primary_10_3390_sym13091672 crossref_primary_10_1142_S0217984920503054 crossref_primary_10_7498_aps_67_20180598 |
Cites_doi | 10.1007s10773-014-2054-42014 10.1063/1.2794433 10.1007/s11128-013-0593-x 10.1007/s11433-011-4245-9 10.1007/s10773-012-1286-4 10.1063/1.1738173 10.1016/j.physleta.2005.10.050 10.1142/S0219749910006174 10.1007/s11433-011-4265-5 10.1007/s11433-009-0303-y 10.1088/1674-1056/17/7/005 10.1103/PhysRevLett.89.187901 10.1103/PhysRevA.85.012334 10.1016/j.optcom.2009.01.005 10.1016/j.optcom.2010.08.073 10.1140/epjd/e2010-10189-8 10.1103/PhysRevLett.92.107901 10.1103/PhysRevA.80.032321 10.1007/s11128-013-0582-0 10.1140/epjd/e2012-30626-x 10.1016/j.optcom.2010.11.053 10.1088/0256-307X/23/10/010 10.1103/PhysRevLett.91.087901 10.1103/PhysRevLett.92.017901 10.1088/1674-1056/18/10/007 10.1002/bltj.1949.28.issue-4 10.1103/PhysRevA.65.032302 10.1007/s11434-012-5516-1 10.1088/0253-6102/58/1/10 10.1103/PhysRevA.72.050304 10.1016/j.optcom.2010.07.022 10.1016/j.optcom.2010.04.015 10.1103/PhysRevA.68.042317 10.1016/j.physleta.2006.08.016 10.1007/s10773-012-1273-9 10.1103/PhysRevA.78.022321 10.1140/epjd/e2010-10320-y 10.1007/s11128-013-0611-z 10.1103/PhysRevA.73.022338 10.12693/APhysPolA.101.357 10.1103/PhysRevLett.92.077902 10.1103/PhysRevLett.94.140501 10.1016/j.optcom.2009.07.012 10.1103/PhysRevA.71.044305 10.1142/S0219749911006879 10.1007/s11128-011-0236-z 10.1103/PhysRevA.60.157 10.1142/S021974990900595X 10.1103/PhysRevA.69.052319 10.1007/s11433-011-4432-8 10.1088/0256-307X/22/1/006 10.1007/s11128-012-0417-4 10.1016/j.optcom.2009.08.063 10.1016/j.optcom.2011.03.081 10.1103/PhysRevA.74.054302 |
ContentType | Journal Article |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 7U5 8FD H8D L7M |
DOI | 10.1088/1674-1056/24/4/040304 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Fault tolerant deterministic secure quantum communication using logical Bell states against collective noise |
EISSN | 2058-3834 1741-4199 |
EndPage | 62 |
ExternalDocumentID | 10_1088_1674_1056_24_4_040304 664524468 |
GroupedDBID | 02O 1JI 1WK 29B 2RA 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q 92L AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CCEZO CCVFK CEBXE CHBEP CJUJL CQIGP CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 FEDTE HAK HVGLF IJHAN IOP IZVLO JCGBZ KNG KOT M45 N5L NT- NT. PJBAE Q02 RIN RNS ROL RPA RW3 SY9 TCJ TGP UCJ W28 ~WA -SA -S~ AAYXX ACARI ADEQX AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- U1G U5K 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-c313t-4f6c19a68bd0aa231383db9f7d76648125ccee8b4a8b1467220480b03cf8e4443 |
ISSN | 1674-1056 |
IngestDate | Fri Jul 11 01:23:13 EDT 2025 Thu Apr 24 23:10:23 EDT 2025 Tue Jul 01 02:55:09 EDT 2025 Wed Feb 14 10:30:59 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c313t-4f6c19a68bd0aa231383db9f7d76648125ccee8b4a8b1467220480b03cf8e4443 |
Notes | collective noise, deterministic secure quantum communication, logical Bell states This study proposes two novel fault tolerant deterministic secure quantum communication (DSQC) schemes resistant to collective noise using logical Bell states. Either DSQC scheme is constructed based on a new coding function, which is designed by exploiting the property of the corresponding logical Bell states immune to collective-dephasing noise and collective-rotation noise, respectively. The secret message can be encoded by two simple unitary operations and decoded by merely performing Bell measurements, which can make the proposed scheme more convenient in practical applications. Moreover, the strategy of one-step quanta transmission, together with the technique of decoy logical qubits checking not only reduces the influence of other noise existing in a quantum channel, but also guarantees the security of the communication between two legitimate users. The final analysis shows that the proposed schemes are feasible and robust against various well-known attacks over the collective noise channel. 11-5639/O4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1786205962 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1786205962 crossref_citationtrail_10_1088_1674_1056_24_4_040304 crossref_primary_10_1088_1674_1056_24_4_040304 chongqing_primary_664524468 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-04-01 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chinese Physics |
PublicationYear | 2015 |
References | 44 Tian P G (8); 62 45 46 47 48 Bennett C H (1) 1984 Huang W (49) 2012; 21 Nielsen M A (36) 2000 Yan L L (18) 2013; 30 Li C Y (15) 2008; 17 Chen X B (67) 2012; 86 Li D (30) 2010; 41 Beige A (21) 2002; 101 Gu B (13) 2011; 20 51 10 54 11 Kao S H (19) 2013; 22 55 12 56 57 58 59 16 17 2 3 6 9 60 61 62 63 20 Yang J (50) 2010; 19 64 22 66 23 68 25 69 26 Liu W J (29) 2009; 18 Wang G Y (28) 2006; 23 Man Z X (27) 2005; 22 Li C Y (53) 2011; 28 Zhu C H (4) 2010; 27 Yang S (65) 2012; 58 70 71 72 31 Lin S (14) 2011; 28 32 33 34 Chen D (7) 2014; 63 35 37 38 39 Yang Y G (52) 2011; 83 Shukla C (24) 2012; 67 Chen M J (5) 2011; 20 40 41 42 43 |
References_xml | – ident: 59 doi: 10.1007s10773-014-2054-42014 – ident: 37 doi: 10.1063/1.2794433 – ident: 41 doi: 10.1007/s11128-013-0593-x – ident: 46 doi: 10.1007/s11433-011-4245-9 – ident: 48 doi: 10.1007/s10773-012-1286-4 – volume: 41 start-page: 1203 year: 2010 ident: 30 publication-title: Acta Phys. Pol. B – ident: 62 doi: 10.1063/1.1738173 – ident: 71 doi: 10.1016/j.physleta.2005.10.050 – volume: 62 ident: 8 publication-title: Acta Phys. Sin. – volume: 20 issn: 1674-1056 year: 2011 ident: 5 publication-title: Chin. Phys. B – ident: 44 doi: 10.1142/S0219749910006174 – ident: 45 doi: 10.1007/s11433-011-4265-5 – ident: 57 doi: 10.1007/s11433-009-0303-y – volume: 86 issn: 1402-4896 year: 2012 ident: 67 publication-title: Phys. Scr. – volume: 17 start-page: 2352 issn: 1674-1056 year: 2008 ident: 15 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/17/7/005 – ident: 61 doi: 10.1103/PhysRevLett.89.187901 – ident: 3 doi: 10.1103/PhysRevA.85.012334 – ident: 56 doi: 10.1016/j.optcom.2009.01.005 – ident: 40 doi: 10.1016/j.optcom.2010.08.073 – ident: 25 doi: 10.1140/epjd/e2010-10189-8 – ident: 60 doi: 10.1103/PhysRevLett.92.107901 – volume: 22 issn: 1674-1056 year: 2013 ident: 19 publication-title: Chin. Phys. B – ident: 33 doi: 10.1103/PhysRevA.80.032321 – volume: 28 issn: 0256-307X year: 2011 ident: 14 publication-title: Chin. Phys. Lett. – ident: 58 doi: 10.1007/s11128-013-0582-0 – volume: 30 issn: 0256-307X year: 2013 ident: 18 publication-title: Chin. Phys. Lett. – ident: 35 doi: 10.1140/epjd/e2012-30626-x – volume: 67 start-page: 661 issn: 0020-7748 year: 2012 ident: 24 publication-title: Int. J. Theor. Phys. – ident: 12 doi: 10.1016/j.optcom.2010.11.053 – volume: 23 start-page: 2658 issn: 0256-307X year: 2006 ident: 28 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/23/10/010 – volume: 83 issn: 1402-4896 year: 2011 ident: 52 publication-title: Phys. Scr. – year: 2000 ident: 36 publication-title: Quantum Computation and Quantum Information – ident: 38 doi: 10.1103/PhysRevLett.91.087901 – ident: 32 doi: 10.1103/PhysRevLett.92.017901 – volume: 27 issn: 0256-307X year: 2010 ident: 4 publication-title: Chin. Phys. Lett. – volume: 18 start-page: 4105 issn: 1674-1056 year: 2009 ident: 29 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/18/10/007 – ident: 63 doi: 10.1002/bltj.1949.28.issue-4 – year: 1984 ident: 1 publication-title: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing – volume: 21 issn: 1674-1056 year: 2012 ident: 49 publication-title: Chin. Phys. B – ident: 9 doi: 10.1103/PhysRevA.65.032302 – ident: 34 doi: 10.1007/s11434-012-5516-1 – volume: 58 start-page: 51 issn: 0253-6102 year: 2012 ident: 65 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/58/1/10 – ident: 39 doi: 10.1103/PhysRevA.72.050304 – ident: 70 doi: 10.1016/j.optcom.2010.07.022 – ident: 55 doi: 10.1016/j.optcom.2010.04.015 – ident: 10 doi: 10.1103/PhysRevA.68.042317 – ident: 69 doi: 10.1016/j.physleta.2006.08.016 – ident: 26 doi: 10.1007/s10773-012-1273-9 – ident: 31 doi: 10.1103/PhysRevA.78.022321 – ident: 6 doi: 10.1140/epjd/e2010-10320-y – volume: 19 issn: 1674-1056 year: 2010 ident: 50 publication-title: Chin. Phys. B – ident: 47 doi: 10.1007/s11128-013-0611-z – ident: 11 doi: 10.1103/PhysRevA.73.022338 – volume: 101 start-page: 357 issn: 0587-4246 year: 2002 ident: 21 publication-title: Acta Phys. Pol. A doi: 10.12693/APhysPolA.101.357 – volume: 63 issn: 0372-736X year: 2014 ident: 7 publication-title: Acta Phys. Sin. – volume: 28 issn: 0256-307X year: 2011 ident: 53 publication-title: Chin. Phys. Lett. – ident: 2 doi: 10.1103/PhysRevLett.92.077902 – volume: 20 issn: 1674-1056 year: 2011 ident: 13 publication-title: Chin. Phys. B – ident: 22 doi: 10.1103/PhysRevLett.94.140501 – ident: 42 doi: 10.1016/j.optcom.2009.07.012 – ident: 17 doi: 10.1103/PhysRevA.71.044305 – ident: 23 doi: 10.1142/S0219749911006879 – ident: 64 doi: 10.1007/s11128-011-0236-z – ident: 20 doi: 10.1103/PhysRevA.60.157 – ident: 43 doi: 10.1142/S021974990900595X – ident: 16 doi: 10.1103/PhysRevA.69.052319 – ident: 51 doi: 10.1007/s11433-011-4432-8 – volume: 22 start-page: 18 issn: 0256-307X year: 2005 ident: 27 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/22/1/006 – ident: 68 doi: 10.1007/s11128-012-0417-4 – ident: 54 doi: 10.1016/j.optcom.2009.08.063 – ident: 66 doi: 10.1016/j.optcom.2011.03.081 – ident: 72 doi: 10.1103/PhysRevA.74.054302 |
SSID | ssj0061023 ssib054405859 ssib000804704 |
Score | 2.0447354 |
Snippet | This study proposes two novel fault tolerant deterministic secure quantum communication (DSQC) schemes resistant to collective noise using logical Bell states.... This study proposes two novel fault tolerant deterministic secure quantum communication (DSQC) schemes resistant to collective noise using logical Bell states.... |
SourceID | proquest crossref chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 53 |
SubjectTerms | Bells Channels Decoys Fault tolerance Fault tolerant Noise Qubits (quantum computing) Strategy 安全性 容错 旋转噪声 相位噪声 贝尔 逻辑 量子通信 集体 |
Title | Fault tolerant deterministic secure quantum communication using logical Bell states against collective noise |
URI | http://lib.cqvip.com/qk/85823A/201504/664524468.html https://www.proquest.com/docview/1786205962 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWRUhcEE9RFpCR8CnKNk0cxz4mu4kWDsBhV9pb5DjOUqmkQNMLv48fxozzaCsQr0tkOR47yvfJM7ZnxoS8rqNKJVaEfmht5HObGF8aXfuN0nWQVLWNjHOQfScurvjb6_j66Oj7ntfStqtOzbdfxpX8D6pQB7hilOw_IDt1ChVQBnzhCQjD868wLvR21YH1uLKgcTqvHlxbXO5lb4M76RajJkGtfELf8V0kiLd1WwTjvIdBOp4LLdp4-kYvwWT0kCD9ZOi16-XmwGOI5ZxlkqXnLI-ZylgGhYRJxVKFBRUwKTKWFyw7YypluWQSGi1YLpgSTCZDazm50bqKHFthExA697BrKZmSWMhAPHWjwrsC3immUB7l0gS9NUAui1gaelhKC6Zi1zx14wv3tYXrMwvGKhgp29_0WMR7vjL9PC0SDhokHrJou7owiKUfjXujy_29Cjc390mJBy3fq4Cf9AfMubiVMfaO4TIcb4fCMy6Op8g7tTk5Mwo8G4ZVtbxFboewWMF7NN68_zDaAwKTY-Cyf-x0jCOTcj7VzUM-5_N-CMzy8XHd3nwBIhxaS4fGgrOALu-Te8PShaY9Dx-QI9s-JHecC7HZPCIrx0Y6spEesJH2bKQDG-kBG6ljIx3YSJGNtGcjHdhId2ykjo2PyVWRX55d-MNdHr6JFlHn80aYhdJCVnWgNSwqAKi6Uk1SJ_D_wMqMDZhrsuJaVqi8Q0woHVRBZBppOefRE3Lcrlv7lFBdxXWopBRNxLkypoqbBrBXNlFWL7idkZPp_5Wf-5wt5QTSjPDxj5ZmSIOPt7GsSueOIWWJoJQIShnykpc9KDNyOomNff5B4NUIVwkzNh7D6daut5tykUgRuluvnv32S0_I3R31n5Pj7uvWvgALuKteOoL9AD-Oll0 |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+tolerant+deterministic+secure+quantum+communication+using+logical+Bell+states+against+collective+noise&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86B%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E7%8E%8B%E6%9C%9D+%E5%88%98%E5%BB%BA%E4%BC%9F+%E9%99%88%E7%A7%80%E6%B3%A2+%E6%AF%95%E4%BA%9A%E6%B8%AF+%E5%B0%9A%E6%B6%9B&rft.date=2015-04-01&rft.issn=1674-1056&rft.eissn=2058-3834&rft.issue=4&rft.spage=53&rft.epage=62&rft_id=info:doi/10.1088%2F1674-1056%2F24%2F4%2F040304&rft.externalDocID=664524468 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg |