Multiply Strange Nuclear Systems
We investigate the stability of multiply strange baryonic systems, in the context of a mean field approach obtained from an underlying set of phenomenological meson-baryon interactions. The coupling parameters which determine the conventional σ + ω mean fields (Hartree potentials) seen by various ba...
Saved in:
Published in | Annals of physics Vol. 235; no. 1; pp. 35 - 76 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.10.1994
|
Subjects | |
Online Access | Get full text |
ISSN | 0003-4916 1096-035X |
DOI | 10.1006/aphy.1994.1090 |
Cover
Loading…
Abstract | We investigate the stability of multiply strange baryonic systems, in the context of a mean field approach obtained from an underlying set of phenomenological meson-baryon interactions. The coupling parameters which determine the conventional σ + ω mean fields (Hartree potentials) seen by various baryon species (N, Λ, Ξ) in the many-body system are constrained by reproducing the trend of observed binding energies of single particle (N, Λ, Ξ) states, as well as the energy per particle and density of non-strange nuclear matter. We also consider additional scalar (σ*) and vector (φ) fields which couple strongly to strange baryons. The couplings of these fields are adjusted to produce strong hyperon-hyperon interactions, as suggested by the data on ΛΛ hypernuclei. Extrapolating this approach to systems of large strangeness S, we find a broad class of objects composed of neutrons, protons, Λ′s and Ξ′s, which are stable against strong decay. In these systems, the presence of filled Λ orbitals blocks the strong decay ΞN → ΛΛ, leading to a strangeness fraction fs = |S|/A ≍1, density ρ ≍ (2 - 3) ρ0, and charge fraction fq in the range − 0.1 <q/A < 0.1, comparable to that of hypothetical stable strange quark matter ("stranglets"), but with a low binding energy per particle EB/A ≍ −10 to −20 MeV. We compare with an approximate mass formula which qualitatively describes the results of the mean field calculations. Such weakly bound multi-strange objects can be stable for very large A, unlike ordinary nuclei, since the Coulomb repulsion generated by the protons is largely cancelled by the presence of a comparable number of Ξ′s, leading to a small net charge (positive or negative) of order A1/3. We comment on the weak decays of such subjects and the possibility of their production in relativistic heavy ion collisions. |
---|---|
AbstractList | In these systems, the presence of filled [Lambda] orbitals blocks the strong decay [Xi][ital N][r arrow][Lambda][Lambda], leading to a strangeness fraction [ital f][sub [ital s]]=[vert bar][ital S][vert bar]/ [ital A][approx]1, density [rho][approx](2--3)[rho][sub 0], and charge fraction [ital f][sub [ital q]] in the range [minus]0.1[lt][ital q]/[ital A][lt]0.1, comparable to that of hypothetical stable strange quark matter ( strangelets''), but with a low binding energy per particle [ital E][sub [ital B]]/[ital A][approx][minus]10 to [minus]20 MeV. We compare with an approximate mass formula which qualitatively describes the results of the mean field calculations. Such weakly bound multi-strange objects can be stable for very large [ital A], unlike ordinary nuclei, since the Coulomb repulsion generated by the prtons is largely cancelled by the presence of a comparable number of [Xi][sup [minus]]'s, leading to a small net charge (positive or negative) of order [ital A][sup 1/3]. We comment on the weak decays of such subjects and the possibility of their production in relativistic heavy ion collisions. [copyright] 1994 Academic Press, Inc. We investigate the stability of multiply strange baryonic systems, in the context of a mean field approach obtained from an underlying set of phenomenological meson-baryon interactions. The coupling parameters which determine the conventional σ + ω mean fields (Hartree potentials) seen by various baryon species (N, Λ, Ξ) in the many-body system are constrained by reproducing the trend of observed binding energies of single particle (N, Λ, Ξ) states, as well as the energy per particle and density of non-strange nuclear matter. We also consider additional scalar (σ*) and vector (φ) fields which couple strongly to strange baryons. The couplings of these fields are adjusted to produce strong hyperon-hyperon interactions, as suggested by the data on ΛΛ hypernuclei. Extrapolating this approach to systems of large strangeness S, we find a broad class of objects composed of neutrons, protons, Λ′s and Ξ′s, which are stable against strong decay. In these systems, the presence of filled Λ orbitals blocks the strong decay ΞN → ΛΛ, leading to a strangeness fraction fs = |S|/A ≍1, density ρ ≍ (2 - 3) ρ0, and charge fraction fq in the range − 0.1 <q/A < 0.1, comparable to that of hypothetical stable strange quark matter ("stranglets"), but with a low binding energy per particle EB/A ≍ −10 to −20 MeV. We compare with an approximate mass formula which qualitatively describes the results of the mean field calculations. Such weakly bound multi-strange objects can be stable for very large A, unlike ordinary nuclei, since the Coulomb repulsion generated by the protons is largely cancelled by the presence of a comparable number of Ξ′s, leading to a small net charge (positive or negative) of order A1/3. We comment on the weak decays of such subjects and the possibility of their production in relativistic heavy ion collisions. |
Author | Stocker, H. Schaffner, J. Millener, D.J. Dover, C.B. Greiner, C. Gal, A. |
Author_xml | – sequence: 1 givenname: J. surname: Schaffner fullname: Schaffner, J. – sequence: 2 givenname: C.B. surname: Dover fullname: Dover, C.B. – sequence: 3 givenname: A. surname: Gal fullname: Gal, A. – sequence: 4 givenname: C. surname: Greiner fullname: Greiner, C. – sequence: 5 givenname: D.J. surname: Millener fullname: Millener, D.J. – sequence: 6 givenname: H. surname: Stocker fullname: Stocker, H. |
BackLink | https://www.osti.gov/biblio/6807008$$D View this record in Osti.gov |
BookMark | eNp1kM9LwzAUx4NMcJtePRfvnS9L2qZHGf6CqYcpeAtp-uIiXTqSTOh_b8o8CSOHR-D7eXzed0YmrndIyDWFBQUob9V-OyxoXfP0reGMTNMoc2DF54RMAYDlvKblBZmF8A1AKS_ElGQvhy7afTdkm-iV-8Ls9aA7VD7bDCHiLlySc6O6gFd_c04-Hu7fV0_5-u3xeXW3zjWjLOZLAxyblipuSpXekqFWUPFWlMbUOllhS9E0S9EALYtKc92K5NCwuqhMw9ic3Bz39iFaGbSNqLe6dw51lKWACkCkED-GtO9D8Ghkyqloe5fkbScpyLEKOVYhxyrkWEXCFv-wvbc75YfTgDgCmC7-sehHIXQaW-tHn7a3p9BfRU110Q |
CitedBy_id | crossref_primary_10_1016_j_nuclphysa_2017_02_004 crossref_primary_10_1016_S0375_9474_00_00175_5 crossref_primary_10_3847_1538_4357_ab1751 crossref_primary_10_1016_j_nuclphysa_2017_10_002 crossref_primary_10_1088_1361_6471_ad15e6 crossref_primary_10_1103_PhysRevC_73_045804 crossref_primary_10_1016_0370_2693_95_01161_I crossref_primary_10_1103_PhysRevC_70_055204 crossref_primary_10_1103_PhysRevC_95_025201 crossref_primary_10_1103_PhysRevC_60_015802 crossref_primary_10_1016_j_nuclphysa_2005_01_021 crossref_primary_10_1088_0004_637X_813_2_135 crossref_primary_10_1103_PhysRevD_80_023011 crossref_primary_10_1142_S0218301308010726 crossref_primary_10_1103_PhysRevD_102_123023 crossref_primary_10_1007_s13538_017_0525_9 crossref_primary_10_1140_epja_i2018_12566_6 crossref_primary_10_1103_PhysRevC_95_054318 crossref_primary_10_1088_0253_6102_69_4_417 crossref_primary_10_1103_PhysRevC_56_2202 crossref_primary_10_1103_PhysRevC_92_055802 crossref_primary_10_1007_s10509_007_9356_4 crossref_primary_10_1103_PhysRevC_68_015801 crossref_primary_10_1103_PhysRevC_81_025801 crossref_primary_10_1016_j_cjph_2019_11_024 crossref_primary_10_1140_epja_s10050_022_00721_x crossref_primary_10_1103_PhysRevC_83_025805 crossref_primary_10_1088_0954_3899_30_12_009 crossref_primary_10_1103_PhysRevC_63_035802 crossref_primary_10_1103_PhysRevLett_114_092301 crossref_primary_10_1103_RevModPhys_88_035004 crossref_primary_10_1016_S0370_1573_97_00011_2 crossref_primary_10_1103_PhysRevC_89_025805 crossref_primary_10_1103_PhysRevC_106_025806 crossref_primary_10_1103_PhysRevC_81_044909 crossref_primary_10_1142_S0218301312500280 crossref_primary_10_1103_PhysRevC_110_054320 crossref_primary_10_1142_S0218301307008574 crossref_primary_10_1103_PhysRevC_67_044318 crossref_primary_10_1103_RevModPhys_89_015007 crossref_primary_10_1103_PhysRevC_62_034901 crossref_primary_10_1103_PhysRevC_64_055805 crossref_primary_10_1103_PhysRevC_57_1178 crossref_primary_10_7498_aps_69_20200925 crossref_primary_10_1016_S0375_9474_02_00680_2 crossref_primary_10_1088_0954_3899_22_10_007 crossref_primary_10_1142_S0218271817501334 crossref_primary_10_1088_1742_6596_861_1_012016 crossref_primary_10_1103_PhysRevC_66_064319 crossref_primary_10_1103_PhysRevD_104_123006 crossref_primary_10_1103_PhysRevC_85_065802 crossref_primary_10_1140_epjp_s13360_021_01087_7 crossref_primary_10_1103_PhysRevC_74_014315 crossref_primary_10_1142_S0218301317500525 crossref_primary_10_1103_PhysRevC_89_065806 crossref_primary_10_1088_1674_1056_20_3_039701 crossref_primary_10_1103_PhysRevC_80_035205 crossref_primary_10_3847_1538_4357_ab43c5 crossref_primary_10_1093_mnras_stt2438 crossref_primary_10_1142_S0217732314500990 crossref_primary_10_1088_0954_3899_32_12_S30 crossref_primary_10_1103_PhysRevC_77_045801 crossref_primary_10_1007_s10509_019_3520_5 crossref_primary_10_1103_PhysRevC_59_1405 crossref_primary_10_1103_PhysRevC_62_064308 crossref_primary_10_1016_0375_9474_95_00245_V crossref_primary_10_1103_PhysRevC_105_015807 crossref_primary_10_1051_0004_6361_201118560 crossref_primary_10_1155_2017_2979743 crossref_primary_10_3847_1538_4357_aa880c crossref_primary_10_1103_PhysRevC_105_034322 crossref_primary_10_1142_S0217732312500083 crossref_primary_10_1103_PhysRevC_108_015803 crossref_primary_10_1103_PhysRevC_93_024306 crossref_primary_10_1088_0954_3899_31_9_003 crossref_primary_10_1103_PhysRevC_92_044313 crossref_primary_10_1007_s10773_018_03997_2 crossref_primary_10_1016_j_nuclphysa_2008_02_302 crossref_primary_10_1140_epjc_s10052_022_10644_y crossref_primary_10_1103_PhysRevC_105_015802 crossref_primary_10_1103_PhysRevC_109_064301 crossref_primary_10_1016_j_physletb_2021_136587 crossref_primary_10_1016_j_physletb_2006_09_020 crossref_primary_10_1103_PhysRevC_73_025203 crossref_primary_10_1016_S0375_9474_00_00105_6 crossref_primary_10_1016_j_physletb_2020_135533 crossref_primary_10_1103_PhysRevC_88_014611 crossref_primary_10_1103_PhysRevC_60_024314 crossref_primary_10_1103_PhysRevC_97_055205 crossref_primary_10_1103_PhysRevC_70_054309 crossref_primary_10_1103_PhysRevC_70_054306 crossref_primary_10_1103_PhysRevC_110_045807 crossref_primary_10_1016_S0375_9474_97_81465_0 crossref_primary_10_14494_jnrs2000_3_159 crossref_primary_10_1142_S0218301314500268 crossref_primary_10_1088_1475_7516_2025_01_024 crossref_primary_10_1103_PhysRevC_100_015809 crossref_primary_10_1007_s10773_017_3470_z crossref_primary_10_1016_S0375_9474_98_00310_8 crossref_primary_10_1103_PhysRevC_78_054306 crossref_primary_10_1088_0256_307X_25_10_025 crossref_primary_10_1103_PhysRevC_65_041001 crossref_primary_10_1088_1475_7516_2024_04_065 crossref_primary_10_1088_0954_3899_36_9_095201 crossref_primary_10_1088_1674_1137_34_10_007 crossref_primary_10_1088_1674_1137_ac5b58 crossref_primary_10_1103_PhysRevC_61_055208 crossref_primary_10_1016_j_physletb_2018_06_051 crossref_primary_10_1007_s13538_022_01148_x crossref_primary_10_1088_0954_3899_26_7_306 crossref_primary_10_1007_s10509_023_04224_z crossref_primary_10_1088_1674_1137_42_8_084105 crossref_primary_10_1103_PhysRevC_81_065206 crossref_primary_10_1142_S0218271822500626 crossref_primary_10_1103_PhysRevC_88_015802 crossref_primary_10_1103_PhysRevC_107_045804 crossref_primary_10_1103_PhysRevC_64_025804 crossref_primary_10_1088_0253_6102_71_7_819 crossref_primary_10_1038_nature24289 crossref_primary_10_1140_epjp_s13360_025_06145_y crossref_primary_10_1088_0256_307X_28_8_089701 crossref_primary_10_1103_PhysRevC_86_025805 crossref_primary_10_1088_1674_1137_42_2_024102 crossref_primary_10_1140_epjp_i2017_11499_3 crossref_primary_10_1088_1009_1963_16_11_024 crossref_primary_10_1103_PhysRevD_74_023003 crossref_primary_10_1088_1009_1963_16_7_021 crossref_primary_10_1093_mnras_stab2327 crossref_primary_10_1140_epjp_i2018_12175_x crossref_primary_10_1103_PhysRevC_72_045801 crossref_primary_10_1088_0256_307X_27_9_099701 crossref_primary_10_1016_j_physletb_2022_137470 crossref_primary_10_1103_PhysRevC_82_024602 crossref_primary_10_1088_1674_1137_ad8e40 crossref_primary_10_1088_0954_3899_40_7_075107 crossref_primary_10_1103_PhysRevD_79_123001 crossref_primary_10_1209_0295_5075_78_32001 crossref_primary_10_1103_PhysRevC_79_025803 crossref_primary_10_1002_asna_201412101 crossref_primary_10_1103_PhysRevC_79_025804 crossref_primary_10_1088_0954_3899_27_9_305 crossref_primary_10_1103_PhysRevC_75_055206 crossref_primary_10_1016_S0370_2693_99_01044_8 crossref_primary_10_1103_PhysRevC_77_025801 crossref_primary_10_1103_PhysRevC_99_034324 crossref_primary_10_1007_BF02704780 crossref_primary_10_1103_PhysRevC_99_055803 crossref_primary_10_1016_S0375_9474_98_00640_X crossref_primary_10_1088_0954_3899_25_2_028 crossref_primary_10_1103_PhysRevC_96_054317 crossref_primary_10_1142_S0218301312500693 crossref_primary_10_1016_j_nuclphysa_2010_01_204 crossref_primary_10_1103_PhysRevC_64_044301 crossref_primary_10_1016_S0375_9474_03_01248_X crossref_primary_10_1134_S1063779615050214 crossref_primary_10_1016_j_nuclphysa_2012_02_012 crossref_primary_10_1142_S021827181950144X crossref_primary_10_1002_asna_201412106 crossref_primary_10_1139_cjp_2015_0616 crossref_primary_10_1016_j_physletb_2004_09_074 crossref_primary_10_1016_j_nuclphysa_2019_07_002 crossref_primary_10_1103_PhysRevC_61_064309 crossref_primary_10_1103_PhysRevC_63_064308 crossref_primary_10_1016_0370_2693_95_00665_8 crossref_primary_10_1016_j_nuclphysa_2011_08_006 crossref_primary_10_54503_0571_7132_2023_66_1_95 crossref_primary_10_1142_S0218301310017058 crossref_primary_10_3847_1538_4357_aa8b68 crossref_primary_10_1016_j_nuclphysa_2008_01_005 crossref_primary_10_1088_0954_3899_36_4_045104 crossref_primary_10_1103_PhysRevC_82_055801 crossref_primary_10_1088_1674_1137_34_11_007 crossref_primary_10_1088_0253_6102_50_1_35 crossref_primary_10_1103_PhysRevC_59_295 crossref_primary_10_1016_j_nuclphysa_2004_08_015 crossref_primary_10_1016_S0375_9474_00_00580_7 crossref_primary_10_1088_0954_3899_35_11_115202 crossref_primary_10_1088_0256_307X_24_8_016 crossref_primary_10_1088_0256_307X_20_5_317 crossref_primary_10_1093_mnras_stx494 crossref_primary_10_3847_1538_4357_ac09f7 crossref_primary_10_1093_ptep_ptac115 crossref_primary_10_1007_s12043_023_02694_y crossref_primary_10_1103_PhysRevC_68_035805 crossref_primary_10_1088_0253_6102_53_1_28 crossref_primary_10_1103_PhysRevC_65_024301 crossref_primary_10_1103_PhysRevC_104_054321 crossref_primary_10_1093_mnras_stac1353 crossref_primary_10_1103_PhysRevC_60_024006 crossref_primary_10_1142_S0218301316501032 crossref_primary_10_1103_PhysRevLett_89_171101 crossref_primary_10_1016_S0375_9474_98_00265_6 crossref_primary_10_1088_0954_3899_35_3_035103 crossref_primary_10_1103_PhysRevC_76_034312 crossref_primary_10_1016_S0375_9474_02_00676_0 crossref_primary_10_1088_0954_3899_26_9_301 crossref_primary_10_1007_s10509_014_2182_6 crossref_primary_10_1088_0954_3899_40_8_085104 crossref_primary_10_1088_1361_6471_aa8e2d crossref_primary_10_1088_0954_3899_42_7_075202 crossref_primary_10_1088_0256_307X_17_12_006 crossref_primary_10_1103_PhysRevC_57_704 crossref_primary_10_1088_0954_3899_23_12_036 crossref_primary_10_1142_S0218301306005204 crossref_primary_10_1007_s12043_014_0736_3 crossref_primary_10_1016_S0375_9474_99_00173_6 crossref_primary_10_1088_0954_3899_26_10_305 crossref_primary_10_1086_309052 crossref_primary_10_1103_PhysRevC_53_1416 crossref_primary_10_1016_j_nuclphysa_2005_05_002 crossref_primary_10_1140_epja_i2014_14029_6 crossref_primary_10_1103_PhysRevC_55_3038 crossref_primary_10_1007_s41365_017_0333_5 crossref_primary_10_1103_PhysRevC_96_044312 crossref_primary_10_1016_0375_9474_96_00169_8 crossref_primary_10_1051_epjconf_202327910003 crossref_primary_10_1103_PhysRevC_70_045207 crossref_primary_10_1088_0954_3899_23_5_008 crossref_primary_10_1142_S0217732323500049 crossref_primary_10_1103_PhysRevC_95_014603 crossref_primary_10_1088_0253_6102_55_4_23 crossref_primary_10_1143_PTPS_186_270 crossref_primary_10_1142_S0218301315500196 crossref_primary_10_1016_j_physletb_2023_138062 crossref_primary_10_1103_PhysRevD_97_023010 crossref_primary_10_1016_j_nuclphysa_2012_12_076 crossref_primary_10_1016_S0370_2693_98_00724_2 crossref_primary_10_1103_PhysRevC_62_034311 crossref_primary_10_1088_0954_3899_28_1_311 crossref_primary_10_1140_epja_i2014_14080_3 crossref_primary_10_1103_PhysRevC_59_411 crossref_primary_10_1103_PhysRevC_81_055803 crossref_primary_10_1103_PhysRevC_90_015801 crossref_primary_10_1088_0256_307X_21_8_019 crossref_primary_10_1088_0954_3899_27_1_304 crossref_primary_10_1016_j_nuclphysa_2010_01_029 crossref_primary_10_1103_PhysRevD_67_034015 crossref_primary_10_1007_s10511_023_09772_4 crossref_primary_10_1142_S0218301314500529 crossref_primary_10_1086_587956 crossref_primary_10_1016_j_nuclphysa_2005_06_008 crossref_primary_10_1016_j_physletb_2018_08_031 crossref_primary_10_1038_s41598_017_16877_2 crossref_primary_10_1103_PhysRevC_68_055201 crossref_primary_10_1088_1674_1137_ac76a6 crossref_primary_10_1093_ptep_ptad129 crossref_primary_10_1088_0954_3899_28_1_305 crossref_primary_10_1140_epja_i2016_16059_4 crossref_primary_10_1088_1674_1137_ac588d crossref_primary_10_1142_S0218301322501014 crossref_primary_10_1007_s00601_009_0021_z crossref_primary_10_1016_0375_9474_95_00358_8 crossref_primary_10_1088_0954_3899_37_7_075104 |
ContentType | Journal Article |
Copyright | 1994 Academic Press |
Copyright_xml | – notice: 1994 Academic Press |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1006/aphy.1994.1090 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1096-035X |
EndPage | 76 |
ExternalDocumentID | 6807008 10_1006_aphy_1994_1090 S0003491684710906 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABPPZ ABXDB ABYKQ ACDAQ ACFVG ACGFO ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEFWE AEKER AENEX AFDAS AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 DM4 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HME HMV HVGLF HZ~ IHE J1W K-O KOM LG5 LZ4 M37 M41 MO0 MVM N9A NDZJH O-L O9- OAUVE OGIMB OHT OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SHN SPC SPCBC SPD SPG SSQ SSZ T5K TN5 TWZ UNMZH UPT UQL VH1 VQA WH7 WUQ XOL XPP XSW YYP ZCG ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH ABPTK ABQIS OTOTI PQEST |
ID | FETCH-LOGICAL-c313t-2f04ebd1a4f6a6a623eca074d86ff9c994ed1efb28b01657c4cd8114b3957fb33 |
ISSN | 0003-4916 |
IngestDate | Thu May 18 22:31:56 EDT 2023 Tue Jul 01 00:57:31 EDT 2025 Thu Apr 24 23:04:27 EDT 2025 Fri Feb 23 02:18:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c313t-2f04ebd1a4f6a6a623eca074d86ff9c994ed1efb28b01657c4cd8114b3957fb33 |
Notes | None AC02-76CH00016 |
PageCount | 42 |
ParticipantIDs | osti_scitechconnect_6807008 crossref_citationtrail_10_1006_aphy_1994_1090 crossref_primary_10_1006_aphy_1994_1090 elsevier_sciencedirect_doi_10_1006_aphy_1994_1090 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1994-10-01 |
PublicationDateYYYYMMDD | 1994-10-01 |
PublicationDate_xml | – month: 10 year: 1994 text: 1994-10-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Annals of physics |
PublicationYear | 1994 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
SSID | ssj0011458 |
Score | 1.9033358 |
Snippet | We investigate the stability of multiply strange baryonic systems, in the context of a mean field approach obtained from an underlying set of phenomenological... In these systems, the presence of filled [Lambda] orbitals blocks the strong decay [Xi][ital N][r arrow][Lambda][Lambda], leading to a strangeness fraction... |
SourceID | osti crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 35 |
SubjectTerms | 662340 -- Hadron Interactions-- (1992-) ACTINIDES ALPHA DECAY RADIOISOTOPES BARYON-BARYON INTERACTIONS BARYONS BASIC INTERACTIONS BETA DECAY RADIOISOTOPES BETA-MINUS DECAY RADIOISOTOPES BETA-PLUS DECAY RADIOISOTOPES BINDING ENERGY BOUND STATE COMPOSITE MODELS COUPLING CONSTANTS DAYS LIVING RADIOISOTOPES ELECTRON CAPTURE RADIOISOTOPES ELEMENTARY PARTICLES ELEMENTS ENERGY EVEN-EVEN NUCLEI EVEN-ODD NUCLEI FERMIONS HADRON-HADRON INTERACTIONS HADRONS HEAVY NUCLEI HELIUM 4 HELIUM 5 HELIUM 7 HELIUM ISOTOPES HYPERNUCLEI HYPERON-HYPERON INTERACTIONS HYPERONS INTERACTIONS INTERMEDIATE MASS NUCLEI ISOTOPES LAMBDA BARYONS LAMBDA PARTICLES LEAD 208 LEAD ISOTOPES LIE GROUPS LIGHT NUCLEI MATHEMATICAL MODELS MEAN-FIELD THEORY MESON-BARYON INTERACTIONS METALS MINUTES LIVING RADIOISOTOPES NICKEL 56 NICKEL ISOTOPES NUCLEAR CORES NUCLEAR FRAGMENTS NUCLEAR PHYSICS AND RADIATION PHYSICS NUCLEI NUCLEONS PARTICLE INTERACTIONS PARTICLE MODELS PHYSICS OF ELEMENTARY PARTICLES AND FIELDS QUARK MODEL RADIOISOTOPES SECONDS LIVING RADIOISOTOPES SIGMA BARYONS SIGMA PARTICLES STABILITY STABLE ISOTOPES STRANGE PARTICLES STRONG INTERACTIONS SU GROUPS SU-3 GROUPS SYMMETRY GROUPS THORIUM TIN 132 TIN ISOTOPES XI BARYONS 663110 -- General & Average Properties of Nuclei & Nuclear Energy Levels-- (1992-) XI PARTICLES |
Title | Multiply Strange Nuclear Systems |
URI | https://dx.doi.org/10.1006/aphy.1994.1090 https://www.osti.gov/biblio/6807008 |
Volume | 235 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86EXwRP3FOpQ-CT51t06bZ4xR1KIr4gXsrSZqgIJuM-aB_vXdL0jp0oGNQRpa0S37p5S65-x0hh4yKXJbUhJnIwUDpaB3KSMPrznKYYDqLlcB45-sb1ntML_tZv06COIkuGcu2-vw1rmQeVKEMcMUo2X8gW90UCuA74AtXQBiuf8L42noDfuDZMgYJgO2vMA3EFA_5D6Zku5lR6dL36lkY4-JeLtuVZut9O0_bJ1XhhbBn-nXBSL8MfL16B2FCBex90dy2lg9tmfK8RGMJsIsdT7WVjhF6LNOs_118JpZuZGqeWGHofrDLqs3y8kNgw0uPqxH0HOMmU2S3iuqlqXIYvLdEOjHDxRSqsEWylIBhkDTIUvfq7umqOjmK04z7LInYwBN1Rux4-imzFJHGEGTrNx3jYY2sOuMg6Fqk18mCHmyQ5VuL1yYJPN6BwztweAcO7y3yeH72cNoLXYaLUNGYjsPERKmWZSxSwwR8EqqVAKWu5MyYjoK_qstYG5lwiWFnuUpVyaGLEk9XjaR0mzQGw4HeIQEvjc55xnORm5TKUij0LUhSxkDB14Y2Sei7WyhH_45ZSF4LS1zNChyeAocHvRKiJjmq6r9Z4pOZNWM_eoVT26w6VgDIM9u0cJixPnIVK3TqggaMg4CI-O4cd2yRlXpu75HGePSu90FfHMsDN0W-AL98Zr4 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiply+Strange+Nuclear+Systems&rft.jtitle=Annals+of+physics&rft.au=Schaffner%2C+J.&rft.au=Dover%2C+C.B.&rft.au=Gal%2C+A.&rft.au=Greiner%2C+C.&rft.date=1994-10-01&rft.pub=Elsevier+Inc&rft.issn=0003-4916&rft.eissn=1096-035X&rft.volume=235&rft.issue=1&rft.spage=35&rft.epage=76&rft_id=info:doi/10.1006%2Faphy.1994.1090&rft.externalDocID=S0003491684710906 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-4916&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-4916&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-4916&client=summon |