Multiply Strange Nuclear Systems

We investigate the stability of multiply strange baryonic systems, in the context of a mean field approach obtained from an underlying set of phenomenological meson-baryon interactions. The coupling parameters which determine the conventional σ + ω mean fields (Hartree potentials) seen by various ba...

Full description

Saved in:
Bibliographic Details
Published inAnnals of physics Vol. 235; no. 1; pp. 35 - 76
Main Authors Schaffner, J., Dover, C.B., Gal, A., Greiner, C., Millener, D.J., Stocker, H.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.10.1994
Subjects
Online AccessGet full text
ISSN0003-4916
1096-035X
DOI10.1006/aphy.1994.1090

Cover

Loading…
Abstract We investigate the stability of multiply strange baryonic systems, in the context of a mean field approach obtained from an underlying set of phenomenological meson-baryon interactions. The coupling parameters which determine the conventional σ + ω mean fields (Hartree potentials) seen by various baryon species (N, Λ, Ξ) in the many-body system are constrained by reproducing the trend of observed binding energies of single particle (N, Λ, Ξ) states, as well as the energy per particle and density of non-strange nuclear matter. We also consider additional scalar (σ*) and vector (φ) fields which couple strongly to strange baryons. The couplings of these fields are adjusted to produce strong hyperon-hyperon interactions, as suggested by the data on ΛΛ hypernuclei. Extrapolating this approach to systems of large strangeness S, we find a broad class of objects composed of neutrons, protons, Λ′s and Ξ′s, which are stable against strong decay. In these systems, the presence of filled Λ orbitals blocks the strong decay ΞN → ΛΛ, leading to a strangeness fraction fs = |S|/A ≍1, density ρ ≍ (2 - 3) ρ0, and charge fraction fq in the range − 0.1 <q/A < 0.1, comparable to that of hypothetical stable strange quark matter ("stranglets"), but with a low binding energy per particle EB/A ≍ −10 to −20 MeV. We compare with an approximate mass formula which qualitatively describes the results of the mean field calculations. Such weakly bound multi-strange objects can be stable for very large A, unlike ordinary nuclei, since the Coulomb repulsion generated by the protons is largely cancelled by the presence of a comparable number of Ξ′s, leading to a small net charge (positive or negative) of order A1/3. We comment on the weak decays of such subjects and the possibility of their production in relativistic heavy ion collisions.
AbstractList In these systems, the presence of filled [Lambda] orbitals blocks the strong decay [Xi][ital N][r arrow][Lambda][Lambda], leading to a strangeness fraction [ital f][sub [ital s]]=[vert bar][ital S][vert bar]/ [ital A][approx]1, density [rho][approx](2--3)[rho][sub 0], and charge fraction [ital f][sub [ital q]] in the range [minus]0.1[lt][ital q]/[ital A][lt]0.1, comparable to that of hypothetical stable strange quark matter ( strangelets''), but with a low binding energy per particle [ital E][sub [ital B]]/[ital A][approx][minus]10 to [minus]20 MeV. We compare with an approximate mass formula which qualitatively describes the results of the mean field calculations. Such weakly bound multi-strange objects can be stable for very large [ital A], unlike ordinary nuclei, since the Coulomb repulsion generated by the prtons is largely cancelled by the presence of a comparable number of [Xi][sup [minus]]'s, leading to a small net charge (positive or negative) of order [ital A][sup 1/3]. We comment on the weak decays of such subjects and the possibility of their production in relativistic heavy ion collisions. [copyright] 1994 Academic Press, Inc.
We investigate the stability of multiply strange baryonic systems, in the context of a mean field approach obtained from an underlying set of phenomenological meson-baryon interactions. The coupling parameters which determine the conventional σ + ω mean fields (Hartree potentials) seen by various baryon species (N, Λ, Ξ) in the many-body system are constrained by reproducing the trend of observed binding energies of single particle (N, Λ, Ξ) states, as well as the energy per particle and density of non-strange nuclear matter. We also consider additional scalar (σ*) and vector (φ) fields which couple strongly to strange baryons. The couplings of these fields are adjusted to produce strong hyperon-hyperon interactions, as suggested by the data on ΛΛ hypernuclei. Extrapolating this approach to systems of large strangeness S, we find a broad class of objects composed of neutrons, protons, Λ′s and Ξ′s, which are stable against strong decay. In these systems, the presence of filled Λ orbitals blocks the strong decay ΞN → ΛΛ, leading to a strangeness fraction fs = |S|/A ≍1, density ρ ≍ (2 - 3) ρ0, and charge fraction fq in the range − 0.1 <q/A < 0.1, comparable to that of hypothetical stable strange quark matter ("stranglets"), but with a low binding energy per particle EB/A ≍ −10 to −20 MeV. We compare with an approximate mass formula which qualitatively describes the results of the mean field calculations. Such weakly bound multi-strange objects can be stable for very large A, unlike ordinary nuclei, since the Coulomb repulsion generated by the protons is largely cancelled by the presence of a comparable number of Ξ′s, leading to a small net charge (positive or negative) of order A1/3. We comment on the weak decays of such subjects and the possibility of their production in relativistic heavy ion collisions.
Author Stocker, H.
Schaffner, J.
Millener, D.J.
Dover, C.B.
Greiner, C.
Gal, A.
Author_xml – sequence: 1
  givenname: J.
  surname: Schaffner
  fullname: Schaffner, J.
– sequence: 2
  givenname: C.B.
  surname: Dover
  fullname: Dover, C.B.
– sequence: 3
  givenname: A.
  surname: Gal
  fullname: Gal, A.
– sequence: 4
  givenname: C.
  surname: Greiner
  fullname: Greiner, C.
– sequence: 5
  givenname: D.J.
  surname: Millener
  fullname: Millener, D.J.
– sequence: 6
  givenname: H.
  surname: Stocker
  fullname: Stocker, H.
BackLink https://www.osti.gov/biblio/6807008$$D View this record in Osti.gov
BookMark eNp1kM9LwzAUx4NMcJtePRfvnS9L2qZHGf6CqYcpeAtp-uIiXTqSTOh_b8o8CSOHR-D7eXzed0YmrndIyDWFBQUob9V-OyxoXfP0reGMTNMoc2DF54RMAYDlvKblBZmF8A1AKS_ElGQvhy7afTdkm-iV-8Ls9aA7VD7bDCHiLlySc6O6gFd_c04-Hu7fV0_5-u3xeXW3zjWjLOZLAxyblipuSpXekqFWUPFWlMbUOllhS9E0S9EALYtKc92K5NCwuqhMw9ic3Bz39iFaGbSNqLe6dw51lKWACkCkED-GtO9D8Ghkyqloe5fkbScpyLEKOVYhxyrkWEXCFv-wvbc75YfTgDgCmC7-sehHIXQaW-tHn7a3p9BfRU110Q
CitedBy_id crossref_primary_10_1016_j_nuclphysa_2017_02_004
crossref_primary_10_1016_S0375_9474_00_00175_5
crossref_primary_10_3847_1538_4357_ab1751
crossref_primary_10_1016_j_nuclphysa_2017_10_002
crossref_primary_10_1088_1361_6471_ad15e6
crossref_primary_10_1103_PhysRevC_73_045804
crossref_primary_10_1016_0370_2693_95_01161_I
crossref_primary_10_1103_PhysRevC_70_055204
crossref_primary_10_1103_PhysRevC_95_025201
crossref_primary_10_1103_PhysRevC_60_015802
crossref_primary_10_1016_j_nuclphysa_2005_01_021
crossref_primary_10_1088_0004_637X_813_2_135
crossref_primary_10_1103_PhysRevD_80_023011
crossref_primary_10_1142_S0218301308010726
crossref_primary_10_1103_PhysRevD_102_123023
crossref_primary_10_1007_s13538_017_0525_9
crossref_primary_10_1140_epja_i2018_12566_6
crossref_primary_10_1103_PhysRevC_95_054318
crossref_primary_10_1088_0253_6102_69_4_417
crossref_primary_10_1103_PhysRevC_56_2202
crossref_primary_10_1103_PhysRevC_92_055802
crossref_primary_10_1007_s10509_007_9356_4
crossref_primary_10_1103_PhysRevC_68_015801
crossref_primary_10_1103_PhysRevC_81_025801
crossref_primary_10_1016_j_cjph_2019_11_024
crossref_primary_10_1140_epja_s10050_022_00721_x
crossref_primary_10_1103_PhysRevC_83_025805
crossref_primary_10_1088_0954_3899_30_12_009
crossref_primary_10_1103_PhysRevC_63_035802
crossref_primary_10_1103_PhysRevLett_114_092301
crossref_primary_10_1103_RevModPhys_88_035004
crossref_primary_10_1016_S0370_1573_97_00011_2
crossref_primary_10_1103_PhysRevC_89_025805
crossref_primary_10_1103_PhysRevC_106_025806
crossref_primary_10_1103_PhysRevC_81_044909
crossref_primary_10_1142_S0218301312500280
crossref_primary_10_1103_PhysRevC_110_054320
crossref_primary_10_1142_S0218301307008574
crossref_primary_10_1103_PhysRevC_67_044318
crossref_primary_10_1103_RevModPhys_89_015007
crossref_primary_10_1103_PhysRevC_62_034901
crossref_primary_10_1103_PhysRevC_64_055805
crossref_primary_10_1103_PhysRevC_57_1178
crossref_primary_10_7498_aps_69_20200925
crossref_primary_10_1016_S0375_9474_02_00680_2
crossref_primary_10_1088_0954_3899_22_10_007
crossref_primary_10_1142_S0218271817501334
crossref_primary_10_1088_1742_6596_861_1_012016
crossref_primary_10_1103_PhysRevC_66_064319
crossref_primary_10_1103_PhysRevD_104_123006
crossref_primary_10_1103_PhysRevC_85_065802
crossref_primary_10_1140_epjp_s13360_021_01087_7
crossref_primary_10_1103_PhysRevC_74_014315
crossref_primary_10_1142_S0218301317500525
crossref_primary_10_1103_PhysRevC_89_065806
crossref_primary_10_1088_1674_1056_20_3_039701
crossref_primary_10_1103_PhysRevC_80_035205
crossref_primary_10_3847_1538_4357_ab43c5
crossref_primary_10_1093_mnras_stt2438
crossref_primary_10_1142_S0217732314500990
crossref_primary_10_1088_0954_3899_32_12_S30
crossref_primary_10_1103_PhysRevC_77_045801
crossref_primary_10_1007_s10509_019_3520_5
crossref_primary_10_1103_PhysRevC_59_1405
crossref_primary_10_1103_PhysRevC_62_064308
crossref_primary_10_1016_0375_9474_95_00245_V
crossref_primary_10_1103_PhysRevC_105_015807
crossref_primary_10_1051_0004_6361_201118560
crossref_primary_10_1155_2017_2979743
crossref_primary_10_3847_1538_4357_aa880c
crossref_primary_10_1103_PhysRevC_105_034322
crossref_primary_10_1142_S0217732312500083
crossref_primary_10_1103_PhysRevC_108_015803
crossref_primary_10_1103_PhysRevC_93_024306
crossref_primary_10_1088_0954_3899_31_9_003
crossref_primary_10_1103_PhysRevC_92_044313
crossref_primary_10_1007_s10773_018_03997_2
crossref_primary_10_1016_j_nuclphysa_2008_02_302
crossref_primary_10_1140_epjc_s10052_022_10644_y
crossref_primary_10_1103_PhysRevC_105_015802
crossref_primary_10_1103_PhysRevC_109_064301
crossref_primary_10_1016_j_physletb_2021_136587
crossref_primary_10_1016_j_physletb_2006_09_020
crossref_primary_10_1103_PhysRevC_73_025203
crossref_primary_10_1016_S0375_9474_00_00105_6
crossref_primary_10_1016_j_physletb_2020_135533
crossref_primary_10_1103_PhysRevC_88_014611
crossref_primary_10_1103_PhysRevC_60_024314
crossref_primary_10_1103_PhysRevC_97_055205
crossref_primary_10_1103_PhysRevC_70_054309
crossref_primary_10_1103_PhysRevC_70_054306
crossref_primary_10_1103_PhysRevC_110_045807
crossref_primary_10_1016_S0375_9474_97_81465_0
crossref_primary_10_14494_jnrs2000_3_159
crossref_primary_10_1142_S0218301314500268
crossref_primary_10_1088_1475_7516_2025_01_024
crossref_primary_10_1103_PhysRevC_100_015809
crossref_primary_10_1007_s10773_017_3470_z
crossref_primary_10_1016_S0375_9474_98_00310_8
crossref_primary_10_1103_PhysRevC_78_054306
crossref_primary_10_1088_0256_307X_25_10_025
crossref_primary_10_1103_PhysRevC_65_041001
crossref_primary_10_1088_1475_7516_2024_04_065
crossref_primary_10_1088_0954_3899_36_9_095201
crossref_primary_10_1088_1674_1137_34_10_007
crossref_primary_10_1088_1674_1137_ac5b58
crossref_primary_10_1103_PhysRevC_61_055208
crossref_primary_10_1016_j_physletb_2018_06_051
crossref_primary_10_1007_s13538_022_01148_x
crossref_primary_10_1088_0954_3899_26_7_306
crossref_primary_10_1007_s10509_023_04224_z
crossref_primary_10_1088_1674_1137_42_8_084105
crossref_primary_10_1103_PhysRevC_81_065206
crossref_primary_10_1142_S0218271822500626
crossref_primary_10_1103_PhysRevC_88_015802
crossref_primary_10_1103_PhysRevC_107_045804
crossref_primary_10_1103_PhysRevC_64_025804
crossref_primary_10_1088_0253_6102_71_7_819
crossref_primary_10_1038_nature24289
crossref_primary_10_1140_epjp_s13360_025_06145_y
crossref_primary_10_1088_0256_307X_28_8_089701
crossref_primary_10_1103_PhysRevC_86_025805
crossref_primary_10_1088_1674_1137_42_2_024102
crossref_primary_10_1140_epjp_i2017_11499_3
crossref_primary_10_1088_1009_1963_16_11_024
crossref_primary_10_1103_PhysRevD_74_023003
crossref_primary_10_1088_1009_1963_16_7_021
crossref_primary_10_1093_mnras_stab2327
crossref_primary_10_1140_epjp_i2018_12175_x
crossref_primary_10_1103_PhysRevC_72_045801
crossref_primary_10_1088_0256_307X_27_9_099701
crossref_primary_10_1016_j_physletb_2022_137470
crossref_primary_10_1103_PhysRevC_82_024602
crossref_primary_10_1088_1674_1137_ad8e40
crossref_primary_10_1088_0954_3899_40_7_075107
crossref_primary_10_1103_PhysRevD_79_123001
crossref_primary_10_1209_0295_5075_78_32001
crossref_primary_10_1103_PhysRevC_79_025803
crossref_primary_10_1002_asna_201412101
crossref_primary_10_1103_PhysRevC_79_025804
crossref_primary_10_1088_0954_3899_27_9_305
crossref_primary_10_1103_PhysRevC_75_055206
crossref_primary_10_1016_S0370_2693_99_01044_8
crossref_primary_10_1103_PhysRevC_77_025801
crossref_primary_10_1103_PhysRevC_99_034324
crossref_primary_10_1007_BF02704780
crossref_primary_10_1103_PhysRevC_99_055803
crossref_primary_10_1016_S0375_9474_98_00640_X
crossref_primary_10_1088_0954_3899_25_2_028
crossref_primary_10_1103_PhysRevC_96_054317
crossref_primary_10_1142_S0218301312500693
crossref_primary_10_1016_j_nuclphysa_2010_01_204
crossref_primary_10_1103_PhysRevC_64_044301
crossref_primary_10_1016_S0375_9474_03_01248_X
crossref_primary_10_1134_S1063779615050214
crossref_primary_10_1016_j_nuclphysa_2012_02_012
crossref_primary_10_1142_S021827181950144X
crossref_primary_10_1002_asna_201412106
crossref_primary_10_1139_cjp_2015_0616
crossref_primary_10_1016_j_physletb_2004_09_074
crossref_primary_10_1016_j_nuclphysa_2019_07_002
crossref_primary_10_1103_PhysRevC_61_064309
crossref_primary_10_1103_PhysRevC_63_064308
crossref_primary_10_1016_0370_2693_95_00665_8
crossref_primary_10_1016_j_nuclphysa_2011_08_006
crossref_primary_10_54503_0571_7132_2023_66_1_95
crossref_primary_10_1142_S0218301310017058
crossref_primary_10_3847_1538_4357_aa8b68
crossref_primary_10_1016_j_nuclphysa_2008_01_005
crossref_primary_10_1088_0954_3899_36_4_045104
crossref_primary_10_1103_PhysRevC_82_055801
crossref_primary_10_1088_1674_1137_34_11_007
crossref_primary_10_1088_0253_6102_50_1_35
crossref_primary_10_1103_PhysRevC_59_295
crossref_primary_10_1016_j_nuclphysa_2004_08_015
crossref_primary_10_1016_S0375_9474_00_00580_7
crossref_primary_10_1088_0954_3899_35_11_115202
crossref_primary_10_1088_0256_307X_24_8_016
crossref_primary_10_1088_0256_307X_20_5_317
crossref_primary_10_1093_mnras_stx494
crossref_primary_10_3847_1538_4357_ac09f7
crossref_primary_10_1093_ptep_ptac115
crossref_primary_10_1007_s12043_023_02694_y
crossref_primary_10_1103_PhysRevC_68_035805
crossref_primary_10_1088_0253_6102_53_1_28
crossref_primary_10_1103_PhysRevC_65_024301
crossref_primary_10_1103_PhysRevC_104_054321
crossref_primary_10_1093_mnras_stac1353
crossref_primary_10_1103_PhysRevC_60_024006
crossref_primary_10_1142_S0218301316501032
crossref_primary_10_1103_PhysRevLett_89_171101
crossref_primary_10_1016_S0375_9474_98_00265_6
crossref_primary_10_1088_0954_3899_35_3_035103
crossref_primary_10_1103_PhysRevC_76_034312
crossref_primary_10_1016_S0375_9474_02_00676_0
crossref_primary_10_1088_0954_3899_26_9_301
crossref_primary_10_1007_s10509_014_2182_6
crossref_primary_10_1088_0954_3899_40_8_085104
crossref_primary_10_1088_1361_6471_aa8e2d
crossref_primary_10_1088_0954_3899_42_7_075202
crossref_primary_10_1088_0256_307X_17_12_006
crossref_primary_10_1103_PhysRevC_57_704
crossref_primary_10_1088_0954_3899_23_12_036
crossref_primary_10_1142_S0218301306005204
crossref_primary_10_1007_s12043_014_0736_3
crossref_primary_10_1016_S0375_9474_99_00173_6
crossref_primary_10_1088_0954_3899_26_10_305
crossref_primary_10_1086_309052
crossref_primary_10_1103_PhysRevC_53_1416
crossref_primary_10_1016_j_nuclphysa_2005_05_002
crossref_primary_10_1140_epja_i2014_14029_6
crossref_primary_10_1103_PhysRevC_55_3038
crossref_primary_10_1007_s41365_017_0333_5
crossref_primary_10_1103_PhysRevC_96_044312
crossref_primary_10_1016_0375_9474_96_00169_8
crossref_primary_10_1051_epjconf_202327910003
crossref_primary_10_1103_PhysRevC_70_045207
crossref_primary_10_1088_0954_3899_23_5_008
crossref_primary_10_1142_S0217732323500049
crossref_primary_10_1103_PhysRevC_95_014603
crossref_primary_10_1088_0253_6102_55_4_23
crossref_primary_10_1143_PTPS_186_270
crossref_primary_10_1142_S0218301315500196
crossref_primary_10_1016_j_physletb_2023_138062
crossref_primary_10_1103_PhysRevD_97_023010
crossref_primary_10_1016_j_nuclphysa_2012_12_076
crossref_primary_10_1016_S0370_2693_98_00724_2
crossref_primary_10_1103_PhysRevC_62_034311
crossref_primary_10_1088_0954_3899_28_1_311
crossref_primary_10_1140_epja_i2014_14080_3
crossref_primary_10_1103_PhysRevC_59_411
crossref_primary_10_1103_PhysRevC_81_055803
crossref_primary_10_1103_PhysRevC_90_015801
crossref_primary_10_1088_0256_307X_21_8_019
crossref_primary_10_1088_0954_3899_27_1_304
crossref_primary_10_1016_j_nuclphysa_2010_01_029
crossref_primary_10_1103_PhysRevD_67_034015
crossref_primary_10_1007_s10511_023_09772_4
crossref_primary_10_1142_S0218301314500529
crossref_primary_10_1086_587956
crossref_primary_10_1016_j_nuclphysa_2005_06_008
crossref_primary_10_1016_j_physletb_2018_08_031
crossref_primary_10_1038_s41598_017_16877_2
crossref_primary_10_1103_PhysRevC_68_055201
crossref_primary_10_1088_1674_1137_ac76a6
crossref_primary_10_1093_ptep_ptad129
crossref_primary_10_1088_0954_3899_28_1_305
crossref_primary_10_1140_epja_i2016_16059_4
crossref_primary_10_1088_1674_1137_ac588d
crossref_primary_10_1142_S0218301322501014
crossref_primary_10_1007_s00601_009_0021_z
crossref_primary_10_1016_0375_9474_95_00358_8
crossref_primary_10_1088_0954_3899_37_7_075104
ContentType Journal Article
Copyright 1994 Academic Press
Copyright_xml – notice: 1994 Academic Press
DBID AAYXX
CITATION
OTOTI
DOI 10.1006/aphy.1994.1090
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1096-035X
EndPage 76
ExternalDocumentID 6807008
10_1006_aphy_1994_1090
S0003491684710906
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABPPZ
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFDAS
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HME
HMV
HVGLF
HZ~
IHE
J1W
K-O
KOM
LG5
LZ4
M37
M41
MO0
MVM
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OHT
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
TN5
TWZ
UNMZH
UPT
UQL
VH1
VQA
WH7
WUQ
XOL
XPP
XSW
YYP
ZCG
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ABPTK
ABQIS
OTOTI
PQEST
ID FETCH-LOGICAL-c313t-2f04ebd1a4f6a6a623eca074d86ff9c994ed1efb28b01657c4cd8114b3957fb33
ISSN 0003-4916
IngestDate Thu May 18 22:31:56 EDT 2023
Tue Jul 01 00:57:31 EDT 2025
Thu Apr 24 23:04:27 EDT 2025
Fri Feb 23 02:18:58 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c313t-2f04ebd1a4f6a6a623eca074d86ff9c994ed1efb28b01657c4cd8114b3957fb33
Notes None
AC02-76CH00016
PageCount 42
ParticipantIDs osti_scitechconnect_6807008
crossref_citationtrail_10_1006_aphy_1994_1090
crossref_primary_10_1006_aphy_1994_1090
elsevier_sciencedirect_doi_10_1006_aphy_1994_1090
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1994-10-01
PublicationDateYYYYMMDD 1994-10-01
PublicationDate_xml – month: 10
  year: 1994
  text: 1994-10-01
  day: 01
PublicationDecade 1990
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Annals of physics
PublicationYear 1994
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
SSID ssj0011458
Score 1.9033358
Snippet We investigate the stability of multiply strange baryonic systems, in the context of a mean field approach obtained from an underlying set of phenomenological...
In these systems, the presence of filled [Lambda] orbitals blocks the strong decay [Xi][ital N][r arrow][Lambda][Lambda], leading to a strangeness fraction...
SourceID osti
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 35
SubjectTerms 662340 -- Hadron Interactions-- (1992-)
ACTINIDES
ALPHA DECAY RADIOISOTOPES
BARYON-BARYON INTERACTIONS
BARYONS
BASIC INTERACTIONS
BETA DECAY RADIOISOTOPES
BETA-MINUS DECAY RADIOISOTOPES
BETA-PLUS DECAY RADIOISOTOPES
BINDING ENERGY
BOUND STATE
COMPOSITE MODELS
COUPLING CONSTANTS
DAYS LIVING RADIOISOTOPES
ELECTRON CAPTURE RADIOISOTOPES
ELEMENTARY PARTICLES
ELEMENTS
ENERGY
EVEN-EVEN NUCLEI
EVEN-ODD NUCLEI
FERMIONS
HADRON-HADRON INTERACTIONS
HADRONS
HEAVY NUCLEI
HELIUM 4
HELIUM 5
HELIUM 7
HELIUM ISOTOPES
HYPERNUCLEI
HYPERON-HYPERON INTERACTIONS
HYPERONS
INTERACTIONS
INTERMEDIATE MASS NUCLEI
ISOTOPES
LAMBDA BARYONS
LAMBDA PARTICLES
LEAD 208
LEAD ISOTOPES
LIE GROUPS
LIGHT NUCLEI
MATHEMATICAL MODELS
MEAN-FIELD THEORY
MESON-BARYON INTERACTIONS
METALS
MINUTES LIVING RADIOISOTOPES
NICKEL 56
NICKEL ISOTOPES
NUCLEAR CORES
NUCLEAR FRAGMENTS
NUCLEAR PHYSICS AND RADIATION PHYSICS
NUCLEI
NUCLEONS
PARTICLE INTERACTIONS
PARTICLE MODELS
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
QUARK MODEL
RADIOISOTOPES
SECONDS LIVING RADIOISOTOPES
SIGMA BARYONS
SIGMA PARTICLES
STABILITY
STABLE ISOTOPES
STRANGE PARTICLES
STRONG INTERACTIONS
SU GROUPS
SU-3 GROUPS
SYMMETRY GROUPS
THORIUM
TIN 132
TIN ISOTOPES
XI BARYONS 663110 -- General & Average Properties of Nuclei & Nuclear Energy Levels-- (1992-)
XI PARTICLES
Title Multiply Strange Nuclear Systems
URI https://dx.doi.org/10.1006/aphy.1994.1090
https://www.osti.gov/biblio/6807008
Volume 235
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86EXwRP3FOpQ-CT51t06bZ4xR1KIr4gXsrSZqgIJuM-aB_vXdL0jp0oGNQRpa0S37p5S65-x0hh4yKXJbUhJnIwUDpaB3KSMPrznKYYDqLlcB45-sb1ntML_tZv06COIkuGcu2-vw1rmQeVKEMcMUo2X8gW90UCuA74AtXQBiuf8L42noDfuDZMgYJgO2vMA3EFA_5D6Zku5lR6dL36lkY4-JeLtuVZut9O0_bJ1XhhbBn-nXBSL8MfL16B2FCBex90dy2lg9tmfK8RGMJsIsdT7WVjhF6LNOs_118JpZuZGqeWGHofrDLqs3y8kNgw0uPqxH0HOMmU2S3iuqlqXIYvLdEOjHDxRSqsEWylIBhkDTIUvfq7umqOjmK04z7LInYwBN1Rux4-imzFJHGEGTrNx3jYY2sOuMg6Fqk18mCHmyQ5VuL1yYJPN6BwztweAcO7y3yeH72cNoLXYaLUNGYjsPERKmWZSxSwwR8EqqVAKWu5MyYjoK_qstYG5lwiWFnuUpVyaGLEk9XjaR0mzQGw4HeIQEvjc55xnORm5TKUij0LUhSxkDB14Y2Sei7WyhH_45ZSF4LS1zNChyeAocHvRKiJjmq6r9Z4pOZNWM_eoVT26w6VgDIM9u0cJixPnIVK3TqggaMg4CI-O4cd2yRlXpu75HGePSu90FfHMsDN0W-AL98Zr4
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiply+Strange+Nuclear+Systems&rft.jtitle=Annals+of+physics&rft.au=Schaffner%2C+J.&rft.au=Dover%2C+C.B.&rft.au=Gal%2C+A.&rft.au=Greiner%2C+C.&rft.date=1994-10-01&rft.pub=Elsevier+Inc&rft.issn=0003-4916&rft.eissn=1096-035X&rft.volume=235&rft.issue=1&rft.spage=35&rft.epage=76&rft_id=info:doi/10.1006%2Faphy.1994.1090&rft.externalDocID=S0003491684710906
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-4916&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-4916&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-4916&client=summon