Grey Wolf-Based Method for an Implicit Authentication of Smartphone Users

Smartphones have now become an integral part of our everyday lives. User authentication on smartphones is often accomplished by mechanisms (like face unlock, pattern, or pin password) that authenticate the user’s identity. These technologies are simple, inexpensive, and fast for repeated logins. How...

Full description

Saved in:
Bibliographic Details
Published inComputers, materials & continua Vol. 75; no. 2; pp. 3729 - 3741
Main Authors Ali Almazroi, Abdulwahab, Meselhy Eltoukhy, Mohamed
Format Journal Article
LanguageEnglish
Published Henderson Tech Science Press 2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Smartphones have now become an integral part of our everyday lives. User authentication on smartphones is often accomplished by mechanisms (like face unlock, pattern, or pin password) that authenticate the user’s identity. These technologies are simple, inexpensive, and fast for repeated logins. However, these technologies are still subject to assaults like smudge assaults and shoulder surfing. Users’ touch behavior while using their cell phones might be used to authenticate them, which would solve the problem. The performance of the authentication process may be influenced by the attributes chosen (from these behaviors). The purpose of this study is to present an effective authentication technique that implicitly offers a better authentication method for smartphone usage while avoiding the cost of a particular device and considering the constrained capabilities of smartphones. We began by concentrating on feature selection methods utilizing the grey wolf optimization strategy. The random forest classifier is used to evaluate these tactics. The testing findings demonstrated that the grey wolf-based methodology works as a better optimum feature selection for building an implicit authentication mechanism for the smartphone environment when using a public dataset. It achieved a 97.89% accuracy rate while utilizing just 16 of the 53 characteristics like utilizing minimum mobile resources mainly; processing power of the device and memory to validate individuals. Simultaneously, the findings revealed that our approach has a lower equal error rate (EER) of 0.5104, a false acceptance rate (FAR) of 1.00, and a false rejection rate (FRR) of 0.0209 compared to the methods discussed in the literature. These promising results will be used to create a mobile application that enables implicit validation of authorized users yet avoids current identification concerns and requires fewer mobile resources.
AbstractList Smartphones have now become an integral part of our everyday lives. User authentication on smartphones is often accomplished by mechanisms (like face unlock, pattern, or pin password) that authenticate the user’s identity. These technologies are simple, inexpensive, and fast for repeated logins. However, these technologies are still subject to assaults like smudge assaults and shoulder surfing. Users’ touch behavior while using their cell phones might be used to authenticate them, which would solve the problem. The performance of the authentication process may be influenced by the attributes chosen (from these behaviors). The purpose of this study is to present an effective authentication technique that implicitly offers a better authentication method for smartphone usage while avoiding the cost of a particular device and considering the constrained capabilities of smartphones. We began by concentrating on feature selection methods utilizing the grey wolf optimization strategy. The random forest classifier is used to evaluate these tactics. The testing findings demonstrated that the grey wolf-based methodology works as a better optimum feature selection for building an implicit authentication mechanism for the smartphone environment when using a public dataset. It achieved a 97.89% accuracy rate while utilizing just 16 of the 53 characteristics like utilizing minimum mobile resources mainly; processing power of the device and memory to validate individuals. Simultaneously, the findings revealed that our approach has a lower equal error rate (EER) of 0.5104, a false acceptance rate (FAR) of 1.00, and a false rejection rate (FRR) of 0.0209 compared to the methods discussed in the literature. These promising results will be used to create a mobile application that enables implicit validation of authorized users yet avoids current identification concerns and requires fewer mobile resources.
Author Ali Almazroi, Abdulwahab
Meselhy Eltoukhy, Mohamed
Author_xml – sequence: 1
  givenname: Abdulwahab
  surname: Ali Almazroi
  fullname: Ali Almazroi, Abdulwahab
– sequence: 2
  givenname: Mohamed
  surname: Meselhy Eltoukhy
  fullname: Meselhy Eltoukhy, Mohamed
BookMark eNp1UE1PAjEUbAwmAnr32MTz4mvL1u0RiSIJxoMSj03pR1iybNe2e-DfW8CDMfHy3hxm3puZERq0vrUI3RKYMMpheq_3ekKBsgkwDhQu0JCUU15QSvngF75Coxh3kElMwBAtF8Ee8KdvXPGoojX41aatN9j5gFWLl_uuqXWd8KxPW9umWqtU-xZ7h9_3KqRum13gdbQhXqNLp5pob372GK2fnz7mL8XqbbGcz1aFZoSlgorNA1BeKqGZq6hjygIxxGyocyW3oCtqNCVcuYoYYYSwwpmNMDpjPSXAxujufLcL_qu3Mcmd70ObX0pGhKhYmWdmwZmlg48xWCe7UGfHB0lAngqTuTB5LEyeC8sS_keSg5_ipqDq5n_hN1hdcbw
CitedBy_id crossref_primary_10_1038_s41598_024_57864_8
crossref_primary_10_32604_cmc_2023_041973
crossref_primary_10_7717_peerj_cs_2001
Cites_doi 10.1016/j.procs.2015.10.072
10.1109/ACCESS.2020.3041951
10.3390/app10238422
10.9734/ajrcos/2021/v9i430229
10.3390/sym12061046
10.1007/s00500-021-06375-z
10.1016/j.procs.2019.09.202
10.1007/s00521-017-3272-5
10.1016/j.advengsoft.2013.12.007
10.30534/ijatcse/2020/3291.42020
10.1016/j.aej.2020.08.006
10.1016/j.comnet.2020.107118
10.1007/978-981-32-9990-0_13
29993742
10.3390/en13102509
10.1016/j.inffus.2020.08.021
10.1016/j.neucom.2015.06.083
10.1007/s12065-020-00441-5
10.1088/1757-899X/128/1/012036
10.3991/ijet.v16i03.18851
10.1109/ACCESS.2019.2906757
10.1007/s10489-014-0645-7
10.1007/s00521-019-04368-6
ContentType Journal Article
Copyright 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
8BQ
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
JG9
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.32604/cmc.2023.036020
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: BENPR
  name: Proquest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1546-2226
EndPage 3741
ExternalDocumentID 10_32604_cmc_2023_036020
GroupedDBID AAFWJ
AAYXX
ACIWK
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
J9A
OK1
P2P
PHGZM
PHGZT
PIMPY
RTS
TUS
7SC
7SR
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c313t-29b70265a9c3f82f3ae01d1db2ff56e0c82dc216af81d9d99e9fdb9dc9d9c4103
IEDL.DBID BENPR
ISSN 1546-2226
1546-2218
IngestDate Mon Jun 30 11:05:09 EDT 2025
Tue Jul 01 01:57:13 EDT 2025
Thu Apr 24 22:57:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-29b70265a9c3f82f3ae01d1db2ff56e0c82dc216af81d9d99e9fdb9dc9d9c4103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3199835199?pq-origsite=%requestingapplication%
PQID 3199835199
PQPubID 2048737
PageCount 13
ParticipantIDs proquest_journals_3199835199
crossref_primary_10_32604_cmc_2023_036020
crossref_citationtrail_10_32604_cmc_2023_036020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computers, materials & continua
PublicationYear 2023
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Shaukat (ref8) 2020; 13
Faris (ref32) 2018; 30
Tharwat (ref7) 2018
Too (ref33) 2021; 14
Stylios (ref14) 2016
Shaukat (ref10) 2020
Javed (ref19) 2021; 16
Progonov (ref16) 2020
Al-Tashi (ref25) 2019; 7
Zhang (ref36) 2016
Nader (ref15) 2015; 70
Shaukat (ref20) 2022; 5
Stylios (ref12) 2021; 66
Paul (ref34) 2018; 27
Lee (ref5) 2016
Wang (ref21) 2020; 170
Hamed (ref1) 2021; 25
Mirjalili (ref35) 2015; 43
Sari (ref13) 2016; 128
Ablel-Rheem (ref2) 2020; 9
Lee (ref6) 2015
Emary (ref29) 2016; 172
Al-Tashi (ref28) 2018
Rogowski (ref18) 2013
Chantar (ref27) 2020; 32
El-Soud (ref17) 2021; 60
Karakaya (ref22) 2019; 159
Shaukat (ref9) 2020; 8
Tahoun (ref4) 2020; 10
Al-Tashi (ref23) 2020
Faris (ref24) 2018; 30
Hraiba (ref26) 2019
El-Abed (ref11) 2014
Salih (ref30) 2021; 9
Mirjalili (ref31) 2014; 69
Almomani (ref3) 2020; 12
References_xml – volume: 70
  start-page: 198
  year: 2015
  ident: ref15
  article-title: Designing touch-based hybrid authentication method for smartphones
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2015.10.072
– volume: 5
  start-page: 050
  year: 2022
  ident: ref20
  article-title: The impact of artificial intelligence and robotics on the future employment opportunities
  publication-title: Trends in Computer Science and Information Technology
– volume: 8
  start-page: 222310
  year: 2020
  ident: ref9
  article-title: A survey on machine learning techniques for cyber security in the last decade
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3041951
– volume: 10
  start-page: 8422
  year: 2020
  ident: ref4
  article-title: A grey wolf-based method for mammographic mass classification
  publication-title: Applied Sciences
  doi: 10.3390/app10238422
– start-page: 72
  year: 2016
  ident: ref14
  article-title: A review of continuous authentication using behavioral biometrics
– start-page: 257
  year: 2018
  ident: ref28
  article-title: Feature selection method based on grey wolf optimization for coronary artery disease classification
– start-page: 1
  year: 2016
  ident: ref5
  article-title: Implicit sensor-based authentication of smartphone users with smartwatch
– start-page: 457
  year: 2018
  ident: ref7
  article-title: Personal identification based on mobile-based keystroke dynamics
– volume: 9
  start-page: 50
  year: 2021
  ident: ref30
  article-title: Deep learning approaches for intrusion detection
  publication-title: Asian Journal of Research in Computer Science
  doi: 10.9734/ajrcos/2021/v9i430229
– volume: 12
  start-page: 1046
  year: 2020
  ident: ref3
  article-title: A feature selection model for network intrusion detection system based on PSO, GWO, FFA and GA algorithms
  publication-title: Symmetry
  doi: 10.3390/sym12061046
– volume: 25
  start-page: 15115
  year: 2021
  ident: ref1
  article-title: Efficient feature selection for inconsistent heterogeneous information systems based on a grey wolf optimizer and rough set theory
  publication-title: Soft Computing
  doi: 10.1007/s00500-021-06375-z
– volume: 159
  start-page: 475
  year: 2019
  ident: ref22
  article-title: Using behavioral biometric sensors of mobile phones for user authentication
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2019.09.202
– volume: 30
  start-page: 413
  year: 2018
  ident: ref24
  article-title: Grey wolf optimizer: A review of recent variants and applications
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-017-3272-5
– volume: 69
  start-page: 46
  year: 2014
  ident: ref31
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2013.12.007
– start-page: 1
  year: 2020
  ident: ref10
  article-title: Cyber threat detection using machine learning techniques: A performance evaluation perspective
– volume: 9
  start-page: 217
  year: 2020
  ident: ref2
  article-title: Hybrid feature selection and ensemble learning method for spam email classification
  publication-title: International Journal of Advanced Trends in Computer Science and Engineering
  doi: 10.30534/ijatcse/2020/3291.42020
– volume: 60
  start-page: 273
  year: 2021
  ident: ref17
  article-title: Implicit authentication method for smartphone users based on rank aggregation and random forest
  publication-title: Alexandria Engineering Journal
  doi: 10.1016/j.aej.2020.08.006
– volume: 170
  start-page: 107
  year: 2020
  ident: ref21
  article-title: User authentication on mobile devices: Approaches, threats and trends
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2020.107118
– start-page: 273
  year: 2020
  ident: ref23
  article-title: A review of grey wolf optimizer-based feature selection methods for classification
  publication-title: Evolutionary Machine Learning Techniques, Algorithms for Intelligent Systems
  doi: 10.1007/978-981-32-9990-0_13
– volume: 27
  start-page: 4012
  year: 2018
  ident: ref34
  article-title: Improved random forest for classification
  publication-title: IEEE Transactions on Image Processing
  doi: 29993742
– volume: 13
  start-page: 2509
  year: 2020
  ident: ref8
  article-title: Performance comparison and current challenges of using machine learning techniques in cybersecurity
  publication-title: Energies
  doi: 10.3390/en13102509
– volume: 30
  start-page: 413
  year: 2018
  ident: ref32
  article-title: Grey wolf optimizer: A review of recent variants and applications
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-017-3272-5
– volume: 66
  start-page: 76
  year: 2021
  ident: ref12
  article-title: Behavioral biometrics and continuous user authentication on mobile devices: A survey
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2020.08.021
– volume: 172
  start-page: 371
  year: 2016
  ident: ref29
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
– volume: 14
  start-page: 1691
  year: 2021
  ident: ref33
  article-title: Opposition based competitive grey wolf optimizer for EMG feature selection
  publication-title: Evolutionary Intelligence
  doi: 10.1007/s12065-020-00441-5
– start-page: 1
  year: 2014
  ident: ref11
  article-title: RHU keystroke: A mobile-based benchmark for keystroke dynamics systems
– start-page: 1
  year: 2015
  ident: ref6
  article-title: Multi-sensor authentication to improve smartphone security
– volume: 128
  start-page: 12036
  year: 2016
  ident: ref13
  article-title: An evaluation of authentication methods for smartphone based on users’ preferences
  publication-title: IOP Conference Series: Materials Science and Engineering
  doi: 10.1088/1757-899X/128/1/012036
– start-page: 000171
  year: 2016
  ident: ref36
  article-title: Model construction and authentication algorithm of virtual keystroke dynamics for smart phone users
– volume: 16
  start-page: 274
  year: 2021
  ident: ref19
  article-title: A review of content-based and context-based recommendation systems
  publication-title: International Journal of Emerging Technologies in Learning (iJET)
  doi: 10.3991/ijet.v16i03.18851
– start-page: 95
  year: 2020
  ident: ref16
  article-title: Evaluation system for user authentication methods on mobile devices
– start-page: 47
  year: 2013
  ident: ref18
  article-title: User authentication for mobile devices
– start-page: 88
  year: 2019
  ident: ref26
  article-title: Improved grey-wolf optimizer for reliability analysis
– volume: 7
  start-page: 39496
  year: 2019
  ident: ref25
  article-title: Binary optimization using hybrid grey wolf optimization for feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2906757
– volume: 43
  start-page: 150
  year: 2015
  ident: ref35
  article-title: How effective is the grey wolf optimizer in training multi-layer perceptrons
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-014-0645-7
– volume: 32
  start-page: 12201
  year: 2020
  ident: ref27
  article-title: Feature selection using binary grey wolf optimizer with elite-based crossover for Arabic text classification
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-019-04368-6
SSID ssj0036390
Score 2.283325
Snippet Smartphones have now become an integral part of our everyday lives. User authentication on smartphones is often accomplished by mechanisms (like face unlock,...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 3729
SubjectTerms Applications programs
Authentication
Feature selection
Mobile computing
Optimization
Rejection rate
Smartphones
Title Grey Wolf-Based Method for an Implicit Authentication of Smartphone Users
URI https://www.proquest.com/docview/3199835199
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXVh4IwoFeWBhME2cOLUnRFGrFqkVAiq6RbEdS0h9QcvAv-cucXgs3SLFeehs3313vruPkCthhQt1nDAhdJvFWmkmbSxYyLnOtMt1WfU-HCX9cfwwERMfcFv5tMpKJxaK2i4MxshbERaDIZucul2-M2SNwtNVT6GxTeqggiU4X_VOd_T4VOniCOxvURIp4G84WLPyoBIgSxC3zAxbGPLoBoYFyPf91zD918uFsentk12PEuldOa0HZCufH5K9ioGB-g15RAbg4X_R18XUsQ6YI0uHBSE0BSRKszkdFOnib2uKgTBMCyrjc3Th6PMM1gzmped0jAWXx2Tc677c95knR2AmCqM140q3wX8SmTKRk9xFWR6ENrSaOyeSPDCSW8PDJHOASJVVKlfOamUNXJs4DKITUpvDR04JzTJrsIcMx17osQyka0vwawBZScBHwjRIq5JManzncCSwmKbgQRSyTEGWKcoyLWXZINc_TyzLrhkbxjYrYad-_6zS39k-23z7nOzgu8qgSJPU1h-f-QXAhLW-9GvhG7pxufQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT-swEB5BOcCFHcFj8wEOHEwTO27jA0LsLdAKARXcQmzH0pOg5T2KEH-K38hMFpYLN26R4jjKeOL5ZjwzH8CGcsqHJmpwpUyTR0YbHrtI8VAIkxqfmaLqvdNttHrR6a26HYG3qhaG0iqrPTHfqN3AUoy8LqkYjNjk9O7jP06sUXS6WlFoFGpxlr2-oMv2tNM-xPXdFOL46PqgxUtWAW5lKIdcaNNEx0Ol2kofCy_TLAhd6IzwXjWywMbCWRE2Uo9QTjutM-2d0c7itY3CQOK8ozAWSXRlajC2f9S9uKz2fon2Pi_BVPj1Aq1ncTCKECmI6vaBWiYKuY3DAuIX_2oIv9uB3LgdT8NkiUrZXqFGMzCS9WdhqmJ8YOUGMAftE1x5djO493wfzZ9jnZyAmiHyZWmftfP09L9DRoE3SkMq4oFs4NnVA-oo5cFnrEcFnvPQ-xWxLUCtjy9ZBJamzlLPGkG916M4iH0zRj8KkVyMeEzZJahXkkls2amcCDPuE_RYclkmKMuEZJkUslyCrY8nHosuHT-MXamEnZT_61PyqV1_fr69DuOt6855ct7uni3DBM1bBGRWoDb8_5ytIkQZmrVSLxjc_bYqvgPVQ_gn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grey+Wolf-Based+Method+for+an+Implicit+Authentication+of+Smartphone+Users&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Ali+Almazroi%2C+Abdulwahab&rft.au=Meselhy+Eltoukhy%2C+Mohamed&rft.date=2023&rft.issn=1546-2226&rft.volume=75&rft.issue=2&rft.spage=3729&rft.epage=3741&rft_id=info:doi/10.32604%2Fcmc.2023.036020&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2023_036020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon