Grey Wolf-Based Method for an Implicit Authentication of Smartphone Users
Smartphones have now become an integral part of our everyday lives. User authentication on smartphones is often accomplished by mechanisms (like face unlock, pattern, or pin password) that authenticate the user’s identity. These technologies are simple, inexpensive, and fast for repeated logins. How...
Saved in:
Published in | Computers, materials & continua Vol. 75; no. 2; pp. 3729 - 3741 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Henderson
Tech Science Press
2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Smartphones have now become an integral part of our everyday lives. User authentication on smartphones is often accomplished by mechanisms (like face unlock, pattern, or pin password) that authenticate the user’s identity. These technologies are simple, inexpensive, and fast for repeated logins. However, these technologies are still subject to assaults like smudge assaults and shoulder surfing. Users’ touch behavior while using their cell phones might be used to authenticate them, which would solve the problem. The performance of the authentication process may be influenced by the attributes chosen (from these behaviors). The purpose of this study is to present an effective authentication technique that implicitly offers a better authentication method for smartphone usage while avoiding the cost of a particular device and considering the constrained capabilities of smartphones. We began by concentrating on feature selection methods utilizing the grey wolf optimization strategy. The random forest classifier is used to evaluate these tactics. The testing findings demonstrated that the grey wolf-based methodology works as a better optimum feature selection for building an implicit authentication mechanism for the smartphone environment when using a public dataset. It achieved a 97.89% accuracy rate while utilizing just 16 of the 53 characteristics like utilizing minimum mobile resources mainly; processing power of the device and memory to validate individuals. Simultaneously, the findings revealed that our approach has a lower equal error rate (EER) of 0.5104, a false acceptance rate (FAR) of 1.00, and a false rejection rate (FRR) of 0.0209 compared to the methods discussed in the literature. These promising results will be used to create a mobile application that enables implicit validation of authorized users yet avoids current identification concerns and requires fewer mobile resources. |
---|---|
AbstractList | Smartphones have now become an integral part of our everyday lives. User authentication on smartphones is often accomplished by mechanisms (like face unlock, pattern, or pin password) that authenticate the user’s identity. These technologies are simple, inexpensive, and fast for repeated logins. However, these technologies are still subject to assaults like smudge assaults and shoulder surfing. Users’ touch behavior while using their cell phones might be used to authenticate them, which would solve the problem. The performance of the authentication process may be influenced by the attributes chosen (from these behaviors). The purpose of this study is to present an effective authentication technique that implicitly offers a better authentication method for smartphone usage while avoiding the cost of a particular device and considering the constrained capabilities of smartphones. We began by concentrating on feature selection methods utilizing the grey wolf optimization strategy. The random forest classifier is used to evaluate these tactics. The testing findings demonstrated that the grey wolf-based methodology works as a better optimum feature selection for building an implicit authentication mechanism for the smartphone environment when using a public dataset. It achieved a 97.89% accuracy rate while utilizing just 16 of the 53 characteristics like utilizing minimum mobile resources mainly; processing power of the device and memory to validate individuals. Simultaneously, the findings revealed that our approach has a lower equal error rate (EER) of 0.5104, a false acceptance rate (FAR) of 1.00, and a false rejection rate (FRR) of 0.0209 compared to the methods discussed in the literature. These promising results will be used to create a mobile application that enables implicit validation of authorized users yet avoids current identification concerns and requires fewer mobile resources. |
Author | Ali Almazroi, Abdulwahab Meselhy Eltoukhy, Mohamed |
Author_xml | – sequence: 1 givenname: Abdulwahab surname: Ali Almazroi fullname: Ali Almazroi, Abdulwahab – sequence: 2 givenname: Mohamed surname: Meselhy Eltoukhy fullname: Meselhy Eltoukhy, Mohamed |
BookMark | eNp1UE1PAjEUbAwmAnr32MTz4mvL1u0RiSIJxoMSj03pR1iybNe2e-DfW8CDMfHy3hxm3puZERq0vrUI3RKYMMpheq_3ekKBsgkwDhQu0JCUU15QSvngF75Coxh3kElMwBAtF8Ee8KdvXPGoojX41aatN9j5gFWLl_uuqXWd8KxPW9umWqtU-xZ7h9_3KqRum13gdbQhXqNLp5pob372GK2fnz7mL8XqbbGcz1aFZoSlgorNA1BeKqGZq6hjygIxxGyocyW3oCtqNCVcuYoYYYSwwpmNMDpjPSXAxujufLcL_qu3Mcmd70ObX0pGhKhYmWdmwZmlg48xWCe7UGfHB0lAngqTuTB5LEyeC8sS_keSg5_ipqDq5n_hN1hdcbw |
CitedBy_id | crossref_primary_10_1038_s41598_024_57864_8 crossref_primary_10_32604_cmc_2023_041973 crossref_primary_10_7717_peerj_cs_2001 |
Cites_doi | 10.1016/j.procs.2015.10.072 10.1109/ACCESS.2020.3041951 10.3390/app10238422 10.9734/ajrcos/2021/v9i430229 10.3390/sym12061046 10.1007/s00500-021-06375-z 10.1016/j.procs.2019.09.202 10.1007/s00521-017-3272-5 10.1016/j.advengsoft.2013.12.007 10.30534/ijatcse/2020/3291.42020 10.1016/j.aej.2020.08.006 10.1016/j.comnet.2020.107118 10.1007/978-981-32-9990-0_13 29993742 10.3390/en13102509 10.1016/j.inffus.2020.08.021 10.1016/j.neucom.2015.06.083 10.1007/s12065-020-00441-5 10.1088/1757-899X/128/1/012036 10.3991/ijet.v16i03.18851 10.1109/ACCESS.2019.2906757 10.1007/s10489-014-0645-7 10.1007/s00521-019-04368-6 |
ContentType | Journal Article |
Copyright | 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SC 7SR 8BQ 8FD ABUWG AFKRA AZQEC BENPR CCPQU DWQXO JG9 JQ2 L7M L~C L~D PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
DOI | 10.32604/cmc.2023.036020 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China METADEX Computer and Information Systems Abstracts Professional ProQuest Central Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: BENPR name: Proquest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1546-2226 |
EndPage | 3741 |
ExternalDocumentID | 10_32604_cmc_2023_036020 |
GroupedDBID | AAFWJ AAYXX ACIWK ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR CCPQU CITATION EBS EJD J9A OK1 P2P PHGZM PHGZT PIMPY RTS TUS 7SC 7SR 8BQ 8FD ABUWG AZQEC DWQXO JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c313t-29b70265a9c3f82f3ae01d1db2ff56e0c82dc216af81d9d99e9fdb9dc9d9c4103 |
IEDL.DBID | BENPR |
ISSN | 1546-2226 1546-2218 |
IngestDate | Mon Jun 30 11:05:09 EDT 2025 Tue Jul 01 01:57:13 EDT 2025 Thu Apr 24 22:57:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c313t-29b70265a9c3f82f3ae01d1db2ff56e0c82dc216af81d9d99e9fdb9dc9d9c4103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3199835199?pq-origsite=%requestingapplication% |
PQID | 3199835199 |
PQPubID | 2048737 |
PageCount | 13 |
ParticipantIDs | proquest_journals_3199835199 crossref_primary_10_32604_cmc_2023_036020 crossref_citationtrail_10_32604_cmc_2023_036020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-00-00 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 2023-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Henderson |
PublicationPlace_xml | – name: Henderson |
PublicationTitle | Computers, materials & continua |
PublicationYear | 2023 |
Publisher | Tech Science Press |
Publisher_xml | – name: Tech Science Press |
References | Shaukat (ref8) 2020; 13 Faris (ref32) 2018; 30 Tharwat (ref7) 2018 Too (ref33) 2021; 14 Stylios (ref14) 2016 Shaukat (ref10) 2020 Javed (ref19) 2021; 16 Progonov (ref16) 2020 Al-Tashi (ref25) 2019; 7 Zhang (ref36) 2016 Nader (ref15) 2015; 70 Shaukat (ref20) 2022; 5 Stylios (ref12) 2021; 66 Paul (ref34) 2018; 27 Lee (ref5) 2016 Wang (ref21) 2020; 170 Hamed (ref1) 2021; 25 Mirjalili (ref35) 2015; 43 Sari (ref13) 2016; 128 Ablel-Rheem (ref2) 2020; 9 Lee (ref6) 2015 Emary (ref29) 2016; 172 Al-Tashi (ref28) 2018 Rogowski (ref18) 2013 Chantar (ref27) 2020; 32 El-Soud (ref17) 2021; 60 Karakaya (ref22) 2019; 159 Shaukat (ref9) 2020; 8 Tahoun (ref4) 2020; 10 Al-Tashi (ref23) 2020 Faris (ref24) 2018; 30 Hraiba (ref26) 2019 El-Abed (ref11) 2014 Salih (ref30) 2021; 9 Mirjalili (ref31) 2014; 69 Almomani (ref3) 2020; 12 |
References_xml | – volume: 70 start-page: 198 year: 2015 ident: ref15 article-title: Designing touch-based hybrid authentication method for smartphones publication-title: Procedia Computer Science doi: 10.1016/j.procs.2015.10.072 – volume: 5 start-page: 050 year: 2022 ident: ref20 article-title: The impact of artificial intelligence and robotics on the future employment opportunities publication-title: Trends in Computer Science and Information Technology – volume: 8 start-page: 222310 year: 2020 ident: ref9 article-title: A survey on machine learning techniques for cyber security in the last decade publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3041951 – volume: 10 start-page: 8422 year: 2020 ident: ref4 article-title: A grey wolf-based method for mammographic mass classification publication-title: Applied Sciences doi: 10.3390/app10238422 – start-page: 72 year: 2016 ident: ref14 article-title: A review of continuous authentication using behavioral biometrics – start-page: 257 year: 2018 ident: ref28 article-title: Feature selection method based on grey wolf optimization for coronary artery disease classification – start-page: 1 year: 2016 ident: ref5 article-title: Implicit sensor-based authentication of smartphone users with smartwatch – start-page: 457 year: 2018 ident: ref7 article-title: Personal identification based on mobile-based keystroke dynamics – volume: 9 start-page: 50 year: 2021 ident: ref30 article-title: Deep learning approaches for intrusion detection publication-title: Asian Journal of Research in Computer Science doi: 10.9734/ajrcos/2021/v9i430229 – volume: 12 start-page: 1046 year: 2020 ident: ref3 article-title: A feature selection model for network intrusion detection system based on PSO, GWO, FFA and GA algorithms publication-title: Symmetry doi: 10.3390/sym12061046 – volume: 25 start-page: 15115 year: 2021 ident: ref1 article-title: Efficient feature selection for inconsistent heterogeneous information systems based on a grey wolf optimizer and rough set theory publication-title: Soft Computing doi: 10.1007/s00500-021-06375-z – volume: 159 start-page: 475 year: 2019 ident: ref22 article-title: Using behavioral biometric sensors of mobile phones for user authentication publication-title: Procedia Computer Science doi: 10.1016/j.procs.2019.09.202 – volume: 30 start-page: 413 year: 2018 ident: ref24 article-title: Grey wolf optimizer: A review of recent variants and applications publication-title: Neural Computing and Applications doi: 10.1007/s00521-017-3272-5 – volume: 69 start-page: 46 year: 2014 ident: ref31 article-title: Grey wolf optimizer publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2013.12.007 – start-page: 1 year: 2020 ident: ref10 article-title: Cyber threat detection using machine learning techniques: A performance evaluation perspective – volume: 9 start-page: 217 year: 2020 ident: ref2 article-title: Hybrid feature selection and ensemble learning method for spam email classification publication-title: International Journal of Advanced Trends in Computer Science and Engineering doi: 10.30534/ijatcse/2020/3291.42020 – volume: 60 start-page: 273 year: 2021 ident: ref17 article-title: Implicit authentication method for smartphone users based on rank aggregation and random forest publication-title: Alexandria Engineering Journal doi: 10.1016/j.aej.2020.08.006 – volume: 170 start-page: 107 year: 2020 ident: ref21 article-title: User authentication on mobile devices: Approaches, threats and trends publication-title: Computer Networks doi: 10.1016/j.comnet.2020.107118 – start-page: 273 year: 2020 ident: ref23 article-title: A review of grey wolf optimizer-based feature selection methods for classification publication-title: Evolutionary Machine Learning Techniques, Algorithms for Intelligent Systems doi: 10.1007/978-981-32-9990-0_13 – volume: 27 start-page: 4012 year: 2018 ident: ref34 article-title: Improved random forest for classification publication-title: IEEE Transactions on Image Processing doi: 29993742 – volume: 13 start-page: 2509 year: 2020 ident: ref8 article-title: Performance comparison and current challenges of using machine learning techniques in cybersecurity publication-title: Energies doi: 10.3390/en13102509 – volume: 30 start-page: 413 year: 2018 ident: ref32 article-title: Grey wolf optimizer: A review of recent variants and applications publication-title: Neural Computing and Applications doi: 10.1007/s00521-017-3272-5 – volume: 66 start-page: 76 year: 2021 ident: ref12 article-title: Behavioral biometrics and continuous user authentication on mobile devices: A survey publication-title: Information Fusion doi: 10.1016/j.inffus.2020.08.021 – volume: 172 start-page: 371 year: 2016 ident: ref29 article-title: Binary grey wolf optimization approaches for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.083 – volume: 14 start-page: 1691 year: 2021 ident: ref33 article-title: Opposition based competitive grey wolf optimizer for EMG feature selection publication-title: Evolutionary Intelligence doi: 10.1007/s12065-020-00441-5 – start-page: 1 year: 2014 ident: ref11 article-title: RHU keystroke: A mobile-based benchmark for keystroke dynamics systems – start-page: 1 year: 2015 ident: ref6 article-title: Multi-sensor authentication to improve smartphone security – volume: 128 start-page: 12036 year: 2016 ident: ref13 article-title: An evaluation of authentication methods for smartphone based on users’ preferences publication-title: IOP Conference Series: Materials Science and Engineering doi: 10.1088/1757-899X/128/1/012036 – start-page: 000171 year: 2016 ident: ref36 article-title: Model construction and authentication algorithm of virtual keystroke dynamics for smart phone users – volume: 16 start-page: 274 year: 2021 ident: ref19 article-title: A review of content-based and context-based recommendation systems publication-title: International Journal of Emerging Technologies in Learning (iJET) doi: 10.3991/ijet.v16i03.18851 – start-page: 95 year: 2020 ident: ref16 article-title: Evaluation system for user authentication methods on mobile devices – start-page: 47 year: 2013 ident: ref18 article-title: User authentication for mobile devices – start-page: 88 year: 2019 ident: ref26 article-title: Improved grey-wolf optimizer for reliability analysis – volume: 7 start-page: 39496 year: 2019 ident: ref25 article-title: Binary optimization using hybrid grey wolf optimization for feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2906757 – volume: 43 start-page: 150 year: 2015 ident: ref35 article-title: How effective is the grey wolf optimizer in training multi-layer perceptrons publication-title: Applied Intelligence doi: 10.1007/s10489-014-0645-7 – volume: 32 start-page: 12201 year: 2020 ident: ref27 article-title: Feature selection using binary grey wolf optimizer with elite-based crossover for Arabic text classification publication-title: Neural Computing and Applications doi: 10.1007/s00521-019-04368-6 |
SSID | ssj0036390 |
Score | 2.283325 |
Snippet | Smartphones have now become an integral part of our everyday lives. User authentication on smartphones is often accomplished by mechanisms (like face unlock,... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 3729 |
SubjectTerms | Applications programs Authentication Feature selection Mobile computing Optimization Rejection rate Smartphones |
Title | Grey Wolf-Based Method for an Implicit Authentication of Smartphone Users |
URI | https://www.proquest.com/docview/3199835199 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXVh4IwoFeWBhME2cOLUnRFGrFqkVAiq6RbEdS0h9QcvAv-cucXgs3SLFeehs3313vruPkCthhQt1nDAhdJvFWmkmbSxYyLnOtMt1WfU-HCX9cfwwERMfcFv5tMpKJxaK2i4MxshbERaDIZucul2-M2SNwtNVT6GxTeqggiU4X_VOd_T4VOniCOxvURIp4G84WLPyoBIgSxC3zAxbGPLoBoYFyPf91zD918uFsentk12PEuldOa0HZCufH5K9ioGB-g15RAbg4X_R18XUsQ6YI0uHBSE0BSRKszkdFOnib2uKgTBMCyrjc3Th6PMM1gzmped0jAWXx2Tc677c95knR2AmCqM140q3wX8SmTKRk9xFWR6ENrSaOyeSPDCSW8PDJHOASJVVKlfOamUNXJs4DKITUpvDR04JzTJrsIcMx17osQyka0vwawBZScBHwjRIq5JManzncCSwmKbgQRSyTEGWKcoyLWXZINc_TyzLrhkbxjYrYad-_6zS39k-23z7nOzgu8qgSJPU1h-f-QXAhLW-9GvhG7pxufQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT-swEB5BOcCFHcFj8wEOHEwTO27jA0LsLdAKARXcQmzH0pOg5T2KEH-K38hMFpYLN26R4jjKeOL5ZjwzH8CGcsqHJmpwpUyTR0YbHrtI8VAIkxqfmaLqvdNttHrR6a26HYG3qhaG0iqrPTHfqN3AUoy8LqkYjNjk9O7jP06sUXS6WlFoFGpxlr2-oMv2tNM-xPXdFOL46PqgxUtWAW5lKIdcaNNEx0Ol2kofCy_TLAhd6IzwXjWywMbCWRE2Uo9QTjutM-2d0c7itY3CQOK8ozAWSXRlajC2f9S9uKz2fon2Pi_BVPj1Aq1ncTCKECmI6vaBWiYKuY3DAuIX_2oIv9uB3LgdT8NkiUrZXqFGMzCS9WdhqmJ8YOUGMAftE1x5djO493wfzZ9jnZyAmiHyZWmftfP09L9DRoE3SkMq4oFs4NnVA-oo5cFnrEcFnvPQ-xWxLUCtjy9ZBJamzlLPGkG916M4iH0zRj8KkVyMeEzZJahXkkls2amcCDPuE_RYclkmKMuEZJkUslyCrY8nHosuHT-MXamEnZT_61PyqV1_fr69DuOt6855ct7uni3DBM1bBGRWoDb8_5ytIkQZmrVSLxjc_bYqvgPVQ_gn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grey+Wolf-Based+Method+for+an+Implicit+Authentication+of+Smartphone+Users&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Ali+Almazroi%2C+Abdulwahab&rft.au=Meselhy+Eltoukhy%2C+Mohamed&rft.date=2023&rft.issn=1546-2226&rft.volume=75&rft.issue=2&rft.spage=3729&rft.epage=3741&rft_id=info:doi/10.32604%2Fcmc.2023.036020&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2023_036020 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon |