Efficient Charging Pad Deployment in Large-Scale WRSNs: A Sink-Outward Strategy
In recent years, a key problem in wireless sensor networks has been how to effectively deploy the minimum number of wireless charging pads while establishing at least one feasible charging path from the base station. This ensures that the unmanned aerial vehicle can reach and recharge all sensor nod...
Saved in:
Published in | Electronics (Basel) Vol. 14; no. 11; p. 2159 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, a key problem in wireless sensor networks has been how to effectively deploy the minimum number of wireless charging pads while establishing at least one feasible charging path from the base station. This ensures that the unmanned aerial vehicle can reach and recharge all sensor nodes from the BS. Previous works have often employed greedy algorithms to solve the optimal deployment problem, treating coverage and connectivity as interdependent properties. This has led to excessive constraints on the placement of wireless charging pads, as each newly added charging pad has to satisfy both properties at the same time. Additionally, previous works have overlooked the critical issue of avoiding the occurrence of isolated sensor nodes in uncovered fragmented regions, in deployment. Failing to address this issue requires additional deployment costs to compensate for uncovered nodes. To overcome these limitations, in this work, we propose a sink-outward strategy wireless charging pad deployment algorithm, which deploys charging pads layer by layer from the innermost region outward, prioritizing coverage before connectivity. The proposed sink-outward max covering (SMC) consists of two key steps: initial pad deployment and optimization. The simulation results show that the proposed method SMC combined with the optimization step, called reducing pads by reallocating pads partially (RPRAP), achieves a reduction in pad count of 10.6–19.8% compared with the methods used in previous works, and the execution time demonstrated in previous works is several to tens of times longer than that of SMC combined with RPRAP. Moreover, the proposed redundant pad removal step, RPRAP, not only removes more redundant pads than the methods used in previous works but also drastically reduces processing time in large-scale wireless sensor networks with many redundant pads. |
---|---|
AbstractList | In recent years, a key problem in wireless sensor networks has been how to effectively deploy the minimum number of wireless charging pads while establishing at least one feasible charging path from the base station. This ensures that the unmanned aerial vehicle can reach and recharge all sensor nodes from the BS. Previous works have often employed greedy algorithms to solve the optimal deployment problem, treating coverage and connectivity as interdependent properties. This has led to excessive constraints on the placement of wireless charging pads, as each newly added charging pad has to satisfy both properties at the same time. Additionally, previous works have overlooked the critical issue of avoiding the occurrence of isolated sensor nodes in uncovered fragmented regions, in deployment. Failing to address this issue requires additional deployment costs to compensate for uncovered nodes. To overcome these limitations, in this work, we propose a sink-outward strategy wireless charging pad deployment algorithm, which deploys charging pads layer by layer from the innermost region outward, prioritizing coverage before connectivity. The proposed sink-outward max covering (SMC) consists of two key steps: initial pad deployment and optimization. The simulation results show that the proposed method SMC combined with the optimization step, called reducing pads by reallocating pads partially (RPRAP), achieves a reduction in pad count of 10.6–19.8% compared with the methods used in previous works, and the execution time demonstrated in previous works is several to tens of times longer than that of SMC combined with RPRAP. Moreover, the proposed redundant pad removal step, RPRAP, not only removes more redundant pads than the methods used in previous works but also drastically reduces processing time in large-scale wireless sensor networks with many redundant pads. |
Audience | Academic |
Author | Yu, Chang-Wu Cheng, Rei-Heng |
Author_xml | – sequence: 1 givenname: Rei-Heng orcidid: 0000-0002-3759-4143 surname: Cheng fullname: Cheng, Rei-Heng – sequence: 2 givenname: Chang-Wu orcidid: 0000-0001-7783-1513 surname: Yu fullname: Yu, Chang-Wu |
BookMark | eNptUMlOwzAQtVCRKKVfwMUS5xQviRNzq0pZpIoiAuIYOc44uLROsVOh_j2uyoEDM4cZvdnevHM0cJ0DhC4pmXAuyTWsQfe-c1YHmlLKaCZP0JCRXCaSSTb4k5-hcQgrEk1SXnAyRMu5MVZbcD2efSjfWtfiZ9XgW9iuu_3mgFuHF7ECSanVGvD7S_kUbvAUl9Z9Jstd_618g8veqx7a_QU6NWodYPwbR-jtbv46e0gWy_vH2XSRaE55n7BcKw650EQwLbJakYZk0si6lqKQhKUUGFDTQJPKjMmYKFHUWc1MKkSTaj5CV8e9W9997SD01arbeRdPVpzRPOfxZxK7JseuNjKvrDNdpKmjN7CxOspobMSnRZoRKQkVcYAfB7TvQvBgqq23G-X3FSXVQe3qH7X5DyMndgU |
Cites_doi | 10.1109/TVT.2022.3176909 10.1109/INFCOMW.2018.8406897 10.1109/MCOM.2002.1024422 10.1109/TMC.2014.2307335 10.1109/TMC.2017.2703094 10.1007/BF01386390 10.1007/s11276-023-03384-8 10.1109/JIOT.2019.2954530 10.1109/ACCESS.2023.3332470 10.1109/MWC.2013.6590061 10.1109/LCOMM.2018.2863389 10.1109/ACCESS.2020.3015911 10.1177/15501477211055958 10.1109/ICC.2015.7249364 10.1109/MCOM.2017.1700454 10.1109/TVT.2015.2481920 10.3390/a17060264 10.3390/electronics11091464 10.3390/en12071229 10.1109/TMC.2016.2624731 10.1109/MASS56207.2022.00097 10.1109/ACCESS.2020.2975635 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.3390/electronics14112159 |
DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-9292 |
ExternalDocumentID | A845099016 10_3390_electronics14112159 |
GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c313t-27ca3e76c062c65ba0d059f9bb96890241e2e1fded49529fdea68b5b2f466d4c3 |
IEDL.DBID | BENPR |
ISSN | 2079-9292 |
IngestDate | Fri Jul 25 09:26:31 EDT 2025 Tue Jul 01 05:43:33 EDT 2025 Tue Aug 05 12:11:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c313t-27ca3e76c062c65ba0d059f9bb96890241e2e1fded49529fdea68b5b2f466d4c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3759-4143 0000-0001-7783-1513 |
OpenAccessLink | https://www.proquest.com/docview/3217732070?pq-origsite=%requestingapplication% |
PQID | 3217732070 |
PQPubID | 2032404 |
ParticipantIDs | proquest_journals_3217732070 gale_infotracacademiconefile_A845099016 crossref_primary_10_3390_electronics14112159 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Electronics (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Guo (ref_15) 2017; 16 Xie (ref_13) 2013; 20 Slhu (ref_9) 2015; 15 ref_14 Akyildiz (ref_1) 2002; 40 ref_12 Zhao (ref_2) 2014; 13 ref_19 Lin (ref_3) 2017; 17 ref_17 ref_16 Chen (ref_18) 2022; 71 Fu (ref_10) 2015; 65 Cheng (ref_11) 2020; 8 Xing (ref_23) 2022; 9 Nowrozian (ref_25) 2023; 30 Baek (ref_6) 2020; 7 Chen (ref_5) 2020; 8 ref_24 ref_21 ref_20 Suman (ref_27) 2018; 22 Rong (ref_4) 2023; 11 ref_26 Long (ref_22) 2018; 56 ref_7 Dijkstra (ref_28) 1959; 1 Chen (ref_8) 2021; 17 |
References_xml | – volume: 71 start-page: 8994 year: 2022 ident: ref_18 article-title: Collaborative Hybrid Charging Scheduling in Wireless Rechargeable Sensor Networks publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2022.3176909 – ident: ref_16 doi: 10.1109/INFCOMW.2018.8406897 – volume: 40 start-page: 102 year: 2002 ident: ref_1 article-title: A Survey on Sensor Networks publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2002.1024422 – volume: 13 start-page: 2689 year: 2014 ident: ref_2 article-title: A framework of joint mobile energy replenishment and data gathering in wireless rechargeable sensor networks publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2014.2307335 – volume: 17 start-page: 211 year: 2017 ident: ref_3 article-title: TSCA: A Temporal-Spatial Real-Time Charging Scheduling Algorithm for On-Demand Architecture in Wireless Rechargeable Sensor Networks publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2017.2703094 – volume: 1 start-page: 269 year: 1959 ident: ref_28 article-title: A note on two problems in connexion with graphs publication-title: Numer. Math. doi: 10.1007/BF01386390 – volume: 30 start-page: 421 year: 2023 ident: ref_25 article-title: On Optimizing the Charging Trajectory of Mobile Chargers in Wireless Sensor Networks: A Deep Reinforcement Learning Approach publication-title: Wirel. Netw. doi: 10.1007/s11276-023-03384-8 – volume: 7 start-page: 1327 year: 2020 ident: ref_6 article-title: Optimal UAV Route in Wireless Charging Sensor Networks publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2954530 – ident: ref_14 – volume: 11 start-page: 132982 year: 2023 ident: ref_4 article-title: Critical Review of Recent Development of Wireless Power Transfer Technology for Unmanned Aerial Vehicles publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3332470 – volume: 20 start-page: 140 year: 2013 ident: ref_13 article-title: Wireless poser transfer and applications to sensor networks publication-title: IEEE Wirel. Commun. doi: 10.1109/MWC.2013.6590061 – volume: 22 start-page: 2048 year: 2018 ident: ref_27 article-title: Path Loss Model for UAV-Assisted RFET publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2018.2863389 – volume: 8 start-page: 148906 year: 2020 ident: ref_11 article-title: A Distance-Based Scheduling Algorithm with a Proactive Bottleneck Removal Mechanism for Wireless Rechargeable Sensor Networks publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3015911 – ident: ref_21 – volume: 15 start-page: 1699 year: 2015 ident: ref_9 article-title: Near-optimal velocity control for mobile charging in wireless rechargeable sensor networks publication-title: IEEE Trans. Mob. Comput. – volume: 17 start-page: 15501477211055958 year: 2021 ident: ref_8 article-title: Minimizing the Number of Wireless Charging PAD for UAV-Based Wireless Rechargeable Sensor Networks publication-title: Int. J. Distrib. Sens. Netw. doi: 10.1177/15501477211055958 – ident: ref_12 doi: 10.1109/ICC.2015.7249364 – volume: 56 start-page: 22 year: 2018 ident: ref_22 article-title: Energy Neutral Internet of Drones publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2017.1700454 – volume: 65 start-page: 7415 year: 2015 ident: ref_10 article-title: ESync: Energy Synchronized Mobile Charging in Rechargeable Wireless Sensor Networks publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2015.2481920 – ident: ref_7 doi: 10.3390/a17060264 – ident: ref_17 doi: 10.3390/electronics11091464 – ident: ref_26 doi: 10.3390/en12071229 – volume: 9 start-page: 21885 year: 2022 ident: ref_23 article-title: Optimal Path Planning for Wireless Power Transfer Robot Using Area Division Deep Reinforcement Learning publication-title: Wirel. Power Transf. – volume: 16 start-page: 2450 year: 2017 ident: ref_15 article-title: Concurrently wireless charging sensor networks with efficient scheduling publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2016.2624731 – ident: ref_19 – ident: ref_24 doi: 10.1109/MASS56207.2022.00097 – ident: ref_20 – volume: 8 start-page: 39056 year: 2020 ident: ref_5 article-title: Efficient Wireless Charging Pad Deployment in Wireless Rechargeable Sensor Networks publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2975635 |
SSID | ssj0000913830 |
Score | 2.3202045 |
Snippet | In recent years, a key problem in wireless sensor networks has been how to effectively deploy the minimum number of wireless charging pads while establishing... |
SourceID | proquest gale crossref |
SourceType | Aggregation Database Index Database |
StartPage | 2159 |
SubjectTerms | Aircraft Algorithms Connectivity Data collection Drone aircraft Drones Efficiency Energy consumption Greedy algorithms Nodes Optimization Redundancy Sensors Traveling salesman problem Unmanned aerial vehicles Vehicles Wireless power transmission Wireless sensor networks Wireless telecommunications equipment |
Title | Efficient Charging Pad Deployment in Large-Scale WRSNs: A Sink-Outward Strategy |
URI | https://www.proquest.com/docview/3217732070 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8NAFB60XvQgrlitZQ6CFwc7S6YTL1K1VcTW0ip6C5kl4KVVWw9e_O2-l05dQIQcEgYS8t7M2_k-Qg6SwiQuCYE1beGYSo1mqeCW8cKKwqeB2wI7ut2evrpX14_JYyy4TeJY5dwmlobajx3WyI8lxM5NKWCHnj6_MGSNwu5qpNBYJEtggg0kX0tn7V5_8FVlQdRLIxszuCEJ-f3xN7vMhCuO2ArpL5f0t2EuvU1njazGMJG2ZnpdJwthtEFWfoAHbpLbdon-AE6DYs8cyYZoP_f0IiCHLxb96NOI3uCkNxuCJgJ9GAx7kxPaokOE7L99m-LELI34tO9b5L7Tvju_YpEegTnJ5ZSJpstlaGrX0MLpxOYND7FSkVqbauweKh5E4IUPHpIgkcJNro1NQAdKa6-c3CaV0XgUdgg1iluJHVgfUoio4FVwmcQXIlfeclMlR3MJZc8zFIwMsgcUaPaHQKvkEKWY4RmBf3B5HPWHjyHaVNYyKikbcrpKanNBZ_HwTLJvVe_-v7xHlgXS8ZZFkRqpTF_fwj7ECFNbJ4umc1mP2wGeuh_tT7T1v7o |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5Remh7QC2lIkBbH0BcahE_1rGRqioqhAAhVARUbsv6sVIv4ZEgxJ_iN3Zms1taCfWGtIeVLNm747FnPDP-PoD1rLRZyFLiHV8Grp013EnhuSi9LKNLwpeU0T0amv6ZPjjPzufgobkLQ2WVzZ5YbdTxMlCMfEuh79xREjX029U1J9Yoyq42FBoztThM93d4ZJt83d_B-d2Qsrd7-r3Pa1YBHpRQUy47oVCpY0LbyGAyX7Qjuhil894ZSrppkWQSZUwRzw7S4UthrM_w07UxUQeF_b6Al1opRyvK9vb-xHQIY9Oq9gzcCNvbW49cNhOhBSE5uH8M4NNmoLJtvbewUDulrDvToncwl8aL8OYvqML3cLxbYU2giWKUoSdqI_ajiGwnEWMwhRjZrzEbUF05H-G8J_bzZDScbLMuGxFBwPHtlOpzWY2Ge78EZ88itg8wP74cp2VgVguvKN8bk0P_DbvCx2axlIWOXtgWfGkklF_NMDdyPKuQQPMnBNqCTZJiTisS_yEU9cUCHIywrfKu1VmV_jMtWGsEnddLdZI_KtbK_5s_w6v-6dEgH-wPD1fhtSQi4Cocswbz05vb9BG9k6n_VKkEg4vn1sHfB9P5tw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDxFoMAeQFxYxfvw2ouEUCCJWlrSqKGiN9f7krikj6RC_Wv8OmYcm4JUcavkgyVLa3n87c7Mzuz3AbzOU5n7PEZeuOS5tqXhVgrHRXIyBRuFS1TR_To124f6y1F-tAG_urMw1FbZrYnNQh1OPO2RDxTGzoWSiNBBatsiZqPJx9MzTgpSVGnt5DTWENmNlz8xfVt-2Bnhv34j5WT87fM2bxUGuFdCrbgsfK1iYXxmpDe5q7OA4UayzllDBTgtoowihRgwj5AWb2pTuhw_QxsTtFc47i3YLDArynqw-Wk8nR382eEhxs1SZWuqI6VsNrhStlkKLYjXwf7jDq93Co2nm9yHe22IyoZrTD2Ajbh4CHf_Ii58BPvjhnkCHRajej0JHbFZHdgokn4wbTiyHwu2R13mfI4oiOz7wXy6fM-GbE5yAfsXK-rWZS037uVjOLwRwz2B3uJkEZ8CK7Vwiqq_IVqM5nAovMo8JFnr4ETZh3edharTNQNHhZkLGbS6xqB9eEtWrGh-4jf4uj1mgC8jpqtqWOq8KQaaPmx1hq7aibusrmD27P-PX8FtxF-1tzPdfQ53JKkCN3szW9BbnV_EFxiqrNzLFhMMjm8ahr8Bhjv_SQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Charging+Pad+Deployment+in+Large-Scale+WRSNs%3A+A+Sink-Outward+Strategy&rft.jtitle=Electronics+%28Basel%29&rft.au=Rei-Heng%2C+Cheng&rft.au=Chang-Wu%2C+Yu&rft.date=2025-06-01&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=14&rft.issue=11&rft.spage=2159&rft_id=info:doi/10.3390%2Felectronics14112159&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |