Efficient Charging Pad Deployment in Large-Scale WRSNs: A Sink-Outward Strategy

In recent years, a key problem in wireless sensor networks has been how to effectively deploy the minimum number of wireless charging pads while establishing at least one feasible charging path from the base station. This ensures that the unmanned aerial vehicle can reach and recharge all sensor nod...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 14; no. 11; p. 2159
Main Authors Cheng, Rei-Heng, Yu, Chang-Wu
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, a key problem in wireless sensor networks has been how to effectively deploy the minimum number of wireless charging pads while establishing at least one feasible charging path from the base station. This ensures that the unmanned aerial vehicle can reach and recharge all sensor nodes from the BS. Previous works have often employed greedy algorithms to solve the optimal deployment problem, treating coverage and connectivity as interdependent properties. This has led to excessive constraints on the placement of wireless charging pads, as each newly added charging pad has to satisfy both properties at the same time. Additionally, previous works have overlooked the critical issue of avoiding the occurrence of isolated sensor nodes in uncovered fragmented regions, in deployment. Failing to address this issue requires additional deployment costs to compensate for uncovered nodes. To overcome these limitations, in this work, we propose a sink-outward strategy wireless charging pad deployment algorithm, which deploys charging pads layer by layer from the innermost region outward, prioritizing coverage before connectivity. The proposed sink-outward max covering (SMC) consists of two key steps: initial pad deployment and optimization. The simulation results show that the proposed method SMC combined with the optimization step, called reducing pads by reallocating pads partially (RPRAP), achieves a reduction in pad count of 10.6–19.8% compared with the methods used in previous works, and the execution time demonstrated in previous works is several to tens of times longer than that of SMC combined with RPRAP. Moreover, the proposed redundant pad removal step, RPRAP, not only removes more redundant pads than the methods used in previous works but also drastically reduces processing time in large-scale wireless sensor networks with many redundant pads.
AbstractList In recent years, a key problem in wireless sensor networks has been how to effectively deploy the minimum number of wireless charging pads while establishing at least one feasible charging path from the base station. This ensures that the unmanned aerial vehicle can reach and recharge all sensor nodes from the BS. Previous works have often employed greedy algorithms to solve the optimal deployment problem, treating coverage and connectivity as interdependent properties. This has led to excessive constraints on the placement of wireless charging pads, as each newly added charging pad has to satisfy both properties at the same time. Additionally, previous works have overlooked the critical issue of avoiding the occurrence of isolated sensor nodes in uncovered fragmented regions, in deployment. Failing to address this issue requires additional deployment costs to compensate for uncovered nodes. To overcome these limitations, in this work, we propose a sink-outward strategy wireless charging pad deployment algorithm, which deploys charging pads layer by layer from the innermost region outward, prioritizing coverage before connectivity. The proposed sink-outward max covering (SMC) consists of two key steps: initial pad deployment and optimization. The simulation results show that the proposed method SMC combined with the optimization step, called reducing pads by reallocating pads partially (RPRAP), achieves a reduction in pad count of 10.6–19.8% compared with the methods used in previous works, and the execution time demonstrated in previous works is several to tens of times longer than that of SMC combined with RPRAP. Moreover, the proposed redundant pad removal step, RPRAP, not only removes more redundant pads than the methods used in previous works but also drastically reduces processing time in large-scale wireless sensor networks with many redundant pads.
Audience Academic
Author Yu, Chang-Wu
Cheng, Rei-Heng
Author_xml – sequence: 1
  givenname: Rei-Heng
  orcidid: 0000-0002-3759-4143
  surname: Cheng
  fullname: Cheng, Rei-Heng
– sequence: 2
  givenname: Chang-Wu
  orcidid: 0000-0001-7783-1513
  surname: Yu
  fullname: Yu, Chang-Wu
BookMark eNptUMlOwzAQtVCRKKVfwMUS5xQviRNzq0pZpIoiAuIYOc44uLROsVOh_j2uyoEDM4cZvdnevHM0cJ0DhC4pmXAuyTWsQfe-c1YHmlLKaCZP0JCRXCaSSTb4k5-hcQgrEk1SXnAyRMu5MVZbcD2efSjfWtfiZ9XgW9iuu_3mgFuHF7ECSanVGvD7S_kUbvAUl9Z9Jstd_618g8veqx7a_QU6NWodYPwbR-jtbv46e0gWy_vH2XSRaE55n7BcKw650EQwLbJakYZk0si6lqKQhKUUGFDTQJPKjMmYKFHUWc1MKkSTaj5CV8e9W9997SD01arbeRdPVpzRPOfxZxK7JseuNjKvrDNdpKmjN7CxOspobMSnRZoRKQkVcYAfB7TvQvBgqq23G-X3FSXVQe3qH7X5DyMndgU
Cites_doi 10.1109/TVT.2022.3176909
10.1109/INFCOMW.2018.8406897
10.1109/MCOM.2002.1024422
10.1109/TMC.2014.2307335
10.1109/TMC.2017.2703094
10.1007/BF01386390
10.1007/s11276-023-03384-8
10.1109/JIOT.2019.2954530
10.1109/ACCESS.2023.3332470
10.1109/MWC.2013.6590061
10.1109/LCOMM.2018.2863389
10.1109/ACCESS.2020.3015911
10.1177/15501477211055958
10.1109/ICC.2015.7249364
10.1109/MCOM.2017.1700454
10.1109/TVT.2015.2481920
10.3390/a17060264
10.3390/electronics11091464
10.3390/en12071229
10.1109/TMC.2016.2624731
10.1109/MASS56207.2022.00097
10.1109/ACCESS.2020.2975635
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.3390/electronics14112159
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID A845099016
10_3390_electronics14112159
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c313t-27ca3e76c062c65ba0d059f9bb96890241e2e1fded49529fdea68b5b2f466d4c3
IEDL.DBID BENPR
ISSN 2079-9292
IngestDate Fri Jul 25 09:26:31 EDT 2025
Tue Jul 01 05:43:33 EDT 2025
Tue Aug 05 12:11:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-27ca3e76c062c65ba0d059f9bb96890241e2e1fded49529fdea68b5b2f466d4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3759-4143
0000-0001-7783-1513
OpenAccessLink https://www.proquest.com/docview/3217732070?pq-origsite=%requestingapplication%
PQID 3217732070
PQPubID 2032404
ParticipantIDs proquest_journals_3217732070
gale_infotracacademiconefile_A845099016
crossref_primary_10_3390_electronics14112159
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Guo (ref_15) 2017; 16
Xie (ref_13) 2013; 20
Slhu (ref_9) 2015; 15
ref_14
Akyildiz (ref_1) 2002; 40
ref_12
Zhao (ref_2) 2014; 13
ref_19
Lin (ref_3) 2017; 17
ref_17
ref_16
Chen (ref_18) 2022; 71
Fu (ref_10) 2015; 65
Cheng (ref_11) 2020; 8
Xing (ref_23) 2022; 9
Nowrozian (ref_25) 2023; 30
Baek (ref_6) 2020; 7
Chen (ref_5) 2020; 8
ref_24
ref_21
ref_20
Suman (ref_27) 2018; 22
Rong (ref_4) 2023; 11
ref_26
Long (ref_22) 2018; 56
ref_7
Dijkstra (ref_28) 1959; 1
Chen (ref_8) 2021; 17
References_xml – volume: 71
  start-page: 8994
  year: 2022
  ident: ref_18
  article-title: Collaborative Hybrid Charging Scheduling in Wireless Rechargeable Sensor Networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2022.3176909
– ident: ref_16
  doi: 10.1109/INFCOMW.2018.8406897
– volume: 40
  start-page: 102
  year: 2002
  ident: ref_1
  article-title: A Survey on Sensor Networks
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2002.1024422
– volume: 13
  start-page: 2689
  year: 2014
  ident: ref_2
  article-title: A framework of joint mobile energy replenishment and data gathering in wireless rechargeable sensor networks
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2014.2307335
– volume: 17
  start-page: 211
  year: 2017
  ident: ref_3
  article-title: TSCA: A Temporal-Spatial Real-Time Charging Scheduling Algorithm for On-Demand Architecture in Wireless Rechargeable Sensor Networks
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2017.2703094
– volume: 1
  start-page: 269
  year: 1959
  ident: ref_28
  article-title: A note on two problems in connexion with graphs
  publication-title: Numer. Math.
  doi: 10.1007/BF01386390
– volume: 30
  start-page: 421
  year: 2023
  ident: ref_25
  article-title: On Optimizing the Charging Trajectory of Mobile Chargers in Wireless Sensor Networks: A Deep Reinforcement Learning Approach
  publication-title: Wirel. Netw.
  doi: 10.1007/s11276-023-03384-8
– volume: 7
  start-page: 1327
  year: 2020
  ident: ref_6
  article-title: Optimal UAV Route in Wireless Charging Sensor Networks
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2954530
– ident: ref_14
– volume: 11
  start-page: 132982
  year: 2023
  ident: ref_4
  article-title: Critical Review of Recent Development of Wireless Power Transfer Technology for Unmanned Aerial Vehicles
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3332470
– volume: 20
  start-page: 140
  year: 2013
  ident: ref_13
  article-title: Wireless poser transfer and applications to sensor networks
  publication-title: IEEE Wirel. Commun.
  doi: 10.1109/MWC.2013.6590061
– volume: 22
  start-page: 2048
  year: 2018
  ident: ref_27
  article-title: Path Loss Model for UAV-Assisted RFET
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2018.2863389
– volume: 8
  start-page: 148906
  year: 2020
  ident: ref_11
  article-title: A Distance-Based Scheduling Algorithm with a Proactive Bottleneck Removal Mechanism for Wireless Rechargeable Sensor Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3015911
– ident: ref_21
– volume: 15
  start-page: 1699
  year: 2015
  ident: ref_9
  article-title: Near-optimal velocity control for mobile charging in wireless rechargeable sensor networks
  publication-title: IEEE Trans. Mob. Comput.
– volume: 17
  start-page: 15501477211055958
  year: 2021
  ident: ref_8
  article-title: Minimizing the Number of Wireless Charging PAD for UAV-Based Wireless Rechargeable Sensor Networks
  publication-title: Int. J. Distrib. Sens. Netw.
  doi: 10.1177/15501477211055958
– ident: ref_12
  doi: 10.1109/ICC.2015.7249364
– volume: 56
  start-page: 22
  year: 2018
  ident: ref_22
  article-title: Energy Neutral Internet of Drones
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2017.1700454
– volume: 65
  start-page: 7415
  year: 2015
  ident: ref_10
  article-title: ESync: Energy Synchronized Mobile Charging in Rechargeable Wireless Sensor Networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2015.2481920
– ident: ref_7
  doi: 10.3390/a17060264
– ident: ref_17
  doi: 10.3390/electronics11091464
– ident: ref_26
  doi: 10.3390/en12071229
– volume: 9
  start-page: 21885
  year: 2022
  ident: ref_23
  article-title: Optimal Path Planning for Wireless Power Transfer Robot Using Area Division Deep Reinforcement Learning
  publication-title: Wirel. Power Transf.
– volume: 16
  start-page: 2450
  year: 2017
  ident: ref_15
  article-title: Concurrently wireless charging sensor networks with efficient scheduling
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2016.2624731
– ident: ref_19
– ident: ref_24
  doi: 10.1109/MASS56207.2022.00097
– ident: ref_20
– volume: 8
  start-page: 39056
  year: 2020
  ident: ref_5
  article-title: Efficient Wireless Charging Pad Deployment in Wireless Rechargeable Sensor Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2975635
SSID ssj0000913830
Score 2.3202045
Snippet In recent years, a key problem in wireless sensor networks has been how to effectively deploy the minimum number of wireless charging pads while establishing...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Index Database
StartPage 2159
SubjectTerms Aircraft
Algorithms
Connectivity
Data collection
Drone aircraft
Drones
Efficiency
Energy consumption
Greedy algorithms
Nodes
Optimization
Redundancy
Sensors
Traveling salesman problem
Unmanned aerial vehicles
Vehicles
Wireless power transmission
Wireless sensor networks
Wireless telecommunications equipment
Title Efficient Charging Pad Deployment in Large-Scale WRSNs: A Sink-Outward Strategy
URI https://www.proquest.com/docview/3217732070
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8NAFB60XvQgrlitZQ6CFwc7S6YTL1K1VcTW0ip6C5kl4KVVWw9e_O2-l05dQIQcEgYS8t7M2_k-Qg6SwiQuCYE1beGYSo1mqeCW8cKKwqeB2wI7ut2evrpX14_JYyy4TeJY5dwmlobajx3WyI8lxM5NKWCHnj6_MGSNwu5qpNBYJEtggg0kX0tn7V5_8FVlQdRLIxszuCEJ-f3xN7vMhCuO2ArpL5f0t2EuvU1njazGMJG2ZnpdJwthtEFWfoAHbpLbdon-AE6DYs8cyYZoP_f0IiCHLxb96NOI3uCkNxuCJgJ9GAx7kxPaokOE7L99m-LELI34tO9b5L7Tvju_YpEegTnJ5ZSJpstlaGrX0MLpxOYND7FSkVqbauweKh5E4IUPHpIgkcJNro1NQAdKa6-c3CaV0XgUdgg1iluJHVgfUoio4FVwmcQXIlfeclMlR3MJZc8zFIwMsgcUaPaHQKvkEKWY4RmBf3B5HPWHjyHaVNYyKikbcrpKanNBZ_HwTLJvVe_-v7xHlgXS8ZZFkRqpTF_fwj7ECFNbJ4umc1mP2wGeuh_tT7T1v7o
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5Remh7QC2lIkBbH0BcahE_1rGRqioqhAAhVARUbsv6sVIv4ZEgxJ_iN3Zms1taCfWGtIeVLNm747FnPDP-PoD1rLRZyFLiHV8Grp013EnhuSi9LKNLwpeU0T0amv6ZPjjPzufgobkLQ2WVzZ5YbdTxMlCMfEuh79xREjX029U1J9Yoyq42FBoztThM93d4ZJt83d_B-d2Qsrd7-r3Pa1YBHpRQUy47oVCpY0LbyGAyX7Qjuhil894ZSrppkWQSZUwRzw7S4UthrM_w07UxUQeF_b6Al1opRyvK9vb-xHQIY9Oq9gzcCNvbW49cNhOhBSE5uH8M4NNmoLJtvbewUDulrDvToncwl8aL8OYvqML3cLxbYU2giWKUoSdqI_ajiGwnEWMwhRjZrzEbUF05H-G8J_bzZDScbLMuGxFBwPHtlOpzWY2Ge78EZ88itg8wP74cp2VgVguvKN8bk0P_DbvCx2axlIWOXtgWfGkklF_NMDdyPKuQQPMnBNqCTZJiTisS_yEU9cUCHIywrfKu1VmV_jMtWGsEnddLdZI_KtbK_5s_w6v-6dEgH-wPD1fhtSQi4Cocswbz05vb9BG9k6n_VKkEg4vn1sHfB9P5tw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDxFoMAeQFxYxfvw2ouEUCCJWlrSqKGiN9f7krikj6RC_Wv8OmYcm4JUcavkgyVLa3n87c7Mzuz3AbzOU5n7PEZeuOS5tqXhVgrHRXIyBRuFS1TR_To124f6y1F-tAG_urMw1FbZrYnNQh1OPO2RDxTGzoWSiNBBatsiZqPJx9MzTgpSVGnt5DTWENmNlz8xfVt-2Bnhv34j5WT87fM2bxUGuFdCrbgsfK1iYXxmpDe5q7OA4UayzllDBTgtoowihRgwj5AWb2pTuhw_QxsTtFc47i3YLDArynqw-Wk8nR382eEhxs1SZWuqI6VsNrhStlkKLYjXwf7jDq93Co2nm9yHe22IyoZrTD2Ajbh4CHf_Ii58BPvjhnkCHRajej0JHbFZHdgokn4wbTiyHwu2R13mfI4oiOz7wXy6fM-GbE5yAfsXK-rWZS037uVjOLwRwz2B3uJkEZ8CK7Vwiqq_IVqM5nAovMo8JFnr4ETZh3edharTNQNHhZkLGbS6xqB9eEtWrGh-4jf4uj1mgC8jpqtqWOq8KQaaPmx1hq7aibusrmD27P-PX8FtxF-1tzPdfQ53JKkCN3szW9BbnV_EFxiqrNzLFhMMjm8ahr8Bhjv_SQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Charging+Pad+Deployment+in+Large-Scale+WRSNs%3A+A+Sink-Outward+Strategy&rft.jtitle=Electronics+%28Basel%29&rft.au=Rei-Heng%2C+Cheng&rft.au=Chang-Wu%2C+Yu&rft.date=2025-06-01&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=14&rft.issue=11&rft.spage=2159&rft_id=info:doi/10.3390%2Felectronics14112159&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon