Targeting α7 nicotinic acetylcholine receptors and their protein interactions in Alzheimer's disease drug development

The decades-old cholinergic hypothesis of Alzheimer's disease (AD) led to clinical testing and FDA approval of acetylcholinesterase inhibitor drugs. Subsequently, the α7 nicotinic acetylcholine receptor (α7nAChR) was proposed as a new drug target for enhancing cholinergic neurotransmission. Nea...

Full description

Saved in:
Bibliographic Details
Published inDrug development research Vol. 84; no. 6; pp. 1085 - 1095
Main Authors Burns, Lindsay H, Pei, Zhe, Wang, Hoau-Yan
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The decades-old cholinergic hypothesis of Alzheimer's disease (AD) led to clinical testing and FDA approval of acetylcholinesterase inhibitor drugs. Subsequently, the α7 nicotinic acetylcholine receptor (α7nAChR) was proposed as a new drug target for enhancing cholinergic neurotransmission. Nearly simultaneously, soluble amyloid β (Aβ ) was shown to bind α7nAChR with picomolar affinity to activate kinases that hyperphosphorylate tau, the precursor to tau-containing tangles. Multiple biopharmaceutical companies explored α7nAChR as a drug target for AD, mostly to enhance neurotransmission. Directly targeting α7nAChR proved to be a drug development challenge. The ultra-high-affinity interaction between Aβ and α7nAChR posed a significant hurdle for direct competition in the AD brain. The receptor rapidly desensitizes, undermining efficacy of agonists. Drug discovery approaches therefore included partial agonists and allosteric modulators of α7nAChR. After substantial effort, numerous drug candidates were abandoned due to lack of efficacy or drug-related toxicities. As alternatives, proteins interacting with α7nAChR were sought. In 2016, a novel nAChR regulator was identified, but no drug candidates have emerged from this effort. In 2012, the interaction of filamin A with α7nAChR was shown to be critical to Aβ 's toxic signaling via α7nAChR, presenting a new drug target. The novel drug candidate simufilam disrupts the filamin A-α7nAChR interaction, reduces Aβ 's high-affinity binding to α7nAChR, and suppresses Aβ 's toxic signaling. Early clinical trials of simufilam showed improvements in experimental CSF biomarkers and indications of cognitive improvement in mild AD patients at 1 year. Simufilam is currently in phase 3 clinical trials as a disease-modifying treatment for AD.
AbstractList The decades‐old cholinergic hypothesis of Alzheimer's disease (AD) led to clinical testing and FDA approval of acetylcholinesterase inhibitor drugs. Subsequently, the α7 nicotinic acetylcholine receptor (α7nAChR) was proposed as a new drug target for enhancing cholinergic neurotransmission. Nearly simultaneously, soluble amyloid β1‐42 (Aβ42) was shown to bind α7nAChR with picomolar affinity to activate kinases that hyperphosphorylate tau, the precursor to tau‐containing tangles. Multiple biopharmaceutical companies explored α7nAChR as a drug target for AD, mostly to enhance neurotransmission. Directly targeting α7nAChR proved to be a drug development challenge. The ultra‐high‐affinity interaction between Aβ42 and α7nAChR posed a significant hurdle for direct competition in the AD brain. The receptor rapidly desensitizes, undermining efficacy of agonists. Drug discovery approaches therefore included partial agonists and allosteric modulators of α7nAChR. After substantial effort, numerous drug candidates were abandoned due to lack of efficacy or drug‐related toxicities. As alternatives, proteins interacting with α7nAChR were sought. In 2016, a novel nAChR regulator was identified, but no drug candidates have emerged from this effort. In 2012, the interaction of filamin A with α7nAChR was shown to be critical to Aβ42's toxic signaling via α7nAChR, presenting a new drug target. The novel drug candidate simufilam disrupts the filamin A–α7nAChR interaction, reduces Aβ42's high‐affinity binding to α7nAChR, and suppresses Aβ42's toxic signaling. Early clinical trials of simufilam showed improvements in experimental CSF biomarkers and indications of cognitive improvement in mild AD patients at 1 year. Simufilam is currently in phase 3 clinical trials as a disease‐modifying treatment for AD.
The decades-old cholinergic hypothesis of Alzheimer's disease (AD) led to clinical testing and FDA approval of acetylcholinesterase inhibitor drugs. Subsequently, the α7 nicotinic acetylcholine receptor (α7nAChR) was proposed as a new drug target for enhancing cholinergic neurotransmission. Nearly simultaneously, soluble amyloid β (Aβ ) was shown to bind α7nAChR with picomolar affinity to activate kinases that hyperphosphorylate tau, the precursor to tau-containing tangles. Multiple biopharmaceutical companies explored α7nAChR as a drug target for AD, mostly to enhance neurotransmission. Directly targeting α7nAChR proved to be a drug development challenge. The ultra-high-affinity interaction between Aβ and α7nAChR posed a significant hurdle for direct competition in the AD brain. The receptor rapidly desensitizes, undermining efficacy of agonists. Drug discovery approaches therefore included partial agonists and allosteric modulators of α7nAChR. After substantial effort, numerous drug candidates were abandoned due to lack of efficacy or drug-related toxicities. As alternatives, proteins interacting with α7nAChR were sought. In 2016, a novel nAChR regulator was identified, but no drug candidates have emerged from this effort. In 2012, the interaction of filamin A with α7nAChR was shown to be critical to Aβ 's toxic signaling via α7nAChR, presenting a new drug target. The novel drug candidate simufilam disrupts the filamin A-α7nAChR interaction, reduces Aβ 's high-affinity binding to α7nAChR, and suppresses Aβ 's toxic signaling. Early clinical trials of simufilam showed improvements in experimental CSF biomarkers and indications of cognitive improvement in mild AD patients at 1 year. Simufilam is currently in phase 3 clinical trials as a disease-modifying treatment for AD.
Abstract The decades‐old cholinergic hypothesis of Alzheimer's disease (AD) led to clinical testing and FDA approval of acetylcholinesterase inhibitor drugs. Subsequently, the α7 nicotinic acetylcholine receptor (α7nAChR) was proposed as a new drug target for enhancing cholinergic neurotransmission. Nearly simultaneously, soluble amyloid β 1‐42 (Aβ 42 ) was shown to bind α7nAChR with picomolar affinity to activate kinases that hyperphosphorylate tau, the precursor to tau‐containing tangles. Multiple biopharmaceutical companies explored α7nAChR as a drug target for AD, mostly to enhance neurotransmission. Directly targeting α7nAChR proved to be a drug development challenge. The ultra‐high‐affinity interaction between Aβ 42 and α7nAChR posed a significant hurdle for direct competition in the AD brain. The receptor rapidly desensitizes, undermining efficacy of agonists. Drug discovery approaches therefore included partial agonists and allosteric modulators of α7nAChR. After substantial effort, numerous drug candidates were abandoned due to lack of efficacy or drug‐related toxicities. As alternatives, proteins interacting with α7nAChR were sought. In 2016, a novel nAChR regulator was identified, but no drug candidates have emerged from this effort. In 2012, the interaction of filamin A with α7nAChR was shown to be critical to Aβ 42 's toxic signaling via α7nAChR, presenting a new drug target. The novel drug candidate simufilam disrupts the filamin A–α7nAChR interaction, reduces Aβ 42 's high‐affinity binding to α7nAChR, and suppresses Aβ 42 's toxic signaling. Early clinical trials of simufilam showed improvements in experimental CSF biomarkers and indications of cognitive improvement in mild AD patients at 1 year. Simufilam is currently in phase 3 clinical trials as a disease‐modifying treatment for AD.
Author Burns, Lindsay H
Pei, Zhe
Wang, Hoau-Yan
Author_xml – sequence: 1
  givenname: Lindsay H
  orcidid: 0000-0002-4303-3174
  surname: Burns
  fullname: Burns, Lindsay H
  organization: Cassava Sciences, Inc., Austin, Texas, USA
– sequence: 2
  givenname: Zhe
  surname: Pei
  fullname: Pei, Zhe
  organization: Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, New York, New York, USA
– sequence: 3
  givenname: Hoau-Yan
  surname: Wang
  fullname: Wang, Hoau-Yan
  organization: Department of Biology and Neuroscience, Graduate School of the City University of New York, New York, New York, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37291958$$D View this record in MEDLINE/PubMed
BookMark eNpdkctKxTAQhoMoerwsfAEJuFAX1VzaNFmKeAPBja5LTjI9RtrkmKSCvpUv4jMZrwtXwz_zMfMz_yZa9cEDQruUHFNC2Im18ZgxIpsVNKNEyYoxpVbRjLCWVTVXdANtpvRICKW1lOtog7dMUdXIGXq-03EB2fkFfn9rsXcmFOEM1gbyy2AewuA84AgGljnEhLW3OD-Ai3gZQwbnsfMZojbZBZ-KwKfDa5mPEA8Sti6BToBtnBbYwjMMYTmCz9torddDgp2fuoXuL87vzq6qm9vL67PTm8pwynNFlZC1mPe04QKsErQVhDa2kbyh815ZYQy3nBevQtSWUcoapmXpNC3I3sz5Fjr83lvMPk2Qcje6ZGAYtIcwpY5JVgspmKoLuv8PfQxT9MVdoQQX5bRShTr6pkwMKUXou2V0o44vHSXdZxhdCaP7CqOwez8bp_kI9o_8_T7_ALXIiDk
CitedBy_id crossref_primary_10_1016_j_pnpbp_2024_111069
crossref_primary_10_1021_acschemneuro_3c00710
crossref_primary_10_3390_pharmaceutics16060708
crossref_primary_10_1016_j_jneumeth_2023_110029
crossref_primary_10_3389_fragi_2023_1175601
crossref_primary_10_3390_cells12162051
crossref_primary_10_1016_j_brainres_2024_148797
crossref_primary_10_3390_ijms241813927
crossref_primary_10_3390_ijms241914570
crossref_primary_10_1021_acsmedchemlett_3c00520
crossref_primary_10_1007_s40265_023_01938_w
crossref_primary_10_1016_j_arr_2024_102193
crossref_primary_10_3390_ijms241813900
crossref_primary_10_3390_cells13030237
Cites_doi 10.1001/jama.283.12.1571
10.1016/0006-8993(86)90819-x
10.1124/pr.113.008581
10.1016/j.neuropharm.2014.01.033
10.1177/0269881117691590
10.1038/s41386-020-0628-9
10.1016/j.celrep.2020.108025
10.2174/138161206775474224
10.1038/npp.2014.17
10.1016/S0306-4522(01)00460-2
10.1176/appi.ajp.2008.07071135
10.1186/s13195-020-00599-1
10.1016/j.neuron.2016.01.018
10.1006/mcne.2002.1112
10.1111/j.1527-3458.2008.00037.x
10.1186/s13195-016-0210-1
10.1016/j.neuropharm.2017.02.025
10.1046/j.1365-2559.2001.01082.x
10.1038/npp.2016.101
10.1124/jpet.109.151886
10.1016/0165-0173(88)90016-1
10.1038/sj.npp.1301189
10.1073/pnas.0701321104
10.1016/j.jalz.2009.05.665
10.1074/jbc.M200066200
10.1124/jpet.110.173245
10.1124/jpet.119.263483
10.1021/jm301048a
10.3389/fnagi.2022.1038343
10.1097/01.pra.0000442935.15833.c5
10.1124/jpet.107.120436
10.1016/j.biopsych.2009.09.031
10.1038/nature07761
10.1016/j.celrep.2017.04.008
10.1523/JNEUROSCI.6159-08.2009
10.1016/j.neurobiolaging.2017.03.016
10.1021/acsmedchemlett.7b00032
10.1016/j.bcp.2009.07.005
10.1074/jbc.275.8.5626
10.1046/j.1471-4159.2000.0751155.x
10.1586/14737175.2015.995639
10.14283/jpad.2020.6
10.1016/S0166-4328(00)00211-4
10.1126/scitranslmed.aay0289
10.1016/0304-3940(86)90629-4
10.1093/schbul/sbv072
10.1016/j.neulet.2007.01.045
10.1111/bph.13001
10.1073/pnas.0804372105
10.1016/j.apsb.2017.09.001
10.1021/bi201246t
10.1016/j.trci.2015.06.001
10.1007/s40263-014-0201-3
10.1523/JNEUROSCI.0354-12.2012
10.1002/mds.26569
10.1074/jbc.M212532200
10.1073/pnas.91.12.5562
10.1016/j.npep.2018.12.003
10.1111/j.0953-816X.2004.03377.x
10.1016/j.pnpbp.2016.06.013
10.1002/jnr.490270314
10.1523/jneurosci.5038-09.2010
ContentType Journal Article
Copyright 2023 Wiley Periodicals LLC.
Copyright_xml – notice: 2023 Wiley Periodicals LLC.
DBID NPM
AAYXX
CITATION
7QO
7QP
7QR
7TK
7U7
8FD
C1K
FR3
P64
7X8
DOI 10.1002/ddr.22085
DatabaseName PubMed
CrossRef
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Biotechnology Research Abstracts
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1098-2299
EndPage 1095
ExternalDocumentID 10_1002_ddr_22085
37291958
Genre Journal Article
Review
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXME
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NPM
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWD
RWI
RX1
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXSBR
XG1
XV2
ZZTAW
~IA
~WT
.GJ
.Y3
31~
53G
AASGY
AAYXX
ABEML
ACBWZ
ACSCC
AITYG
ASPBG
AVWKF
AZFZN
CITATION
EBD
EJD
EMOBN
FEDTE
GWYGA
HF~
HVGLF
LSO
LW6
M6M
OVD
PALCI
RIWAO
RJQFR
RYL
SAMSI
SV3
TEORI
ZGI
ZXP
7QO
7QP
7QR
7TK
7U7
8FD
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c313t-196846bf1536ed96176015d58351bf9d6cc3d33ace664d211252a8d3357e8fcb3
ISSN 0272-4391
IngestDate Fri Aug 16 01:44:59 EDT 2024
Fri Sep 13 09:18:20 EDT 2024
Fri Aug 23 00:16:51 EDT 2024
Thu May 23 23:30:16 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords amyloid β42
tau
filamin A
nicotinic acetylcholine receptors
Language English
License 2023 Wiley Periodicals LLC.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c313t-196846bf1536ed96176015d58351bf9d6cc3d33ace664d211252a8d3357e8fcb3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0002-4303-3174
PMID 37291958
PQID 2863676099
PQPubID 866385
PageCount 11
ParticipantIDs proquest_miscellaneous_2824686294
proquest_journals_2863676099
crossref_primary_10_1002_ddr_22085
pubmed_primary_37291958
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Drug development research
PublicationTitleAlternate Drug Dev Res
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_12_4_1
e_1_2_12_6_1
e_1_2_12_19_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_38_1
Cartwright J. (e_1_2_12_10_1) 2019
e_1_2_12_20_1
e_1_2_12_41_1
e_1_2_12_22_1
e_1_2_12_43_1
e_1_2_12_64_1
e_1_2_12_24_1
e_1_2_12_45_1
e_1_2_12_26_1
e_1_2_12_47_1
e_1_2_12_62_1
e_1_2_12_60_1
e_1_2_12_28_1
e_1_2_12_49_1
e_1_2_12_31_1
e_1_2_12_52_1
e_1_2_12_33_1
e_1_2_12_54_1
e_1_2_12_35_1
e_1_2_12_56_1
e_1_2_12_37_1
e_1_2_12_58_1
e_1_2_12_14_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_50_1
e_1_2_12_3_1
e_1_2_12_5_1
e_1_2_12_18_1
e_1_2_12_16_1
e_1_2_12_39_1
e_1_2_12_42_1
e_1_2_12_65_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_63_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_61_1
e_1_2_12_40_1
e_1_2_12_27_1
e_1_2_12_29_1
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_15_1
e_1_2_12_13_1
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_51_1
e_1_2_12_9_1
References_xml – ident: e_1_2_12_40_1
  doi: 10.1001/jama.283.12.1571
– ident: e_1_2_12_62_1
  doi: 10.1016/0006-8993(86)90819-x
– ident: e_1_2_12_7_1
  doi: 10.1124/pr.113.008581
– ident: e_1_2_12_47_1
  doi: 10.1016/j.neuropharm.2014.01.033
– ident: e_1_2_12_23_1
  doi: 10.1177/0269881117691590
– ident: e_1_2_12_29_1
  doi: 10.1038/s41386-020-0628-9
– ident: e_1_2_12_32_1
  doi: 10.1016/j.celrep.2020.108025
– ident: e_1_2_12_11_1
  doi: 10.2174/138161206775474224
– ident: e_1_2_12_51_1
  doi: 10.1038/npp.2014.17
– ident: e_1_2_12_39_1
  doi: 10.1016/S0306-4522(01)00460-2
– ident: e_1_2_12_20_1
  doi: 10.1176/appi.ajp.2008.07071135
– ident: e_1_2_12_2_1
  doi: 10.1186/s13195-020-00599-1
– ident: e_1_2_12_24_1
  doi: 10.1016/j.neuron.2016.01.018
– ident: e_1_2_12_6_1
  doi: 10.1006/mcne.2002.1112
– ident: e_1_2_12_48_1
  doi: 10.1111/j.1527-3458.2008.00037.x
– ident: e_1_2_12_21_1
  doi: 10.1186/s13195-016-0210-1
– ident: e_1_2_12_9_1
  doi: 10.1016/j.neuropharm.2017.02.025
– ident: e_1_2_12_12_1
  doi: 10.1046/j.1365-2559.2001.01082.x
– ident: e_1_2_12_25_1
  doi: 10.1038/npp.2016.101
– ident: e_1_2_12_35_1
  doi: 10.1124/jpet.109.151886
– ident: e_1_2_12_44_1
  doi: 10.1016/0165-0173(88)90016-1
– ident: e_1_2_12_8_1
  doi: 10.1038/sj.npp.1301189
– ident: e_1_2_12_41_1
  doi: 10.1073/pnas.0701321104
– ident: e_1_2_12_28_1
  doi: 10.1016/j.jalz.2009.05.665
– ident: e_1_2_12_15_1
  doi: 10.1074/jbc.M200066200
– ident: e_1_2_12_16_1
  doi: 10.1124/jpet.110.173245
– ident: e_1_2_12_61_1
  doi: 10.1124/jpet.119.263483
– ident: e_1_2_12_37_1
  doi: 10.1021/jm301048a
– ident: e_1_2_12_4_1
  doi: 10.3389/fnagi.2022.1038343
– ident: e_1_2_12_43_1
  doi: 10.1097/01.pra.0000442935.15833.c5
– ident: e_1_2_12_49_1
  doi: 10.1124/jpet.107.120436
– ident: e_1_2_12_55_1
  doi: 10.1016/j.biopsych.2009.09.031
– ident: e_1_2_12_33_1
  doi: 10.1038/nature07761
– ident: e_1_2_12_36_1
  doi: 10.1016/j.celrep.2017.04.008
– volume-title: The use of morphine and scopolamine to induce twilight sleep
  year: 2019
  ident: e_1_2_12_10_1
  contributor:
    fullname: Cartwright J.
– ident: e_1_2_12_17_1
  doi: 10.1523/JNEUROSCI.6159-08.2009
– ident: e_1_2_12_58_1
  doi: 10.1016/j.neurobiolaging.2017.03.016
– ident: e_1_2_12_31_1
  doi: 10.1021/acsmedchemlett.7b00032
– ident: e_1_2_12_46_1
  doi: 10.1016/j.bcp.2009.07.005
– ident: e_1_2_12_56_1
  doi: 10.1074/jbc.275.8.5626
– ident: e_1_2_12_57_1
  doi: 10.1046/j.1471-4159.2000.0751155.x
– ident: e_1_2_12_13_1
  doi: 10.1586/14737175.2015.995639
– ident: e_1_2_12_60_1
  doi: 10.14283/jpad.2020.6
– ident: e_1_2_12_30_1
  doi: 10.1016/S0166-4328(00)00211-4
– ident: e_1_2_12_65_1
  doi: 10.1126/scitranslmed.aay0289
– ident: e_1_2_12_38_1
– ident: e_1_2_12_42_1
  doi: 10.1016/0304-3940(86)90629-4
– ident: e_1_2_12_53_1
  doi: 10.1093/schbul/sbv072
– ident: e_1_2_12_18_1
  doi: 10.1016/j.neulet.2007.01.045
– ident: e_1_2_12_19_1
  doi: 10.1111/bph.13001
– ident: e_1_2_12_64_1
  doi: 10.1073/pnas.0804372105
– ident: e_1_2_12_63_1
  doi: 10.1016/j.apsb.2017.09.001
– ident: e_1_2_12_14_1
  doi: 10.1021/bi201246t
– ident: e_1_2_12_22_1
  doi: 10.1016/j.trci.2015.06.001
– ident: e_1_2_12_52_1
  doi: 10.1007/s40263-014-0201-3
– ident: e_1_2_12_54_1
  doi: 10.1523/JNEUROSCI.0354-12.2012
– ident: e_1_2_12_50_1
  doi: 10.1002/mds.26569
– ident: e_1_2_12_59_1
  doi: 10.1074/jbc.M212532200
– ident: e_1_2_12_3_1
  doi: 10.1073/pnas.91.12.5562
– ident: e_1_2_12_34_1
  doi: 10.1016/j.npep.2018.12.003
– ident: e_1_2_12_26_1
  doi: 10.1111/j.0953-816X.2004.03377.x
– ident: e_1_2_12_5_1
  doi: 10.1016/j.pnpbp.2016.06.013
– ident: e_1_2_12_45_1
  doi: 10.1002/jnr.490270314
– ident: e_1_2_12_27_1
  doi: 10.1523/jneurosci.5038-09.2010
SSID ssj0011488
Score 2.4613984
SecondaryResourceType review_article
Snippet The decades-old cholinergic hypothesis of Alzheimer's disease (AD) led to clinical testing and FDA approval of acetylcholinesterase inhibitor drugs....
Abstract The decades‐old cholinergic hypothesis of Alzheimer's disease (AD) led to clinical testing and FDA approval of acetylcholinesterase inhibitor drugs....
The decades‐old cholinergic hypothesis of Alzheimer's disease (AD) led to clinical testing and FDA approval of acetylcholinesterase inhibitor drugs....
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 1085
SubjectTerms Acetylcholine receptors (nicotinic)
Acetylcholinesterase
Affinity
Agonists
Allosteric properties
Alzheimer's disease
Amyloid
Biomarkers
Biopharmaceuticals
Cerebrospinal fluid
Cholinergics
Cholinesterase inhibitors
Clinical trials
Cognitive ability
Drug development
Effectiveness
FDA approval
Kinases
Modulators
Neurodegenerative diseases
Neuromodulation
Neurotransmission
Protein interaction
Proteins
Receptors
Tau protein
Therapeutic targets
Title Targeting α7 nicotinic acetylcholine receptors and their protein interactions in Alzheimer's disease drug development
URI https://www.ncbi.nlm.nih.gov/pubmed/37291958
https://www.proquest.com/docview/2863676099/abstract/
https://search.proquest.com/docview/2824686294
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgSGgviI3LCttkEIyHLKN14lwed0MVEqhCnTR4ieIbTBpplaRI3b_ij_CbOL7E6YBJwEvU2GnT5vt6fI59zmeEXpQ0ZyrlSaiGdAgBisjCjMNpKriSKhaCKT018O59Mj6L357T836jS1Nd0rIDfvXHupL_QRXaAFddJfsPyPoPhQZ4DfjCERCG499hbNK4TbB_fPryaJQGFQDb6lrHoOSyXV5q46b9SLBrcm421nEZkxd1YCQaLiqjGFHb-gaTHHt4eQX9ZleVtOlWcAJRLz53JVY-W8Z5tSe_9AVOQshPNR_Bj2m6KYCmXPYlERNp0gk-fenXiNwM9nhWLsKPjrxuXoJEPvEKhhVrS7VUKSF2_6PfLLVVfhWiPiB6m9DVa-Ahz78ayPSaolbD6Qcrn0LYdd1Gd0iaUx13n3zwymE6yss6Iakhee3vs47udu-87oncEF4YN2N6H91z8QE-tGBvoFuy2kR7EyswvtzH075ertnHe3jSS48vH6BvnhH4x_cUezbga2zAng0Y2IANG7BjA15lA5xgz4ZXDXZcwJoLeAXvh-jszen0eBy6nTVCHo2iNgSzC34nUzDcJVLk4MVCXE4FBXd8xFQuEs4jEUXw3ZIkFgR8ckrKDFpoKjPFWfQIrVWzSm4hzDgHH1jRURplsZIlS3gMYa5MSjIUktEBet495WJuBVQKK5VNCkClMKgM0Hb3_Av3_2oKkiVaThBCmAF65rvB-uklrbKSs4W-hsS6ximPB-ixxc3fpcP5yY09T9F6z9xttNbWC7kDPmbLdg2bfgJsQ4MH
link.rule.ids 315,786,790,27957,27958
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+%CE%B17+nicotinic+acetylcholine+receptors+and+their+protein+interactions+in+Alzheimer%27s+disease+drug+development&rft.jtitle=Drug+development+research&rft.au=Burns%2C+Lindsay+H&rft.au=Pei%2C+Zhe&rft.au=Wang%2C+Hoau-Yan&rft.date=2023-09-01&rft.eissn=1098-2299&rft_id=info:doi/10.1002%2Fddr.22085&rft_id=info%3Apmid%2F37291958&rft.externalDocID=37291958
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-4391&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-4391&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-4391&client=summon