A programmable metasurface for real time control of broadband elastic rays

Real-time engineering of elastic rays in solid materials is crucial for several applications relevant to active noise and vibration cancellation and to inverse methods aiming to either reveal or dissimulate the presence of foreign bodies. Here, we introduce a programmable elastic metasurface for the...

Full description

Saved in:
Bibliographic Details
Published inSmart materials and structures Vol. 27; no. 11; pp. 115011 - 115029
Main Authors Chen, Yangyang, Li, Xiaopeng, Nassar, Hussein, Hu, Gengkai, Huang, Guoliang
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Real-time engineering of elastic rays in solid materials is crucial for several applications relevant to active noise and vibration cancellation and to inverse methods aiming to either reveal or dissimulate the presence of foreign bodies. Here, we introduce a programmable elastic metasurface for the first time with sensing-and-actuating units, allowing to adapt and reprogram its wave control functionalities in real time. The active units behave following decoupled 'feedforward' sensor-to-actuator control loops governed by local transfer functions encoded into a digital circuit and offering highly flexible phase and amplitude engineering of transmitted and/or scattered waves. The proposed metasurface is concretized numerically and experimentally by achieving, for the first time, real-time tunable ray steering of flexural waves in a host plate. Various other significant demonstrations have been included to strongly illustrate the multifunctional adaptability of the design. In particular, one-way non-reciprocal blocking of waves is observed experimentally whereas skin cloaking of voids is tested numerically. Finally, operability across broad wave frequency ranges is demonstrated (5-45 kHz). The design will pave a new efficient way in the field of sensing and actuation of elastic waves.
AbstractList Real-time engineering of elastic rays in solid materials is crucial for several applications relevant to active noise and vibration cancellation and to inverse methods aiming to either reveal or dissimulate the presence of foreign bodies. Here, we introduce a programmable elastic metasurface for the first time with sensing-and-actuating units, allowing to adapt and reprogram its wave control functionalities in real time. The active units behave following decoupled 'feedforward' sensor-to-actuator control loops governed by local transfer functions encoded into a digital circuit and offering highly flexible phase and amplitude engineering of transmitted and/or scattered waves. The proposed metasurface is concretized numerically and experimentally by achieving, for the first time, real-time tunable ray steering of flexural waves in a host plate. Various other significant demonstrations have been included to strongly illustrate the multifunctional adaptability of the design. In particular, one-way non-reciprocal blocking of waves is observed experimentally whereas skin cloaking of voids is tested numerically. Finally, operability across broad wave frequency ranges is demonstrated (5-45 kHz). The design will pave a new efficient way in the field of sensing and actuation of elastic waves.
Author Chen, Yangyang
Li, Xiaopeng
Hu, Gengkai
Huang, Guoliang
Nassar, Hussein
Author_xml – sequence: 1
  givenname: Yangyang
  surname: Chen
  fullname: Chen, Yangyang
  organization: University of Missouri Department of Mechanical and Aerospace Engineering, Columbia, MO 65211, United States of America
– sequence: 2
  givenname: Xiaopeng
  surname: Li
  fullname: Li, Xiaopeng
  organization: University of Missouri Department of Mechanical and Aerospace Engineering, Columbia, MO 65211, United States of America
– sequence: 3
  givenname: Hussein
  surname: Nassar
  fullname: Nassar, Hussein
  organization: University of Missouri Department of Mechanical and Aerospace Engineering, Columbia, MO 65211, United States of America
– sequence: 4
  givenname: Gengkai
  surname: Hu
  fullname: Hu, Gengkai
  organization: Beijing Institute of Technology School of Aerospace Engineering, Beijing, 100081, People's Republic of China
– sequence: 5
  givenname: Guoliang
  orcidid: 0000-0003-0959-8427
  surname: Huang
  fullname: Huang, Guoliang
  email: huangg@missouri.edu
  organization: University of Missouri Department of Mechanical and Aerospace Engineering, Columbia, MO 65211, United States of America
BookMark eNp9kE1Lw0AQhhepYFu9e9yjB2N3muxueixFq1Lw0oO3ZfZLUpJs2E0P_fcmVDyIFAYGhnmGed4ZmbShdYTcA3sCVpYLyAVkQvDPBaJbSn1Fpr-jCZmylSgykEtxQ2YpHRgDKHOYkvc17WL4itg0qGtHG9djOkaPxlEfIo0Oa9pXjaMmtH0MNQ2e6hjQamwtdTWmvjI04indkmuPdXJ3P31O9i_P-81rtvvYvm3Wu8zkkPcZiEKX0nHkWAByP_y0kliCtt4b7TwYIa32KxBG5s5yLn3BhZWy1FYWLJ8Tdj5rYkgpOq-6WDUYTwqYGqNQo7cavdU5igERfxBT9dhXoxFW9SXw8QxWoVOHcIztIHZp_eGf9dQktZQKYCg-5K466_NvxAaC9Q
CODEN SMSTER
CitedBy_id crossref_primary_10_1007_s11071_024_09960_7
crossref_primary_10_1038_s42005_021_00584_6
crossref_primary_10_1016_j_ijmecsci_2019_105372
crossref_primary_10_1016_j_jsv_2022_117291
crossref_primary_10_1002_adfm_202316745
crossref_primary_10_1121_10_0026462
crossref_primary_10_1115_1_4054629
crossref_primary_10_1016_j_ymssp_2020_107035
crossref_primary_10_1103_PhysRevApplied_20_034057
crossref_primary_10_1016_j_ymssp_2024_111656
crossref_primary_10_1109_TMECH_2020_2966463
crossref_primary_10_1063_5_0139336
crossref_primary_10_1103_PhysRevApplied_21_L051002
crossref_primary_10_1073_pnas_2004753117
crossref_primary_10_1103_PhysRevB_99_220301
crossref_primary_10_1016_j_ijmecsci_2024_109769
crossref_primary_10_1016_j_ijmecsci_2021_106806
crossref_primary_10_1016_j_ymssp_2022_109295
crossref_primary_10_1103_PhysRevLett_128_244301
crossref_primary_10_1063_5_0039751
crossref_primary_10_1016_j_matdes_2022_111560
crossref_primary_10_1016_j_ijmecsci_2023_108268
crossref_primary_10_1088_1361_665X_ad1890
crossref_primary_10_1103_PhysRevB_103_165427
crossref_primary_10_1016_j_ijmecsci_2022_107793
crossref_primary_10_1177_00219983221140562
crossref_primary_10_3390_cryst12070901
crossref_primary_10_1016_j_engstruct_2022_114917
crossref_primary_10_1063_1_5132629
crossref_primary_10_1016_j_eml_2024_102253
crossref_primary_10_1088_1367_2630_ab3d8f
crossref_primary_10_1088_1367_2630_acd0ce
crossref_primary_10_1063_5_0042132
crossref_primary_10_1016_j_eml_2022_101649
crossref_primary_10_1103_PhysRevApplied_14_054029
crossref_primary_10_3390_app14072717
crossref_primary_10_1038_s41467_021_26034_z
crossref_primary_10_1002_adem_202300025
crossref_primary_10_1088_1361_665X_ad0393
crossref_primary_10_1016_j_physleta_2019_126056
crossref_primary_10_1016_j_jsv_2019_115168
crossref_primary_10_1016_j_ymssp_2020_107324
crossref_primary_10_1016_j_eml_2023_102088
crossref_primary_10_1063_5_0017526
crossref_primary_10_1103_PhysRevB_102_014304
crossref_primary_10_1002_adma_202303541
crossref_primary_10_1360_TB_2021_1265
crossref_primary_10_1360_TB_2021_0573
crossref_primary_10_1063_5_0078740
crossref_primary_10_1063_5_0117634
crossref_primary_10_3389_fmats_2023_1132585
crossref_primary_10_1177_10775463221136663
crossref_primary_10_1103_PhysRevB_104_134304
crossref_primary_10_1016_j_apacoust_2024_110042
crossref_primary_10_1088_1361_665X_abf23e
crossref_primary_10_1007_s10409_021_09073_z
crossref_primary_10_1063_1_5065557
crossref_primary_10_1103_PhysRevApplied_18_064047
crossref_primary_10_1063_5_0019896
crossref_primary_10_1103_PhysRevLett_124_114301
crossref_primary_10_1002_admt_202400550
crossref_primary_10_1016_j_ijmecsci_2024_109048
crossref_primary_10_1063_5_0029045
crossref_primary_10_1016_j_eml_2020_100837
crossref_primary_10_1016_j_ymssp_2022_109371
crossref_primary_10_1038_s41467_020_17529_2
crossref_primary_10_1016_j_eml_2021_101410
crossref_primary_10_1016_j_engstruct_2023_116748
crossref_primary_10_1016_j_ymssp_2024_111846
crossref_primary_10_1088_1361_665X_acc8a7
crossref_primary_10_1121_10_0001625
crossref_primary_10_1002_advs_202400090
crossref_primary_10_1063_5_0054937
crossref_primary_10_1039_D3MH01866K
crossref_primary_10_1063_5_0187726
crossref_primary_10_1016_j_jmps_2020_103889
crossref_primary_10_1088_1361_665X_ad7550
crossref_primary_10_1103_PhysRevApplied_18_014002
crossref_primary_10_3390_ma16217044
crossref_primary_10_1088_1361_6463_acbd5f
crossref_primary_10_1103_PhysRevApplied_15_024005
crossref_primary_10_1115_1_4046222
crossref_primary_10_1088_1361_665X_ac0b4b
crossref_primary_10_1002_adfm_202005285
crossref_primary_10_1016_j_ymssp_2022_109756
crossref_primary_10_1016_j_matdes_2024_113093
crossref_primary_10_1142_S0217979219502734
crossref_primary_10_1016_j_ymssp_2021_107826
crossref_primary_10_1016_j_apacoust_2022_108790
crossref_primary_10_1016_j_jsv_2022_117260
crossref_primary_10_1088_1361_665X_ac6368
crossref_primary_10_1063_5_0228365
crossref_primary_10_1016_j_jsv_2018_10_065
crossref_primary_10_1177_10775463221146091
crossref_primary_10_35848_1882_0786_ac414b
crossref_primary_10_1007_s10483_023_2949_7
crossref_primary_10_1016_j_jmps_2020_104052
crossref_primary_10_1360_SST_2020_0447
crossref_primary_10_1016_j_jsv_2020_115440
crossref_primary_10_1038_s42005_021_00790_2
Cites_doi 10.1115/1.3167197
10.1126/science.289.5485.1734
10.1103/PhysRevB.91.220303
10.1126/sciadv.1501595
10.1038/ncomms9241
10.1002/adma.201606422
10.1098/rspa.2017.0188
10.1177/1045389X15590273
10.1073/pnas.1611740113
10.1016/j.ndteint.2006.03.006
10.1038/srep32867
10.1016/j.jmps.2017.05.009
10.1103/PhysRevLett.117.034302
10.1038/lsa.2014.99
10.1038/ncomms6553
10.1103/PhysRevLett.103.024301
10.1002/adom.201500690
10.1038/ncomms4398
10.1063/1.4914011
10.1063/1.5003571
10.1002/adma.201305280
10.1002/smtd.201600064
10.1126/science.1253213
10.1126/science.1125907
10.1038/natrevmats.2016.1
10.1121/1.4950770
10.1063/1.5011675
10.1103/PhysRevB.95.180104
10.1038/ncomms6510
10.1103/PhysRevApplied.2.064002
10.1115/1.4026911
10.1038/nmat1644
10.1126/science.1210713
10.1126/science.aac9411
10.1063/1.4939546
10.1038/srep03059
10.1063/PT.3.3198
10.1038/srep35048
10.1063/1.4948513
10.1109/58.920708
10.1038/ncomms14608
10.1103/PhysRevLett.119.034301
10.1016/j.jmps.2017.01.010
ContentType Journal Article
Copyright 2018 IOP Publishing Ltd
Copyright_xml – notice: 2018 IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/1361-665X/aae27b
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
DocumentTitleAlternate A programmable metasurface for real time control of broadband elastic rays
EISSN 1361-665X
ExternalDocumentID 10_1088_1361_665X_aae27b
smsaae27b
GrantInformation_xml – fundername: Air Force Office of Scientific Research
  grantid: AF 9550-18-1-0342
  funderid: https://doi.org/10.13039/100000181
– fundername: National Natural Science Foundation of China
  grantid: 11632003
– fundername: NSF EFRI
  grantid: 1641078
GroupedDBID -~X
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
ZMT
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c313t-164b87e5a5a41a5f72697a81bdffcbef1c67dbf916c73ed557f456d778bd7403
IEDL.DBID IOP
ISSN 0964-1726
IngestDate Tue Jul 01 03:38:41 EDT 2025
Thu Apr 24 23:05:25 EDT 2025
Thu Jan 07 13:52:42 EST 2021
Wed Aug 21 03:40:36 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-164b87e5a5a41a5f72697a81bdffcbef1c67dbf916c73ed557f456d778bd7403
Notes SMS-107087.R1
ORCID 0000-0003-0959-8427
PageCount 19
ParticipantIDs iop_journals_10_1088_1361_665X_aae27b
crossref_citationtrail_10_1088_1361_665X_aae27b
crossref_primary_10_1088_1361_665X_aae27b
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Smart materials and structures
PublicationTitleAbbrev SMS
PublicationTitleAlternate Smart Mater. Struct
PublicationYear 2018
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 22
44
23
45
24
46
25
47
26
48
27
29
Chen Y Y (12) 2016; 25
Li X (19) 2018; 27
Mei J (28) 2014; 16
30
31
10
32
11
Wang G (18) 2017; 26
33
34
Liu S (36) 2017; 23
13
35
14
15
37
16
38
17
39
1
2
3
4
5
6
7
8
9
40
41
20
42
21
43
References_xml – ident: 1
  doi: 10.1115/1.3167197
– ident: 7
  doi: 10.1126/science.289.5485.1734
– ident: 30
  doi: 10.1103/PhysRevB.91.220303
– ident: 5
  doi: 10.1126/sciadv.1501595
– ident: 41
  doi: 10.1038/ncomms9241
– ident: 25
  doi: 10.1002/adma.201606422
– ident: 44
  doi: 10.1098/rspa.2017.0188
– ident: 16
  doi: 10.1177/1045389X15590273
– ident: 42
  doi: 10.1073/pnas.1611740113
– ident: 3
  doi: 10.1016/j.ndteint.2006.03.006
– ident: 40
  doi: 10.1038/srep32867
– ident: 17
  doi: 10.1016/j.jmps.2017.05.009
– ident: 31
  doi: 10.1103/PhysRevLett.117.034302
– ident: 35
  doi: 10.1038/lsa.2014.99
– ident: 26
  doi: 10.1038/ncomms6553
– ident: 47
  doi: 10.1103/PhysRevLett.103.024301
– ident: 24
  doi: 10.1002/adom.201500690
– volume: 16
  issn: 1367-2630
  year: 2014
  ident: 28
  publication-title: New J. Phys.
– ident: 37
  doi: 10.1038/ncomms4398
– ident: 15
  doi: 10.1063/1.4914011
– ident: 38
  doi: 10.1063/1.5003571
– ident: 11
  doi: 10.1002/adma.201305280
– ident: 21
  doi: 10.1002/smtd.201600064
– volume: 27
  issn: 0964-1726
  year: 2018
  ident: 19
  publication-title: Smart Mater. Struct.
– ident: 23
  doi: 10.1126/science.1253213
– ident: 45
  doi: 10.1126/science.1125907
– ident: 4
  doi: 10.1038/natrevmats.2016.1
– volume: 25
  issn: 0964-1726
  year: 2016
  ident: 12
  publication-title: Smart Mater. Struct.
– ident: 32
  doi: 10.1121/1.4950770
– ident: 20
  doi: 10.1063/1.5011675
– ident: 46
  doi: 10.1103/PhysRevB.95.180104
– ident: 10
  doi: 10.1038/ncomms6510
– ident: 27
  doi: 10.1103/PhysRevApplied.2.064002
– ident: 6
  doi: 10.1115/1.4026911
– ident: 9
  doi: 10.1038/nmat1644
– ident: 22
  doi: 10.1126/science.1210713
– ident: 48
  doi: 10.1126/science.aac9411
– ident: 13
  doi: 10.1063/1.4939546
– ident: 34
  doi: 10.1038/srep03059
– ident: 8
  doi: 10.1063/PT.3.3198
– ident: 14
  doi: 10.1038/srep35048
– volume: 26
  issn: 0964-1726
  year: 2017
  ident: 18
  publication-title: Smart Mater. Struct.
– ident: 39
  doi: 10.1063/1.4948513
– ident: 2
  doi: 10.1109/58.920708
– ident: 29
  doi: 10.1038/ncomms14608
– ident: 33
  doi: 10.1103/PhysRevLett.119.034301
– volume: 23
  start-page: 1
  issn: 1077-260X
  year: 2017
  ident: 36
  publication-title: IEEE J. Sel. Top. Quantum Electron.
– ident: 43
  doi: 10.1016/j.jmps.2017.01.010
SSID ssj0011831
Score 2.5749445
Snippet Real-time engineering of elastic rays in solid materials is crucial for several applications relevant to active noise and vibration cancellation and to inverse...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 115011
SubjectTerms elastic ray control
programmable metasurface
real-time wave control
Title A programmable metasurface for real time control of broadband elastic rays
URI https://iopscience.iop.org/article/10.1088/1361-665X/aae27b
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB6RVEjl0FJaRApFW6kcetjE9nofESdUNUqRWjhQKQcka58X8lLsHODXMxs7EUEIVT3Zh_Hu-vPa843nBfDNcOMY44Fy1rc0D1pQZVNH-8xzFR1liYvJyb__iOHf_HLERztwvsmFmc2bT38XT-tCwTWETUCc6qVMpFQIPupp7TNpWvCGKSFi-4JfV9cbFwLu1VW7vL7IKWrptY_ypRG2dFIL532iYgbv4Xa9uDqy5K67rEzXPjyr2_ifq9-Hdw31JBe16AfY8dMD2HtSkPAAdlcBobb8CJcXpAndmsTkKjLxVfyZGLT1BHkuQa45JrExPWmC3cksELOYaWf01BGPpBynIQt9X36Cm8HPmx9D2vRdoJalrKJoQRklPddc56nmAcHrS4381oVgjQ-pFdKZgMTSSuYd5zIgDXNSKuNknrBDaE9nU38ERFq82yTRuVVpHmSiTZI5ZtBkCj7LjOhAbw18YZua5LE1xrhY-caVKiJcRYSrqOHqwPfNFfO6Hscrsmf4FIrmpSxfkfu6JVdOyiKTaBsVkS7jYe7C538c6xjeIqVSdbbiCbSrxdJ_QdpSmdPV9nwED9zlzA
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIhAceJRWtOXhSnDg4N0kjh97rIBV3_RQpL0ZPy_tPrRJD_DrGSfeqkWoQuKUHCZ2PHbibzwz3wB8sNx6xniknI0craMRVLnS0xELXCVHWeFTcvLpmTj4Xh9N-CTXOe1yYeaL_Osf4G1PFNyrMAfEqWHJREmF4JOhMaGSdrjwcQ0eciZYIs8__HZ-40bA9dqVzBuJmuJOvfJT_q2VO_vSGvZ9a5sZP4cfqxfso0suB9etHbhff3A3_scIXsCzDEHJfi_-Eh6E2QY8vUVMuAGPusBQ17yCo32SQ7imKcmKTEObDhWjcYEg3iWIOa9IKlBPctA7mUdil3PjrZl5EhCcYzdkaX42m3Ax_nrx-YDm-gvUsZK1FC0pq2Tghpu6NDyiAkfSIM71MTobYumE9DYiwHSSBc-5jAjHvJTKelkXbAvWZ_NZeA1EOhxxUZjaqbKOsjC2qDyzaDrFUFVWbMNwpXztMjd5KpFxpTsfuVI6qUwnleleZdvw6eaJRc_LcY_sR5wJnT_O5h65vTtyzbTRlUQbSSfYjBecpp1_bOs9PD7_MtYnh2fHu_AEUZbqExjfwHq7vA5vEcm09l23Wn8Df0nrMA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+programmable+metasurface+for+real+time+control+of+broadband+elastic+rays&rft.jtitle=Smart+materials+and+structures&rft.au=Chen%2C+Yangyang&rft.au=Li%2C+Xiaopeng&rft.au=Nassar%2C+Hussein&rft.au=Hu%2C+Gengkai&rft.date=2018-11-01&rft.issn=0964-1726&rft.eissn=1361-665X&rft.volume=27&rft.issue=11&rft.spage=115011&rft_id=info:doi/10.1088%2F1361-665X%2Faae27b&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_665X_aae27b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1726&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1726&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1726&client=summon