A programmable metasurface for real time control of broadband elastic rays
Real-time engineering of elastic rays in solid materials is crucial for several applications relevant to active noise and vibration cancellation and to inverse methods aiming to either reveal or dissimulate the presence of foreign bodies. Here, we introduce a programmable elastic metasurface for the...
Saved in:
Published in | Smart materials and structures Vol. 27; no. 11; pp. 115011 - 115029 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Real-time engineering of elastic rays in solid materials is crucial for several applications relevant to active noise and vibration cancellation and to inverse methods aiming to either reveal or dissimulate the presence of foreign bodies. Here, we introduce a programmable elastic metasurface for the first time with sensing-and-actuating units, allowing to adapt and reprogram its wave control functionalities in real time. The active units behave following decoupled 'feedforward' sensor-to-actuator control loops governed by local transfer functions encoded into a digital circuit and offering highly flexible phase and amplitude engineering of transmitted and/or scattered waves. The proposed metasurface is concretized numerically and experimentally by achieving, for the first time, real-time tunable ray steering of flexural waves in a host plate. Various other significant demonstrations have been included to strongly illustrate the multifunctional adaptability of the design. In particular, one-way non-reciprocal blocking of waves is observed experimentally whereas skin cloaking of voids is tested numerically. Finally, operability across broad wave frequency ranges is demonstrated (5-45 kHz). The design will pave a new efficient way in the field of sensing and actuation of elastic waves. |
---|---|
AbstractList | Real-time engineering of elastic rays in solid materials is crucial for several applications relevant to active noise and vibration cancellation and to inverse methods aiming to either reveal or dissimulate the presence of foreign bodies. Here, we introduce a programmable elastic metasurface for the first time with sensing-and-actuating units, allowing to adapt and reprogram its wave control functionalities in real time. The active units behave following decoupled 'feedforward' sensor-to-actuator control loops governed by local transfer functions encoded into a digital circuit and offering highly flexible phase and amplitude engineering of transmitted and/or scattered waves. The proposed metasurface is concretized numerically and experimentally by achieving, for the first time, real-time tunable ray steering of flexural waves in a host plate. Various other significant demonstrations have been included to strongly illustrate the multifunctional adaptability of the design. In particular, one-way non-reciprocal blocking of waves is observed experimentally whereas skin cloaking of voids is tested numerically. Finally, operability across broad wave frequency ranges is demonstrated (5-45 kHz). The design will pave a new efficient way in the field of sensing and actuation of elastic waves. |
Author | Chen, Yangyang Li, Xiaopeng Hu, Gengkai Huang, Guoliang Nassar, Hussein |
Author_xml | – sequence: 1 givenname: Yangyang surname: Chen fullname: Chen, Yangyang organization: University of Missouri Department of Mechanical and Aerospace Engineering, Columbia, MO 65211, United States of America – sequence: 2 givenname: Xiaopeng surname: Li fullname: Li, Xiaopeng organization: University of Missouri Department of Mechanical and Aerospace Engineering, Columbia, MO 65211, United States of America – sequence: 3 givenname: Hussein surname: Nassar fullname: Nassar, Hussein organization: University of Missouri Department of Mechanical and Aerospace Engineering, Columbia, MO 65211, United States of America – sequence: 4 givenname: Gengkai surname: Hu fullname: Hu, Gengkai organization: Beijing Institute of Technology School of Aerospace Engineering, Beijing, 100081, People's Republic of China – sequence: 5 givenname: Guoliang orcidid: 0000-0003-0959-8427 surname: Huang fullname: Huang, Guoliang email: huangg@missouri.edu organization: University of Missouri Department of Mechanical and Aerospace Engineering, Columbia, MO 65211, United States of America |
BookMark | eNp9kE1Lw0AQhhepYFu9e9yjB2N3muxueixFq1Lw0oO3ZfZLUpJs2E0P_fcmVDyIFAYGhnmGed4ZmbShdYTcA3sCVpYLyAVkQvDPBaJbSn1Fpr-jCZmylSgykEtxQ2YpHRgDKHOYkvc17WL4itg0qGtHG9djOkaPxlEfIo0Oa9pXjaMmtH0MNQ2e6hjQamwtdTWmvjI04indkmuPdXJ3P31O9i_P-81rtvvYvm3Wu8zkkPcZiEKX0nHkWAByP_y0kliCtt4b7TwYIa32KxBG5s5yLn3BhZWy1FYWLJ8Tdj5rYkgpOq-6WDUYTwqYGqNQo7cavdU5igERfxBT9dhXoxFW9SXw8QxWoVOHcIztIHZp_eGf9dQktZQKYCg-5K466_NvxAaC9Q |
CODEN | SMSTER |
CitedBy_id | crossref_primary_10_1007_s11071_024_09960_7 crossref_primary_10_1038_s42005_021_00584_6 crossref_primary_10_1016_j_ijmecsci_2019_105372 crossref_primary_10_1016_j_jsv_2022_117291 crossref_primary_10_1002_adfm_202316745 crossref_primary_10_1121_10_0026462 crossref_primary_10_1115_1_4054629 crossref_primary_10_1016_j_ymssp_2020_107035 crossref_primary_10_1103_PhysRevApplied_20_034057 crossref_primary_10_1016_j_ymssp_2024_111656 crossref_primary_10_1109_TMECH_2020_2966463 crossref_primary_10_1063_5_0139336 crossref_primary_10_1103_PhysRevApplied_21_L051002 crossref_primary_10_1073_pnas_2004753117 crossref_primary_10_1103_PhysRevB_99_220301 crossref_primary_10_1016_j_ijmecsci_2024_109769 crossref_primary_10_1016_j_ijmecsci_2021_106806 crossref_primary_10_1016_j_ymssp_2022_109295 crossref_primary_10_1103_PhysRevLett_128_244301 crossref_primary_10_1063_5_0039751 crossref_primary_10_1016_j_matdes_2022_111560 crossref_primary_10_1016_j_ijmecsci_2023_108268 crossref_primary_10_1088_1361_665X_ad1890 crossref_primary_10_1103_PhysRevB_103_165427 crossref_primary_10_1016_j_ijmecsci_2022_107793 crossref_primary_10_1177_00219983221140562 crossref_primary_10_3390_cryst12070901 crossref_primary_10_1016_j_engstruct_2022_114917 crossref_primary_10_1063_1_5132629 crossref_primary_10_1016_j_eml_2024_102253 crossref_primary_10_1088_1367_2630_ab3d8f crossref_primary_10_1088_1367_2630_acd0ce crossref_primary_10_1063_5_0042132 crossref_primary_10_1016_j_eml_2022_101649 crossref_primary_10_1103_PhysRevApplied_14_054029 crossref_primary_10_3390_app14072717 crossref_primary_10_1038_s41467_021_26034_z crossref_primary_10_1002_adem_202300025 crossref_primary_10_1088_1361_665X_ad0393 crossref_primary_10_1016_j_physleta_2019_126056 crossref_primary_10_1016_j_jsv_2019_115168 crossref_primary_10_1016_j_ymssp_2020_107324 crossref_primary_10_1016_j_eml_2023_102088 crossref_primary_10_1063_5_0017526 crossref_primary_10_1103_PhysRevB_102_014304 crossref_primary_10_1002_adma_202303541 crossref_primary_10_1360_TB_2021_1265 crossref_primary_10_1360_TB_2021_0573 crossref_primary_10_1063_5_0078740 crossref_primary_10_1063_5_0117634 crossref_primary_10_3389_fmats_2023_1132585 crossref_primary_10_1177_10775463221136663 crossref_primary_10_1103_PhysRevB_104_134304 crossref_primary_10_1016_j_apacoust_2024_110042 crossref_primary_10_1088_1361_665X_abf23e crossref_primary_10_1007_s10409_021_09073_z crossref_primary_10_1063_1_5065557 crossref_primary_10_1103_PhysRevApplied_18_064047 crossref_primary_10_1063_5_0019896 crossref_primary_10_1103_PhysRevLett_124_114301 crossref_primary_10_1002_admt_202400550 crossref_primary_10_1016_j_ijmecsci_2024_109048 crossref_primary_10_1063_5_0029045 crossref_primary_10_1016_j_eml_2020_100837 crossref_primary_10_1016_j_ymssp_2022_109371 crossref_primary_10_1038_s41467_020_17529_2 crossref_primary_10_1016_j_eml_2021_101410 crossref_primary_10_1016_j_engstruct_2023_116748 crossref_primary_10_1016_j_ymssp_2024_111846 crossref_primary_10_1088_1361_665X_acc8a7 crossref_primary_10_1121_10_0001625 crossref_primary_10_1002_advs_202400090 crossref_primary_10_1063_5_0054937 crossref_primary_10_1039_D3MH01866K crossref_primary_10_1063_5_0187726 crossref_primary_10_1016_j_jmps_2020_103889 crossref_primary_10_1088_1361_665X_ad7550 crossref_primary_10_1103_PhysRevApplied_18_014002 crossref_primary_10_3390_ma16217044 crossref_primary_10_1088_1361_6463_acbd5f crossref_primary_10_1103_PhysRevApplied_15_024005 crossref_primary_10_1115_1_4046222 crossref_primary_10_1088_1361_665X_ac0b4b crossref_primary_10_1002_adfm_202005285 crossref_primary_10_1016_j_ymssp_2022_109756 crossref_primary_10_1016_j_matdes_2024_113093 crossref_primary_10_1142_S0217979219502734 crossref_primary_10_1016_j_ymssp_2021_107826 crossref_primary_10_1016_j_apacoust_2022_108790 crossref_primary_10_1016_j_jsv_2022_117260 crossref_primary_10_1088_1361_665X_ac6368 crossref_primary_10_1063_5_0228365 crossref_primary_10_1016_j_jsv_2018_10_065 crossref_primary_10_1177_10775463221146091 crossref_primary_10_35848_1882_0786_ac414b crossref_primary_10_1007_s10483_023_2949_7 crossref_primary_10_1016_j_jmps_2020_104052 crossref_primary_10_1360_SST_2020_0447 crossref_primary_10_1016_j_jsv_2020_115440 crossref_primary_10_1038_s42005_021_00790_2 |
Cites_doi | 10.1115/1.3167197 10.1126/science.289.5485.1734 10.1103/PhysRevB.91.220303 10.1126/sciadv.1501595 10.1038/ncomms9241 10.1002/adma.201606422 10.1098/rspa.2017.0188 10.1177/1045389X15590273 10.1073/pnas.1611740113 10.1016/j.ndteint.2006.03.006 10.1038/srep32867 10.1016/j.jmps.2017.05.009 10.1103/PhysRevLett.117.034302 10.1038/lsa.2014.99 10.1038/ncomms6553 10.1103/PhysRevLett.103.024301 10.1002/adom.201500690 10.1038/ncomms4398 10.1063/1.4914011 10.1063/1.5003571 10.1002/adma.201305280 10.1002/smtd.201600064 10.1126/science.1253213 10.1126/science.1125907 10.1038/natrevmats.2016.1 10.1121/1.4950770 10.1063/1.5011675 10.1103/PhysRevB.95.180104 10.1038/ncomms6510 10.1103/PhysRevApplied.2.064002 10.1115/1.4026911 10.1038/nmat1644 10.1126/science.1210713 10.1126/science.aac9411 10.1063/1.4939546 10.1038/srep03059 10.1063/PT.3.3198 10.1038/srep35048 10.1063/1.4948513 10.1109/58.920708 10.1038/ncomms14608 10.1103/PhysRevLett.119.034301 10.1016/j.jmps.2017.01.010 |
ContentType | Journal Article |
Copyright | 2018 IOP Publishing Ltd |
Copyright_xml | – notice: 2018 IOP Publishing Ltd |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-665X/aae27b |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
DocumentTitleAlternate | A programmable metasurface for real time control of broadband elastic rays |
EISSN | 1361-665X |
ExternalDocumentID | 10_1088_1361_665X_aae27b smsaae27b |
GrantInformation_xml | – fundername: Air Force Office of Scientific Research grantid: AF 9550-18-1-0342 funderid: https://doi.org/10.13039/100000181 – fundername: National Natural Science Foundation of China grantid: 11632003 – fundername: NSF EFRI grantid: 1641078 |
GroupedDBID | -~X 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NT- NT. P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 W28 XPP ZMT AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c313t-164b87e5a5a41a5f72697a81bdffcbef1c67dbf916c73ed557f456d778bd7403 |
IEDL.DBID | IOP |
ISSN | 0964-1726 |
IngestDate | Tue Jul 01 03:38:41 EDT 2025 Thu Apr 24 23:05:25 EDT 2025 Thu Jan 07 13:52:42 EST 2021 Wed Aug 21 03:40:36 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c313t-164b87e5a5a41a5f72697a81bdffcbef1c67dbf916c73ed557f456d778bd7403 |
Notes | SMS-107087.R1 |
ORCID | 0000-0003-0959-8427 |
PageCount | 19 |
ParticipantIDs | iop_journals_10_1088_1361_665X_aae27b crossref_citationtrail_10_1088_1361_665X_aae27b crossref_primary_10_1088_1361_665X_aae27b |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Smart materials and structures |
PublicationTitleAbbrev | SMS |
PublicationTitleAlternate | Smart Mater. Struct |
PublicationYear | 2018 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 22 44 23 45 24 46 25 47 26 48 27 29 Chen Y Y (12) 2016; 25 Li X (19) 2018; 27 Mei J (28) 2014; 16 30 31 10 32 11 Wang G (18) 2017; 26 33 34 Liu S (36) 2017; 23 13 35 14 15 37 16 38 17 39 1 2 3 4 5 6 7 8 9 40 41 20 42 21 43 |
References_xml | – ident: 1 doi: 10.1115/1.3167197 – ident: 7 doi: 10.1126/science.289.5485.1734 – ident: 30 doi: 10.1103/PhysRevB.91.220303 – ident: 5 doi: 10.1126/sciadv.1501595 – ident: 41 doi: 10.1038/ncomms9241 – ident: 25 doi: 10.1002/adma.201606422 – ident: 44 doi: 10.1098/rspa.2017.0188 – ident: 16 doi: 10.1177/1045389X15590273 – ident: 42 doi: 10.1073/pnas.1611740113 – ident: 3 doi: 10.1016/j.ndteint.2006.03.006 – ident: 40 doi: 10.1038/srep32867 – ident: 17 doi: 10.1016/j.jmps.2017.05.009 – ident: 31 doi: 10.1103/PhysRevLett.117.034302 – ident: 35 doi: 10.1038/lsa.2014.99 – ident: 26 doi: 10.1038/ncomms6553 – ident: 47 doi: 10.1103/PhysRevLett.103.024301 – ident: 24 doi: 10.1002/adom.201500690 – volume: 16 issn: 1367-2630 year: 2014 ident: 28 publication-title: New J. Phys. – ident: 37 doi: 10.1038/ncomms4398 – ident: 15 doi: 10.1063/1.4914011 – ident: 38 doi: 10.1063/1.5003571 – ident: 11 doi: 10.1002/adma.201305280 – ident: 21 doi: 10.1002/smtd.201600064 – volume: 27 issn: 0964-1726 year: 2018 ident: 19 publication-title: Smart Mater. Struct. – ident: 23 doi: 10.1126/science.1253213 – ident: 45 doi: 10.1126/science.1125907 – ident: 4 doi: 10.1038/natrevmats.2016.1 – volume: 25 issn: 0964-1726 year: 2016 ident: 12 publication-title: Smart Mater. Struct. – ident: 32 doi: 10.1121/1.4950770 – ident: 20 doi: 10.1063/1.5011675 – ident: 46 doi: 10.1103/PhysRevB.95.180104 – ident: 10 doi: 10.1038/ncomms6510 – ident: 27 doi: 10.1103/PhysRevApplied.2.064002 – ident: 6 doi: 10.1115/1.4026911 – ident: 9 doi: 10.1038/nmat1644 – ident: 22 doi: 10.1126/science.1210713 – ident: 48 doi: 10.1126/science.aac9411 – ident: 13 doi: 10.1063/1.4939546 – ident: 34 doi: 10.1038/srep03059 – ident: 8 doi: 10.1063/PT.3.3198 – ident: 14 doi: 10.1038/srep35048 – volume: 26 issn: 0964-1726 year: 2017 ident: 18 publication-title: Smart Mater. Struct. – ident: 39 doi: 10.1063/1.4948513 – ident: 2 doi: 10.1109/58.920708 – ident: 29 doi: 10.1038/ncomms14608 – ident: 33 doi: 10.1103/PhysRevLett.119.034301 – volume: 23 start-page: 1 issn: 1077-260X year: 2017 ident: 36 publication-title: IEEE J. Sel. Top. Quantum Electron. – ident: 43 doi: 10.1016/j.jmps.2017.01.010 |
SSID | ssj0011831 |
Score | 2.5749445 |
Snippet | Real-time engineering of elastic rays in solid materials is crucial for several applications relevant to active noise and vibration cancellation and to inverse... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 115011 |
SubjectTerms | elastic ray control programmable metasurface real-time wave control |
Title | A programmable metasurface for real time control of broadband elastic rays |
URI | https://iopscience.iop.org/article/10.1088/1361-665X/aae27b |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB6RVEjl0FJaRApFW6kcetjE9nofESdUNUqRWjhQKQcka58X8lLsHODXMxs7EUEIVT3Zh_Hu-vPa843nBfDNcOMY44Fy1rc0D1pQZVNH-8xzFR1liYvJyb__iOHf_HLERztwvsmFmc2bT38XT-tCwTWETUCc6qVMpFQIPupp7TNpWvCGKSFi-4JfV9cbFwLu1VW7vL7IKWrptY_ypRG2dFIL532iYgbv4Xa9uDqy5K67rEzXPjyr2_ifq9-Hdw31JBe16AfY8dMD2HtSkPAAdlcBobb8CJcXpAndmsTkKjLxVfyZGLT1BHkuQa45JrExPWmC3cksELOYaWf01BGPpBynIQt9X36Cm8HPmx9D2vRdoJalrKJoQRklPddc56nmAcHrS4381oVgjQ-pFdKZgMTSSuYd5zIgDXNSKuNknrBDaE9nU38ERFq82yTRuVVpHmSiTZI5ZtBkCj7LjOhAbw18YZua5LE1xrhY-caVKiJcRYSrqOHqwPfNFfO6Hscrsmf4FIrmpSxfkfu6JVdOyiKTaBsVkS7jYe7C538c6xjeIqVSdbbiCbSrxdJ_QdpSmdPV9nwED9zlzA |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIhAceJRWtOXhSnDg4N0kjh97rIBV3_RQpL0ZPy_tPrRJD_DrGSfeqkWoQuKUHCZ2PHbibzwz3wB8sNx6xniknI0craMRVLnS0xELXCVHWeFTcvLpmTj4Xh9N-CTXOe1yYeaL_Osf4G1PFNyrMAfEqWHJREmF4JOhMaGSdrjwcQ0eciZYIs8__HZ-40bA9dqVzBuJmuJOvfJT_q2VO_vSGvZ9a5sZP4cfqxfso0suB9etHbhff3A3_scIXsCzDEHJfi_-Eh6E2QY8vUVMuAGPusBQ17yCo32SQ7imKcmKTEObDhWjcYEg3iWIOa9IKlBPctA7mUdil3PjrZl5EhCcYzdkaX42m3Ax_nrx-YDm-gvUsZK1FC0pq2Tghpu6NDyiAkfSIM71MTobYumE9DYiwHSSBc-5jAjHvJTKelkXbAvWZ_NZeA1EOhxxUZjaqbKOsjC2qDyzaDrFUFVWbMNwpXztMjd5KpFxpTsfuVI6qUwnleleZdvw6eaJRc_LcY_sR5wJnT_O5h65vTtyzbTRlUQbSSfYjBecpp1_bOs9PD7_MtYnh2fHu_AEUZbqExjfwHq7vA5vEcm09l23Wn8Df0nrMA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+programmable+metasurface+for+real+time+control+of+broadband+elastic+rays&rft.jtitle=Smart+materials+and+structures&rft.au=Chen%2C+Yangyang&rft.au=Li%2C+Xiaopeng&rft.au=Nassar%2C+Hussein&rft.au=Hu%2C+Gengkai&rft.date=2018-11-01&rft.issn=0964-1726&rft.eissn=1361-665X&rft.volume=27&rft.issue=11&rft.spage=115011&rft_id=info:doi/10.1088%2F1361-665X%2Faae27b&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_665X_aae27b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1726&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1726&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1726&client=summon |