Identifying high‐risk multiple myeloma patients: A novel approach using a clonal gene signature
Multiple myeloma (MM) is a heterogeneous disease with a small subset of high‐risk patients having poor prognoses. Identifying these patients is crucial for treatment management and strategic decisions. In this study, we developed a novel computational framework to define prognostic gene signatures b...
Saved in:
Published in | International journal of cancer Vol. 155; no. 9; pp. 1684 - 1695 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.11.2024
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multiple myeloma (MM) is a heterogeneous disease with a small subset of high‐risk patients having poor prognoses. Identifying these patients is crucial for treatment management and strategic decisions. In this study, we developed a novel computational framework to define prognostic gene signatures by selecting genes with expression driven by clonal copy number alterations. We applied this framework to MM and developed a clonal gene signature (CGS) consisting of 22 genes and evaluated in five independent datasets. The CGS provided significant prognostic values after adjusting for well‐established factors including cytogenetic abnormalities, International Staging System (ISS), and Revised ISS (R‐ISS). Importantly, CGS demonstrated higher performance in identifying high‐risk patients compared to the GEP70 and SKY92 signatures recommended for prognostic stratification of MM. CGS can further stratify patients into subgroups with significantly differential prognoses when applied to the high‐ and low‐risk groups identified by GEP70 and SKY92. Additionally, CGS scores are significantly associated with patient response to dexamethasone, a commonly used treatment for MM. In summary, we proposed a computational framework that requires only gene expression data to identify CGSs for prognosis prediction. CGS provides a useful biomarker for improving prognostic stratification in MM, especially for identifying the highest‐risk patients.
What's new?
Prognostic signatures are usually defined by selecting genes associated with patient survival. However, signatures based on prognostic clonal genes are more likely to be reproducible. Here, the authors developed a novel computational framework to identify a clonal gene signature (CGS) for multiple myeloma (MM) using gene expression data. Comprising 22 genes, the CGS outperformed established prognostic models in identifying high‐risk patients. The signature could not only refine risk stratification but also provide insights into patient subgroups within established risk categories. The novel computational framework provides a useful tool for prognostic assessment in MM and other cancer types. |
---|---|
AbstractList | Multiple myeloma (MM) is a heterogeneous disease with a small subset of high-risk patients having poor prognoses. Identifying these patients is crucial for treatment management and strategic decisions. In this study, we developed a novel computational framework to define prognostic gene signatures by selecting genes with expression driven by clonal copy number alterations. We applied this framework to MM and developed a clonal gene signature (CGS) consisting of 22 genes and evaluated in five independent datasets. The CGS provided significant prognostic values after adjusting for well-established factors including cytogenetic abnormalities, International Staging System (ISS), and Revised ISS (R-ISS). Importantly, CGS demonstrated higher performance in identifying high-risk patients compared to the GEP70 and SKY92 signatures recommended for prognostic stratification of MM. CGS can further stratify patients into subgroups with significantly differential prognoses when applied to the high- and low-risk groups identified by GEP70 and SKY92. Additionally, CGS scores are significantly associated with patient response to dexamethasone, a commonly used treatment for MM. In summary, we proposed a computational framework that requires only gene expression data to identify CGSs for prognosis prediction. CGS provides a useful biomarker for improving prognostic stratification in MM, especially for identifying the highest-risk patients.Multiple myeloma (MM) is a heterogeneous disease with a small subset of high-risk patients having poor prognoses. Identifying these patients is crucial for treatment management and strategic decisions. In this study, we developed a novel computational framework to define prognostic gene signatures by selecting genes with expression driven by clonal copy number alterations. We applied this framework to MM and developed a clonal gene signature (CGS) consisting of 22 genes and evaluated in five independent datasets. The CGS provided significant prognostic values after adjusting for well-established factors including cytogenetic abnormalities, International Staging System (ISS), and Revised ISS (R-ISS). Importantly, CGS demonstrated higher performance in identifying high-risk patients compared to the GEP70 and SKY92 signatures recommended for prognostic stratification of MM. CGS can further stratify patients into subgroups with significantly differential prognoses when applied to the high- and low-risk groups identified by GEP70 and SKY92. Additionally, CGS scores are significantly associated with patient response to dexamethasone, a commonly used treatment for MM. In summary, we proposed a computational framework that requires only gene expression data to identify CGSs for prognosis prediction. CGS provides a useful biomarker for improving prognostic stratification in MM, especially for identifying the highest-risk patients. Multiple myeloma (MM) is a heterogeneous disease with a small subset of high‐risk patients having poor prognoses. Identifying these patients is crucial for treatment management and strategic decisions. In this study, we developed a novel computational framework to define prognostic gene signatures by selecting genes with expression driven by clonal copy number alterations. We applied this framework to MM and developed a clonal gene signature (CGS) consisting of 22 genes and evaluated in five independent datasets. The CGS provided significant prognostic values after adjusting for well‐established factors including cytogenetic abnormalities, International Staging System (ISS), and Revised ISS (R‐ISS). Importantly, CGS demonstrated higher performance in identifying high‐risk patients compared to the GEP70 and SKY92 signatures recommended for prognostic stratification of MM. CGS can further stratify patients into subgroups with significantly differential prognoses when applied to the high‐ and low‐risk groups identified by GEP70 and SKY92. Additionally, CGS scores are significantly associated with patient response to dexamethasone, a commonly used treatment for MM. In summary, we proposed a computational framework that requires only gene expression data to identify CGSs for prognosis prediction. CGS provides a useful biomarker for improving prognostic stratification in MM, especially for identifying the highest‐risk patients. Multiple myeloma (MM) is a heterogeneous disease with a small subset of high‐risk patients having poor prognoses. Identifying these patients is crucial for treatment management and strategic decisions. In this study, we developed a novel computational framework to define prognostic gene signatures by selecting genes with expression driven by clonal copy number alterations. We applied this framework to MM and developed a clonal gene signature (CGS) consisting of 22 genes and evaluated in five independent datasets. The CGS provided significant prognostic values after adjusting for well‐established factors including cytogenetic abnormalities, International Staging System (ISS), and Revised ISS (R‐ISS). Importantly, CGS demonstrated higher performance in identifying high‐risk patients compared to the GEP70 and SKY92 signatures recommended for prognostic stratification of MM. CGS can further stratify patients into subgroups with significantly differential prognoses when applied to the high‐ and low‐risk groups identified by GEP70 and SKY92. Additionally, CGS scores are significantly associated with patient response to dexamethasone, a commonly used treatment for MM. In summary, we proposed a computational framework that requires only gene expression data to identify CGSs for prognosis prediction. CGS provides a useful biomarker for improving prognostic stratification in MM, especially for identifying the highest‐risk patients. What's new? Prognostic signatures are usually defined by selecting genes associated with patient survival. However, signatures based on prognostic clonal genes are more likely to be reproducible. Here, the authors developed a novel computational framework to identify a clonal gene signature (CGS) for multiple myeloma (MM) using gene expression data. Comprising 22 genes, the CGS outperformed established prognostic models in identifying high‐risk patients. The signature could not only refine risk stratification but also provide insights into patient subgroups within established risk categories. The novel computational framework provides a useful tool for prognostic assessment in MM and other cancer types. |
Author | Li, Jian‐Rong Wang, Christiana Cheng, Chao |
Author_xml | – sequence: 1 givenname: Jian‐Rong surname: Li fullname: Li, Jian‐Rong organization: Baylor College of Medicine – sequence: 2 givenname: Christiana surname: Wang fullname: Wang, Christiana organization: Baylor College of Medicine – sequence: 3 givenname: Chao orcidid: 0000-0002-5002-3417 surname: Cheng fullname: Cheng, Chao email: chao.cheng@bcm.edu organization: Baylor College of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38874435$$D View this record in MEDLINE/PubMed |
BookMark | eNp10b1OwzAQB3ALgWgLDLwAssQCQ4od23HCVlV8FCGxwBwZ59K6OE6IE1A3HoFn5EkwtDAgMfkk_-50uv8IbbvaAUKHlIwpIfGZWeoxE0TILTSkJJMRianYRsPwRyJJWTJAI--XhFAqCN9FA5amknMmhkjNCnCdKVfGzfHCzBcfb--t8U-46m1nGgu4WoGtK4Ub1ZlA_TmeYFe_gMWqadpa6QXu_Ve3wtrWTlk8BwfYm7lTXd_CPtoplfVwsHn30MPlxf30Orq9u5pNJ7eRZpTJCFJKmExYRkSS6SyWOi5lIUtIOZdlplVBefEYKlbEBU1pWjCdQMZ1KWTJpWB76GQ9Nyz13IPv8sp4DdYqB3Xvc0aSVAqSyjjQ4z90WfdtWD0oGnPCZSJoUEcb1T9WUORNayrVrvKf4wVwuga6rb1vofwllORfweQhmPw7mGDP1vbVWFj9D_PZzXTd8Qnalo5r |
Cites_doi | 10.1182/blood.2019004309 10.1038/s41588‐021‐00819‐w 10.1016/j.xinn.2021.100141 10.1038/s41591‐019‐0595‐z 10.1038/ng1861 10.1093/nar/gkab1028 10.1038/leu.2013.247 10.1182/blood‐2009‐12‐261032 10.1186/1752‐0509‐5‐121 10.3324/haematol.2009.016436 10.3390/cancers13174320 10.1038/leu.2012.282 10.1182/blood‐2006‐09‐044974 10.1080/10428194.2022.2136950 10.1038/s41598‐019‐49133‐w 10.3390/biomedicines6020066 10.1038/nri.2017.52 10.1186/s12920‐019‐0620‐6 10.1186/s13059‐021‐02540‐7 10.1371/journal.pmed.1003323 10.1182/blood.V122.21.532.532 10.1093/nar/30.1.207 10.1038/nbt.1665 10.1093/genetics/iyad031 10.5114/wo.2014.47136 10.1200/JCO.2005.04.242 10.20517/cdr.2018.04 10.1182/blood‐2010‐10‐300970 10.1126/scitranslmed.3000313 10.1038/s41375‐022‐01547‐8 10.1182/blood‐2006‐07‐038430 10.1038/s41408‐022‐00679‐5 10.1056/NEJMp1607591 10.7150/jca.30102 10.1158/1078‐0432.CCR‐16‐0867 10.3390/medsci9010003 10.1200/EDBK_200879 10.1038/s41392‐020‐00312‐6 10.1200/JCO.2015.61.2267 10.3390/cancers12082203 10.1038/leu.2012.127 10.1186/1471‐2105‐14‐7 10.18632/oncotarget.4616 10.3390/cells10030648 10.1186/1755‐8794‐7‐25 10.1186/s12885‐022‐09872‐y 10.1002/sim.956 10.1182/blood‐2015‐05‐644039 10.5045/br.2020.S008 |
ContentType | Journal Article |
Copyright | 2024 UICC. 2024 UICC |
Copyright_xml | – notice: 2024 UICC. – notice: 2024 UICC |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7TO 7U9 H94 K9. 7X8 |
DOI | 10.1002/ijc.35057 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef AIDS and Cancer Research Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1097-0215 |
EndPage | 1695 |
ExternalDocumentID | 38874435 10_1002_ijc_35057 IJC35057 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: Cancer Prevention and Research Institute of Texas funderid: RR180061 – fundername: National Cancer Institute funderid: 1R01CA269764 – fundername: NIH HHS grantid: S10 OD032185 – fundername: Cancer Prevention and Research Institute of Texas grantid: RR180061 – fundername: NCI NIH HHS grantid: 1R01CA269764 – fundername: NCI NIH HHS grantid: R01 CA269764 |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZVAB BAFTC BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS F00 F01 F04 F5P FUBAC G-S G.N GNP GODZA H.X HBH HGLYW HHY HHZ HZ~ IH2 IX1 J0M JPC KBYEO KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RX1 RYL SUPJJ TEORI UB1 UDS V2E V8K V9Y W2D W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WRC WUP WVDHM WWO WXI WXSBR XG1 XPP XV2 ZZTAW ~IA ~WT .55 .GJ .Y3 31~ 3O- 53G 8WZ A6W AANHP AASGY AAYXX ABEFU ABEML ACBWZ ACRPL ACSCC ACYXJ ADNMO AEYWJ AGHNM AGQPQ AGYGG AHEFC AI. ASPBG AVWKF AZFZN BDRZF CITATION EJD EMOBN EX3 FEDTE GLUZI HF~ HVGLF LW6 M6P PALCI RJQFR SAMSI VH1 WOW X7M Y6R ZGI ZXP AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7T5 7TO 7U9 H94 K9. 7X8 |
ID | FETCH-LOGICAL-c3137-e810376390569c927c2f7d7fe8447f9cad14db7f93d2d1818d3c6e94cf57f4753 |
IEDL.DBID | DR2 |
ISSN | 0020-7136 1097-0215 |
IngestDate | Thu Jul 10 23:02:35 EDT 2025 Fri Jul 25 23:59:17 EDT 2025 Mon Jul 21 06:05:18 EDT 2025 Tue Jul 01 02:28:44 EDT 2025 Wed Jan 22 17:15:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | prognostic prediction multiple myeloma clonal gene signature computational framework |
Language | English |
License | 2024 UICC. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3137-e810376390569c927c2f7d7fe8447f9cad14db7f93d2d1818d3c6e94cf57f4753 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5002-3417 |
PMID | 38874435 |
PQID | 3124047651 |
PQPubID | 105430 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_3068750872 proquest_journals_3124047651 pubmed_primary_38874435 crossref_primary_10_1002_ijc_35057 wiley_primary_10_1002_ijc_35057_IJC35057 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 1 November 2024 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 1 November 2024 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Hoboken |
PublicationTitle | International journal of cancer |
PublicationTitleAlternate | Int J Cancer |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2013; 27 2011; 117 2021; 22 2019; 10 2006; 38 2019; 12 2015; 33 2020; 17 2013; 122 2023; 224 2020; 12 2020; 55 2014; 28 2022; 22 2007; 109 2005; 23 2023; 64 2018; 6 2020; 5 2013; 14 2010; 116 2018; 1 2010; 28 2019; 25 2022; 36 2012; 26 2010; 2 2014; 7 2018; 38 2021; 9 2006; 91 2019; 9 2015; 6 2015; 19 2021; 2 2002; 30 2015; 126 2022; 50 2011; 5 2001; 20 2021; 13 2021; 10 2021; 53 2021; 137 2017; 17 2022; 12 2016; 375 2010; 95 2016; 22 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 Harousseau JL (e_1_2_9_39_1) 2006; 91 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_14_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 38 start-page: 675 year: 2018 end-page: 680 article-title: Risk stratification and targets in multiple myeloma: from genomics to the bedside publication-title: Am Soc Clin Oncol Educ Book – volume: 9 issue: 1 year: 2021 article-title: Epidemiology, staging, and management of multiple myeloma publication-title: Med Sci (Basel) – volume: 20 start-page: 2053 issue: 13 year: 2001 end-page: 2054 article-title: Modeling survival data: extending the cox model. Terry M. Therneau and Patricia M. Grambsch, Springer‐Verlag, New York, 2000. No. of pages: xiii + 350. Price: $69.95. ISBN 0‐387‐98784‐3 publication-title: Stat Med – volume: 12 start-page: 2203 issue: 8 year: 2020 article-title: Targeting NF‐κB signaling for multiple myeloma publication-title: Cancer – volume: 12 start-page: 83 issue: 5 year: 2022 article-title: High‐risk disease in newly diagnosed multiple myeloma: beyond the R‐ISS and IMWG definitions publication-title: Blood Cancer J – volume: 116 start-page: 2543 issue: 14 year: 2010 end-page: 2553 article-title: Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients publication-title: Blood – volume: 91 start-page: 1498 issue: 11 year: 2006 end-page: 1505 article-title: Bortezomib plus dexamethasone as induction treatment prior to autologous stem cell transplantation in patients with newly diagnosed multiple myeloma: results of an IFM phase II study publication-title: Haematologica – volume: 25 start-page: 1540 issue: 10 year: 2019 end-page: 1548 article-title: A clonal expression biomarker associates with lung cancer mortality publication-title: Nat Med – volume: 224 issue: 1 year: 2023 article-title: The Gene Ontology knowledgebase in 2023 publication-title: Genetics – volume: 375 start-page: 1109 issue: 12 year: 2016 end-page: 1112 article-title: Toward a shared vision for cancer genomic data publication-title: N Engl J Med – volume: 95 start-page: 1150 issue: 7 year: 2010 end-page: 1157 article-title: Combining information regarding chromosomal aberrations t(4;14) and del(17p13) with the International Staging System classification allows stratification of myeloma patients undergoing autologous stem cell transplantation publication-title: Haematologica – volume: 28 start-page: 269 issue: 2 year: 2014 end-page: 277 article-title: IMWG consensus on risk stratification in multiple myeloma publication-title: Leukemia – volume: 6 start-page: 26922 issue: 29 year: 2015 end-page: 26934 article-title: Dexamethasone‐induced cell death is restricted to specific molecular subgroups of multiple myeloma publication-title: Oncotarget – volume: 137 start-page: 16 issue: 1 year: 2021 end-page: 19 article-title: Risk factors in multiple myeloma: is it time for a revision? publication-title: Blood – volume: 12 start-page: 192 issue: 1 year: 2019 article-title: Systematic computational identification of prognostic cytogenetic markers in neuroblastoma publication-title: BMC Med Genomics – volume: 1 start-page: 87 issue: 2 year: 2018 article-title: Drug targets and resistance mechanisms in multiple myeloma publication-title: Cancer Drug Resist – volume: 6 issue: 2 year: 2018 article-title: Noncanonical NF‐κB in cancer publication-title: Biomedicines – volume: 50 start-page: D687 issue: D1 year: 2022 end-page: D692 article-title: The reactome pathway knowledgebase 2022 publication-title: Nucleic Acids Res – volume: 22 start-page: 5434 issue: 22 year: 2016 end-page: 5442 article-title: Gene expression profiles in myeloma: ready for the real world? publication-title: Clin Cancer Res – volume: 5 start-page: 121 year: 2011 article-title: Inferring causal genomic alterations in breast cancer using gene expression data publication-title: BMC Syst Biol – volume: 109 start-page: 2276 issue: 6 year: 2007 end-page: 2284 article-title: A validated gene expression model of high‐risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1 publication-title: Blood – volume: 38 start-page: 1043 issue: 9 year: 2006 end-page: 1048 article-title: A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers publication-title: Nat Genet – volume: 22 start-page: 343 issue: 1 year: 2021 article-title: Chronos: a cell population dynamics model of CRISPR experiments that improves inference of gene fitness effects publication-title: Genome Biol – volume: 55 start-page: S43 issue: S1 year: 2020 end-page: S53 article-title: Treatment of relapsed and refractory multiple myeloma publication-title: Blood Res – volume: 14 start-page: 7 year: 2013 article-title: GSVA: gene set variation analysis for microarray and RNA‐seq data publication-title: BMC Bioinformatics – volume: 26 start-page: 2406 issue: 11 year: 2012 end-page: 2413 article-title: A gene expression signature for high‐risk multiple myeloma publication-title: Leukemia – volume: 53 start-page: 529 issue: 4 year: 2021 end-page: 538 article-title: A first‐generation pediatric cancer dependency map publication-title: Nat Genet – volume: 30 start-page: 207 issue: 1 year: 2002 end-page: 210 article-title: Gene expression omnibus: NCBI gene expression and hybridization array data repository publication-title: Nucleic Acids Res – volume: 117 start-page: 4696 issue: 18 year: 2011 end-page: 4700 article-title: Consensus recommendations for risk stratification in multiple myeloma: report of the International Myeloma Workshop Consensus Panel 2 publication-title: Blood – volume: 9 issue: 1 year: 2019 article-title: Cochlear glucocorticoid receptor and serum corticosterone expression in a rodent model of noise‐induced hearing loss: comparison of timing of dexamethasone administration publication-title: Sci Rep – volume: 7 start-page: 7 year: 2014 article-title: Translating a gene expression signature for multiple myeloma prognosis into a robust high‐throughput assay for clinical use publication-title: BMC Med Genomics – volume: 27 start-page: 711 issue: 3 year: 2013 end-page: 717 article-title: Combining fluorescent in situ hybridization data with ISS staging improves risk assessment in myeloma: an International Myeloma Working Group collaborative project publication-title: Leukemia – volume: 13 issue: 17 year: 2021 article-title: Choosing the right therapy for patients with relapsed/refractory multiple myeloma (RRMM) in consideration of patient‐, disease‐ and treatment‐related factors publication-title: Cancer – volume: 2 issue: 3 year: 2021 article-title: clusterProfiler 4.0: a universal enrichment tool for interpreting omics data publication-title: Innov (Camb) – volume: 22 start-page: 791 issue: 1 year: 2022 article-title: An M0 macrophage‐related prognostic model for hepatocellular carcinoma publication-title: BMC Cancer – volume: 28 start-page: 827 issue: 8 year: 2010 end-page: 838 article-title: The MicroArray Quality Control (MAQC)‐II study of common practices for the development and validation of microarray‐based predictive models publication-title: Nat Biotechnol – volume: 64 start-page: 283 issue: 2 year: 2023 end-page: 291 article-title: From mechanism to resistance – changes in the use of dexamethasone in the treatment of multiple myeloma publication-title: Leuk Lymphoma – volume: 17 start-page: 545 issue: 9 year: 2017 end-page: 558 article-title: The non‐canonical NF‐κB pathway in immunity and inflammation publication-title: Nat Rev Immunol – volume: 17 issue: 11 year: 2020 article-title: Bone marrow microenvironments that contribute to patient outcomes in newly diagnosed multiple myeloma: a cohort study of patients in the total therapy clinical trials publication-title: PLoS Med – volume: 36 start-page: 1492 issue: 6 year: 2022 end-page: 1498 article-title: RNAseqCNV: analysis of large‐scale copy number variations from RNA‐seq data publication-title: Leukemia – volume: 2 issue: 14 year: 2010 article-title: Why most gene expression signatures of tumors have not been useful in the clinic publication-title: Sci Transl Med – volume: 109 start-page: 3177 issue: 8 year: 2007 end-page: 3188 article-title: Gene expression profiling and correlation with outcome in clinical trials of the proteasome inhibitor bortezomib publication-title: Blood – volume: 19 start-page: A68 issue: 1A year: 2015 end-page: A77 article-title: The cancer genome atlas (TCGA): an immeasurable source of knowledge publication-title: Contemp Oncol (Pozn) – volume: 33 start-page: 2863 issue: 26 year: 2015 end-page: 2869 article-title: Revised international staging system for multiple myeloma: a report from international myeloma working group publication-title: J Clin Oncol – volume: 23 start-page: 3412 issue: 15 year: 2005 end-page: 3420 article-title: International staging system for multiple myeloma publication-title: J Clin Oncol – volume: 5 start-page: 209 issue: 1 year: 2020 article-title: Targeting NF‐κB pathway for the therapy of diseases: mechanism and clinical study publication-title: Signal Transduct Target Ther – volume: 122 start-page: 532 issue: 21 year: 2013 article-title: Interim analysis of the Mmrf Commpass trial, a longitudinal study in multiple myeloma relating clinical outcomes to genomic and immunophenotypic profiles publication-title: Blood – volume: 10 start-page: 648 issue: 3 year: 2021 article-title: Prognostic cancer gene expression signatures: current status and challenges publication-title: Cells – volume: 126 start-page: 1996 issue: 17 year: 2015 end-page: 2004 article-title: Prediction of high‐ and low‐risk multiple myeloma based on gene expression and the International Staging System publication-title: Blood – volume: 10 start-page: 3239 issue: 14 year: 2019 end-page: 3245 article-title: High numbers of CD163+ tumor‐associated macrophages correlate with poor prognosis in multiple myeloma patients receiving bortezomib‐based regimens publication-title: J Cancer – ident: e_1_2_9_37_1 doi: 10.1182/blood.2019004309 – ident: e_1_2_9_25_1 doi: 10.1038/s41588‐021‐00819‐w – ident: e_1_2_9_30_1 doi: 10.1016/j.xinn.2021.100141 – ident: e_1_2_9_15_1 doi: 10.1038/s41591‐019‐0595‐z – ident: e_1_2_9_36_1 doi: 10.1038/ng1861 – ident: e_1_2_9_28_1 doi: 10.1093/nar/gkab1028 – ident: e_1_2_9_9_1 doi: 10.1038/leu.2013.247 – ident: e_1_2_9_21_1 doi: 10.1182/blood‐2009‐12‐261032 – volume: 91 start-page: 1498 issue: 11 year: 2006 ident: e_1_2_9_39_1 article-title: Bortezomib plus dexamethasone as induction treatment prior to autologous stem cell transplantation in patients with newly diagnosed multiple myeloma: results of an IFM phase II study publication-title: Haematologica – ident: e_1_2_9_33_1 doi: 10.1186/1752‐0509‐5‐121 – ident: e_1_2_9_8_1 doi: 10.3324/haematol.2009.016436 – ident: e_1_2_9_50_1 doi: 10.3390/cancers13174320 – ident: e_1_2_9_3_1 doi: 10.1038/leu.2012.282 – ident: e_1_2_9_20_1 doi: 10.1182/blood‐2006‐09‐044974 – ident: e_1_2_9_52_1 doi: 10.1080/10428194.2022.2136950 – ident: e_1_2_9_45_1 doi: 10.1038/s41598‐019‐49133‐w – ident: e_1_2_9_43_1 doi: 10.3390/biomedicines6020066 – ident: e_1_2_9_51_1 doi: 10.1038/nri.2017.52 – ident: e_1_2_9_34_1 doi: 10.1186/s12920‐019‐0620‐6 – ident: e_1_2_9_26_1 doi: 10.1186/s13059‐021‐02540‐7 – ident: e_1_2_9_18_1 doi: 10.1371/journal.pmed.1003323 – ident: e_1_2_9_16_1 doi: 10.1182/blood.V122.21.532.532 – ident: e_1_2_9_11_1 doi: 10.1093/nar/30.1.207 – ident: e_1_2_9_19_1 doi: 10.1038/nbt.1665 – ident: e_1_2_9_29_1 doi: 10.1093/genetics/iyad031 – ident: e_1_2_9_12_1 doi: 10.5114/wo.2014.47136 – ident: e_1_2_9_6_1 doi: 10.1200/JCO.2005.04.242 – ident: e_1_2_9_42_1 doi: 10.20517/cdr.2018.04 – ident: e_1_2_9_5_1 doi: 10.1182/blood‐2010‐10‐300970 – ident: e_1_2_9_14_1 doi: 10.1126/scitranslmed.3000313 – ident: e_1_2_9_35_1 doi: 10.1038/s41375‐022‐01547‐8 – ident: e_1_2_9_22_1 doi: 10.1182/blood‐2006‐07‐038430 – ident: e_1_2_9_10_1 doi: 10.1038/s41408‐022‐00679‐5 – ident: e_1_2_9_32_1 – ident: e_1_2_9_17_1 doi: 10.1056/NEJMp1607591 – ident: e_1_2_9_47_1 doi: 10.7150/jca.30102 – ident: e_1_2_9_48_1 doi: 10.1158/1078‐0432.CCR‐16‐0867 – ident: e_1_2_9_2_1 doi: 10.3390/medsci9010003 – ident: e_1_2_9_4_1 doi: 10.1200/EDBK_200879 – ident: e_1_2_9_40_1 doi: 10.1038/s41392‐020‐00312‐6 – ident: e_1_2_9_7_1 doi: 10.1200/JCO.2015.61.2267 – ident: e_1_2_9_41_1 doi: 10.3390/cancers12082203 – ident: e_1_2_9_23_1 doi: 10.1038/leu.2012.127 – ident: e_1_2_9_27_1 doi: 10.1186/1471‐2105‐14‐7 – ident: e_1_2_9_44_1 doi: 10.18632/oncotarget.4616 – ident: e_1_2_9_13_1 doi: 10.3390/cells10030648 – ident: e_1_2_9_38_1 doi: 10.1186/1755‐8794‐7‐25 – ident: e_1_2_9_46_1 doi: 10.1186/s12885‐022‐09872‐y – ident: e_1_2_9_31_1 doi: 10.1002/sim.956 – ident: e_1_2_9_24_1 doi: 10.1182/blood‐2015‐05‐644039 – ident: e_1_2_9_49_1 doi: 10.5045/br.2020.S008 |
SSID | ssj0011504 |
Score | 2.4590974 |
Snippet | Multiple myeloma (MM) is a heterogeneous disease with a small subset of high‐risk patients having poor prognoses. Identifying these patients is crucial for... Multiple myeloma (MM) is a heterogeneous disease with a small subset of high-risk patients having poor prognoses. Identifying these patients is crucial for... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1684 |
SubjectTerms | Biomarkers, Tumor - genetics clonal gene signature computational framework Computer applications Copy number Cytogenetics Dexamethasone Dexamethasone - therapeutic use DNA Copy Number Variations Female Gene expression Gene Expression Profiling - methods Gene Expression Regulation, Neoplastic Genes Humans Male Medical prognosis Multiple myeloma Multiple Myeloma - genetics Prognosis prognostic prediction Risk groups Transcriptome |
Title | Identifying high‐risk multiple myeloma patients: A novel approach using a clonal gene signature |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fijc.35057 https://www.ncbi.nlm.nih.gov/pubmed/38874435 https://www.proquest.com/docview/3124047651 https://www.proquest.com/docview/3068750872 |
Volume | 155 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hDogLbXk1LSCDeuglS2I7sUNPCIEACQ4VSByQIr-CgCVbdXcrwak_gd_IL-nYeVS0QkLcLMUZJx7P-LM98xngS-qP9liuYyZzG3NBeayVQWfokiwxKi94yOM-Oc0Pz_nxRXYxA9-6XJiGH6LfcPOWEfy1N3Clx9t_SUOvb8yAeXiN_tfHanlA9L2njvJAp2VgTmJciOUdq1BCt_s3n89F_wHM53g1TDgH7-Cy-9QmzuR2MJ3ogXn4h8Xxjf_yHhZaIEp2m5HzAWZcvQhzJ-1R-xKoJoU3pEERT2r89PvRx6GTLgSR3N274ehOkZaadbxDdkk9-uWGpCMqJz6q_oooYoYe8BMcrI74iJHAJroM5wf7Z3uHcXsfQ2xYykTspE8qREiDoKkwBRWGVsKKyknORVUYZVNuNZaYpRaRg7TM5K7gpspExXFdtAKz9ah2H4FYL4alOG9KxrGSptagXGm1KmShdQRbnWbKHw3tRtkQLNMSO6sMnRXBWqezsrW8cYlCecJFnqURbPaP0Wb8QYiq3WiKdZIcl2mJFDSC1UbXfStM-gsBWBbB16Cxl5svj473QuHT66t-hnmKqKhJZlyD2cnPqVtHVDPRG2H4_gFvePGd |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RaK98CiUBhbqIg5css3a3thBXKpCtS3dHlAr9YKi-JGKdptF7C4SnPgJ_EZ-CTPOAxWEhHqzFMdOPDP2N_bMZ4AXAzraE6mJhU5dLBWXsSksToY-GSa2SDMZ8rjHx-noVB6eDc-W4HWbC1PzQ3QbbmQZYb4mA6cN6Z3frKEfL2xfEL5ehlt0ozcx579535FHEdRpOJiTGF2xtOUVSvhO9-r11egviHkdsYYlZ_8ufGg_to40uewv5qZvv_3B43jTv7kHdxosynZr5bkPS75ah9vj5rT9ARR1Fm_IhGLEa_zz-w8KRWdtFCK7-uon06uCNeyss1dsl1XTL37CWq5yRoH156xgdkKYn6G-ekZBI4FQ9CGc7r892RvFzZUMsRUDoWKvKa8QUQ3ipsxmXFleKqdKr6VUZWYLN5DOYEk47hA8aCds6jNpy6EqJbpGG7BSTSu_CcxRM2KAS6cWEisZ7iy2q50pMp0ZE8HzVjT5p5p5I685lnmOg5WHwYqg1wotb4xvlmOjMpEKVSKC7e4xmg2dhRSVny6wTpKip5ZoxSN4VAu760VouhNADCN4GUT27-7zg8O9UHj8_1W3YHV0Mj7Kjw6O3z2BNY4gqc5t7MHK_PPCP0WQMzfPgi7_Aome9bk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bTxUxEJ4gJMQXAS-4crEaH3zZw27bbbv4RIATQCHGSMKDyWZ7WSMc9hA5hwSf_An8Rn6J0-7FgDExvjXZ7nS3M9N-bWe-ArxJ_dEeEzpmStiYS8pjXRocDF2SJaYUOQ953IdHYu-YH5xkJzPwrsuFafgh-g037xlhvPYOfmGrjd-kod9OzYB5eP0A5rhIcn9vw86nnjvKI52WgjmJcSUmOlqhhG70r96djP5AmHcBa5hxhgvwpfvWJtDkbDCd6IH5cY_G8T9_ZhEetUiUbDWmswQzrn4M84ftWfsTKJsc3pAHRTyr8e3PGx-ITroYRHJ-7Ubj85K03KyXm2SL1OMrNyIdUznxYfVfSUnMyCN-gtbqiA8ZCXSiT-F4uPt5ey9uL2SIDUuZjJ3yWYWIaRA15San0tBKWlk5xbmsclPalFuNJWapReigLDPC5dxUmaw4LoyewWw9rt1zINaLYSlOnIpxrKSpNShXWV3mKtc6gtedZoqLhnejaBiWaYGdVYTOimC101nRut5lgUJ5wqXI0ghe9Y_RafxJSFm78RTrJALXaYmSNILlRtd9K0z5GwFYFsHboLG_N1_sH2yHwot_r_oS5j_uDIsP-0fvV-AhRYTUJDauwuzk-9StIcKZ6PVgyb8AtU_0aA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+high%E2%80%90risk+multiple+myeloma+patients%3A+A+novel+approach+using+a+clonal+gene+signature&rft.jtitle=International+journal+of+cancer&rft.au=Li%2C+Jian%E2%80%90Rong&rft.au=Wang%2C+Christiana&rft.au=Cheng%2C+Chao&rft.date=2024-11-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0020-7136&rft.eissn=1097-0215&rft.volume=155&rft.issue=9&rft.spage=1684&rft.epage=1695&rft_id=info:doi/10.1002%2Fijc.35057&rft.externalDBID=10.1002%252Fijc.35057&rft.externalDocID=IJC35057 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7136&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7136&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7136&client=summon |