Identifying high‐risk multiple myeloma patients: A novel approach using a clonal gene signature

Multiple myeloma (MM) is a heterogeneous disease with a small subset of high‐risk patients having poor prognoses. Identifying these patients is crucial for treatment management and strategic decisions. In this study, we developed a novel computational framework to define prognostic gene signatures b...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of cancer Vol. 155; no. 9; pp. 1684 - 1695
Main Authors Li, Jian‐Rong, Wang, Christiana, Cheng, Chao
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.11.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multiple myeloma (MM) is a heterogeneous disease with a small subset of high‐risk patients having poor prognoses. Identifying these patients is crucial for treatment management and strategic decisions. In this study, we developed a novel computational framework to define prognostic gene signatures by selecting genes with expression driven by clonal copy number alterations. We applied this framework to MM and developed a clonal gene signature (CGS) consisting of 22 genes and evaluated in five independent datasets. The CGS provided significant prognostic values after adjusting for well‐established factors including cytogenetic abnormalities, International Staging System (ISS), and Revised ISS (R‐ISS). Importantly, CGS demonstrated higher performance in identifying high‐risk patients compared to the GEP70 and SKY92 signatures recommended for prognostic stratification of MM. CGS can further stratify patients into subgroups with significantly differential prognoses when applied to the high‐ and low‐risk groups identified by GEP70 and SKY92. Additionally, CGS scores are significantly associated with patient response to dexamethasone, a commonly used treatment for MM. In summary, we proposed a computational framework that requires only gene expression data to identify CGSs for prognosis prediction. CGS provides a useful biomarker for improving prognostic stratification in MM, especially for identifying the highest‐risk patients. What's new? Prognostic signatures are usually defined by selecting genes associated with patient survival. However, signatures based on prognostic clonal genes are more likely to be reproducible. Here, the authors developed a novel computational framework to identify a clonal gene signature (CGS) for multiple myeloma (MM) using gene expression data. Comprising 22 genes, the CGS outperformed established prognostic models in identifying high‐risk patients. The signature could not only refine risk stratification but also provide insights into patient subgroups within established risk categories. The novel computational framework provides a useful tool for prognostic assessment in MM and other cancer types.
AbstractList Multiple myeloma (MM) is a heterogeneous disease with a small subset of high-risk patients having poor prognoses. Identifying these patients is crucial for treatment management and strategic decisions. In this study, we developed a novel computational framework to define prognostic gene signatures by selecting genes with expression driven by clonal copy number alterations. We applied this framework to MM and developed a clonal gene signature (CGS) consisting of 22 genes and evaluated in five independent datasets. The CGS provided significant prognostic values after adjusting for well-established factors including cytogenetic abnormalities, International Staging System (ISS), and Revised ISS (R-ISS). Importantly, CGS demonstrated higher performance in identifying high-risk patients compared to the GEP70 and SKY92 signatures recommended for prognostic stratification of MM. CGS can further stratify patients into subgroups with significantly differential prognoses when applied to the high- and low-risk groups identified by GEP70 and SKY92. Additionally, CGS scores are significantly associated with patient response to dexamethasone, a commonly used treatment for MM. In summary, we proposed a computational framework that requires only gene expression data to identify CGSs for prognosis prediction. CGS provides a useful biomarker for improving prognostic stratification in MM, especially for identifying the highest-risk patients.Multiple myeloma (MM) is a heterogeneous disease with a small subset of high-risk patients having poor prognoses. Identifying these patients is crucial for treatment management and strategic decisions. In this study, we developed a novel computational framework to define prognostic gene signatures by selecting genes with expression driven by clonal copy number alterations. We applied this framework to MM and developed a clonal gene signature (CGS) consisting of 22 genes and evaluated in five independent datasets. The CGS provided significant prognostic values after adjusting for well-established factors including cytogenetic abnormalities, International Staging System (ISS), and Revised ISS (R-ISS). Importantly, CGS demonstrated higher performance in identifying high-risk patients compared to the GEP70 and SKY92 signatures recommended for prognostic stratification of MM. CGS can further stratify patients into subgroups with significantly differential prognoses when applied to the high- and low-risk groups identified by GEP70 and SKY92. Additionally, CGS scores are significantly associated with patient response to dexamethasone, a commonly used treatment for MM. In summary, we proposed a computational framework that requires only gene expression data to identify CGSs for prognosis prediction. CGS provides a useful biomarker for improving prognostic stratification in MM, especially for identifying the highest-risk patients.
Multiple myeloma (MM) is a heterogeneous disease with a small subset of high‐risk patients having poor prognoses. Identifying these patients is crucial for treatment management and strategic decisions. In this study, we developed a novel computational framework to define prognostic gene signatures by selecting genes with expression driven by clonal copy number alterations. We applied this framework to MM and developed a clonal gene signature (CGS) consisting of 22 genes and evaluated in five independent datasets. The CGS provided significant prognostic values after adjusting for well‐established factors including cytogenetic abnormalities, International Staging System (ISS), and Revised ISS (R‐ISS). Importantly, CGS demonstrated higher performance in identifying high‐risk patients compared to the GEP70 and SKY92 signatures recommended for prognostic stratification of MM. CGS can further stratify patients into subgroups with significantly differential prognoses when applied to the high‐ and low‐risk groups identified by GEP70 and SKY92. Additionally, CGS scores are significantly associated with patient response to dexamethasone, a commonly used treatment for MM. In summary, we proposed a computational framework that requires only gene expression data to identify CGSs for prognosis prediction. CGS provides a useful biomarker for improving prognostic stratification in MM, especially for identifying the highest‐risk patients.
Multiple myeloma (MM) is a heterogeneous disease with a small subset of high‐risk patients having poor prognoses. Identifying these patients is crucial for treatment management and strategic decisions. In this study, we developed a novel computational framework to define prognostic gene signatures by selecting genes with expression driven by clonal copy number alterations. We applied this framework to MM and developed a clonal gene signature (CGS) consisting of 22 genes and evaluated in five independent datasets. The CGS provided significant prognostic values after adjusting for well‐established factors including cytogenetic abnormalities, International Staging System (ISS), and Revised ISS (R‐ISS). Importantly, CGS demonstrated higher performance in identifying high‐risk patients compared to the GEP70 and SKY92 signatures recommended for prognostic stratification of MM. CGS can further stratify patients into subgroups with significantly differential prognoses when applied to the high‐ and low‐risk groups identified by GEP70 and SKY92. Additionally, CGS scores are significantly associated with patient response to dexamethasone, a commonly used treatment for MM. In summary, we proposed a computational framework that requires only gene expression data to identify CGSs for prognosis prediction. CGS provides a useful biomarker for improving prognostic stratification in MM, especially for identifying the highest‐risk patients. What's new? Prognostic signatures are usually defined by selecting genes associated with patient survival. However, signatures based on prognostic clonal genes are more likely to be reproducible. Here, the authors developed a novel computational framework to identify a clonal gene signature (CGS) for multiple myeloma (MM) using gene expression data. Comprising 22 genes, the CGS outperformed established prognostic models in identifying high‐risk patients. The signature could not only refine risk stratification but also provide insights into patient subgroups within established risk categories. The novel computational framework provides a useful tool for prognostic assessment in MM and other cancer types.
Author Li, Jian‐Rong
Wang, Christiana
Cheng, Chao
Author_xml – sequence: 1
  givenname: Jian‐Rong
  surname: Li
  fullname: Li, Jian‐Rong
  organization: Baylor College of Medicine
– sequence: 2
  givenname: Christiana
  surname: Wang
  fullname: Wang, Christiana
  organization: Baylor College of Medicine
– sequence: 3
  givenname: Chao
  orcidid: 0000-0002-5002-3417
  surname: Cheng
  fullname: Cheng, Chao
  email: chao.cheng@bcm.edu
  organization: Baylor College of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38874435$$D View this record in MEDLINE/PubMed
BookMark eNp10b1OwzAQB3ALgWgLDLwAssQCQ4od23HCVlV8FCGxwBwZ59K6OE6IE1A3HoFn5EkwtDAgMfkk_-50uv8IbbvaAUKHlIwpIfGZWeoxE0TILTSkJJMRianYRsPwRyJJWTJAI--XhFAqCN9FA5amknMmhkjNCnCdKVfGzfHCzBcfb--t8U-46m1nGgu4WoGtK4Ub1ZlA_TmeYFe_gMWqadpa6QXu_Ve3wtrWTlk8BwfYm7lTXd_CPtoplfVwsHn30MPlxf30Orq9u5pNJ7eRZpTJCFJKmExYRkSS6SyWOi5lIUtIOZdlplVBefEYKlbEBU1pWjCdQMZ1KWTJpWB76GQ9Nyz13IPv8sp4DdYqB3Xvc0aSVAqSyjjQ4z90WfdtWD0oGnPCZSJoUEcb1T9WUORNayrVrvKf4wVwuga6rb1vofwllORfweQhmPw7mGDP1vbVWFj9D_PZzXTd8Qnalo5r
Cites_doi 10.1182/blood.2019004309
10.1038/s41588‐021‐00819‐w
10.1016/j.xinn.2021.100141
10.1038/s41591‐019‐0595‐z
10.1038/ng1861
10.1093/nar/gkab1028
10.1038/leu.2013.247
10.1182/blood‐2009‐12‐261032
10.1186/1752‐0509‐5‐121
10.3324/haematol.2009.016436
10.3390/cancers13174320
10.1038/leu.2012.282
10.1182/blood‐2006‐09‐044974
10.1080/10428194.2022.2136950
10.1038/s41598‐019‐49133‐w
10.3390/biomedicines6020066
10.1038/nri.2017.52
10.1186/s12920‐019‐0620‐6
10.1186/s13059‐021‐02540‐7
10.1371/journal.pmed.1003323
10.1182/blood.V122.21.532.532
10.1093/nar/30.1.207
10.1038/nbt.1665
10.1093/genetics/iyad031
10.5114/wo.2014.47136
10.1200/JCO.2005.04.242
10.20517/cdr.2018.04
10.1182/blood‐2010‐10‐300970
10.1126/scitranslmed.3000313
10.1038/s41375‐022‐01547‐8
10.1182/blood‐2006‐07‐038430
10.1038/s41408‐022‐00679‐5
10.1056/NEJMp1607591
10.7150/jca.30102
10.1158/1078‐0432.CCR‐16‐0867
10.3390/medsci9010003
10.1200/EDBK_200879
10.1038/s41392‐020‐00312‐6
10.1200/JCO.2015.61.2267
10.3390/cancers12082203
10.1038/leu.2012.127
10.1186/1471‐2105‐14‐7
10.18632/oncotarget.4616
10.3390/cells10030648
10.1186/1755‐8794‐7‐25
10.1186/s12885‐022‐09872‐y
10.1002/sim.956
10.1182/blood‐2015‐05‐644039
10.5045/br.2020.S008
ContentType Journal Article
Copyright 2024 UICC.
2024 UICC
Copyright_xml – notice: 2024 UICC.
– notice: 2024 UICC
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TO
7U9
H94
K9.
7X8
DOI 10.1002/ijc.35057
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

AIDS and Cancer Research Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1097-0215
EndPage 1695
ExternalDocumentID 38874435
10_1002_ijc_35057
IJC35057
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: Cancer Prevention and Research Institute of Texas
  funderid: RR180061
– fundername: National Cancer Institute
  funderid: 1R01CA269764
– fundername: NIH HHS
  grantid: S10 OD032185
– fundername: Cancer Prevention and Research Institute of Texas
  grantid: RR180061
– fundername: NCI NIH HHS
  grantid: 1R01CA269764
– fundername: NCI NIH HHS
  grantid: R01 CA269764
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
F00
F01
F04
F5P
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IH2
IX1
J0M
JPC
KBYEO
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RX1
RYL
SUPJJ
TEORI
UB1
UDS
V2E
V8K
V9Y
W2D
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WWO
WXI
WXSBR
XG1
XPP
XV2
ZZTAW
~IA
~WT
.55
.GJ
.Y3
31~
3O-
53G
8WZ
A6W
AANHP
AASGY
AAYXX
ABEFU
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
AHEFC
AI.
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
EMOBN
EX3
FEDTE
GLUZI
HF~
HVGLF
LW6
M6P
PALCI
RJQFR
SAMSI
VH1
WOW
X7M
Y6R
ZGI
ZXP
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TO
7U9
H94
K9.
7X8
ID FETCH-LOGICAL-c3137-e810376390569c927c2f7d7fe8447f9cad14db7f93d2d1818d3c6e94cf57f4753
IEDL.DBID DR2
ISSN 0020-7136
1097-0215
IngestDate Thu Jul 10 23:02:35 EDT 2025
Fri Jul 25 23:59:17 EDT 2025
Mon Jul 21 06:05:18 EDT 2025
Tue Jul 01 02:28:44 EDT 2025
Wed Jan 22 17:15:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords prognostic prediction
multiple myeloma
clonal gene signature
computational framework
Language English
License 2024 UICC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3137-e810376390569c927c2f7d7fe8447f9cad14db7f93d2d1818d3c6e94cf57f4753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5002-3417
PMID 38874435
PQID 3124047651
PQPubID 105430
PageCount 12
ParticipantIDs proquest_miscellaneous_3068750872
proquest_journals_3124047651
pubmed_primary_38874435
crossref_primary_10_1002_ijc_35057
wiley_primary_10_1002_ijc_35057_IJC35057
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1 November 2024
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 1 November 2024
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Hoboken
PublicationTitle International journal of cancer
PublicationTitleAlternate Int J Cancer
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2013; 27
2011; 117
2021; 22
2019; 10
2006; 38
2019; 12
2015; 33
2020; 17
2013; 122
2023; 224
2020; 12
2020; 55
2014; 28
2022; 22
2007; 109
2005; 23
2023; 64
2018; 6
2020; 5
2013; 14
2010; 116
2018; 1
2010; 28
2019; 25
2022; 36
2012; 26
2010; 2
2014; 7
2018; 38
2021; 9
2006; 91
2019; 9
2015; 6
2015; 19
2021; 2
2002; 30
2015; 126
2022; 50
2011; 5
2001; 20
2021; 13
2021; 10
2021; 53
2021; 137
2017; 17
2022; 12
2016; 375
2010; 95
2016; 22
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
Harousseau JL (e_1_2_9_39_1) 2006; 91
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_14_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 38
  start-page: 675
  year: 2018
  end-page: 680
  article-title: Risk stratification and targets in multiple myeloma: from genomics to the bedside
  publication-title: Am Soc Clin Oncol Educ Book
– volume: 9
  issue: 1
  year: 2021
  article-title: Epidemiology, staging, and management of multiple myeloma
  publication-title: Med Sci (Basel)
– volume: 20
  start-page: 2053
  issue: 13
  year: 2001
  end-page: 2054
  article-title: Modeling survival data: extending the cox model. Terry M. Therneau and Patricia M. Grambsch, Springer‐Verlag, New York, 2000. No. of pages: xiii + 350. Price: $69.95. ISBN 0‐387‐98784‐3
  publication-title: Stat Med
– volume: 12
  start-page: 2203
  issue: 8
  year: 2020
  article-title: Targeting NF‐κB signaling for multiple myeloma
  publication-title: Cancer
– volume: 12
  start-page: 83
  issue: 5
  year: 2022
  article-title: High‐risk disease in newly diagnosed multiple myeloma: beyond the R‐ISS and IMWG definitions
  publication-title: Blood Cancer J
– volume: 116
  start-page: 2543
  issue: 14
  year: 2010
  end-page: 2553
  article-title: Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients
  publication-title: Blood
– volume: 91
  start-page: 1498
  issue: 11
  year: 2006
  end-page: 1505
  article-title: Bortezomib plus dexamethasone as induction treatment prior to autologous stem cell transplantation in patients with newly diagnosed multiple myeloma: results of an IFM phase II study
  publication-title: Haematologica
– volume: 25
  start-page: 1540
  issue: 10
  year: 2019
  end-page: 1548
  article-title: A clonal expression biomarker associates with lung cancer mortality
  publication-title: Nat Med
– volume: 224
  issue: 1
  year: 2023
  article-title: The Gene Ontology knowledgebase in 2023
  publication-title: Genetics
– volume: 375
  start-page: 1109
  issue: 12
  year: 2016
  end-page: 1112
  article-title: Toward a shared vision for cancer genomic data
  publication-title: N Engl J Med
– volume: 95
  start-page: 1150
  issue: 7
  year: 2010
  end-page: 1157
  article-title: Combining information regarding chromosomal aberrations t(4;14) and del(17p13) with the International Staging System classification allows stratification of myeloma patients undergoing autologous stem cell transplantation
  publication-title: Haematologica
– volume: 28
  start-page: 269
  issue: 2
  year: 2014
  end-page: 277
  article-title: IMWG consensus on risk stratification in multiple myeloma
  publication-title: Leukemia
– volume: 6
  start-page: 26922
  issue: 29
  year: 2015
  end-page: 26934
  article-title: Dexamethasone‐induced cell death is restricted to specific molecular subgroups of multiple myeloma
  publication-title: Oncotarget
– volume: 137
  start-page: 16
  issue: 1
  year: 2021
  end-page: 19
  article-title: Risk factors in multiple myeloma: is it time for a revision?
  publication-title: Blood
– volume: 12
  start-page: 192
  issue: 1
  year: 2019
  article-title: Systematic computational identification of prognostic cytogenetic markers in neuroblastoma
  publication-title: BMC Med Genomics
– volume: 1
  start-page: 87
  issue: 2
  year: 2018
  article-title: Drug targets and resistance mechanisms in multiple myeloma
  publication-title: Cancer Drug Resist
– volume: 6
  issue: 2
  year: 2018
  article-title: Noncanonical NF‐κB in cancer
  publication-title: Biomedicines
– volume: 50
  start-page: D687
  issue: D1
  year: 2022
  end-page: D692
  article-title: The reactome pathway knowledgebase 2022
  publication-title: Nucleic Acids Res
– volume: 22
  start-page: 5434
  issue: 22
  year: 2016
  end-page: 5442
  article-title: Gene expression profiles in myeloma: ready for the real world?
  publication-title: Clin Cancer Res
– volume: 5
  start-page: 121
  year: 2011
  article-title: Inferring causal genomic alterations in breast cancer using gene expression data
  publication-title: BMC Syst Biol
– volume: 109
  start-page: 2276
  issue: 6
  year: 2007
  end-page: 2284
  article-title: A validated gene expression model of high‐risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1
  publication-title: Blood
– volume: 38
  start-page: 1043
  issue: 9
  year: 2006
  end-page: 1048
  article-title: A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers
  publication-title: Nat Genet
– volume: 22
  start-page: 343
  issue: 1
  year: 2021
  article-title: Chronos: a cell population dynamics model of CRISPR experiments that improves inference of gene fitness effects
  publication-title: Genome Biol
– volume: 55
  start-page: S43
  issue: S1
  year: 2020
  end-page: S53
  article-title: Treatment of relapsed and refractory multiple myeloma
  publication-title: Blood Res
– volume: 14
  start-page: 7
  year: 2013
  article-title: GSVA: gene set variation analysis for microarray and RNA‐seq data
  publication-title: BMC Bioinformatics
– volume: 26
  start-page: 2406
  issue: 11
  year: 2012
  end-page: 2413
  article-title: A gene expression signature for high‐risk multiple myeloma
  publication-title: Leukemia
– volume: 53
  start-page: 529
  issue: 4
  year: 2021
  end-page: 538
  article-title: A first‐generation pediatric cancer dependency map
  publication-title: Nat Genet
– volume: 30
  start-page: 207
  issue: 1
  year: 2002
  end-page: 210
  article-title: Gene expression omnibus: NCBI gene expression and hybridization array data repository
  publication-title: Nucleic Acids Res
– volume: 117
  start-page: 4696
  issue: 18
  year: 2011
  end-page: 4700
  article-title: Consensus recommendations for risk stratification in multiple myeloma: report of the International Myeloma Workshop Consensus Panel 2
  publication-title: Blood
– volume: 9
  issue: 1
  year: 2019
  article-title: Cochlear glucocorticoid receptor and serum corticosterone expression in a rodent model of noise‐induced hearing loss: comparison of timing of dexamethasone administration
  publication-title: Sci Rep
– volume: 7
  start-page: 7
  year: 2014
  article-title: Translating a gene expression signature for multiple myeloma prognosis into a robust high‐throughput assay for clinical use
  publication-title: BMC Med Genomics
– volume: 27
  start-page: 711
  issue: 3
  year: 2013
  end-page: 717
  article-title: Combining fluorescent in situ hybridization data with ISS staging improves risk assessment in myeloma: an International Myeloma Working Group collaborative project
  publication-title: Leukemia
– volume: 13
  issue: 17
  year: 2021
  article-title: Choosing the right therapy for patients with relapsed/refractory multiple myeloma (RRMM) in consideration of patient‐, disease‐ and treatment‐related factors
  publication-title: Cancer
– volume: 2
  issue: 3
  year: 2021
  article-title: clusterProfiler 4.0: a universal enrichment tool for interpreting omics data
  publication-title: Innov (Camb)
– volume: 22
  start-page: 791
  issue: 1
  year: 2022
  article-title: An M0 macrophage‐related prognostic model for hepatocellular carcinoma
  publication-title: BMC Cancer
– volume: 28
  start-page: 827
  issue: 8
  year: 2010
  end-page: 838
  article-title: The MicroArray Quality Control (MAQC)‐II study of common practices for the development and validation of microarray‐based predictive models
  publication-title: Nat Biotechnol
– volume: 64
  start-page: 283
  issue: 2
  year: 2023
  end-page: 291
  article-title: From mechanism to resistance – changes in the use of dexamethasone in the treatment of multiple myeloma
  publication-title: Leuk Lymphoma
– volume: 17
  start-page: 545
  issue: 9
  year: 2017
  end-page: 558
  article-title: The non‐canonical NF‐κB pathway in immunity and inflammation
  publication-title: Nat Rev Immunol
– volume: 17
  issue: 11
  year: 2020
  article-title: Bone marrow microenvironments that contribute to patient outcomes in newly diagnosed multiple myeloma: a cohort study of patients in the total therapy clinical trials
  publication-title: PLoS Med
– volume: 36
  start-page: 1492
  issue: 6
  year: 2022
  end-page: 1498
  article-title: RNAseqCNV: analysis of large‐scale copy number variations from RNA‐seq data
  publication-title: Leukemia
– volume: 2
  issue: 14
  year: 2010
  article-title: Why most gene expression signatures of tumors have not been useful in the clinic
  publication-title: Sci Transl Med
– volume: 109
  start-page: 3177
  issue: 8
  year: 2007
  end-page: 3188
  article-title: Gene expression profiling and correlation with outcome in clinical trials of the proteasome inhibitor bortezomib
  publication-title: Blood
– volume: 19
  start-page: A68
  issue: 1A
  year: 2015
  end-page: A77
  article-title: The cancer genome atlas (TCGA): an immeasurable source of knowledge
  publication-title: Contemp Oncol (Pozn)
– volume: 33
  start-page: 2863
  issue: 26
  year: 2015
  end-page: 2869
  article-title: Revised international staging system for multiple myeloma: a report from international myeloma working group
  publication-title: J Clin Oncol
– volume: 23
  start-page: 3412
  issue: 15
  year: 2005
  end-page: 3420
  article-title: International staging system for multiple myeloma
  publication-title: J Clin Oncol
– volume: 5
  start-page: 209
  issue: 1
  year: 2020
  article-title: Targeting NF‐κB pathway for the therapy of diseases: mechanism and clinical study
  publication-title: Signal Transduct Target Ther
– volume: 122
  start-page: 532
  issue: 21
  year: 2013
  article-title: Interim analysis of the Mmrf Commpass trial, a longitudinal study in multiple myeloma relating clinical outcomes to genomic and immunophenotypic profiles
  publication-title: Blood
– volume: 10
  start-page: 648
  issue: 3
  year: 2021
  article-title: Prognostic cancer gene expression signatures: current status and challenges
  publication-title: Cells
– volume: 126
  start-page: 1996
  issue: 17
  year: 2015
  end-page: 2004
  article-title: Prediction of high‐ and low‐risk multiple myeloma based on gene expression and the International Staging System
  publication-title: Blood
– volume: 10
  start-page: 3239
  issue: 14
  year: 2019
  end-page: 3245
  article-title: High numbers of CD163+ tumor‐associated macrophages correlate with poor prognosis in multiple myeloma patients receiving bortezomib‐based regimens
  publication-title: J Cancer
– ident: e_1_2_9_37_1
  doi: 10.1182/blood.2019004309
– ident: e_1_2_9_25_1
  doi: 10.1038/s41588‐021‐00819‐w
– ident: e_1_2_9_30_1
  doi: 10.1016/j.xinn.2021.100141
– ident: e_1_2_9_15_1
  doi: 10.1038/s41591‐019‐0595‐z
– ident: e_1_2_9_36_1
  doi: 10.1038/ng1861
– ident: e_1_2_9_28_1
  doi: 10.1093/nar/gkab1028
– ident: e_1_2_9_9_1
  doi: 10.1038/leu.2013.247
– ident: e_1_2_9_21_1
  doi: 10.1182/blood‐2009‐12‐261032
– volume: 91
  start-page: 1498
  issue: 11
  year: 2006
  ident: e_1_2_9_39_1
  article-title: Bortezomib plus dexamethasone as induction treatment prior to autologous stem cell transplantation in patients with newly diagnosed multiple myeloma: results of an IFM phase II study
  publication-title: Haematologica
– ident: e_1_2_9_33_1
  doi: 10.1186/1752‐0509‐5‐121
– ident: e_1_2_9_8_1
  doi: 10.3324/haematol.2009.016436
– ident: e_1_2_9_50_1
  doi: 10.3390/cancers13174320
– ident: e_1_2_9_3_1
  doi: 10.1038/leu.2012.282
– ident: e_1_2_9_20_1
  doi: 10.1182/blood‐2006‐09‐044974
– ident: e_1_2_9_52_1
  doi: 10.1080/10428194.2022.2136950
– ident: e_1_2_9_45_1
  doi: 10.1038/s41598‐019‐49133‐w
– ident: e_1_2_9_43_1
  doi: 10.3390/biomedicines6020066
– ident: e_1_2_9_51_1
  doi: 10.1038/nri.2017.52
– ident: e_1_2_9_34_1
  doi: 10.1186/s12920‐019‐0620‐6
– ident: e_1_2_9_26_1
  doi: 10.1186/s13059‐021‐02540‐7
– ident: e_1_2_9_18_1
  doi: 10.1371/journal.pmed.1003323
– ident: e_1_2_9_16_1
  doi: 10.1182/blood.V122.21.532.532
– ident: e_1_2_9_11_1
  doi: 10.1093/nar/30.1.207
– ident: e_1_2_9_19_1
  doi: 10.1038/nbt.1665
– ident: e_1_2_9_29_1
  doi: 10.1093/genetics/iyad031
– ident: e_1_2_9_12_1
  doi: 10.5114/wo.2014.47136
– ident: e_1_2_9_6_1
  doi: 10.1200/JCO.2005.04.242
– ident: e_1_2_9_42_1
  doi: 10.20517/cdr.2018.04
– ident: e_1_2_9_5_1
  doi: 10.1182/blood‐2010‐10‐300970
– ident: e_1_2_9_14_1
  doi: 10.1126/scitranslmed.3000313
– ident: e_1_2_9_35_1
  doi: 10.1038/s41375‐022‐01547‐8
– ident: e_1_2_9_22_1
  doi: 10.1182/blood‐2006‐07‐038430
– ident: e_1_2_9_10_1
  doi: 10.1038/s41408‐022‐00679‐5
– ident: e_1_2_9_32_1
– ident: e_1_2_9_17_1
  doi: 10.1056/NEJMp1607591
– ident: e_1_2_9_47_1
  doi: 10.7150/jca.30102
– ident: e_1_2_9_48_1
  doi: 10.1158/1078‐0432.CCR‐16‐0867
– ident: e_1_2_9_2_1
  doi: 10.3390/medsci9010003
– ident: e_1_2_9_4_1
  doi: 10.1200/EDBK_200879
– ident: e_1_2_9_40_1
  doi: 10.1038/s41392‐020‐00312‐6
– ident: e_1_2_9_7_1
  doi: 10.1200/JCO.2015.61.2267
– ident: e_1_2_9_41_1
  doi: 10.3390/cancers12082203
– ident: e_1_2_9_23_1
  doi: 10.1038/leu.2012.127
– ident: e_1_2_9_27_1
  doi: 10.1186/1471‐2105‐14‐7
– ident: e_1_2_9_44_1
  doi: 10.18632/oncotarget.4616
– ident: e_1_2_9_13_1
  doi: 10.3390/cells10030648
– ident: e_1_2_9_38_1
  doi: 10.1186/1755‐8794‐7‐25
– ident: e_1_2_9_46_1
  doi: 10.1186/s12885‐022‐09872‐y
– ident: e_1_2_9_31_1
  doi: 10.1002/sim.956
– ident: e_1_2_9_24_1
  doi: 10.1182/blood‐2015‐05‐644039
– ident: e_1_2_9_49_1
  doi: 10.5045/br.2020.S008
SSID ssj0011504
Score 2.4590974
Snippet Multiple myeloma (MM) is a heterogeneous disease with a small subset of high‐risk patients having poor prognoses. Identifying these patients is crucial for...
Multiple myeloma (MM) is a heterogeneous disease with a small subset of high-risk patients having poor prognoses. Identifying these patients is crucial for...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 1684
SubjectTerms Biomarkers, Tumor - genetics
clonal gene signature
computational framework
Computer applications
Copy number
Cytogenetics
Dexamethasone
Dexamethasone - therapeutic use
DNA Copy Number Variations
Female
Gene expression
Gene Expression Profiling - methods
Gene Expression Regulation, Neoplastic
Genes
Humans
Male
Medical prognosis
Multiple myeloma
Multiple Myeloma - genetics
Prognosis
prognostic prediction
Risk groups
Transcriptome
Title Identifying high‐risk multiple myeloma patients: A novel approach using a clonal gene signature
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fijc.35057
https://www.ncbi.nlm.nih.gov/pubmed/38874435
https://www.proquest.com/docview/3124047651
https://www.proquest.com/docview/3068750872
Volume 155
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hDogLbXk1LSCDeuglS2I7sUNPCIEACQ4VSByQIr-CgCVbdXcrwak_gd_IL-nYeVS0QkLcLMUZJx7P-LM98xngS-qP9liuYyZzG3NBeayVQWfokiwxKi94yOM-Oc0Pz_nxRXYxA9-6XJiGH6LfcPOWEfy1N3Clx9t_SUOvb8yAeXiN_tfHanlA9L2njvJAp2VgTmJciOUdq1BCt_s3n89F_wHM53g1TDgH7-Cy-9QmzuR2MJ3ogXn4h8Xxjf_yHhZaIEp2m5HzAWZcvQhzJ-1R-xKoJoU3pEERT2r89PvRx6GTLgSR3N274ehOkZaadbxDdkk9-uWGpCMqJz6q_oooYoYe8BMcrI74iJHAJroM5wf7Z3uHcXsfQ2xYykTspE8qREiDoKkwBRWGVsKKyknORVUYZVNuNZaYpRaRg7TM5K7gpspExXFdtAKz9ah2H4FYL4alOG9KxrGSptagXGm1KmShdQRbnWbKHw3tRtkQLNMSO6sMnRXBWqezsrW8cYlCecJFnqURbPaP0Wb8QYiq3WiKdZIcl2mJFDSC1UbXfStM-gsBWBbB16Cxl5svj473QuHT66t-hnmKqKhJZlyD2cnPqVtHVDPRG2H4_gFvePGd
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RaK98CiUBhbqIg5css3a3thBXKpCtS3dHlAr9YKi-JGKdptF7C4SnPgJ_EZ-CTPOAxWEhHqzFMdOPDP2N_bMZ4AXAzraE6mJhU5dLBWXsSksToY-GSa2SDMZ8rjHx-noVB6eDc-W4HWbC1PzQ3QbbmQZYb4mA6cN6Z3frKEfL2xfEL5ehlt0ozcx579535FHEdRpOJiTGF2xtOUVSvhO9-r11egviHkdsYYlZ_8ufGg_to40uewv5qZvv_3B43jTv7kHdxosynZr5bkPS75ah9vj5rT9ARR1Fm_IhGLEa_zz-w8KRWdtFCK7-uon06uCNeyss1dsl1XTL37CWq5yRoH156xgdkKYn6G-ekZBI4FQ9CGc7r892RvFzZUMsRUDoWKvKa8QUQ3ipsxmXFleKqdKr6VUZWYLN5DOYEk47hA8aCds6jNpy6EqJbpGG7BSTSu_CcxRM2KAS6cWEisZ7iy2q50pMp0ZE8HzVjT5p5p5I685lnmOg5WHwYqg1wotb4xvlmOjMpEKVSKC7e4xmg2dhRSVny6wTpKip5ZoxSN4VAu760VouhNADCN4GUT27-7zg8O9UHj8_1W3YHV0Mj7Kjw6O3z2BNY4gqc5t7MHK_PPCP0WQMzfPgi7_Aome9bk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bTxUxEJ4gJMQXAS-4crEaH3zZw27bbbv4RIATQCHGSMKDyWZ7WSMc9hA5hwSf_An8Rn6J0-7FgDExvjXZ7nS3M9N-bWe-ArxJ_dEeEzpmStiYS8pjXRocDF2SJaYUOQ953IdHYu-YH5xkJzPwrsuFafgh-g037xlhvPYOfmGrjd-kod9OzYB5eP0A5rhIcn9vw86nnjvKI52WgjmJcSUmOlqhhG70r96djP5AmHcBa5hxhgvwpfvWJtDkbDCd6IH5cY_G8T9_ZhEetUiUbDWmswQzrn4M84ftWfsTKJsc3pAHRTyr8e3PGx-ITroYRHJ-7Ubj85K03KyXm2SL1OMrNyIdUznxYfVfSUnMyCN-gtbqiA8ZCXSiT-F4uPt5ey9uL2SIDUuZjJ3yWYWIaRA15San0tBKWlk5xbmsclPalFuNJWapReigLDPC5dxUmaw4LoyewWw9rt1zINaLYSlOnIpxrKSpNShXWV3mKtc6gtedZoqLhnejaBiWaYGdVYTOimC101nRut5lgUJ5wqXI0ghe9Y_RafxJSFm78RTrJALXaYmSNILlRtd9K0z5GwFYFsHboLG_N1_sH2yHwot_r_oS5j_uDIsP-0fvV-AhRYTUJDauwuzk-9StIcKZ6PVgyb8AtU_0aA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+high%E2%80%90risk+multiple+myeloma+patients%3A+A+novel+approach+using+a+clonal+gene+signature&rft.jtitle=International+journal+of+cancer&rft.au=Li%2C+Jian%E2%80%90Rong&rft.au=Wang%2C+Christiana&rft.au=Cheng%2C+Chao&rft.date=2024-11-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0020-7136&rft.eissn=1097-0215&rft.volume=155&rft.issue=9&rft.spage=1684&rft.epage=1695&rft_id=info:doi/10.1002%2Fijc.35057&rft.externalDBID=10.1002%252Fijc.35057&rft.externalDocID=IJC35057
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7136&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7136&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7136&client=summon