Epigallocatechin‐Gallate: Unraveling Its Protective Mechanisms and Therapeutic Potential
ABSTRACT Epigallocatechin‐gallate (EGCG), the predominant catechin in green tea, is a key constituent of tea polyphenols. Due to the EGCG's diverse biological activities of anti‐inflammatory, antioxidant, and so forth, green tea is believed to exert a positive influence on a variety of diseases...
Saved in:
Published in | Cell biochemistry and function Vol. 43; no. 2; pp. e70056 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Epigallocatechin‐gallate (EGCG), the predominant catechin in green tea, is a key constituent of tea polyphenols. Due to the EGCG's diverse biological activities of anti‐inflammatory, antioxidant, and so forth, green tea is believed to exert a positive influence on a variety of diseases. And extensive research had uncovered a range of protective effects attributed to EGCG, indicating its potential to mitigate various pathological conditions. The precise mechanisms through which EGCG operates remain a subject of ongoing discussion among researchers. Reactive oxygen species (ROS), a primary culprit in oxidative stress, have been demonstrated to be reduced by EGCG. Furthermore, nuclear factor kappa‐B (NF‐κB), a pivotal signal molecular of inflammation progress, has been observed to be suppressed by EGCG. Sirtuins1 (Sirt1) is a histone deacetylase, the obligate substrate of which is NAD+. Evidence suggests that EGCG can enhance the activities of Sirt1 to induce autophagy to protect inflammation injury and oxidative stress in tissues and organs. Despite the promising protective effects of EGCG, its clinical use is constrained by its limited bioavailability. This review aims to consolidate the existing evidence and elucidate the mechanisms that support EGCG's protective role, as well as to explore the challenges and potential strategies for its clinical application.
Summary
This review aims to address the challenge of limited bioavailability of epigallocatechin‐gallate (EGCG).
The originality of our approach lies in the comprehensive consolidation of existing evidence and the elucidation of mechanisms that support EGCG's protective role.
We highlight the role of EGCG in reducing oxidative stress and inflammation through its action on ROS and NF‐κB, and its potential to induce autophagy via Sirt1 activation.
We explore potential strategies to improve its clinical application and summarize recent clinical trials of EGCG in different conditions.
This addresses the ongoing discussion among researchers regarding the precise mechanisms of EGCG and offers new insights into promoting its therapeutic effectiveness. |
---|---|
AbstractList | Epigallocatechin-gallate (EGCG), the predominant catechin in green tea, is a key constituent of tea polyphenols. Due to the EGCG's diverse biological activities of anti-inflammatory, antioxidant, and so forth, green tea is believed to exert a positive influence on a variety of diseases. And extensive research had uncovered a range of protective effects attributed to EGCG, indicating its potential to mitigate various pathological conditions. The precise mechanisms through which EGCG operates remain a subject of ongoing discussion among researchers. Reactive oxygen species (ROS), a primary culprit in oxidative stress, have been demonstrated to be reduced by EGCG. Furthermore, nuclear factor kappa-B (NF-κB), a pivotal signal molecular of inflammation progress, has been observed to be suppressed by EGCG. Sirtuins1 (Sirt1) is a histone deacetylase, the obligate substrate of which is NAD+. Evidence suggests that EGCG can enhance the activities of Sirt1 to induce autophagy to protect inflammation injury and oxidative stress in tissues and organs. Despite the promising protective effects of EGCG, its clinical use is constrained by its limited bioavailability. This review aims to consolidate the existing evidence and elucidate the mechanisms that support EGCG's protective role, as well as to explore the challenges and potential strategies for its clinical application.Epigallocatechin-gallate (EGCG), the predominant catechin in green tea, is a key constituent of tea polyphenols. Due to the EGCG's diverse biological activities of anti-inflammatory, antioxidant, and so forth, green tea is believed to exert a positive influence on a variety of diseases. And extensive research had uncovered a range of protective effects attributed to EGCG, indicating its potential to mitigate various pathological conditions. The precise mechanisms through which EGCG operates remain a subject of ongoing discussion among researchers. Reactive oxygen species (ROS), a primary culprit in oxidative stress, have been demonstrated to be reduced by EGCG. Furthermore, nuclear factor kappa-B (NF-κB), a pivotal signal molecular of inflammation progress, has been observed to be suppressed by EGCG. Sirtuins1 (Sirt1) is a histone deacetylase, the obligate substrate of which is NAD+. Evidence suggests that EGCG can enhance the activities of Sirt1 to induce autophagy to protect inflammation injury and oxidative stress in tissues and organs. Despite the promising protective effects of EGCG, its clinical use is constrained by its limited bioavailability. This review aims to consolidate the existing evidence and elucidate the mechanisms that support EGCG's protective role, as well as to explore the challenges and potential strategies for its clinical application. Epigallocatechin-gallate (EGCG), the predominant catechin in green tea, is a key constituent of tea polyphenols. Due to the EGCG's diverse biological activities of anti-inflammatory, antioxidant, and so forth, green tea is believed to exert a positive influence on a variety of diseases. And extensive research had uncovered a range of protective effects attributed to EGCG, indicating its potential to mitigate various pathological conditions. The precise mechanisms through which EGCG operates remain a subject of ongoing discussion among researchers. Reactive oxygen species (ROS), a primary culprit in oxidative stress, have been demonstrated to be reduced by EGCG. Furthermore, nuclear factor kappa-B (NF-κB), a pivotal signal molecular of inflammation progress, has been observed to be suppressed by EGCG. Sirtuins1 (Sirt1) is a histone deacetylase, the obligate substrate of which is NAD+. Evidence suggests that EGCG can enhance the activities of Sirt1 to induce autophagy to protect inflammation injury and oxidative stress in tissues and organs. Despite the promising protective effects of EGCG, its clinical use is constrained by its limited bioavailability. This review aims to consolidate the existing evidence and elucidate the mechanisms that support EGCG's protective role, as well as to explore the challenges and potential strategies for its clinical application. ABSTRACT Epigallocatechin‐gallate (EGCG), the predominant catechin in green tea, is a key constituent of tea polyphenols. Due to the EGCG's diverse biological activities of anti‐inflammatory, antioxidant, and so forth, green tea is believed to exert a positive influence on a variety of diseases. And extensive research had uncovered a range of protective effects attributed to EGCG, indicating its potential to mitigate various pathological conditions. The precise mechanisms through which EGCG operates remain a subject of ongoing discussion among researchers. Reactive oxygen species (ROS), a primary culprit in oxidative stress, have been demonstrated to be reduced by EGCG. Furthermore, nuclear factor kappa‐B (NF‐κB), a pivotal signal molecular of inflammation progress, has been observed to be suppressed by EGCG. Sirtuins1 (Sirt1) is a histone deacetylase, the obligate substrate of which is NAD+. Evidence suggests that EGCG can enhance the activities of Sirt1 to induce autophagy to protect inflammation injury and oxidative stress in tissues and organs. Despite the promising protective effects of EGCG, its clinical use is constrained by its limited bioavailability. This review aims to consolidate the existing evidence and elucidate the mechanisms that support EGCG's protective role, as well as to explore the challenges and potential strategies for its clinical application. Summary This review aims to address the challenge of limited bioavailability of epigallocatechin‐gallate (EGCG). The originality of our approach lies in the comprehensive consolidation of existing evidence and the elucidation of mechanisms that support EGCG's protective role. We highlight the role of EGCG in reducing oxidative stress and inflammation through its action on ROS and NF‐κB, and its potential to induce autophagy via Sirt1 activation. We explore potential strategies to improve its clinical application and summarize recent clinical trials of EGCG in different conditions. This addresses the ongoing discussion among researchers regarding the precise mechanisms of EGCG and offers new insights into promoting its therapeutic effectiveness. Epigallocatechin‐gallate (EGCG), the predominant catechin in green tea, is a key constituent of tea polyphenols. Due to the EGCG's diverse biological activities of anti‐inflammatory, antioxidant, and so forth, green tea is believed to exert a positive influence on a variety of diseases. And extensive research had uncovered a range of protective effects attributed to EGCG, indicating its potential to mitigate various pathological conditions. The precise mechanisms through which EGCG operates remain a subject of ongoing discussion among researchers. Reactive oxygen species (ROS), a primary culprit in oxidative stress, have been demonstrated to be reduced by EGCG. Furthermore, nuclear factor kappa‐B (NF‐κB), a pivotal signal molecular of inflammation progress, has been observed to be suppressed by EGCG. Sirtuins1 (Sirt1) is a histone deacetylase, the obligate substrate of which is NAD+. Evidence suggests that EGCG can enhance the activities of Sirt1 to induce autophagy to protect inflammation injury and oxidative stress in tissues and organs. Despite the promising protective effects of EGCG, its clinical use is constrained by its limited bioavailability. This review aims to consolidate the existing evidence and elucidate the mechanisms that support EGCG's protective role, as well as to explore the challenges and potential strategies for its clinical application. This review aims to address the challenge of limited bioavailability of epigallocatechin‐gallate (EGCG). The originality of our approach lies in the comprehensive consolidation of existing evidence and the elucidation of mechanisms that support EGCG's protective role. We highlight the role of EGCG in reducing oxidative stress and inflammation through its action on ROS and NF‐κB, and its potential to induce autophagy via Sirt1 activation. We explore potential strategies to improve its clinical application and summarize recent clinical trials of EGCG in different conditions. This addresses the ongoing discussion among researchers regarding the precise mechanisms of EGCG and offers new insights into promoting its therapeutic effectiveness. |
Author | Dong, Xiang‐Wen Li, Yun‐Hang Fang, Wen‐Lan Chai, Yu‐Rong |
Author_xml | – sequence: 1 givenname: Xiang‐Wen orcidid: 0009-0004-3509-3742 surname: Dong fullname: Dong, Xiang‐Wen organization: Zhengzhou University – sequence: 2 givenname: Wen‐Lan surname: Fang fullname: Fang, Wen‐Lan organization: Zhengzhou University – sequence: 3 givenname: Yun‐Hang surname: Li fullname: Li, Yun‐Hang organization: Zhengzhou University – sequence: 4 givenname: Yu‐Rong orcidid: 0000-0002-9213-5302 surname: Chai fullname: Chai, Yu‐Rong email: yrchai@zzu.edu.cn organization: Zhengzhou University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39915982$$D View this record in MEDLINE/PubMed |
BookMark | eNp10b1OwzAQB3ALFUH5GHgBFIkFhrTn2HFsNqgKVALRoV1YIidxWqPUKXZS1I1H4Bl5EgwtDEhM1km_O53vf4A6pjYKoRMMPQwQ9fOs7CUAMdtBXQxChMAp7aAuRIyEjHK6jw6cewYAwQjsoX0iBI4Fj7roabjUM1lVdS4blc-1-Xh7v_W1ry6DqbFypSptZsGoccHY1t40eqWCB2-l0W7hAmmKYDJXVi5V2-g8GHtkGi2rI7Rbysqp4-17iKY3w8ngLrx_vB0Nru7DnGDCQsEzKEQkI8rKuBRUSJqpjGYsZiKJqcSQZTHGjBaE86IQkiScU14SJWSZQ0wO0flm7tLWL61yTbrQLlf-D0bVrUuJ7yWCJwn19OwPfa5ba_x2XiXASRRR4tXpVrXZQhXp0uqFtOv052oeXGxAbmvnrCp_CYb0K5HUJ5J-J-Jtf2NfdaXW_8N0cH2z6fgEoGuL5g |
Cites_doi | 10.3390/antiox12061289 10.3390/ijms20153630 10.3390/ijms24010095 10.1021/acschemneuro.3c00368 10.1016/j.numecd.2009.05.015 10.1590/1414-431X20198092 10.1093/rb/rbab067 10.1016/j.clnu.2015.05.003 10.3390/molecules26134014 10.1016/j.biochi.2021.11.008 10.1186/s12937-016-0179-4 10.1016/j.diabres.2011.03.036 10.1186/s12885-024-12228-3 10.1016/j.nano.2018.01.019 10.3390/biom11050767 10.3390/molecules26206123 10.3390/nu11020474 10.1080/09637486.2019.1589430 10.1371/journal.pone.0031067 10.3389/fphar.2022.921394 10.1155/2019/9682318 10.1097/MCO.0b013e3282f0cef2 10.3389/fnut.2022.851972 10.1189/jlb.69.5.719 10.3390/ijms15045749 10.1093/jn/134.5.1039 10.1186/s12906-018-2355-x 10.1016/j.intimp.2021.107412 10.1083/jcb.201102095 10.1016/j.imlet.2013.11.006 10.1039/D3CP02261G 10.1189/jlb.3A0514-261RR 10.3109/10715762.2014.920955 10.1016/j.cmet.2020.10.021 10.1007/s00204-023-03562-9 10.1371/journal.pone.0277410 10.4161/oxim.2.5.9498 10.1016/j.foodchem.2022.132903 10.1021/acschemneuro.0c00277 10.1016/j.chemphyslip.2019.04.005 10.1016/j.msec.2021.112638 10.3390/antiox9090852 10.1016/j.addr.2007.04.006 10.1371/journal.pone.0091163 10.1111/iwj.12557 10.1589/jpts.28.2820 10.1016/j.molcel.2015.01.030 10.1111/j.1600-0722.2010.00714.x 10.1016/j.jinorgbio.2019.02.010 10.1080/10408398.2022.2157372 10.1111/1759-7714.13925 10.1002/cbf.3351 10.1155/2016/5698931 10.1186/s12951-021-01106-w 10.1111/jfbc.14264 10.1016/j.foodchem.2022.135364 10.1073/pnas.2112725119 10.3390/ph14100982 10.18632/oncotarget.3832 10.1016/j.foodchem.2019.125894 10.1177/15353702221110646 10.1007/s00284-022-02978-3 10.1111/jfbc.14259 10.3390/nu11081743 10.1016/j.jnutbio.2015.10.003 10.1042/BJ20111451 10.1016/j.foodres.2018.05.032 10.3390/cells10112857 10.1001/jamadermatol.2022.1736 10.1111/acel.13199 10.1002/jbt.23203 10.1007/s10571-019-00672-w 10.2147/IJN.S217898 10.3390/ijms23074004 10.1186/1476-4598-12-86 10.3390/molecules23092346 10.1111/jfbc.14189 10.1016/j.ijbiomac.2024.133451 10.2174/092986708785132979 |
ContentType | Journal Article |
Copyright | 2025 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2025 John Wiley & Sons Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TM 7U7 8FD C1K FR3 P64 RC3 7X8 |
DOI | 10.1002/cbf.70056 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Toxicology Abstracts Nucleic Acids Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1099-0844 |
EndPage | n/a |
ExternalDocumentID | 39915982 10_1002_cbf_70056 CBF70056 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NDZJH NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 V2E V8K W8V W99 WBKPD WH7 WIB WIH WIJ WIK WJL WNSPC WOHZO WQJ WRC WSB WXI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TM 7U7 8FD C1K FR3 P64 RC3 7X8 |
ID | FETCH-LOGICAL-c3136-98b0d92a246f5f949a4beb4b6569754a10bb51164d388dd9a378848f3e9afc053 |
IEDL.DBID | DR2 |
ISSN | 0263-6484 1099-0844 |
IngestDate | Fri Jul 11 03:07:55 EDT 2025 Fri Jul 25 12:09:19 EDT 2025 Mon Jul 21 05:31:21 EDT 2025 Tue Jul 01 05:24:35 EDT 2025 Tue Feb 25 10:00:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | antioxidant Sirt1 autophagy anti‐inflammation EGCG |
Language | English |
License | 2025 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3136-98b0d92a246f5f949a4beb4b6569754a10bb51164d388dd9a378848f3e9afc053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-9213-5302 0009-0004-3509-3742 |
PMID | 39915982 |
PQID | 3170832243 |
PQPubID | 2029981 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_3164398774 proquest_journals_3170832243 pubmed_primary_39915982 crossref_primary_10_1002_cbf_70056 wiley_primary_10_1002_cbf_70056_CBF70056 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2025 2025-02-00 2025-Feb 20250201 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Bognor Regis |
PublicationTitle | Cell biochemistry and function |
PublicationTitleAlternate | Cell Biochem Funct |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2022; 133 2021; 26 2019; 2019 2012; 441 2019; 52 2019; 11 2017; 49 2019; 14 2022; 23 2022; 24 2016; 100 2016; 2016 2020; 11 2011; 194 2016; 35 2020; 19 2004; 134 2010; 20 2023; 25 2021; 33 2019; 20 2010; 118 2013; 12 2023; 410 2020; 9 2022; 79 2014; 15 2022; 36 2024; 274 2024; 64 2024; 24 2014; 9 2019; 194 2022; 247 2018; 36 2023; 97 2015; 57 2021; 8 2022; 195 2015; 6 2019; 70 2023; 14 2023; 12 2019; 39 2008; 14 2022; 46 2014; 48 2008; 15 2019; 224 2018; 23 2022; 119 2007; 10 2021; 93 2001; 69 2016; 15 2007; 59 2014; 157 2022; 158 2021; 14 2018; 111 2018; 18 2021; 10 2022; 2022 2021; 12 2021; 11 2017; 14 2021 2011; 93 2022; 9 2021; 19 2022; 13 2020; 311 2009; 2 2016; 28 2012; 7 2022; 17 2022; 388 2018; 14 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 Chan C. M. (e_1_2_9_53_1) 2008; 14 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 Agita A. (e_1_2_9_23_1) 2017; 49 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 Magliano D. J. (e_1_2_9_33_1) 2021 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 Chen X. (e_1_2_9_37_1) 2022; 2022 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_84_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 15 start-page: 1840 issue: 18 year: 2008 end-page: 1850 article-title: Green Tea Catechins and Cardiovascular Health: An Update publication-title: Current Medicinal Chemistry – volume: 52 issue: 7 year: 2019 article-title: Epigallocatechin‐3‐Gallate Ameliorates Lipopolysaccharide‐Induced Acute Lung Injury by Suppression of TLR4/NF‐κB Signaling Activation publication-title: Brazilian Journal of Medical and Biological Research = Revista Brasileira de Pesquisas Medicas e Biologicas – volume: 24 issue: 1 year: 2022 article-title: The Anti‐Inflammatory and Immunomodulatory Activities of Natural Products to Control Autoimmune Inflammation publication-title: International Journal of Molecular Sciences – volume: 14 start-page: 8033 year: 2019 end-page: 8046 article-title: Conjugation of EGCG and Chitosan NPs as a Novel Nano‐Drug Delivery System publication-title: International Journal of Nanomedicine – volume: 69 start-page: 719 issue: 5 year: 2001 end-page: 726 article-title: Green Tea Polyphenol (‐)‐Epigallocatechin‐3‐Gallate Treatment to Mouse Skin Prevents UVB‐Induced Infiltration of Leukocytes, Depletion of Antigen‐Presenting Cells, and Oxidative Stress publication-title: Journal of Leukocyte Biology – volume: 2016 year: 2016 article-title: Does the Interdependence Between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? publication-title: Oxidative Medicine and Cellular Longevity – volume: 19 start-page: 362 issue: 1 year: 2021 article-title: Tea Polyphenol Modified, Photothermal Responsive and ROS Generative Black Phosphorus Quantum Dots as Nanoplatforms for Promoting MRSA Infected Wounds Healing in Diabetic Rats publication-title: Journal of Nanobiotechnology – year: 2021 – volume: 46 issue: 12 year: 2022 article-title: A Comprehensive Review on Modulation of SIRT1 Signaling Pathways in the Immune System of COVID‐19 Patients by Phytotherapeutic Melatonin and Epigallocatechin‐3‐Gallate publication-title: Journal of Food Biochemistry – volume: 14 start-page: 89 issue: 1 year: 2017 end-page: 96 article-title: Reactive Oxygen Species (ROS) and Wound Healing: The Functional Role of ROS and Emerging ROS‐Modulating Technologies for Augmentation of the Healing Process publication-title: International Wound Journal – volume: 48 start-page: 898 issue: 8 year: 2014 end-page: 906 article-title: (‐)‐Epigallocatechin‐3‐Gallate Attenuated Myocardial Mitochondrial Dysfunction and Autophagy in Diabetic Goto‐Kakizaki Rats publication-title: Free Radical Research – volume: 7 issue: 2 year: 2012 article-title: EGCG Enhances the Therapeutic Potential of Gemcitabine and CP690550 by Inhibiting STAT3 Signaling Pathway in Human Pancreatic Cancer publication-title: PLoS One – volume: 224 year: 2019 article-title: Bombesin Conjugated Solid Lipid Nanoparticles for Improved Delivery of Epigallocatechin Gallate for Breast Cancer Treatment publication-title: Chemistry and Physics of Lipids – volume: 14 start-page: 2968 issue: 17 year: 2023 end-page: 2980 article-title: Epigallocatechin Gallate: A Multifaceted Molecule for Neurological Disorders and Neurotropic Viral Infections publication-title: ACS Chemical Neuroscience – volume: 11 start-page: 767 issue: 5 year: 2021 article-title: Green Tea Epigallocatechin‐3‐Gallate (EGCG) Targeting Protein Misfolding in Drug Discovery for Neurodegenerative Diseases publication-title: Biomolecules – volume: 35 start-page: 592 issue: 3 year: 2016 end-page: 599 article-title: Therapeutic Effect of High‐Dose Green Tea Extract on Weight Reduction: A Randomized, Double‐Blind, Placebo‐Controlled Clinical Trial publication-title: Clinical Nutrition – volume: 28 start-page: 164 year: 2016 end-page: 170 article-title: EGCG Prevents PCB‐126‐Induced Endothelial Cell Inflammation via Epigenetic Modifications of NF‐κB Target Genes in Human Endothelial Cells publication-title: Journal of Nutritional Biochemistry – volume: 14 issue: 10 year: 2021 article-title: Plant Polyphenols for Aging Health: Implication From Their Autophagy Modulating Properties in Age‐Associated Diseases publication-title: Pharmaceuticals – volume: 247 start-page: 1591 issue: 17 year: 2022 end-page: 1600 article-title: Epigallocatechin‐3‐Gallate Attenuates Myocardial Fibrosis in Diabetic Rats by Activating Autophagy publication-title: Experimental Biology and Medicine – volume: 388 year: 2022 article-title: Antioxidant Activity, Storage Stability and In Vitro Release of Epigallocatechin‐3‐Gallate (EGCG) Encapsulated in Hordein Nanoparticles publication-title: Food Chemistry – volume: 18 start-page: 294 issue: 1 year: 2018 article-title: Effects of Green Tea Extract on Overweight and Obese Women With High Levels of Low Density‐Lipoprotein‐Cholesterol (LDL‐C): A Randomised, Double‐Blind, and Cross‐Over Placebo‐Controlled Clinical Trial publication-title: BMC Complementary and Alternative Medicine – volume: 194 start-page: 97 year: 2019 end-page: 113 article-title: Redox‐Cycling and Intercalating Properties of Novel Mixed Copper(II) Complexes With Non‐Steroidal Anti‐Inflammatory Drugs Tolfenamic, Mefenamic and Flufenamic Acids and Phenanthroline Functionality: Structure, SOD‐Mimetic Activity, Interaction With Albumin, DNA Damage Study and Anticancer Activity publication-title: Journal of Inorganic Biochemistry – volume: 9 issue: 9 year: 2020 article-title: Oxidative Stress: Concept and Some Practical Aspects publication-title: Antioxidants (Basel, Switzerland) – volume: 12 year: 2013 article-title: The Complexity of NF‐κB Signaling in Inflammation and Cancer publication-title: Molecular Cancer – volume: 28 start-page: 2820 issue: 10 year: 2016 end-page: 2829 article-title: Green Tea and Exercise Interventions as Nondrug Remedies in Geriatric Patients With Rheumatoid Arthritis publication-title: Journal of Physical Therapy Science – volume: 23 issue: 7 year: 2022 article-title: Epigallocatechin Gallate Protects Against Hypoxia‐Induced Inflammation in Microglia via NF‐κB Suppression and Nrf‐2/HO‐1 Activation publication-title: International Journal of Molecular Sciences – volume: 23 issue: 9 year: 2018 article-title: Bioavailability of Tea Catechins and Its Improvement publication-title: Molecules – volume: 15 start-page: 5749 issue: 4 year: 2014 end-page: 5761 article-title: Epigallocatechin‐3‐O‐(3‐O‐Methyl)‐Gallate‐Induced Differentiation of Human Keratinocytes Involves Klotho‐Mediated Regulation of Protein Kinase‐cAMP Responsive Element‐Binding Protein Signaling publication-title: International Journal of Molecular Sciences – volume: 20 start-page: 1 issue: 1 year: 2010 end-page: 6 article-title: Polyphenols and Health: What Compounds Are Involved? publication-title: Nutrition, Metabolism, and Cardiovascular Diseases – volume: 15 start-page: 60 issue: 1 year: 2016 article-title: Potential Neuroprotective Properties of Epigallocatechin‐3‐Gallate (EGCG) publication-title: Nutrition Journal – volume: 26 issue: 13 year: 2021 article-title: Anti‐Influenza With Green Tea Catechins: A Systematic Review and Meta‐Analysis publication-title: Molecules – volume: 24 start-page: 486 issue: 1 year: 2024 article-title: Phase I/II Clinical Trial of Efficacy and Safety of EGCG Oxygen Nebulization Inhalation in the Treatment of COVID‐19 Pneumonia Patients With Cancer publication-title: BMC Cancer – volume: 9 year: 2022 article-title: EGCG Inhibits Proliferation and Induces Apoptosis Through Downregulation of SIRT1 in Nasopharyngeal Carcinoma Cells publication-title: Frontiers in Nutrition – volume: 70 start-page: 977 issue: 8 year: 2019 end-page: 985 article-title: Effect of Green Tea Extract on Arterial Stiffness, Lipid Profile and sRAGE in Patients With Type 2 Diabetes Mellitus: A Randomised, Double‐Blind, Placebo‐Controlled Trial publication-title: International Journal of Food Sciences and Nutrition – volume: 9 issue: 3 year: 2014 article-title: Effects of Green Tea Extract on Insulin Resistance and Glucagon‐Like Peptide 1 in Patients With Type 2 Diabetes and Lipid Abnormalities: A Randomized, Double‐Blinded, and Placebo‐Controlled Trial publication-title: PLoS One – volume: 100 start-page: 559 issue: 3 year: 2016 end-page: 568 article-title: Epigallocatechin‐3‐Gallate Ameliorates Autoimmune Arthritis by Reciprocal Regulation of T Helper‐17 Regulatory T Cells and Inhibition of Osteoclastogenesis by Inhibiting STAT3 Signaling publication-title: Journal of Leukocyte Biology – volume: 441 start-page: 523 issue: 2 year: 2012 end-page: 540 article-title: Autophagy, Mitochondria and Oxidative Stress: Cross‐Talk and Redox Signalling publication-title: Biochemical Journal – volume: 20 issue: 15 year: 2019 article-title: Function of Green Tea Catechins in the Brain: Epigallocatechin Gallate and Its Metabolites publication-title: International Journal of Molecular Sciences – volume: 157 start-page: 51 issue: 1–2 year: 2014 end-page: 59 article-title: Epigallocatechin‐3‐Gallate Ameliorates Both Obesity and Autoinflammatory Arthritis Aggravated by Obesity by Altering the Balance Among CD4+ T‐Cell Subsets publication-title: Immunology Letters – volume: 64 start-page: 5719 issue: 17 year: 2024 end-page: 5747 article-title: Effects of Green Tea Polyphenol Extract and Epigallocatechin‐3‐O‐Gallate on Diabetes Mellitus and Diabetic Complications: Recent Advances publication-title: Critical Reviews in Food Science and Nutrition – volume: 12 issue: 6 year: 2023 article-title: Brain Iron Metabolism, Redox Balance and Neurological Diseases publication-title: Antioxidants (Basel, Switzerland) – volume: 14 start-page: 1073 issue: 4 year: 2018 end-page: 1085 article-title: Epigallocatechin‐3‐Gallate Loaded PEGylated‐PLGA Nanoparticles: A New Anti‐Seizure Strategy for Temporal Lobe Epilepsy publication-title: Nanomedicine: Nanotechnology, Biology, and Medicine – volume: 13 year: 2022 article-title: EGCG Protects the Mouse Brain Against Cerebral Ischemia/Reperfusion Injury by Suppressing Autophagy via the AKT/AMPK/mTOR Phosphorylation Pathway publication-title: Frontiers in Pharmacology – volume: 39 start-page: 577 issue: 5 year: 2019 end-page: 590 article-title: Reductive Reprogramming: A Not‐So‐Radical Hypothesis of Neurodegeneration Linking Redox Perturbations to Neuroinflammation and Excitotoxicity publication-title: Cellular and Molecular Neurobiology – volume: 11 start-page: 1841 issue: 12 year: 2020 end-page: 1851 article-title: Green Tea Extracts EGCG and EGC Display Distinct Mechanisms in Disrupting Aβ Protofibril publication-title: ACS Chemical Neuroscience – volume: 133 year: 2022 article-title: Preparation of Pro‐Angiogenic, Antibacterial and EGCG‐Modified ZnO Quantum Dots for Treating Bacterial Infected Wound of Diabetic Rats publication-title: Biomaterials Advances – volume: 25 start-page: 19182 issue: 28 year: 2023 end-page: 19194 article-title: How Oxidized EGCG Remodels α‐Synuclein Fibrils Into Non‐Toxic Aggregates: Insights From Computational Simulations publication-title: Physical Chemistry Chemical Physics – volume: 49 start-page: 158 issue: 2 year: 2017 end-page: 165 article-title: Inflammation, Immunity, and Hypertension publication-title: Acta Medica Indonesiana – volume: 36 start-page: 292 issue: 6 year: 2018 end-page: 302 article-title: Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase (NOX) and Liver Fibrosis: A Review publication-title: Cell Biochemistry and Function – volume: 93 year: 2021 article-title: Epigallocatechin‐3‐Gallate Prevents Inflammation and Diabetes‐Induced Glucose Tolerance Through Inhibition of NLRP3 Inflammasome Activation publication-title: International Immunopharmacology – volume: 97 start-page: 2499 issue: 10 year: 2023 end-page: 2574 article-title: Reactive Oxygen Species, Toxicity, Oxidative Stress, and Antioxidants: Chronic Diseases and Aging publication-title: Archives of Toxicology – volume: 274 issue: Pt 2 year: 2024 article-title: Influence of EGCG Oxidation on Inhibitory Activity Against the SARS‐CoV‐2 Main Protease publication-title: International Journal of Biological Macromolecules – volume: 195 start-page: 100 year: 2022 end-page: 113 article-title: Role of AMPK Mediated Pathways in Autophagy and Aging publication-title: Biochimie – volume: 10 start-page: 724 issue: 6 year: 2007 end-page: 728 article-title: Polyphenols and Inflammation: Basic Interactions publication-title: Current Opinion in Clinical Nutrition and Metabolic Care – volume: 14 start-page: 2528 year: 2008 end-page: 2534 article-title: Protective Effects of (‐)‐Epigallocatechin Gallate on UVA‐Induced Damage in ARPE19 Cells publication-title: Molecular Vision – volume: 2022 start-page: 1 year: 2022 end-page: 21 article-title: Painful Diabetic Neuropathy Is Associated With Compromised Microglial IGF‐1 Signaling Which can be Rescued by Green Tea Polyphenol EGCG in Mice publication-title: Oxidative Medicine and Cellular Longevity – volume: 2019 year: 2019 article-title: Dietary Polyphenols in Age‐Related Macular Degeneration: Protection Against Oxidative Stress and Beyond publication-title: Oxidative Medicine and Cellular Longevity – volume: 134 start-page: 1039 issue: 5 year: 2004 end-page: 1044 article-title: Epigallocatechin‐3‐Gallate, a Green Tea–Derived Polyphenol, Inhibits IL‐1β‐Dependent Proinflammatory Signal Transduction in Cultured Respiratory Epithelial Cells publication-title: Journal of Nutrition – volume: 79 start-page: 297 issue: 10 year: 2022 article-title: Antimicrobial Effect of Epigallocatechin Gallate Against ATCC 8071: A Study Based on Cell Membrane and Biofilm publication-title: Current Microbiology – volume: 119 issue: 8 year: 2022 article-title: Targeting Ectromelia Virus and TNF/NF‐κB or STAT3 Signaling for Effective Treatment of Viral Pneumonia publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 17 issue: 11 year: 2022 article-title: Regulation of Yak Longissimus Lumborum Energy Metabolism and Tenderness by the AMPK/SIRT1 Signaling Pathways During Postmortem Storage publication-title: PLoS One – volume: 410 year: 2023 article-title: Stability of Glycosylated Complexes Loaded With Epigallocatechin 3‐Gallate (EGCG) publication-title: Food Chemistry – volume: 118 start-page: 145 issue: 2 year: 2010 end-page: 150 article-title: Anti‐Inflammatory Effect of Catechin on Cultured Human Dental Pulp Cells Affected by Bacteria‐Derived Factors publication-title: European Journal of Oral Sciences – volume: 2 start-page: 270 issue: 5 year: 2009 end-page: 278 article-title: Plant Polyphenols as Dietary Antioxidants in Human Health and Disease publication-title: Oxidative Medicine and Cellular Longevity – volume: 26 issue: 20 year: 2021 article-title: Beneficial Effects of Green Tea EGCG on Skin Wound Healing: A Comprehensive Review publication-title: Molecules – volume: 46 issue: 10 year: 2022 article-title: Health Benefits of Polyphenols: A Concise Review publication-title: Journal of Food Biochemistry – volume: 57 start-page: 393 issue: 3 year: 2015 end-page: 395 article-title: A Nuclear Option That Initiates Autophagy publication-title: Molecular Cell – volume: 111 start-page: 229 year: 2018 end-page: 236 article-title: Fast Analysis of Polyphenols and Alkaloids in Cocoa‐Based Products by Ultra‐High Performance Liquid Chromatography and Orbitrap High‐Resolution Mass Spectrometry (UHPLC‐Q‐Orbitrap‐MS/MS) publication-title: Food Research International (Ottawa, Ont.) – volume: 311 year: 2020 article-title: Utilization of Albumin Fraction From Defatted Rice Bran to Stabilize and Deliver (‐)‐Epigallocatechin Gallate publication-title: Food Chemistry – volume: 59 start-page: 427 issue: 6 year: 2007 end-page: 443 article-title: Lipid Nanoparticles for Improved Topical Application of Drugs for Skin Diseases publication-title: Advanced Drug Delivery Reviews – volume: 36 issue: 12 year: 2022 article-title: Epigallocatechin‐3‐Gallate (EGCG) Attenuates Inflammatory Responses and Oxidative Stress in Lipopolysaccharide (LPS)‐Induced Endometritis via Silent Information Regulator Transcript‐1 (SIRT1)/Nucleotide Oligomerization Domain (NOD)‐Like Receptor Pyrin Domain‐Containing 3 (NLRP3) Pathway publication-title: Journal of Biochemical and Molecular Toxicology – volume: 33 start-page: 110 issue: 1 year: 2021 end-page: 127.e5 article-title: NAD+ Metabolism Maintains Inducible PD‐L1 Expression to Drive Tumor Immune Evasion publication-title: Cell Metabolism – volume: 12 start-page: 1415 issue: 9 year: 2021 end-page: 1422 article-title: Quercetin Induces Pro‐Apoptotic Autophagy via SIRT1/AMPK Signaling Pathway in Human Lung Cancer Cell Lines A549 and H1299 In Vitro publication-title: Thoracic Cancer – volume: 93 start-page: 205 issue: 2 year: 2011 end-page: 214 article-title: Epigallocatechin‐3‐O‐Gallate (EGCG) Attenuates FFAs‐Induced Peripheral Insulin Resistance Through AMPK Pathway and Insulin Signaling Pathway In Vivo publication-title: Diabetes Research and Clinical Practice – volume: 11 issue: 8 year: 2019 article-title: Low Dose Epigallocatechin Gallate Alleviates Experimental Colitis by Subduing Inflammatory Cells and Cytokines, and Improving Intestinal Permeability publication-title: Nutrients – volume: 194 start-page: 7 issue: 1 year: 2011 end-page: 15 article-title: Signal Transduction by Reactive Oxygen Species publication-title: Journal of Cell Biology – volume: 10 issue: 11 year: 2021 article-title: Management of Rheumatoid Arthritis: An Overview publication-title: Cells – volume: 158 start-page: 779 issue: 7 year: 2022 end-page: 786 article-title: Efficacy of Epigallocatechin‐3‐Gallate in Preventing Dermatitis in Patients With Breast Cancer Receiving Postoperative Radiotherapy: A Double‐Blind, Placebo‐Controlled, Phase 2 Randomized Clinical Trial publication-title: JAMA Dermatology – volume: 6 start-page: 9701 issue: 12 year: 2015 end-page: 9717 article-title: EGCG‐Mediated Autophagy Flux Has a Neuroprotection Effect via a Class III Histone Deacetylase in Primary Neuron Cells publication-title: Oncotarget – volume: 8 issue: 6 year: 2021 article-title: Preparation of EGCG Decorated, Injectable Extracellular Vesicles for Cartilage Repair in Rat Arthritis publication-title: Regenerative Biomaterials – volume: 19 issue: 9 year: 2020 article-title: The Phytochemical Epigallocatechin Gallate Prolongs the Lifespan by Improving Lipid Metabolism, Reducing Inflammation and Oxidative Stress in High‐Fat Diet‐Fed Obese Rats publication-title: Aging cell – volume: 46 issue: 8 year: 2022 article-title: Epigallocatechin Gallate: Phytochemistry, Bioavailability, Utilization Challenges, and Strategies publication-title: Journal of Food Biochemistry – volume: 11 issue: 2 year: 2019 article-title: A Review of the Role of Green Tea ( ) in Antiphotoaging, Stress Resistance, Neuroprotection, and Autophagy publication-title: Nutrients – ident: e_1_2_9_44_1 doi: 10.3390/antiox12061289 – ident: e_1_2_9_15_1 doi: 10.3390/ijms20153630 – ident: e_1_2_9_24_1 doi: 10.3390/ijms24010095 – ident: e_1_2_9_45_1 doi: 10.1021/acschemneuro.3c00368 – ident: e_1_2_9_4_1 doi: 10.1016/j.numecd.2009.05.015 – ident: e_1_2_9_51_1 doi: 10.1590/1414-431X20198092 – ident: e_1_2_9_84_1 doi: 10.1093/rb/rbab067 – ident: e_1_2_9_40_1 doi: 10.1016/j.clnu.2015.05.003 – ident: e_1_2_9_29_1 doi: 10.3390/molecules26134014 – ident: e_1_2_9_70_1 doi: 10.1016/j.biochi.2021.11.008 – ident: e_1_2_9_49_1 doi: 10.1186/s12937-016-0179-4 – ident: e_1_2_9_35_1 doi: 10.1016/j.diabres.2011.03.036 – ident: e_1_2_9_32_1 doi: 10.1186/s12885-024-12228-3 – ident: e_1_2_9_50_1 doi: 10.1016/j.nano.2018.01.019 – ident: e_1_2_9_48_1 doi: 10.3390/biom11050767 – ident: e_1_2_9_11_1 doi: 10.3390/molecules26206123 – ident: e_1_2_9_69_1 doi: 10.3390/nu11020474 – ident: e_1_2_9_42_1 doi: 10.1080/09637486.2019.1589430 – ident: e_1_2_9_77_1 doi: 10.1371/journal.pone.0031067 – ident: e_1_2_9_12_1 doi: 10.3389/fphar.2022.921394 – ident: e_1_2_9_19_1 doi: 10.1155/2019/9682318 – ident: e_1_2_9_22_1 doi: 10.1097/MCO.0b013e3282f0cef2 – ident: e_1_2_9_13_1 doi: 10.3389/fnut.2022.851972 – ident: e_1_2_9_18_1 doi: 10.1189/jlb.69.5.719 – ident: e_1_2_9_10_1 doi: 10.3390/ijms15045749 – ident: e_1_2_9_20_1 doi: 10.1093/jn/134.5.1039 – ident: e_1_2_9_41_1 doi: 10.1186/s12906-018-2355-x – ident: e_1_2_9_67_1 doi: 10.1016/j.intimp.2021.107412 – ident: e_1_2_9_56_1 doi: 10.1083/jcb.201102095 – ident: e_1_2_9_62_1 doi: 10.1016/j.imlet.2013.11.006 – ident: e_1_2_9_46_1 doi: 10.1039/D3CP02261G – ident: e_1_2_9_76_1 doi: 10.1189/jlb.3A0514-261RR – ident: e_1_2_9_34_1 doi: 10.3109/10715762.2014.920955 – ident: e_1_2_9_74_1 doi: 10.1016/j.cmet.2020.10.021 – ident: e_1_2_9_54_1 doi: 10.1007/s00204-023-03562-9 – ident: e_1_2_9_75_1 doi: 10.1371/journal.pone.0277410 – ident: e_1_2_9_3_1 doi: 10.4161/oxim.2.5.9498 – ident: e_1_2_9_7_1 doi: 10.1016/j.foodchem.2022.132903 – ident: e_1_2_9_47_1 doi: 10.1021/acschemneuro.0c00277 – ident: e_1_2_9_82_1 doi: 10.1016/j.chemphyslip.2019.04.005 – ident: e_1_2_9_52_1 doi: 10.1016/j.msec.2021.112638 – ident: e_1_2_9_57_1 doi: 10.3390/antiox9090852 – ident: e_1_2_9_81_1 doi: 10.1016/j.addr.2007.04.006 – ident: e_1_2_9_36_1 doi: 10.1371/journal.pone.0091163 – volume: 2022 start-page: 1 year: 2022 ident: e_1_2_9_37_1 article-title: Painful Diabetic Neuropathy Is Associated With Compromised Microglial IGF‐1 Signaling Which can be Rescued by Green Tea Polyphenol EGCG in Mice publication-title: Oxidative Medicine and Cellular Longevity – ident: e_1_2_9_17_1 doi: 10.1111/iwj.12557 – ident: e_1_2_9_26_1 doi: 10.1589/jpts.28.2820 – ident: e_1_2_9_71_1 doi: 10.1016/j.molcel.2015.01.030 – volume: 14 start-page: 2528 year: 2008 ident: e_1_2_9_53_1 article-title: Protective Effects of (‐)‐Epigallocatechin Gallate on UVA‐Induced Damage in ARPE19 Cells publication-title: Molecular Vision – ident: e_1_2_9_21_1 doi: 10.1111/j.1600-0722.2010.00714.x – ident: e_1_2_9_58_1 doi: 10.1016/j.jinorgbio.2019.02.010 – ident: e_1_2_9_39_1 doi: 10.1080/10408398.2022.2157372 – ident: e_1_2_9_73_1 doi: 10.1111/1759-7714.13925 – volume: 49 start-page: 158 issue: 2 year: 2017 ident: e_1_2_9_23_1 article-title: Inflammation, Immunity, and Hypertension publication-title: Acta Medica Indonesiana – ident: e_1_2_9_55_1 doi: 10.1002/cbf.3351 – ident: e_1_2_9_63_1 doi: 10.1155/2016/5698931 – ident: e_1_2_9_38_1 doi: 10.1186/s12951-021-01106-w – ident: e_1_2_9_16_1 doi: 10.1111/jfbc.14264 – ident: e_1_2_9_79_1 doi: 10.1016/j.foodchem.2022.135364 – ident: e_1_2_9_64_1 doi: 10.1073/pnas.2112725119 – ident: e_1_2_9_2_1 doi: 10.3390/ph14100982 – volume-title: IDF Diabetes ATLAS year: 2021 ident: e_1_2_9_33_1 – ident: e_1_2_9_72_1 doi: 10.18632/oncotarget.3832 – ident: e_1_2_9_8_1 doi: 10.1016/j.foodchem.2019.125894 – ident: e_1_2_9_6_1 doi: 10.1177/15353702221110646 – ident: e_1_2_9_9_1 doi: 10.1007/s00284-022-02978-3 – ident: e_1_2_9_30_1 doi: 10.1111/jfbc.14259 – ident: e_1_2_9_27_1 doi: 10.3390/nu11081743 – ident: e_1_2_9_66_1 doi: 10.1016/j.jnutbio.2015.10.003 – ident: e_1_2_9_68_1 doi: 10.1042/BJ20111451 – ident: e_1_2_9_5_1 doi: 10.1016/j.foodres.2018.05.032 – ident: e_1_2_9_25_1 doi: 10.3390/cells10112857 – ident: e_1_2_9_80_1 doi: 10.1001/jamadermatol.2022.1736 – ident: e_1_2_9_61_1 doi: 10.1111/acel.13199 – ident: e_1_2_9_28_1 doi: 10.1002/jbt.23203 – ident: e_1_2_9_43_1 doi: 10.1007/s10571-019-00672-w – ident: e_1_2_9_83_1 doi: 10.2147/IJN.S217898 – ident: e_1_2_9_60_1 doi: 10.3390/ijms23074004 – ident: e_1_2_9_65_1 doi: 10.1186/1476-4598-12-86 – ident: e_1_2_9_14_1 doi: 10.3390/molecules23092346 – ident: e_1_2_9_78_1 doi: 10.1111/jfbc.14189 – ident: e_1_2_9_31_1 doi: 10.1016/j.ijbiomac.2024.133451 – ident: e_1_2_9_59_1 doi: 10.2174/092986708785132979 |
SSID | ssj0009630 |
Score | 2.38166 |
SecondaryResourceType | review_article |
Snippet | ABSTRACT
Epigallocatechin‐gallate (EGCG), the predominant catechin in green tea, is a key constituent of tea polyphenols. Due to the EGCG's diverse biological... Epigallocatechin‐gallate (EGCG), the predominant catechin in green tea, is a key constituent of tea polyphenols. Due to the EGCG's diverse biological... Epigallocatechin-gallate (EGCG), the predominant catechin in green tea, is a key constituent of tea polyphenols. Due to the EGCG's diverse biological... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e70056 |
SubjectTerms | Animals Anti-Inflammatory Agents - chemistry Anti-Inflammatory Agents - pharmacology Anti-Inflammatory Agents - therapeutic use antioxidant Antioxidants - chemistry Antioxidants - pharmacology Antioxidants - therapeutic use anti‐inflammation Autophagy Bioavailability Catechin Catechin - analogs & derivatives Catechin - chemistry Catechin - pharmacology Catechin - therapeutic use Clinical trials EGCG Epigallocatechin gallate Green tea Histone deacetylase Humans Inflammation Inflammation - drug therapy Inflammation - metabolism Oxidative stress Oxidative Stress - drug effects Polyphenols Reactive oxygen species Reactive Oxygen Species - metabolism Sirt1 SIRT1 protein Sirtuin 1 - metabolism Tea Therapeutic applications |
Title | Epigallocatechin‐Gallate: Unraveling Its Protective Mechanisms and Therapeutic Potential |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcbf.70056 https://www.ncbi.nlm.nih.gov/pubmed/39915982 https://www.proquest.com/docview/3170832243 https://www.proquest.com/docview/3164398774 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swED9KYKwv3dr1j7euqGMPfXFiy_IfdU9raJoOOsJIIJSCkSwJQje3zM7D9rSPsM_YTzKdHCe0o1D6ZrCM7Dvd6efT3e8APqYxl0IWqa-Uoj7jBfclRW48E2iTUSa0Kxe7-JoMJ-zLNJ6uwae2Fqbhh1gG3NAynL9GAxey6q1IQwtpuikyWVr_i7laCIi-raij7MJaxFciP2EZa1mFAtpbPnl_L_oPYN7Hq27DGbyCq_ZVmzyT6-68lt3i9wMWx2d-y2vYWABR8rlZOZuwpssteNG0pvy1BS_7bSe4N3B5ejtzB_SYPYW5l3d__p5hAL7Wx2RSYgMjLGon53VFRg3vg_Wh5EJjVfGs-lERUSoyXlV6kZEdVFrf8n0bJoPTcX_oL3oy-EVkpezzTAaKU0FZYmLDGRdMasmkhYU8jZkIAykthkuYirJMKS6Qr55lJtJcmMJa_A50yptS7wGRRgUxtX_2oRAsUYWIuIkyFaZpKgIVSw8-tNrJbxvqjbwhWaa5FVjuBObBfqu3fGF9VW4xUYCeikUeHC5vW6HhYYgo9c0cxyAWyyz69WC30fdyFgvaQiQ29ODIae3x6fP-ycBdvH360HewTrGJsEv93odO_XOu31tkU8sDt4T_AQFm9C8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5REKIXXn0QoMUgDlyyJI7zMOqlXbFdWhYhtCshpCqyY1tCLQGx2QOc-An8Rn4JHmezK1pVqnqLFFtOPJ7x5_HMNwC7acylkEXqK6Woz3jBfUmRG88E2mSUCe3SxXonSXfAvp3H5zPwqcmFqfkhJg431Axnr1HB0SG9P2UNLaRppUhl-QrmsKK3O1CdTcmj7NIae1giP2EZa3iFAro_6fpyN_oDYr5ErG7L6SzBj-Zj60iTn61RJVvF_W88jv_7N8uwOMai5HO9eFZgRperMF9Xp7xbhYV2UwzuDVwc3ly6O3oMoMLwy6eHx6_og6_0ARmUWMMI89rJUTUkpzX1gzWjpKcxsfhyeDUkolSkP032Iqe2UWnNy6-3MOgc9ttdf1yWwS-iMEp8nslAcSooS0xsOOOCSS2ZtMiQpzETYSClhXEJU1GWKcUFUtazzESaC1NYpX8Hs-V1qdeASKOCmNrDfSgES1QhIm6iTIVpmopAxdKDnUY8-U3NvpHXPMs0txOWuwnzYLMRXD5WwGFuYVGAxopFHmxPXttJw_sQUerrEbZBOJZZAOzB-1rgk1EsbguR29CDPSe2vw-ft7903MP6vzfdgoVuv3ecHx-dfN-A1xRrCrtI8E2YrW5H-oMFOpX86NbzMz-a-Eo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIiiXAqU_KQVc1EMv2SaOk9hwgm23LaXVqupKFUKK7NiWqrbpis0e4MQj8Iw8CR5ns6tSIaHeIsWRE8-Pv4xnvgHYylOhpCrzUGtNQyZKESqK3Hg2MpZTJo0vFzs-yQ4G7NN5ej4H79tamIYfYhpwQ8vw_hoNfKjtzow0tFS2kyOT5QN4yLKIo0rvns64o5xmTQIsSZgxzlpaoYjuTB-9vRndQZi3AavfcXpP4Wv7rk2iyWVnXKtO-eMvGsd7fswzWJwgUfKhUZ3nMGeqJXjU9Kb8vgQL3bYV3Av4sje88Cf0mD6FyZe_f_7axwh8bd6RQYUdjLCqnRzWI9JviB-cEyXHBsuKL0bXIyIrTc5mpV6k7wZVzrlcLcOgt3fWPQgnTRnCMomTLBRcRVpQSVlmUyuYkEwZxZTDhSJPmYwjpRyIy5hOONdaSCSsZ9wmRkhbOpNfgfnqpjJrQJTVUUrdr30sJct0KRNhE67jPM9lpFMVwNtWOsWw4d4oGpZlWrgFK_yCBbDRyq2YmN-ocKAoQlfFkgA2p7fdouFpiKzMzRjHIBjjDv4GsNrIezqLQ20xMhsGsO2l9u_pi-7Hnr9Y__-hb-Bxf7dXfD48OXoJTyg2FPZp4BswX38bm1cO5dTqtdfmP3wn9wI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epigallocatechin%E2%80%90Gallate%3A+Unraveling+Its+Protective+Mechanisms+and+Therapeutic+Potential&rft.jtitle=Cell+biochemistry+and+function&rft.au=Dong%2C+Xiang%E2%80%90Wen&rft.au=Fang%2C+Wen%E2%80%90Lan&rft.au=Li%2C+Yun%E2%80%90Hang&rft.au=Chai%2C+Yu%E2%80%90Rong&rft.date=2025-02-01&rft.issn=0263-6484&rft.eissn=1099-0844&rft.volume=43&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcbf.70056&rft.externalDBID=10.1002%252Fcbf.70056&rft.externalDocID=CBF70056 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-6484&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-6484&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-6484&client=summon |