Epigallocatechin‐Gallate: Unraveling Its Protective Mechanisms and Therapeutic Potential

ABSTRACT Epigallocatechin‐gallate (EGCG), the predominant catechin in green tea, is a key constituent of tea polyphenols. Due to the EGCG's diverse biological activities of anti‐inflammatory, antioxidant, and so forth, green tea is believed to exert a positive influence on a variety of diseases...

Full description

Saved in:
Bibliographic Details
Published inCell biochemistry and function Vol. 43; no. 2; pp. e70056 - n/a
Main Authors Dong, Xiang‐Wen, Fang, Wen‐Lan, Li, Yun‐Hang, Chai, Yu‐Rong
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Epigallocatechin‐gallate (EGCG), the predominant catechin in green tea, is a key constituent of tea polyphenols. Due to the EGCG's diverse biological activities of anti‐inflammatory, antioxidant, and so forth, green tea is believed to exert a positive influence on a variety of diseases. And extensive research had uncovered a range of protective effects attributed to EGCG, indicating its potential to mitigate various pathological conditions. The precise mechanisms through which EGCG operates remain a subject of ongoing discussion among researchers. Reactive oxygen species (ROS), a primary culprit in oxidative stress, have been demonstrated to be reduced by EGCG. Furthermore, nuclear factor kappa‐B (NF‐κB), a pivotal signal molecular of inflammation progress, has been observed to be suppressed by EGCG. Sirtuins1 (Sirt1) is a histone deacetylase, the obligate substrate of which is NAD+. Evidence suggests that EGCG can enhance the activities of Sirt1 to induce autophagy to protect inflammation injury and oxidative stress in tissues and organs. Despite the promising protective effects of EGCG, its clinical use is constrained by its limited bioavailability. This review aims to consolidate the existing evidence and elucidate the mechanisms that support EGCG's protective role, as well as to explore the challenges and potential strategies for its clinical application. Summary This review aims to address the challenge of limited bioavailability of epigallocatechin‐gallate (EGCG). The originality of our approach lies in the comprehensive consolidation of existing evidence and the elucidation of mechanisms that support EGCG's protective role. We highlight the role of EGCG in reducing oxidative stress and inflammation through its action on ROS and NF‐κB, and its potential to induce autophagy via Sirt1 activation. We explore potential strategies to improve its clinical application and summarize recent clinical trials of EGCG in different conditions. This addresses the ongoing discussion among researchers regarding the precise mechanisms of EGCG and offers new insights into promoting its therapeutic effectiveness.
AbstractList Epigallocatechin-gallate (EGCG), the predominant catechin in green tea, is a key constituent of tea polyphenols. Due to the EGCG's diverse biological activities of anti-inflammatory, antioxidant, and so forth, green tea is believed to exert a positive influence on a variety of diseases. And extensive research had uncovered a range of protective effects attributed to EGCG, indicating its potential to mitigate various pathological conditions. The precise mechanisms through which EGCG operates remain a subject of ongoing discussion among researchers. Reactive oxygen species (ROS), a primary culprit in oxidative stress, have been demonstrated to be reduced by EGCG. Furthermore, nuclear factor kappa-B (NF-κB), a pivotal signal molecular of inflammation progress, has been observed to be suppressed by EGCG. Sirtuins1 (Sirt1) is a histone deacetylase, the obligate substrate of which is NAD+. Evidence suggests that EGCG can enhance the activities of Sirt1 to induce autophagy to protect inflammation injury and oxidative stress in tissues and organs. Despite the promising protective effects of EGCG, its clinical use is constrained by its limited bioavailability. This review aims to consolidate the existing evidence and elucidate the mechanisms that support EGCG's protective role, as well as to explore the challenges and potential strategies for its clinical application.Epigallocatechin-gallate (EGCG), the predominant catechin in green tea, is a key constituent of tea polyphenols. Due to the EGCG's diverse biological activities of anti-inflammatory, antioxidant, and so forth, green tea is believed to exert a positive influence on a variety of diseases. And extensive research had uncovered a range of protective effects attributed to EGCG, indicating its potential to mitigate various pathological conditions. The precise mechanisms through which EGCG operates remain a subject of ongoing discussion among researchers. Reactive oxygen species (ROS), a primary culprit in oxidative stress, have been demonstrated to be reduced by EGCG. Furthermore, nuclear factor kappa-B (NF-κB), a pivotal signal molecular of inflammation progress, has been observed to be suppressed by EGCG. Sirtuins1 (Sirt1) is a histone deacetylase, the obligate substrate of which is NAD+. Evidence suggests that EGCG can enhance the activities of Sirt1 to induce autophagy to protect inflammation injury and oxidative stress in tissues and organs. Despite the promising protective effects of EGCG, its clinical use is constrained by its limited bioavailability. This review aims to consolidate the existing evidence and elucidate the mechanisms that support EGCG's protective role, as well as to explore the challenges and potential strategies for its clinical application.
Epigallocatechin-gallate (EGCG), the predominant catechin in green tea, is a key constituent of tea polyphenols. Due to the EGCG's diverse biological activities of anti-inflammatory, antioxidant, and so forth, green tea is believed to exert a positive influence on a variety of diseases. And extensive research had uncovered a range of protective effects attributed to EGCG, indicating its potential to mitigate various pathological conditions. The precise mechanisms through which EGCG operates remain a subject of ongoing discussion among researchers. Reactive oxygen species (ROS), a primary culprit in oxidative stress, have been demonstrated to be reduced by EGCG. Furthermore, nuclear factor kappa-B (NF-κB), a pivotal signal molecular of inflammation progress, has been observed to be suppressed by EGCG. Sirtuins1 (Sirt1) is a histone deacetylase, the obligate substrate of which is NAD+. Evidence suggests that EGCG can enhance the activities of Sirt1 to induce autophagy to protect inflammation injury and oxidative stress in tissues and organs. Despite the promising protective effects of EGCG, its clinical use is constrained by its limited bioavailability. This review aims to consolidate the existing evidence and elucidate the mechanisms that support EGCG's protective role, as well as to explore the challenges and potential strategies for its clinical application.
ABSTRACT Epigallocatechin‐gallate (EGCG), the predominant catechin in green tea, is a key constituent of tea polyphenols. Due to the EGCG's diverse biological activities of anti‐inflammatory, antioxidant, and so forth, green tea is believed to exert a positive influence on a variety of diseases. And extensive research had uncovered a range of protective effects attributed to EGCG, indicating its potential to mitigate various pathological conditions. The precise mechanisms through which EGCG operates remain a subject of ongoing discussion among researchers. Reactive oxygen species (ROS), a primary culprit in oxidative stress, have been demonstrated to be reduced by EGCG. Furthermore, nuclear factor kappa‐B (NF‐κB), a pivotal signal molecular of inflammation progress, has been observed to be suppressed by EGCG. Sirtuins1 (Sirt1) is a histone deacetylase, the obligate substrate of which is NAD+. Evidence suggests that EGCG can enhance the activities of Sirt1 to induce autophagy to protect inflammation injury and oxidative stress in tissues and organs. Despite the promising protective effects of EGCG, its clinical use is constrained by its limited bioavailability. This review aims to consolidate the existing evidence and elucidate the mechanisms that support EGCG's protective role, as well as to explore the challenges and potential strategies for its clinical application. Summary This review aims to address the challenge of limited bioavailability of epigallocatechin‐gallate (EGCG). The originality of our approach lies in the comprehensive consolidation of existing evidence and the elucidation of mechanisms that support EGCG's protective role. We highlight the role of EGCG in reducing oxidative stress and inflammation through its action on ROS and NF‐κB, and its potential to induce autophagy via Sirt1 activation. We explore potential strategies to improve its clinical application and summarize recent clinical trials of EGCG in different conditions. This addresses the ongoing discussion among researchers regarding the precise mechanisms of EGCG and offers new insights into promoting its therapeutic effectiveness.
Epigallocatechin‐gallate (EGCG), the predominant catechin in green tea, is a key constituent of tea polyphenols. Due to the EGCG's diverse biological activities of anti‐inflammatory, antioxidant, and so forth, green tea is believed to exert a positive influence on a variety of diseases. And extensive research had uncovered a range of protective effects attributed to EGCG, indicating its potential to mitigate various pathological conditions. The precise mechanisms through which EGCG operates remain a subject of ongoing discussion among researchers. Reactive oxygen species (ROS), a primary culprit in oxidative stress, have been demonstrated to be reduced by EGCG. Furthermore, nuclear factor kappa‐B (NF‐κB), a pivotal signal molecular of inflammation progress, has been observed to be suppressed by EGCG. Sirtuins1 (Sirt1) is a histone deacetylase, the obligate substrate of which is NAD+. Evidence suggests that EGCG can enhance the activities of Sirt1 to induce autophagy to protect inflammation injury and oxidative stress in tissues and organs. Despite the promising protective effects of EGCG, its clinical use is constrained by its limited bioavailability. This review aims to consolidate the existing evidence and elucidate the mechanisms that support EGCG's protective role, as well as to explore the challenges and potential strategies for its clinical application. This review aims to address the challenge of limited bioavailability of epigallocatechin‐gallate (EGCG). The originality of our approach lies in the comprehensive consolidation of existing evidence and the elucidation of mechanisms that support EGCG's protective role. We highlight the role of EGCG in reducing oxidative stress and inflammation through its action on ROS and NF‐κB, and its potential to induce autophagy via Sirt1 activation. We explore potential strategies to improve its clinical application and summarize recent clinical trials of EGCG in different conditions. This addresses the ongoing discussion among researchers regarding the precise mechanisms of EGCG and offers new insights into promoting its therapeutic effectiveness.
Author Dong, Xiang‐Wen
Li, Yun‐Hang
Fang, Wen‐Lan
Chai, Yu‐Rong
Author_xml – sequence: 1
  givenname: Xiang‐Wen
  orcidid: 0009-0004-3509-3742
  surname: Dong
  fullname: Dong, Xiang‐Wen
  organization: Zhengzhou University
– sequence: 2
  givenname: Wen‐Lan
  surname: Fang
  fullname: Fang, Wen‐Lan
  organization: Zhengzhou University
– sequence: 3
  givenname: Yun‐Hang
  surname: Li
  fullname: Li, Yun‐Hang
  organization: Zhengzhou University
– sequence: 4
  givenname: Yu‐Rong
  orcidid: 0000-0002-9213-5302
  surname: Chai
  fullname: Chai, Yu‐Rong
  email: yrchai@zzu.edu.cn
  organization: Zhengzhou University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39915982$$D View this record in MEDLINE/PubMed
BookMark eNp10b1OwzAQB3ALFUH5GHgBFIkFhrTn2HFsNqgKVALRoV1YIidxWqPUKXZS1I1H4Bl5EgwtDEhM1km_O53vf4A6pjYKoRMMPQwQ9fOs7CUAMdtBXQxChMAp7aAuRIyEjHK6jw6cewYAwQjsoX0iBI4Fj7roabjUM1lVdS4blc-1-Xh7v_W1ry6DqbFypSptZsGoccHY1t40eqWCB2-l0W7hAmmKYDJXVi5V2-g8GHtkGi2rI7Rbysqp4-17iKY3w8ngLrx_vB0Nru7DnGDCQsEzKEQkI8rKuBRUSJqpjGYsZiKJqcSQZTHGjBaE86IQkiScU14SJWSZQ0wO0flm7tLWL61yTbrQLlf-D0bVrUuJ7yWCJwn19OwPfa5ba_x2XiXASRRR4tXpVrXZQhXp0uqFtOv052oeXGxAbmvnrCp_CYb0K5HUJ5J-J-Jtf2NfdaXW_8N0cH2z6fgEoGuL5g
Cites_doi 10.3390/antiox12061289
10.3390/ijms20153630
10.3390/ijms24010095
10.1021/acschemneuro.3c00368
10.1016/j.numecd.2009.05.015
10.1590/1414-431X20198092
10.1093/rb/rbab067
10.1016/j.clnu.2015.05.003
10.3390/molecules26134014
10.1016/j.biochi.2021.11.008
10.1186/s12937-016-0179-4
10.1016/j.diabres.2011.03.036
10.1186/s12885-024-12228-3
10.1016/j.nano.2018.01.019
10.3390/biom11050767
10.3390/molecules26206123
10.3390/nu11020474
10.1080/09637486.2019.1589430
10.1371/journal.pone.0031067
10.3389/fphar.2022.921394
10.1155/2019/9682318
10.1097/MCO.0b013e3282f0cef2
10.3389/fnut.2022.851972
10.1189/jlb.69.5.719
10.3390/ijms15045749
10.1093/jn/134.5.1039
10.1186/s12906-018-2355-x
10.1016/j.intimp.2021.107412
10.1083/jcb.201102095
10.1016/j.imlet.2013.11.006
10.1039/D3CP02261G
10.1189/jlb.3A0514-261RR
10.3109/10715762.2014.920955
10.1016/j.cmet.2020.10.021
10.1007/s00204-023-03562-9
10.1371/journal.pone.0277410
10.4161/oxim.2.5.9498
10.1016/j.foodchem.2022.132903
10.1021/acschemneuro.0c00277
10.1016/j.chemphyslip.2019.04.005
10.1016/j.msec.2021.112638
10.3390/antiox9090852
10.1016/j.addr.2007.04.006
10.1371/journal.pone.0091163
10.1111/iwj.12557
10.1589/jpts.28.2820
10.1016/j.molcel.2015.01.030
10.1111/j.1600-0722.2010.00714.x
10.1016/j.jinorgbio.2019.02.010
10.1080/10408398.2022.2157372
10.1111/1759-7714.13925
10.1002/cbf.3351
10.1155/2016/5698931
10.1186/s12951-021-01106-w
10.1111/jfbc.14264
10.1016/j.foodchem.2022.135364
10.1073/pnas.2112725119
10.3390/ph14100982
10.18632/oncotarget.3832
10.1016/j.foodchem.2019.125894
10.1177/15353702221110646
10.1007/s00284-022-02978-3
10.1111/jfbc.14259
10.3390/nu11081743
10.1016/j.jnutbio.2015.10.003
10.1042/BJ20111451
10.1016/j.foodres.2018.05.032
10.3390/cells10112857
10.1001/jamadermatol.2022.1736
10.1111/acel.13199
10.1002/jbt.23203
10.1007/s10571-019-00672-w
10.2147/IJN.S217898
10.3390/ijms23074004
10.1186/1476-4598-12-86
10.3390/molecules23092346
10.1111/jfbc.14189
10.1016/j.ijbiomac.2024.133451
10.2174/092986708785132979
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TM
7U7
8FD
C1K
FR3
P64
RC3
7X8
DOI 10.1002/cbf.70056
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
Nucleic Acids Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

CrossRef
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1099-0844
EndPage n/a
ExternalDocumentID 39915982
10_1002_cbf_70056
CBF70056
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NDZJH
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V2E
V8K
W8V
W99
WBKPD
WH7
WIB
WIH
WIJ
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WSB
WXI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TM
7U7
8FD
C1K
FR3
P64
RC3
7X8
ID FETCH-LOGICAL-c3136-98b0d92a246f5f949a4beb4b6569754a10bb51164d388dd9a378848f3e9afc053
IEDL.DBID DR2
ISSN 0263-6484
1099-0844
IngestDate Fri Jul 11 03:07:55 EDT 2025
Fri Jul 25 12:09:19 EDT 2025
Mon Jul 21 05:31:21 EDT 2025
Tue Jul 01 05:24:35 EDT 2025
Tue Feb 25 10:00:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords antioxidant
Sirt1
autophagy
anti‐inflammation
EGCG
Language English
License 2025 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3136-98b0d92a246f5f949a4beb4b6569754a10bb51164d388dd9a378848f3e9afc053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-9213-5302
0009-0004-3509-3742
PMID 39915982
PQID 3170832243
PQPubID 2029981
PageCount 10
ParticipantIDs proquest_miscellaneous_3164398774
proquest_journals_3170832243
pubmed_primary_39915982
crossref_primary_10_1002_cbf_70056
wiley_primary_10_1002_cbf_70056_CBF70056
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2025
2025-02-00
2025-Feb
20250201
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bognor Regis
PublicationTitle Cell biochemistry and function
PublicationTitleAlternate Cell Biochem Funct
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 133
2021; 26
2019; 2019
2012; 441
2019; 52
2019; 11
2017; 49
2019; 14
2022; 23
2022; 24
2016; 100
2016; 2016
2020; 11
2011; 194
2016; 35
2020; 19
2004; 134
2010; 20
2023; 25
2021; 33
2019; 20
2010; 118
2013; 12
2023; 410
2020; 9
2022; 79
2014; 15
2022; 36
2024; 274
2024; 64
2024; 24
2014; 9
2019; 194
2022; 247
2018; 36
2023; 97
2015; 57
2021; 8
2022; 195
2015; 6
2019; 70
2023; 14
2023; 12
2019; 39
2008; 14
2022; 46
2014; 48
2008; 15
2019; 224
2018; 23
2022; 119
2007; 10
2021; 93
2001; 69
2016; 15
2007; 59
2014; 157
2022; 158
2021; 14
2018; 111
2018; 18
2021; 10
2022; 2022
2021; 12
2021; 11
2017; 14
2021
2011; 93
2022; 9
2021; 19
2022; 13
2020; 311
2009; 2
2016; 28
2012; 7
2022; 17
2022; 388
2018; 14
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
Chan C. M. (e_1_2_9_53_1) 2008; 14
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
Agita A. (e_1_2_9_23_1) 2017; 49
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
Magliano D. J. (e_1_2_9_33_1) 2021
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
Chen X. (e_1_2_9_37_1) 2022; 2022
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_84_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 15
  start-page: 1840
  issue: 18
  year: 2008
  end-page: 1850
  article-title: Green Tea Catechins and Cardiovascular Health: An Update
  publication-title: Current Medicinal Chemistry
– volume: 52
  issue: 7
  year: 2019
  article-title: Epigallocatechin‐3‐Gallate Ameliorates Lipopolysaccharide‐Induced Acute Lung Injury by Suppression of TLR4/NF‐κB Signaling Activation
  publication-title: Brazilian Journal of Medical and Biological Research = Revista Brasileira de Pesquisas Medicas e Biologicas
– volume: 24
  issue: 1
  year: 2022
  article-title: The Anti‐Inflammatory and Immunomodulatory Activities of Natural Products to Control Autoimmune Inflammation
  publication-title: International Journal of Molecular Sciences
– volume: 14
  start-page: 8033
  year: 2019
  end-page: 8046
  article-title: Conjugation of EGCG and Chitosan NPs as a Novel Nano‐Drug Delivery System
  publication-title: International Journal of Nanomedicine
– volume: 69
  start-page: 719
  issue: 5
  year: 2001
  end-page: 726
  article-title: Green Tea Polyphenol (‐)‐Epigallocatechin‐3‐Gallate Treatment to Mouse Skin Prevents UVB‐Induced Infiltration of Leukocytes, Depletion of Antigen‐Presenting Cells, and Oxidative Stress
  publication-title: Journal of Leukocyte Biology
– volume: 2016
  year: 2016
  article-title: Does the Interdependence Between Oxidative Stress and Inflammation Explain the Antioxidant Paradox?
  publication-title: Oxidative Medicine and Cellular Longevity
– volume: 19
  start-page: 362
  issue: 1
  year: 2021
  article-title: Tea Polyphenol Modified, Photothermal Responsive and ROS Generative Black Phosphorus Quantum Dots as Nanoplatforms for Promoting MRSA Infected Wounds Healing in Diabetic Rats
  publication-title: Journal of Nanobiotechnology
– year: 2021
– volume: 46
  issue: 12
  year: 2022
  article-title: A Comprehensive Review on Modulation of SIRT1 Signaling Pathways in the Immune System of COVID‐19 Patients by Phytotherapeutic Melatonin and Epigallocatechin‐3‐Gallate
  publication-title: Journal of Food Biochemistry
– volume: 14
  start-page: 89
  issue: 1
  year: 2017
  end-page: 96
  article-title: Reactive Oxygen Species (ROS) and Wound Healing: The Functional Role of ROS and Emerging ROS‐Modulating Technologies for Augmentation of the Healing Process
  publication-title: International Wound Journal
– volume: 48
  start-page: 898
  issue: 8
  year: 2014
  end-page: 906
  article-title: (‐)‐Epigallocatechin‐3‐Gallate Attenuated Myocardial Mitochondrial Dysfunction and Autophagy in Diabetic Goto‐Kakizaki Rats
  publication-title: Free Radical Research
– volume: 7
  issue: 2
  year: 2012
  article-title: EGCG Enhances the Therapeutic Potential of Gemcitabine and CP690550 by Inhibiting STAT3 Signaling Pathway in Human Pancreatic Cancer
  publication-title: PLoS One
– volume: 224
  year: 2019
  article-title: Bombesin Conjugated Solid Lipid Nanoparticles for Improved Delivery of Epigallocatechin Gallate for Breast Cancer Treatment
  publication-title: Chemistry and Physics of Lipids
– volume: 14
  start-page: 2968
  issue: 17
  year: 2023
  end-page: 2980
  article-title: Epigallocatechin Gallate: A Multifaceted Molecule for Neurological Disorders and Neurotropic Viral Infections
  publication-title: ACS Chemical Neuroscience
– volume: 11
  start-page: 767
  issue: 5
  year: 2021
  article-title: Green Tea Epigallocatechin‐3‐Gallate (EGCG) Targeting Protein Misfolding in Drug Discovery for Neurodegenerative Diseases
  publication-title: Biomolecules
– volume: 35
  start-page: 592
  issue: 3
  year: 2016
  end-page: 599
  article-title: Therapeutic Effect of High‐Dose Green Tea Extract on Weight Reduction: A Randomized, Double‐Blind, Placebo‐Controlled Clinical Trial
  publication-title: Clinical Nutrition
– volume: 28
  start-page: 164
  year: 2016
  end-page: 170
  article-title: EGCG Prevents PCB‐126‐Induced Endothelial Cell Inflammation via Epigenetic Modifications of NF‐κB Target Genes in Human Endothelial Cells
  publication-title: Journal of Nutritional Biochemistry
– volume: 14
  issue: 10
  year: 2021
  article-title: Plant Polyphenols for Aging Health: Implication From Their Autophagy Modulating Properties in Age‐Associated Diseases
  publication-title: Pharmaceuticals
– volume: 247
  start-page: 1591
  issue: 17
  year: 2022
  end-page: 1600
  article-title: Epigallocatechin‐3‐Gallate Attenuates Myocardial Fibrosis in Diabetic Rats by Activating Autophagy
  publication-title: Experimental Biology and Medicine
– volume: 388
  year: 2022
  article-title: Antioxidant Activity, Storage Stability and In Vitro Release of Epigallocatechin‐3‐Gallate (EGCG) Encapsulated in Hordein Nanoparticles
  publication-title: Food Chemistry
– volume: 18
  start-page: 294
  issue: 1
  year: 2018
  article-title: Effects of Green Tea Extract on Overweight and Obese Women With High Levels of Low Density‐Lipoprotein‐Cholesterol (LDL‐C): A Randomised, Double‐Blind, and Cross‐Over Placebo‐Controlled Clinical Trial
  publication-title: BMC Complementary and Alternative Medicine
– volume: 194
  start-page: 97
  year: 2019
  end-page: 113
  article-title: Redox‐Cycling and Intercalating Properties of Novel Mixed Copper(II) Complexes With Non‐Steroidal Anti‐Inflammatory Drugs Tolfenamic, Mefenamic and Flufenamic Acids and Phenanthroline Functionality: Structure, SOD‐Mimetic Activity, Interaction With Albumin, DNA Damage Study and Anticancer Activity
  publication-title: Journal of Inorganic Biochemistry
– volume: 9
  issue: 9
  year: 2020
  article-title: Oxidative Stress: Concept and Some Practical Aspects
  publication-title: Antioxidants (Basel, Switzerland)
– volume: 12
  year: 2013
  article-title: The Complexity of NF‐κB Signaling in Inflammation and Cancer
  publication-title: Molecular Cancer
– volume: 28
  start-page: 2820
  issue: 10
  year: 2016
  end-page: 2829
  article-title: Green Tea and Exercise Interventions as Nondrug Remedies in Geriatric Patients With Rheumatoid Arthritis
  publication-title: Journal of Physical Therapy Science
– volume: 23
  issue: 7
  year: 2022
  article-title: Epigallocatechin Gallate Protects Against Hypoxia‐Induced Inflammation in Microglia via NF‐κB Suppression and Nrf‐2/HO‐1 Activation
  publication-title: International Journal of Molecular Sciences
– volume: 23
  issue: 9
  year: 2018
  article-title: Bioavailability of Tea Catechins and Its Improvement
  publication-title: Molecules
– volume: 15
  start-page: 5749
  issue: 4
  year: 2014
  end-page: 5761
  article-title: Epigallocatechin‐3‐O‐(3‐O‐Methyl)‐Gallate‐Induced Differentiation of Human Keratinocytes Involves Klotho‐Mediated Regulation of Protein Kinase‐cAMP Responsive Element‐Binding Protein Signaling
  publication-title: International Journal of Molecular Sciences
– volume: 20
  start-page: 1
  issue: 1
  year: 2010
  end-page: 6
  article-title: Polyphenols and Health: What Compounds Are Involved?
  publication-title: Nutrition, Metabolism, and Cardiovascular Diseases
– volume: 15
  start-page: 60
  issue: 1
  year: 2016
  article-title: Potential Neuroprotective Properties of Epigallocatechin‐3‐Gallate (EGCG)
  publication-title: Nutrition Journal
– volume: 26
  issue: 13
  year: 2021
  article-title: Anti‐Influenza With Green Tea Catechins: A Systematic Review and Meta‐Analysis
  publication-title: Molecules
– volume: 24
  start-page: 486
  issue: 1
  year: 2024
  article-title: Phase I/II Clinical Trial of Efficacy and Safety of EGCG Oxygen Nebulization Inhalation in the Treatment of COVID‐19 Pneumonia Patients With Cancer
  publication-title: BMC Cancer
– volume: 9
  year: 2022
  article-title: EGCG Inhibits Proliferation and Induces Apoptosis Through Downregulation of SIRT1 in Nasopharyngeal Carcinoma Cells
  publication-title: Frontiers in Nutrition
– volume: 70
  start-page: 977
  issue: 8
  year: 2019
  end-page: 985
  article-title: Effect of Green Tea Extract on Arterial Stiffness, Lipid Profile and sRAGE in Patients With Type 2 Diabetes Mellitus: A Randomised, Double‐Blind, Placebo‐Controlled Trial
  publication-title: International Journal of Food Sciences and Nutrition
– volume: 9
  issue: 3
  year: 2014
  article-title: Effects of Green Tea Extract on Insulin Resistance and Glucagon‐Like Peptide 1 in Patients With Type 2 Diabetes and Lipid Abnormalities: A Randomized, Double‐Blinded, and Placebo‐Controlled Trial
  publication-title: PLoS One
– volume: 100
  start-page: 559
  issue: 3
  year: 2016
  end-page: 568
  article-title: Epigallocatechin‐3‐Gallate Ameliorates Autoimmune Arthritis by Reciprocal Regulation of T Helper‐17 Regulatory T Cells and Inhibition of Osteoclastogenesis by Inhibiting STAT3 Signaling
  publication-title: Journal of Leukocyte Biology
– volume: 441
  start-page: 523
  issue: 2
  year: 2012
  end-page: 540
  article-title: Autophagy, Mitochondria and Oxidative Stress: Cross‐Talk and Redox Signalling
  publication-title: Biochemical Journal
– volume: 20
  issue: 15
  year: 2019
  article-title: Function of Green Tea Catechins in the Brain: Epigallocatechin Gallate and Its Metabolites
  publication-title: International Journal of Molecular Sciences
– volume: 157
  start-page: 51
  issue: 1–2
  year: 2014
  end-page: 59
  article-title: Epigallocatechin‐3‐Gallate Ameliorates Both Obesity and Autoinflammatory Arthritis Aggravated by Obesity by Altering the Balance Among CD4+ T‐Cell Subsets
  publication-title: Immunology Letters
– volume: 64
  start-page: 5719
  issue: 17
  year: 2024
  end-page: 5747
  article-title: Effects of Green Tea Polyphenol Extract and Epigallocatechin‐3‐O‐Gallate on Diabetes Mellitus and Diabetic Complications: Recent Advances
  publication-title: Critical Reviews in Food Science and Nutrition
– volume: 12
  issue: 6
  year: 2023
  article-title: Brain Iron Metabolism, Redox Balance and Neurological Diseases
  publication-title: Antioxidants (Basel, Switzerland)
– volume: 14
  start-page: 1073
  issue: 4
  year: 2018
  end-page: 1085
  article-title: Epigallocatechin‐3‐Gallate Loaded PEGylated‐PLGA Nanoparticles: A New Anti‐Seizure Strategy for Temporal Lobe Epilepsy
  publication-title: Nanomedicine: Nanotechnology, Biology, and Medicine
– volume: 13
  year: 2022
  article-title: EGCG Protects the Mouse Brain Against Cerebral Ischemia/Reperfusion Injury by Suppressing Autophagy via the AKT/AMPK/mTOR Phosphorylation Pathway
  publication-title: Frontiers in Pharmacology
– volume: 39
  start-page: 577
  issue: 5
  year: 2019
  end-page: 590
  article-title: Reductive Reprogramming: A Not‐So‐Radical Hypothesis of Neurodegeneration Linking Redox Perturbations to Neuroinflammation and Excitotoxicity
  publication-title: Cellular and Molecular Neurobiology
– volume: 11
  start-page: 1841
  issue: 12
  year: 2020
  end-page: 1851
  article-title: Green Tea Extracts EGCG and EGC Display Distinct Mechanisms in Disrupting Aβ Protofibril
  publication-title: ACS Chemical Neuroscience
– volume: 133
  year: 2022
  article-title: Preparation of Pro‐Angiogenic, Antibacterial and EGCG‐Modified ZnO Quantum Dots for Treating Bacterial Infected Wound of Diabetic Rats
  publication-title: Biomaterials Advances
– volume: 25
  start-page: 19182
  issue: 28
  year: 2023
  end-page: 19194
  article-title: How Oxidized EGCG Remodels α‐Synuclein Fibrils Into Non‐Toxic Aggregates: Insights From Computational Simulations
  publication-title: Physical Chemistry Chemical Physics
– volume: 49
  start-page: 158
  issue: 2
  year: 2017
  end-page: 165
  article-title: Inflammation, Immunity, and Hypertension
  publication-title: Acta Medica Indonesiana
– volume: 36
  start-page: 292
  issue: 6
  year: 2018
  end-page: 302
  article-title: Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase (NOX) and Liver Fibrosis: A Review
  publication-title: Cell Biochemistry and Function
– volume: 93
  year: 2021
  article-title: Epigallocatechin‐3‐Gallate Prevents Inflammation and Diabetes‐Induced Glucose Tolerance Through Inhibition of NLRP3 Inflammasome Activation
  publication-title: International Immunopharmacology
– volume: 97
  start-page: 2499
  issue: 10
  year: 2023
  end-page: 2574
  article-title: Reactive Oxygen Species, Toxicity, Oxidative Stress, and Antioxidants: Chronic Diseases and Aging
  publication-title: Archives of Toxicology
– volume: 274
  issue: Pt 2
  year: 2024
  article-title: Influence of EGCG Oxidation on Inhibitory Activity Against the SARS‐CoV‐2 Main Protease
  publication-title: International Journal of Biological Macromolecules
– volume: 195
  start-page: 100
  year: 2022
  end-page: 113
  article-title: Role of AMPK Mediated Pathways in Autophagy and Aging
  publication-title: Biochimie
– volume: 10
  start-page: 724
  issue: 6
  year: 2007
  end-page: 728
  article-title: Polyphenols and Inflammation: Basic Interactions
  publication-title: Current Opinion in Clinical Nutrition and Metabolic Care
– volume: 14
  start-page: 2528
  year: 2008
  end-page: 2534
  article-title: Protective Effects of (‐)‐Epigallocatechin Gallate on UVA‐Induced Damage in ARPE19 Cells
  publication-title: Molecular Vision
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 21
  article-title: Painful Diabetic Neuropathy Is Associated With Compromised Microglial IGF‐1 Signaling Which can be Rescued by Green Tea Polyphenol EGCG in Mice
  publication-title: Oxidative Medicine and Cellular Longevity
– volume: 2019
  year: 2019
  article-title: Dietary Polyphenols in Age‐Related Macular Degeneration: Protection Against Oxidative Stress and Beyond
  publication-title: Oxidative Medicine and Cellular Longevity
– volume: 134
  start-page: 1039
  issue: 5
  year: 2004
  end-page: 1044
  article-title: Epigallocatechin‐3‐Gallate, a Green Tea–Derived Polyphenol, Inhibits IL‐1β‐Dependent Proinflammatory Signal Transduction in Cultured Respiratory Epithelial Cells
  publication-title: Journal of Nutrition
– volume: 79
  start-page: 297
  issue: 10
  year: 2022
  article-title: Antimicrobial Effect of Epigallocatechin Gallate Against ATCC 8071: A Study Based on Cell Membrane and Biofilm
  publication-title: Current Microbiology
– volume: 119
  issue: 8
  year: 2022
  article-title: Targeting Ectromelia Virus and TNF/NF‐κB or STAT3 Signaling for Effective Treatment of Viral Pneumonia
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 17
  issue: 11
  year: 2022
  article-title: Regulation of Yak Longissimus Lumborum Energy Metabolism and Tenderness by the AMPK/SIRT1 Signaling Pathways During Postmortem Storage
  publication-title: PLoS One
– volume: 410
  year: 2023
  article-title: Stability of Glycosylated Complexes Loaded With Epigallocatechin 3‐Gallate (EGCG)
  publication-title: Food Chemistry
– volume: 118
  start-page: 145
  issue: 2
  year: 2010
  end-page: 150
  article-title: Anti‐Inflammatory Effect of Catechin on Cultured Human Dental Pulp Cells Affected by Bacteria‐Derived Factors
  publication-title: European Journal of Oral Sciences
– volume: 2
  start-page: 270
  issue: 5
  year: 2009
  end-page: 278
  article-title: Plant Polyphenols as Dietary Antioxidants in Human Health and Disease
  publication-title: Oxidative Medicine and Cellular Longevity
– volume: 26
  issue: 20
  year: 2021
  article-title: Beneficial Effects of Green Tea EGCG on Skin Wound Healing: A Comprehensive Review
  publication-title: Molecules
– volume: 46
  issue: 10
  year: 2022
  article-title: Health Benefits of Polyphenols: A Concise Review
  publication-title: Journal of Food Biochemistry
– volume: 57
  start-page: 393
  issue: 3
  year: 2015
  end-page: 395
  article-title: A Nuclear Option That Initiates Autophagy
  publication-title: Molecular Cell
– volume: 111
  start-page: 229
  year: 2018
  end-page: 236
  article-title: Fast Analysis of Polyphenols and Alkaloids in Cocoa‐Based Products by Ultra‐High Performance Liquid Chromatography and Orbitrap High‐Resolution Mass Spectrometry (UHPLC‐Q‐Orbitrap‐MS/MS)
  publication-title: Food Research International (Ottawa, Ont.)
– volume: 311
  year: 2020
  article-title: Utilization of Albumin Fraction From Defatted Rice Bran to Stabilize and Deliver (‐)‐Epigallocatechin Gallate
  publication-title: Food Chemistry
– volume: 59
  start-page: 427
  issue: 6
  year: 2007
  end-page: 443
  article-title: Lipid Nanoparticles for Improved Topical Application of Drugs for Skin Diseases
  publication-title: Advanced Drug Delivery Reviews
– volume: 36
  issue: 12
  year: 2022
  article-title: Epigallocatechin‐3‐Gallate (EGCG) Attenuates Inflammatory Responses and Oxidative Stress in Lipopolysaccharide (LPS)‐Induced Endometritis via Silent Information Regulator Transcript‐1 (SIRT1)/Nucleotide Oligomerization Domain (NOD)‐Like Receptor Pyrin Domain‐Containing 3 (NLRP3) Pathway
  publication-title: Journal of Biochemical and Molecular Toxicology
– volume: 33
  start-page: 110
  issue: 1
  year: 2021
  end-page: 127.e5
  article-title: NAD+ Metabolism Maintains Inducible PD‐L1 Expression to Drive Tumor Immune Evasion
  publication-title: Cell Metabolism
– volume: 12
  start-page: 1415
  issue: 9
  year: 2021
  end-page: 1422
  article-title: Quercetin Induces Pro‐Apoptotic Autophagy via SIRT1/AMPK Signaling Pathway in Human Lung Cancer Cell Lines A549 and H1299 In Vitro
  publication-title: Thoracic Cancer
– volume: 93
  start-page: 205
  issue: 2
  year: 2011
  end-page: 214
  article-title: Epigallocatechin‐3‐O‐Gallate (EGCG) Attenuates FFAs‐Induced Peripheral Insulin Resistance Through AMPK Pathway and Insulin Signaling Pathway In Vivo
  publication-title: Diabetes Research and Clinical Practice
– volume: 11
  issue: 8
  year: 2019
  article-title: Low Dose Epigallocatechin Gallate Alleviates Experimental Colitis by Subduing Inflammatory Cells and Cytokines, and Improving Intestinal Permeability
  publication-title: Nutrients
– volume: 194
  start-page: 7
  issue: 1
  year: 2011
  end-page: 15
  article-title: Signal Transduction by Reactive Oxygen Species
  publication-title: Journal of Cell Biology
– volume: 10
  issue: 11
  year: 2021
  article-title: Management of Rheumatoid Arthritis: An Overview
  publication-title: Cells
– volume: 158
  start-page: 779
  issue: 7
  year: 2022
  end-page: 786
  article-title: Efficacy of Epigallocatechin‐3‐Gallate in Preventing Dermatitis in Patients With Breast Cancer Receiving Postoperative Radiotherapy: A Double‐Blind, Placebo‐Controlled, Phase 2 Randomized Clinical Trial
  publication-title: JAMA Dermatology
– volume: 6
  start-page: 9701
  issue: 12
  year: 2015
  end-page: 9717
  article-title: EGCG‐Mediated Autophagy Flux Has a Neuroprotection Effect via a Class III Histone Deacetylase in Primary Neuron Cells
  publication-title: Oncotarget
– volume: 8
  issue: 6
  year: 2021
  article-title: Preparation of EGCG Decorated, Injectable Extracellular Vesicles for Cartilage Repair in Rat Arthritis
  publication-title: Regenerative Biomaterials
– volume: 19
  issue: 9
  year: 2020
  article-title: The Phytochemical Epigallocatechin Gallate Prolongs the Lifespan by Improving Lipid Metabolism, Reducing Inflammation and Oxidative Stress in High‐Fat Diet‐Fed Obese Rats
  publication-title: Aging cell
– volume: 46
  issue: 8
  year: 2022
  article-title: Epigallocatechin Gallate: Phytochemistry, Bioavailability, Utilization Challenges, and Strategies
  publication-title: Journal of Food Biochemistry
– volume: 11
  issue: 2
  year: 2019
  article-title: A Review of the Role of Green Tea ( ) in Antiphotoaging, Stress Resistance, Neuroprotection, and Autophagy
  publication-title: Nutrients
– ident: e_1_2_9_44_1
  doi: 10.3390/antiox12061289
– ident: e_1_2_9_15_1
  doi: 10.3390/ijms20153630
– ident: e_1_2_9_24_1
  doi: 10.3390/ijms24010095
– ident: e_1_2_9_45_1
  doi: 10.1021/acschemneuro.3c00368
– ident: e_1_2_9_4_1
  doi: 10.1016/j.numecd.2009.05.015
– ident: e_1_2_9_51_1
  doi: 10.1590/1414-431X20198092
– ident: e_1_2_9_84_1
  doi: 10.1093/rb/rbab067
– ident: e_1_2_9_40_1
  doi: 10.1016/j.clnu.2015.05.003
– ident: e_1_2_9_29_1
  doi: 10.3390/molecules26134014
– ident: e_1_2_9_70_1
  doi: 10.1016/j.biochi.2021.11.008
– ident: e_1_2_9_49_1
  doi: 10.1186/s12937-016-0179-4
– ident: e_1_2_9_35_1
  doi: 10.1016/j.diabres.2011.03.036
– ident: e_1_2_9_32_1
  doi: 10.1186/s12885-024-12228-3
– ident: e_1_2_9_50_1
  doi: 10.1016/j.nano.2018.01.019
– ident: e_1_2_9_48_1
  doi: 10.3390/biom11050767
– ident: e_1_2_9_11_1
  doi: 10.3390/molecules26206123
– ident: e_1_2_9_69_1
  doi: 10.3390/nu11020474
– ident: e_1_2_9_42_1
  doi: 10.1080/09637486.2019.1589430
– ident: e_1_2_9_77_1
  doi: 10.1371/journal.pone.0031067
– ident: e_1_2_9_12_1
  doi: 10.3389/fphar.2022.921394
– ident: e_1_2_9_19_1
  doi: 10.1155/2019/9682318
– ident: e_1_2_9_22_1
  doi: 10.1097/MCO.0b013e3282f0cef2
– ident: e_1_2_9_13_1
  doi: 10.3389/fnut.2022.851972
– ident: e_1_2_9_18_1
  doi: 10.1189/jlb.69.5.719
– ident: e_1_2_9_10_1
  doi: 10.3390/ijms15045749
– ident: e_1_2_9_20_1
  doi: 10.1093/jn/134.5.1039
– ident: e_1_2_9_41_1
  doi: 10.1186/s12906-018-2355-x
– ident: e_1_2_9_67_1
  doi: 10.1016/j.intimp.2021.107412
– ident: e_1_2_9_56_1
  doi: 10.1083/jcb.201102095
– ident: e_1_2_9_62_1
  doi: 10.1016/j.imlet.2013.11.006
– ident: e_1_2_9_46_1
  doi: 10.1039/D3CP02261G
– ident: e_1_2_9_76_1
  doi: 10.1189/jlb.3A0514-261RR
– ident: e_1_2_9_34_1
  doi: 10.3109/10715762.2014.920955
– ident: e_1_2_9_74_1
  doi: 10.1016/j.cmet.2020.10.021
– ident: e_1_2_9_54_1
  doi: 10.1007/s00204-023-03562-9
– ident: e_1_2_9_75_1
  doi: 10.1371/journal.pone.0277410
– ident: e_1_2_9_3_1
  doi: 10.4161/oxim.2.5.9498
– ident: e_1_2_9_7_1
  doi: 10.1016/j.foodchem.2022.132903
– ident: e_1_2_9_47_1
  doi: 10.1021/acschemneuro.0c00277
– ident: e_1_2_9_82_1
  doi: 10.1016/j.chemphyslip.2019.04.005
– ident: e_1_2_9_52_1
  doi: 10.1016/j.msec.2021.112638
– ident: e_1_2_9_57_1
  doi: 10.3390/antiox9090852
– ident: e_1_2_9_81_1
  doi: 10.1016/j.addr.2007.04.006
– ident: e_1_2_9_36_1
  doi: 10.1371/journal.pone.0091163
– volume: 2022
  start-page: 1
  year: 2022
  ident: e_1_2_9_37_1
  article-title: Painful Diabetic Neuropathy Is Associated With Compromised Microglial IGF‐1 Signaling Which can be Rescued by Green Tea Polyphenol EGCG in Mice
  publication-title: Oxidative Medicine and Cellular Longevity
– ident: e_1_2_9_17_1
  doi: 10.1111/iwj.12557
– ident: e_1_2_9_26_1
  doi: 10.1589/jpts.28.2820
– ident: e_1_2_9_71_1
  doi: 10.1016/j.molcel.2015.01.030
– volume: 14
  start-page: 2528
  year: 2008
  ident: e_1_2_9_53_1
  article-title: Protective Effects of (‐)‐Epigallocatechin Gallate on UVA‐Induced Damage in ARPE19 Cells
  publication-title: Molecular Vision
– ident: e_1_2_9_21_1
  doi: 10.1111/j.1600-0722.2010.00714.x
– ident: e_1_2_9_58_1
  doi: 10.1016/j.jinorgbio.2019.02.010
– ident: e_1_2_9_39_1
  doi: 10.1080/10408398.2022.2157372
– ident: e_1_2_9_73_1
  doi: 10.1111/1759-7714.13925
– volume: 49
  start-page: 158
  issue: 2
  year: 2017
  ident: e_1_2_9_23_1
  article-title: Inflammation, Immunity, and Hypertension
  publication-title: Acta Medica Indonesiana
– ident: e_1_2_9_55_1
  doi: 10.1002/cbf.3351
– ident: e_1_2_9_63_1
  doi: 10.1155/2016/5698931
– ident: e_1_2_9_38_1
  doi: 10.1186/s12951-021-01106-w
– ident: e_1_2_9_16_1
  doi: 10.1111/jfbc.14264
– ident: e_1_2_9_79_1
  doi: 10.1016/j.foodchem.2022.135364
– ident: e_1_2_9_64_1
  doi: 10.1073/pnas.2112725119
– ident: e_1_2_9_2_1
  doi: 10.3390/ph14100982
– volume-title: IDF Diabetes ATLAS
  year: 2021
  ident: e_1_2_9_33_1
– ident: e_1_2_9_72_1
  doi: 10.18632/oncotarget.3832
– ident: e_1_2_9_8_1
  doi: 10.1016/j.foodchem.2019.125894
– ident: e_1_2_9_6_1
  doi: 10.1177/15353702221110646
– ident: e_1_2_9_9_1
  doi: 10.1007/s00284-022-02978-3
– ident: e_1_2_9_30_1
  doi: 10.1111/jfbc.14259
– ident: e_1_2_9_27_1
  doi: 10.3390/nu11081743
– ident: e_1_2_9_66_1
  doi: 10.1016/j.jnutbio.2015.10.003
– ident: e_1_2_9_68_1
  doi: 10.1042/BJ20111451
– ident: e_1_2_9_5_1
  doi: 10.1016/j.foodres.2018.05.032
– ident: e_1_2_9_25_1
  doi: 10.3390/cells10112857
– ident: e_1_2_9_80_1
  doi: 10.1001/jamadermatol.2022.1736
– ident: e_1_2_9_61_1
  doi: 10.1111/acel.13199
– ident: e_1_2_9_28_1
  doi: 10.1002/jbt.23203
– ident: e_1_2_9_43_1
  doi: 10.1007/s10571-019-00672-w
– ident: e_1_2_9_83_1
  doi: 10.2147/IJN.S217898
– ident: e_1_2_9_60_1
  doi: 10.3390/ijms23074004
– ident: e_1_2_9_65_1
  doi: 10.1186/1476-4598-12-86
– ident: e_1_2_9_14_1
  doi: 10.3390/molecules23092346
– ident: e_1_2_9_78_1
  doi: 10.1111/jfbc.14189
– ident: e_1_2_9_31_1
  doi: 10.1016/j.ijbiomac.2024.133451
– ident: e_1_2_9_59_1
  doi: 10.2174/092986708785132979
SSID ssj0009630
Score 2.38166
SecondaryResourceType review_article
Snippet ABSTRACT Epigallocatechin‐gallate (EGCG), the predominant catechin in green tea, is a key constituent of tea polyphenols. Due to the EGCG's diverse biological...
Epigallocatechin‐gallate (EGCG), the predominant catechin in green tea, is a key constituent of tea polyphenols. Due to the EGCG's diverse biological...
Epigallocatechin-gallate (EGCG), the predominant catechin in green tea, is a key constituent of tea polyphenols. Due to the EGCG's diverse biological...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e70056
SubjectTerms Animals
Anti-Inflammatory Agents - chemistry
Anti-Inflammatory Agents - pharmacology
Anti-Inflammatory Agents - therapeutic use
antioxidant
Antioxidants - chemistry
Antioxidants - pharmacology
Antioxidants - therapeutic use
anti‐inflammation
Autophagy
Bioavailability
Catechin
Catechin - analogs & derivatives
Catechin - chemistry
Catechin - pharmacology
Catechin - therapeutic use
Clinical trials
EGCG
Epigallocatechin gallate
Green tea
Histone deacetylase
Humans
Inflammation
Inflammation - drug therapy
Inflammation - metabolism
Oxidative stress
Oxidative Stress - drug effects
Polyphenols
Reactive oxygen species
Reactive Oxygen Species - metabolism
Sirt1
SIRT1 protein
Sirtuin 1 - metabolism
Tea
Therapeutic applications
Title Epigallocatechin‐Gallate: Unraveling Its Protective Mechanisms and Therapeutic Potential
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcbf.70056
https://www.ncbi.nlm.nih.gov/pubmed/39915982
https://www.proquest.com/docview/3170832243
https://www.proquest.com/docview/3164398774
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swED9KYKwv3dr1j7euqGMPfXFiy_IfdU9raJoOOsJIIJSCkSwJQje3zM7D9rSPsM_YTzKdHCe0o1D6ZrCM7Dvd6efT3e8APqYxl0IWqa-Uoj7jBfclRW48E2iTUSa0Kxe7-JoMJ-zLNJ6uwae2Fqbhh1gG3NAynL9GAxey6q1IQwtpuikyWVr_i7laCIi-raij7MJaxFciP2EZa1mFAtpbPnl_L_oPYN7Hq27DGbyCq_ZVmzyT6-68lt3i9wMWx2d-y2vYWABR8rlZOZuwpssteNG0pvy1BS_7bSe4N3B5ejtzB_SYPYW5l3d__p5hAL7Wx2RSYgMjLGon53VFRg3vg_Wh5EJjVfGs-lERUSoyXlV6kZEdVFrf8n0bJoPTcX_oL3oy-EVkpezzTAaKU0FZYmLDGRdMasmkhYU8jZkIAykthkuYirJMKS6Qr55lJtJcmMJa_A50yptS7wGRRgUxtX_2oRAsUYWIuIkyFaZpKgIVSw8-tNrJbxvqjbwhWaa5FVjuBObBfqu3fGF9VW4xUYCeikUeHC5vW6HhYYgo9c0cxyAWyyz69WC30fdyFgvaQiQ29ODIae3x6fP-ycBdvH360HewTrGJsEv93odO_XOu31tkU8sDt4T_AQFm9C8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5REKIXXn0QoMUgDlyyJI7zMOqlXbFdWhYhtCshpCqyY1tCLQGx2QOc-An8Rn4JHmezK1pVqnqLFFtOPJ7x5_HMNwC7acylkEXqK6Woz3jBfUmRG88E2mSUCe3SxXonSXfAvp3H5zPwqcmFqfkhJg431Axnr1HB0SG9P2UNLaRppUhl-QrmsKK3O1CdTcmj7NIae1giP2EZa3iFAro_6fpyN_oDYr5ErG7L6SzBj-Zj60iTn61RJVvF_W88jv_7N8uwOMai5HO9eFZgRperMF9Xp7xbhYV2UwzuDVwc3ly6O3oMoMLwy6eHx6_og6_0ARmUWMMI89rJUTUkpzX1gzWjpKcxsfhyeDUkolSkP032Iqe2UWnNy6-3MOgc9ttdf1yWwS-iMEp8nslAcSooS0xsOOOCSS2ZtMiQpzETYSClhXEJU1GWKcUFUtazzESaC1NYpX8Hs-V1qdeASKOCmNrDfSgES1QhIm6iTIVpmopAxdKDnUY8-U3NvpHXPMs0txOWuwnzYLMRXD5WwGFuYVGAxopFHmxPXttJw_sQUerrEbZBOJZZAOzB-1rgk1EsbguR29CDPSe2vw-ft7903MP6vzfdgoVuv3ecHx-dfN-A1xRrCrtI8E2YrW5H-oMFOpX86NbzMz-a-Eo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIiiXAqU_KQVc1EMv2SaOk9hwgm23LaXVqupKFUKK7NiWqrbpis0e4MQj8Iw8CR5ns6tSIaHeIsWRE8-Pv4xnvgHYylOhpCrzUGtNQyZKESqK3Hg2MpZTJo0vFzs-yQ4G7NN5ej4H79tamIYfYhpwQ8vw_hoNfKjtzow0tFS2kyOT5QN4yLKIo0rvns64o5xmTQIsSZgxzlpaoYjuTB-9vRndQZi3AavfcXpP4Wv7rk2iyWVnXKtO-eMvGsd7fswzWJwgUfKhUZ3nMGeqJXjU9Kb8vgQL3bYV3Av4sje88Cf0mD6FyZe_f_7axwh8bd6RQYUdjLCqnRzWI9JviB-cEyXHBsuKL0bXIyIrTc5mpV6k7wZVzrlcLcOgt3fWPQgnTRnCMomTLBRcRVpQSVlmUyuYkEwZxZTDhSJPmYwjpRyIy5hOONdaSCSsZ9wmRkhbOpNfgfnqpjJrQJTVUUrdr30sJct0KRNhE67jPM9lpFMVwNtWOsWw4d4oGpZlWrgFK_yCBbDRyq2YmN-ocKAoQlfFkgA2p7fdouFpiKzMzRjHIBjjDv4GsNrIezqLQ20xMhsGsO2l9u_pi-7Hnr9Y__-hb-Bxf7dXfD48OXoJTyg2FPZp4BswX38bm1cO5dTqtdfmP3wn9wI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epigallocatechin%E2%80%90Gallate%3A+Unraveling+Its+Protective+Mechanisms+and+Therapeutic+Potential&rft.jtitle=Cell+biochemistry+and+function&rft.au=Dong%2C+Xiang%E2%80%90Wen&rft.au=Fang%2C+Wen%E2%80%90Lan&rft.au=Li%2C+Yun%E2%80%90Hang&rft.au=Chai%2C+Yu%E2%80%90Rong&rft.date=2025-02-01&rft.issn=0263-6484&rft.eissn=1099-0844&rft.volume=43&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcbf.70056&rft.externalDBID=10.1002%252Fcbf.70056&rft.externalDocID=CBF70056
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-6484&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-6484&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-6484&client=summon