Statistical Inference for Association Studies in the Presence of Binary Outcome Misclassification
ABSTRACT In biomedical and public health association studies, binary outcome variables may be subject to misclassification, resulting in substantial bias in effect estimates. The feasibility of addressing binary outcome misclassification in regression models is often hindered by model identifiabilit...
Saved in:
Published in | Statistics in medicine Vol. 44; no. 5; pp. e10316 - n/a |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
28.02.2025
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
In biomedical and public health association studies, binary outcome variables may be subject to misclassification, resulting in substantial bias in effect estimates. The feasibility of addressing binary outcome misclassification in regression models is often hindered by model identifiability issues. In this paper, we characterize the identifiability problems in this class of models as a specific case of “label‐switching” and leverage a pattern in the resulting parameter estimates to solve the permutation invariance of the complete data log‐likelihood. Our proposed algorithm in binary outcome misclassification models does not require gold standard labels and relies only on the assumption that the sum of the sensitivity and specificity exceeds 1. A label‐switching correction is applied within estimation methods to recover unbiased effect estimates and to estimate misclassification rates. Open‐source software is provided to implement the proposed methods. We give a detailed simulation study for our proposed methodology and apply these methods to data from the 2020 Medical Expenditure Panel Survey (MEPS). |
---|---|
AbstractList | ABSTRACT
In biomedical and public health association studies, binary outcome variables may be subject to misclassification, resulting in substantial bias in effect estimates. The feasibility of addressing binary outcome misclassification in regression models is often hindered by model identifiability issues. In this paper, we characterize the identifiability problems in this class of models as a specific case of “label‐switching” and leverage a pattern in the resulting parameter estimates to solve the permutation invariance of the complete data log‐likelihood. Our proposed algorithm in binary outcome misclassification models does not require gold standard labels and relies only on the assumption that the sum of the sensitivity and specificity exceeds 1. A label‐switching correction is applied within estimation methods to recover unbiased effect estimates and to estimate misclassification rates. Open‐source software is provided to implement the proposed methods. We give a detailed simulation study for our proposed methodology and apply these methods to data from the 2020 Medical Expenditure Panel Survey (MEPS). In biomedical and public health association studies, binary outcome variables may be subject to misclassification, resulting in substantial bias in effect estimates. The feasibility of addressing binary outcome misclassification in regression models is often hindered by model identifiability issues. In this paper, we characterize the identifiability problems in this class of models as a specific case of "label-switching" and leverage a pattern in the resulting parameter estimates to solve the permutation invariance of the complete data log-likelihood. Our proposed algorithm in binary outcome misclassification models does not require gold standard labels and relies only on the assumption that the sum of the sensitivity and specificity exceeds 1. A label-switching correction is applied within estimation methods to recover unbiased effect estimates and to estimate misclassification rates. Open-source software is provided to implement the proposed methods. We give a detailed simulation study for our proposed methodology and apply these methods to data from the 2020 Medical Expenditure Panel Survey (MEPS).In biomedical and public health association studies, binary outcome variables may be subject to misclassification, resulting in substantial bias in effect estimates. The feasibility of addressing binary outcome misclassification in regression models is often hindered by model identifiability issues. In this paper, we characterize the identifiability problems in this class of models as a specific case of "label-switching" and leverage a pattern in the resulting parameter estimates to solve the permutation invariance of the complete data log-likelihood. Our proposed algorithm in binary outcome misclassification models does not require gold standard labels and relies only on the assumption that the sum of the sensitivity and specificity exceeds 1. A label-switching correction is applied within estimation methods to recover unbiased effect estimates and to estimate misclassification rates. Open-source software is provided to implement the proposed methods. We give a detailed simulation study for our proposed methodology and apply these methods to data from the 2020 Medical Expenditure Panel Survey (MEPS). In biomedical and public health association studies, binary outcome variables may be subject to misclassification, resulting in substantial bias in effect estimates. The feasibility of addressing binary outcome misclassification in regression models is often hindered by model identifiability issues. In this paper, we characterize the identifiability problems in this class of models as a specific case of “label‐switching” and leverage a pattern in the resulting parameter estimates to solve the permutation invariance of the complete data log‐likelihood. Our proposed algorithm in binary outcome misclassification models does not require gold standard labels and relies only on the assumption that the sum of the sensitivity and specificity exceeds 1. A label‐switching correction is applied within estimation methods to recover unbiased effect estimates and to estimate misclassification rates. Open‐source software is provided to implement the proposed methods. We give a detailed simulation study for our proposed methodology and apply these methods to data from the 2020 Medical Expenditure Panel Survey (MEPS). |
Author | Wells, Martin T. Hochstedler Webb, Kimberly A. |
Author_xml | – sequence: 1 givenname: Kimberly A. orcidid: 0000-0003-1145-3024 surname: Hochstedler Webb fullname: Hochstedler Webb, Kimberly A. email: kah343@cornell.edu organization: Cornell University Ithaca – sequence: 2 givenname: Martin T. surname: Wells fullname: Wells, Martin T. organization: Cornell University Ithaca |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39914461$$D View this record in MEDLINE/PubMed |
BookMark | eNp10c9LBCEUB3CJorYfh_6BELrUYcqn45jHin4stGywdR4cR8mY0dIZYv_73LY6BJ0U_LzH83130aYP3iB0COQMCKHnyfX5wqDaQBMgUhSE8otNNCFUiKISwHfQbkqvhABwKrbRDpMSyrKCCVKLQQ0uDU6rDk-9NdF4bbANEV-mFLTLr8HjxTC2ziTsPB5eDH6MJn25YPGV8you8XwcdOgNnrmkO5WSs7nlqnYfbVnVJXPwfe6h59ubp-v74mF-N72-fCg0A1YV4qJUSrbUKiNY2VIOirdg24YDF1ZKRiuugVoNVrMqk8q2tGyakkoNbQNsD52s-77F8D6aNNR9HsV0nfImjKnO6ymZ5ESu6PEf-hrG6PN0WQkQFaWSZXX0rcamN239Fl2ff1r_LC-D0zXQMaQUjf0lQOpVMHUOpv4KJtvztf1wnVn-D-vFdLau-ATp8Y4G |
Cites_doi | 10.1137/1026034 10.1080/10618600.2012.735624 10.1016/j.jeconom.2020.04.041 10.1097/EDE.0b013e3182117c85 10.32614/CRAN.package.SAMBA 10.1111/1541-0420.00077 10.1111/biom.13400 10.1093/biostatistics/kxx014 10.1016/j.socscimed.2005.05.028 10.1111/biom.13512 10.1016/S0893-6080(99)00066-0 10.1002/sim.8688 10.1002/sim.7555 10.1002/sim.6440 10.1080/00949655.2013.859259 10.15441/ceem.17.257 10.1111/j.2517-6161.1977.tb01600.x 10.1177/0962280220978500 10.1016/0277-9536(95)00342-8 10.1016/j.artmed.2007.06.001 10.1002/sim.3971 10.2147/TACG.S122250 10.1111/j.0006-341X.2001.01123.x 10.1109/TNNLS.2013.2292894 10.1093/biomet/86.4.843 10.1002/sim.6218 10.1002/pds.4693 10.1089/jwh.2008.1007 10.1111/j.1541-0420.2009.01330.x 10.1016/S0167-9473(03)00068-9 10.1016/j.ehb.2015.02.002 10.1007/s00439-014-1466-9 10.1080/00273171.2015.1095063 10.1111/1467-9868.00265 10.2147/JMDH.S104807 10.1016/j.trb.2023.03.001 10.1093/oxfordjournals.aje.a009251 10.1214/11‐EJS616 10.1080/00031305.2023.2250401 10.1001/jama.2015.14849 10.1201/9781420010138 10.1176/ajp.151.5.650 10.1016/B978-0-12-809633-8.20351-8 |
ContentType | Journal Article |
Copyright | 2025 John Wiley & Sons Ltd. 2025 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2025 John Wiley & Sons Ltd. – notice: 2025 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
DOI | 10.1002/sim.10316 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | n/a |
ExternalDocumentID | 39914461 10_1002_sim_10316 SIM10316 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: LinkedIn PhD Award (Cornell University Bowers CIS Strategic Partnership Program with LinkedIn) – fundername: NIH funderid: 1P01‐AI159402; U19AI111143‐07 – fundername: NIH HHS grantid: 1P01-AI159402 – fundername: NIH HHS grantid: U19AI111143-07 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AHMBA AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
ID | FETCH-LOGICAL-c3136-784aa9d2fae734d251a5d1fdb5157f993265c12fc1fc367346fd24bb429c1db13 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Fri Jul 11 03:52:03 EDT 2025 Fri Jul 25 21:37:29 EDT 2025 Mon Jul 21 05:31:10 EDT 2025 Thu Aug 14 00:14:19 EDT 2025 Wed Aug 20 07:26:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | MCMC identification association studies bias correction EM algorithm label‐switching |
Language | English |
License | 2025 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3136-784aa9d2fae734d251a5d1fdb5157f993265c12fc1fc367346fd24bb429c1db13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1145-3024 |
PMID | 39914461 |
PQID | 3171762293 |
PQPubID | 48361 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_3164395091 proquest_journals_3171762293 pubmed_primary_39914461 crossref_primary_10_1002_sim_10316 wiley_primary_10_1002_sim_10316_SIM10316 |
PublicationCentury | 2000 |
PublicationDate | 28 February 2025 |
PublicationDateYYYYMMDD | 2025-02-28 |
PublicationDate_xml | – month: 02 year: 2025 text: 28 February 2025 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Stat Med |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2015; 34 2015; 17 2013; 25 1984; 26 2004; 45 1994; 151 2020; 39 2003; 59 2006 2016; 51 1999; 86 2003 2021; 220 2014; 133 2021; 30 2011; 5 2014; 23 1997; 146 2010; 66 2018; 5 2006; 62 2023 2015; 314 2022 2010; 29 2021 1977; 39 2020 2023; 172 2015; 85 2022; 78 2019; 28 2000; 62 1999; 12 2019 2011; 22 2017 2017; 18 2007; 41 2001; 57 2016; 9 2018; 37 2014; 33 1996; 42 2009; 18 e_1_2_13_24_1 e_1_2_13_26_1 e_1_2_13_47_1 e_1_2_13_20_1 e_1_2_13_45_1 e_1_2_13_22_1 e_1_2_13_43_1 e_1_2_13_8_1 e_1_2_13_41_1 e_1_2_13_6_1 Fogliato R. (e_1_2_13_15_1) 2020 e_1_2_13_17_1 e_1_2_13_19_1 e_1_2_13_13_1 e_1_2_13_36_1 e_1_2_13_38_1 e_1_2_13_32_1 e_1_2_13_55_1 e_1_2_13_11_1 e_1_2_13_34_1 e_1_2_13_51_1 e_1_2_13_30_1 e_1_2_13_4_1 e_1_2_13_2_1 Agresti A. (e_1_2_13_49_1) 2003 e_1_2_13_29_1 e_1_2_13_25_1 e_1_2_13_27_1 e_1_2_13_46_1 Kahn S. (e_1_2_13_7_1) 2020 e_1_2_13_21_1 e_1_2_13_44_1 e_1_2_13_23_1 e_1_2_13_42_1 e_1_2_13_9_1 e_1_2_13_40_1 R Core Team (e_1_2_13_48_1) 2021 e_1_2_13_18_1 e_1_2_13_39_1 e_1_2_13_14_1 e_1_2_13_35_1 e_1_2_13_16_1 e_1_2_13_37_1 e_1_2_13_10_1 e_1_2_13_31_1 e_1_2_13_56_1 e_1_2_13_12_1 e_1_2_13_33_1 e_1_2_13_54_1 AHRQ (e_1_2_13_53_1) 2022 e_1_2_13_52_1 e_1_2_13_50_1 e_1_2_13_5_1 e_1_2_13_3_1 e_1_2_13_28_1 |
References_xml | – volume: 57 start-page: 1123 issue: 4 year: 2001 end-page: 1129 article-title: Threshold Model for Misclassified Binary Responses With Applications to Animal Breeding publication-title: Biometrics – volume: 314 start-page: 1945 issue: 18 year: 2015 end-page: 1954 article-title: Prevalence and Correlates of Myocardial Scar in a US Cohort publication-title: Journal of the American Medical Association – volume: 85 start-page: 1000 issue: 5 year: 2015 end-page: 1012 article-title: Label Switching and Its Solutions for Frequentist Mixture Models publication-title: Journal of Statistical Computation and Simulation – year: 2021 – volume: 45 start-page: 467 issue: 3 year: 2004 end-page: 479 article-title: Parameter Subset Selection and Multiple Comparisons of Poisson Rate Parameters With Misclassification publication-title: Computational Statistics & Data Analysis – volume: 62 start-page: 795 issue: 4 year: 2000 end-page: 809 article-title: Dealing With Label Switching in Mixture Models publication-title: Journal of the Royal Statistical Society, Series B: Statistical Methodology – volume: 25 start-page: 845 issue: 5 year: 2013 end-page: 869 article-title: Classification in the Presence of Label Noise: A Survey publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 23 start-page: 25 issue: 1 year: 2014 end-page: 45 article-title: Label Switching in Bayesian Mixture Models: Deterministic Relabeling Strategies publication-title: Journal of Computational and Graphical Statistics – volume: 39 start-page: 1 issue: 1 year: 1977 end-page: 22 article-title: Maximum Likelihood From Incomplete Data via the EM Algorithm publication-title: Journal of the Royal Statistical Society: Series B – volume: 30 start-page: 857 issue: 3 year: 2021 end-page: 874 article-title: Two‐Phase Analysis and Study Design for Survival Models With Error‐Prone Exposures publication-title: Statistical Methods in Medical Research – volume: 42 start-page: 769 issue: 5 year: 1996 end-page: 776 article-title: Non‐medical Influences on Medical Decision‐Making publication-title: Social Science & Medicine – volume: 12 start-page: 1253 issue: 9 year: 1999 end-page: 1258 article-title: On the Identifiability of Mixtures‐Of‐Experts publication-title: Neural Networks – volume: 29 start-page: 2297 issue: 22 year: 2010 end-page: 2309 article-title: Sensitivity Analysis for Misclassification in Logistic Regression via Likelihood Methods and Predictive Value Weighting publication-title: Statistics in Medicine – volume: 78 start-page: 214 issue: 1 year: 2022 end-page: 226 article-title: Statistical Inference for Association Studies Using Electronic Health Records: Handling Both Selection Bias and Outcome Misclassification publication-title: Biometrics – volume: 22 start-page: 589 issue: 4 year: 2011 article-title: Validation Data‐Based Adjustments for Outcome Misclassification in Logistic Regression: An Illustration publication-title: Epidemiology – volume: 26 start-page: 195 issue: 2 year: 1984 end-page: 239 article-title: Mixture Densities, Maximum Likelihood and the EM Algorithm publication-title: SIAM Review – volume: 133 start-page: 1369 year: 2014 end-page: 1382 article-title: Improving the Power of Genetic Association Tests With Imperfect Phenotype Derived From Electronic Medical Records publication-title: Human Genetics – year: 2022 – year: 2020 article-title: An Introduction to Classification Using Mislabeled Data publication-title: Towards Data Science – volume: 9 start-page: 169 year: 2016 end-page: 177 article-title: Analysis of Binary Responses With Outcome‐Specific Misclassification Probability in Genome‐Wide Association Studies publication-title: Application of Clinical Genetics – volume: 151 start-page: 650 issue: 5 year: 1994 end-page: 657 article-title: Measuring Diagnostic Accuracy in the Absence of a Gold Standard publication-title: American Journal of Psychiatry – volume: 41 start-page: 57 issue: 1 year: 2007 end-page: 67 article-title: Extension of Mixture‐Of‐Experts Networks for Binary Classification of Hierarchical Data publication-title: Artificial Intelligence in Medicine – volume: 5 start-page: 264 issue: 4 year: 2018 article-title: Sensitivity, Specificity, and Predictive Value of Cardiac Symptoms Assessed by Emergency Medical Services Providers in the Diagnosis of Acute Myocardial Infarction: A Multi‐Center Observational Study publication-title: Clinical and Experimental Emergency Medicine – volume: 86 start-page: 843 issue: 4 year: 1999 end-page: 855 article-title: Bias and Efficiency Loss due to Misclassified Responses in Binary Regression publication-title: Biometrika – start-page: 2325 year: 2020 end-page: 2336 – volume: 17 start-page: 116 year: 2015 end-page: 128 article-title: Measuring Obesity in the Absence of a Gold Standard publication-title: Economics and Human Biology – volume: 146 start-page: 195 issue: 2 year: 1997 end-page: 203 article-title: Logistic Regression When the Outcome Is Measured With Uncertainty publication-title: American Journal of Epidemiology – volume: 172 start-page: 134 year: 2023 end-page: 173 article-title: Finite Mixture (Or Latent Class) Modeling in Transportation: Trends, Usage, Potential, and Future Directions publication-title: Transportation Research Part B: Methodological – year: 2003 – volume: 5 start-page: 460 year: 2011 end-page: 483 article-title: Maximum Likelihood Estimation in the Logistic Regression Model With a Cure Fraction publication-title: Electronic Journal of Statistics – volume: 220 start-page: 181 issue: 1 year: 2021 end-page: 192 article-title: Estimating the COVID‐19 Infection Rate: Anatomy of an Inference Problem publication-title: Journal of Econometrics – volume: 28 start-page: 217 issue: 2 year: 2019 end-page: 226 article-title: Comparing External and Internal Validation Methods in Correcting Outcome Misclassification Bias in Logistic Regression: A Simulation Study and Application to the Case of Postsurgical Venous Thromboembolism Following Total Hip and Knee Arthroplasty publication-title: Pharmacoepidemiology and Drug Safety – volume: 18 start-page: 1661 issue: 10 year: 2009 end-page: 1667 article-title: Disparities in Physicians' Interpretations of Heart Disease Symptoms by Patient Gender: Results of a Video Vignette Factorial Experiment publication-title: Journal of Women's Health – volume: 9 start-page: 211 year: 2016 end-page: 217 article-title: Information Bias in Health Research: Definition, Pitfalls, and Adjustment Methods publication-title: Journal of Multidisciplinary Healthcare – start-page: 546 year: 2019 end-page: 560 – volume: 39 start-page: 3700 issue: 26 year: 2020 end-page: 3719 article-title: Genetic Association Studies With Bivariate Mixed Responses Subject to Measurement Error and Misclassification publication-title: Statistics in Medicine – volume: 59 start-page: 670 issue: 3 year: 2003 end-page: 675 article-title: Binomial Regression With Misclassification publication-title: Biometrics – volume: 33 start-page: 4141 issue: 24 year: 2014 end-page: 4169 article-title: Estimation of Diagnostic Test Accuracy Without Full Verification: A Review of Latent Class Methods publication-title: Statistics in Medicine – volume: 37 start-page: 933 issue: 6 year: 2018 end-page: 947 article-title: Bayesian Inference for Unidirectional Misclassification of a Binary Response Trait publication-title: Statistics in Medicine – year: 2006 – year: 2020 – year: 2023 – volume: 62 start-page: 103 issue: 1 year: 2006 end-page: 115 article-title: Patient Characteristics and Inequalities in Doctors' Diagnostic and Management Strategies Relating to CHD: A Video‐Simulation Experiment publication-title: Social Science & Medicine – volume: 18 start-page: 695 issue: 4 year: 2017 end-page: 710 article-title: Propensity Scores With Misclassified Treatment Assignment: A Likelihood‐Based Adjustment publication-title: Biostatistics – volume: 78 start-page: 1674 issue: 4 year: 2022 end-page: 1685 article-title: Efficient Odds Ratio Estimation Under Two‐Phase Sampling Using Error‐Prone Data From a Multi‐National HIV Research Cohort publication-title: Biometrics – volume: 51 start-page: 35 issue: 1 year: 2016 end-page: 52 article-title: Regression Mixture Models: Does Modeling the Covariance Between Independent Variables and Latent Classes Improve the Results? publication-title: Multivariate Behavioral Research – year: 2017 – volume: 34 start-page: 1605 issue: 9 year: 2015 end-page: 1620 article-title: Binary Regression With Differentially Misclassified Response and Exposure Variables publication-title: Statistics in Medicine – volume: 66 start-page: 855 issue: 3 year: 2010 end-page: 863 article-title: Identifiability of Models for Multiple Diagnostic Testing in the Absence of a Gold Standard publication-title: Biometrics – ident: e_1_2_13_31_1 doi: 10.1137/1026034 – ident: e_1_2_13_32_1 doi: 10.1080/10618600.2012.735624 – ident: e_1_2_13_2_1 doi: 10.1016/j.jeconom.2020.04.041 – volume-title: R: A Language and Environment for Statistical Computing year: 2021 ident: e_1_2_13_48_1 – ident: e_1_2_13_4_1 – ident: e_1_2_13_29_1 – ident: e_1_2_13_11_1 doi: 10.1097/EDE.0b013e3182117c85 – ident: e_1_2_13_52_1 doi: 10.32614/CRAN.package.SAMBA – ident: e_1_2_13_19_1 doi: 10.1111/1541-0420.00077 – year: 2020 ident: e_1_2_13_7_1 article-title: An Introduction to Classification Using Mislabeled Data publication-title: Towards Data Science – ident: e_1_2_13_8_1 doi: 10.1111/biom.13400 – ident: e_1_2_13_17_1 doi: 10.1093/biostatistics/kxx014 – ident: e_1_2_13_44_1 doi: 10.1016/j.socscimed.2005.05.028 – ident: e_1_2_13_13_1 doi: 10.1111/biom.13512 – volume-title: Categorical Data Analysis year: 2003 ident: e_1_2_13_49_1 – ident: e_1_2_13_41_1 doi: 10.1016/S0893-6080(99)00066-0 – ident: e_1_2_13_9_1 doi: 10.1002/sim.8688 – ident: e_1_2_13_22_1 doi: 10.1002/sim.7555 – ident: e_1_2_13_14_1 doi: 10.1002/sim.6440 – ident: e_1_2_13_33_1 doi: 10.1080/00949655.2013.859259 – ident: e_1_2_13_54_1 doi: 10.15441/ceem.17.257 – ident: e_1_2_13_30_1 – ident: e_1_2_13_27_1 – ident: e_1_2_13_47_1 doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: e_1_2_13_16_1 doi: 10.1177/0962280220978500 – ident: e_1_2_13_46_1 doi: 10.1016/0277-9536(95)00342-8 – ident: e_1_2_13_42_1 doi: 10.1016/j.artmed.2007.06.001 – ident: e_1_2_13_12_1 doi: 10.1002/sim.3971 – ident: e_1_2_13_23_1 doi: 10.2147/TACG.S122250 – ident: e_1_2_13_43_1 – ident: e_1_2_13_26_1 doi: 10.1111/j.0006-341X.2001.01123.x – ident: e_1_2_13_28_1 doi: 10.1109/TNNLS.2013.2292894 – ident: e_1_2_13_10_1 doi: 10.1093/biomet/86.4.843 – ident: e_1_2_13_37_1 doi: 10.1002/sim.6218 – ident: e_1_2_13_36_1 doi: 10.1002/pds.4693 – ident: e_1_2_13_45_1 doi: 10.1089/jwh.2008.1007 – volume-title: Medical Expenditure Panel Survey year: 2022 ident: e_1_2_13_53_1 – ident: e_1_2_13_38_1 doi: 10.1111/j.1541-0420.2009.01330.x – ident: e_1_2_13_21_1 doi: 10.1016/S0167-9473(03)00068-9 – ident: e_1_2_13_25_1 doi: 10.1016/j.ehb.2015.02.002 – ident: e_1_2_13_6_1 doi: 10.1007/s00439-014-1466-9 – ident: e_1_2_13_34_1 – ident: e_1_2_13_51_1 doi: 10.1080/00273171.2015.1095063 – ident: e_1_2_13_35_1 doi: 10.1111/1467-9868.00265 – ident: e_1_2_13_5_1 doi: 10.2147/JMDH.S104807 – ident: e_1_2_13_40_1 doi: 10.1016/j.trb.2023.03.001 – ident: e_1_2_13_18_1 doi: 10.1093/oxfordjournals.aje.a009251 – start-page: 2325 volume-title: Proceedings of Machine Learning Research year: 2020 ident: e_1_2_13_15_1 – ident: e_1_2_13_56_1 – ident: e_1_2_13_39_1 doi: 10.1214/11‐EJS616 – ident: e_1_2_13_3_1 doi: 10.1080/00031305.2023.2250401 – ident: e_1_2_13_55_1 doi: 10.1001/jama.2015.14849 – ident: e_1_2_13_20_1 doi: 10.1201/9781420010138 – ident: e_1_2_13_24_1 doi: 10.1176/ajp.151.5.650 – ident: e_1_2_13_50_1 doi: 10.1016/B978-0-12-809633-8.20351-8 |
SSID | ssj0011527 |
Score | 2.4588363 |
Snippet | ABSTRACT
In biomedical and public health association studies, binary outcome variables may be subject to misclassification, resulting in substantial bias in... In biomedical and public health association studies, binary outcome variables may be subject to misclassification, resulting in substantial bias in effect... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e10316 |
SubjectTerms | Algorithms association studies Bias bias correction Computer Simulation Data Interpretation, Statistical EM algorithm Estimates Humans identification label‐switching Likelihood Functions MCMC Models, Statistical Regression Analysis Software |
Title | Statistical Inference for Association Studies in the Presence of Binary Outcome Misclassification |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.10316 https://www.ncbi.nlm.nih.gov/pubmed/39914461 https://www.proquest.com/docview/3171762293 https://www.proquest.com/docview/3164395091 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMcP4oMMxMu8TadE8cGX6pK1aYtPKooTpuIFfBBKkzYwxE7c9uKn95ykrTcE8a0lSZvm5PJrkvMPwG4kdaRUGniCK-n5gRGeisMOGiSWUSSjUNupi_6lPL_3Lx6Chyk4rHxhnD5EPeFGLcP219TAUzU6-BANHQ2eyWOck9w27dUiILqppaN4dVwrLVHKkAeVqlBHHNQpv45FPwDzK6_aAedsHh6rrLp9Jk_7k7Ha12_fVBz_-S0LMFeCKDtyNWcRpvKiCTP9cqm9CbNuQo85P6UmNAhLnarzEqT1DT6iV_kMMgRg9snerNykyAYFQ85k19bVCeMNDTu2fsDsajLGvOasPxhp4njauGTTLsP92endyblXHtbg6S4WvxdGfprGmTBpHnb9DLEpDTJuMoXAFJqYMDHQXBjNje5KjCJNJnylcDzUPFO8uwLTxbDI14CRpjyaTUjT8f04zJTiQe5rKfJMGyNVC3YqsyUvTpMjcerLIsGSTGxJtqBdGTQpm-UoQVji2Psj4rRguw7GBkWrJGmRDycUhyCNOKoFq64i1G9BmqP_ZwzZs-b8_fXJba9vL9b_HnUDGoJOF7YO822YHr9O8k1EnrHasnX7HeQy-uo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VVoJKqIWFwpYCBoHEJe3aSZzk0EN_qHZpUxC0Um9p7NjSCpFF7K5Q-0y8Cu_EjJ0ECkLi0gO3RJnYiT32fB7PfAZ4kUqdKlXGgeBKBlFsRaCyZIAdksk0lWminesiP5bD0-jNWXy2AN_aXBjPD9E53GhkuPmaBjg5pLd-soZOx58oZZzLJqTy0Fx8xQXbdHu0j737UoiD1yd7w6A5UyDQIQ9lkKRRWWaVsKVJwqhC617GFbeVQrue2IzQTKy5sJpbHUoUkbYSkVI4bWteKR5iuTdgiU4QJ6b-_fcdWRVvD4ilTVGZ8LjlMRqIre5Tr1q_PyDtVYTsTNzBKnxvG8dHtnzcnM_Upr78jTfyf2m9O7DSYG224wfHXVgwdQ9u5k00QQ9ue58l86lYPVgm5O2Jq-9B2d1gEaM2LZIhxme_qDRr4jDZuGYIpdk7l82FchPLdl2qM3s7n2HjGJaPp5qWKhSb5d69D6fX8vdrsFhPavMQGNHmo54IaQdRlCWVUjw2kZbCVNpaqfrwvNWT4rOnHSk8wbQosOcK13N92Gg1qGhmnmmBeJCjgUMU14dn3WOcM2gjqKzNZE4yhEMJKvbhgde8rhYErOQiwCevnP78vfriwyh3F-v_LvoUbg1P8qPiaHR8-AiWBR2m7PgBNmBx9mVuHiPCm6knbmAxOL9uXfwBIGlYqw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VVqoqVbQs0C5twSCQuKRdO46THDhQllWXsqUCKvUW4j9pVZGt2F1V7Sv1VXgoxnYSKAiJSw_cEsWxE8_Y89me-QbgeSZUJmWZRIxKEfHEskjmaQ8FkossE1mq_NbF6EgcnPB3p8npAlw3sTCBH6LdcHMjw8_XboCfa7v3kzR0Ov7qIsapqD0qD83lBa7Xpq-GfRTuC8YGbz-_OYjqlAKRimksojTjZZlrZkuTxlyjcS8TTa2WaNZTmzswkyjKrKJWxQKLCKsZlxJnbUW1pDHWeweWuOjlLk9E_2PLVUWb_LDuTFSkNGlojHpsr_3Um8bvD0R7EyB7CzdYg-9N3wTHlrPd-UzuqqvfaCP_k85bh7s10iavw9C4Bwum6sDyqPYl6MBq2LEkIRCrAysOdwfa6vtQtjdYxbAJiiSI8MkvCk1qL0wyrggCaXLsY7mw3MSSfR_oTD7MZ9g3hozGU-UWKs4zy7_7AE5u5e8fwmI1qcwmEEeaj2rChO1xnqdaSpoYrgQzWlkrZBeeNWpSnAfSkSLQS7MCJVd4yXVhu1Ggop53pgWiQYrmDTFcF562j3HGcMdAZWUmc1fGoVAHFLuwERSvbQXhqtsgwCcvvfr8vfni03DkLx79e9EnsHzcHxTvh0eHW7DCXCZlTw6wDYuzb3Ozg_BuJh_7YUXgy22r4g-jClda |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+Inference+for+Association+Studies+in+the+Presence+of+Binary+Outcome+Misclassification&rft.jtitle=Statistics+in+medicine&rft.au=Hochstedler+Webb%2C+Kimberly+A&rft.au=Wells%2C+Martin+T&rft.date=2025-02-28&rft.issn=1097-0258&rft.eissn=1097-0258&rft.volume=44&rft.issue=5&rft.spage=e10316&rft_id=info:doi/10.1002%2Fsim.10316&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |