Statistical Inference for Association Studies in the Presence of Binary Outcome Misclassification

ABSTRACT In biomedical and public health association studies, binary outcome variables may be subject to misclassification, resulting in substantial bias in effect estimates. The feasibility of addressing binary outcome misclassification in regression models is often hindered by model identifiabilit...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 44; no. 5; pp. e10316 - n/a
Main Authors Hochstedler Webb, Kimberly A., Wells, Martin T.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 28.02.2025
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT In biomedical and public health association studies, binary outcome variables may be subject to misclassification, resulting in substantial bias in effect estimates. The feasibility of addressing binary outcome misclassification in regression models is often hindered by model identifiability issues. In this paper, we characterize the identifiability problems in this class of models as a specific case of “label‐switching” and leverage a pattern in the resulting parameter estimates to solve the permutation invariance of the complete data log‐likelihood. Our proposed algorithm in binary outcome misclassification models does not require gold standard labels and relies only on the assumption that the sum of the sensitivity and specificity exceeds 1. A label‐switching correction is applied within estimation methods to recover unbiased effect estimates and to estimate misclassification rates. Open‐source software is provided to implement the proposed methods. We give a detailed simulation study for our proposed methodology and apply these methods to data from the 2020 Medical Expenditure Panel Survey (MEPS).
AbstractList ABSTRACT In biomedical and public health association studies, binary outcome variables may be subject to misclassification, resulting in substantial bias in effect estimates. The feasibility of addressing binary outcome misclassification in regression models is often hindered by model identifiability issues. In this paper, we characterize the identifiability problems in this class of models as a specific case of “label‐switching” and leverage a pattern in the resulting parameter estimates to solve the permutation invariance of the complete data log‐likelihood. Our proposed algorithm in binary outcome misclassification models does not require gold standard labels and relies only on the assumption that the sum of the sensitivity and specificity exceeds 1. A label‐switching correction is applied within estimation methods to recover unbiased effect estimates and to estimate misclassification rates. Open‐source software is provided to implement the proposed methods. We give a detailed simulation study for our proposed methodology and apply these methods to data from the 2020 Medical Expenditure Panel Survey (MEPS).
In biomedical and public health association studies, binary outcome variables may be subject to misclassification, resulting in substantial bias in effect estimates. The feasibility of addressing binary outcome misclassification in regression models is often hindered by model identifiability issues. In this paper, we characterize the identifiability problems in this class of models as a specific case of "label-switching" and leverage a pattern in the resulting parameter estimates to solve the permutation invariance of the complete data log-likelihood. Our proposed algorithm in binary outcome misclassification models does not require gold standard labels and relies only on the assumption that the sum of the sensitivity and specificity exceeds 1. A label-switching correction is applied within estimation methods to recover unbiased effect estimates and to estimate misclassification rates. Open-source software is provided to implement the proposed methods. We give a detailed simulation study for our proposed methodology and apply these methods to data from the 2020 Medical Expenditure Panel Survey (MEPS).In biomedical and public health association studies, binary outcome variables may be subject to misclassification, resulting in substantial bias in effect estimates. The feasibility of addressing binary outcome misclassification in regression models is often hindered by model identifiability issues. In this paper, we characterize the identifiability problems in this class of models as a specific case of "label-switching" and leverage a pattern in the resulting parameter estimates to solve the permutation invariance of the complete data log-likelihood. Our proposed algorithm in binary outcome misclassification models does not require gold standard labels and relies only on the assumption that the sum of the sensitivity and specificity exceeds 1. A label-switching correction is applied within estimation methods to recover unbiased effect estimates and to estimate misclassification rates. Open-source software is provided to implement the proposed methods. We give a detailed simulation study for our proposed methodology and apply these methods to data from the 2020 Medical Expenditure Panel Survey (MEPS).
In biomedical and public health association studies, binary outcome variables may be subject to misclassification, resulting in substantial bias in effect estimates. The feasibility of addressing binary outcome misclassification in regression models is often hindered by model identifiability issues. In this paper, we characterize the identifiability problems in this class of models as a specific case of “label‐switching” and leverage a pattern in the resulting parameter estimates to solve the permutation invariance of the complete data log‐likelihood. Our proposed algorithm in binary outcome misclassification models does not require gold standard labels and relies only on the assumption that the sum of the sensitivity and specificity exceeds 1. A label‐switching correction is applied within estimation methods to recover unbiased effect estimates and to estimate misclassification rates. Open‐source software is provided to implement the proposed methods. We give a detailed simulation study for our proposed methodology and apply these methods to data from the 2020 Medical Expenditure Panel Survey (MEPS).
Author Wells, Martin T.
Hochstedler Webb, Kimberly A.
Author_xml – sequence: 1
  givenname: Kimberly A.
  orcidid: 0000-0003-1145-3024
  surname: Hochstedler Webb
  fullname: Hochstedler Webb, Kimberly A.
  email: kah343@cornell.edu
  organization: Cornell University Ithaca
– sequence: 2
  givenname: Martin T.
  surname: Wells
  fullname: Wells, Martin T.
  organization: Cornell University Ithaca
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39914461$$D View this record in MEDLINE/PubMed
BookMark eNp10c9LBCEUB3CJorYfh_6BELrUYcqn45jHin4stGywdR4cR8mY0dIZYv_73LY6BJ0U_LzH83130aYP3iB0COQMCKHnyfX5wqDaQBMgUhSE8otNNCFUiKISwHfQbkqvhABwKrbRDpMSyrKCCVKLQQ0uDU6rDk-9NdF4bbANEV-mFLTLr8HjxTC2ziTsPB5eDH6MJn25YPGV8you8XwcdOgNnrmkO5WSs7nlqnYfbVnVJXPwfe6h59ubp-v74mF-N72-fCg0A1YV4qJUSrbUKiNY2VIOirdg24YDF1ZKRiuugVoNVrMqk8q2tGyakkoNbQNsD52s-77F8D6aNNR9HsV0nfImjKnO6ymZ5ESu6PEf-hrG6PN0WQkQFaWSZXX0rcamN239Fl2ff1r_LC-D0zXQMaQUjf0lQOpVMHUOpv4KJtvztf1wnVn-D-vFdLau-ATp8Y4G
Cites_doi 10.1137/1026034
10.1080/10618600.2012.735624
10.1016/j.jeconom.2020.04.041
10.1097/EDE.0b013e3182117c85
10.32614/CRAN.package.SAMBA
10.1111/1541-0420.00077
10.1111/biom.13400
10.1093/biostatistics/kxx014
10.1016/j.socscimed.2005.05.028
10.1111/biom.13512
10.1016/S0893-6080(99)00066-0
10.1002/sim.8688
10.1002/sim.7555
10.1002/sim.6440
10.1080/00949655.2013.859259
10.15441/ceem.17.257
10.1111/j.2517-6161.1977.tb01600.x
10.1177/0962280220978500
10.1016/0277-9536(95)00342-8
10.1016/j.artmed.2007.06.001
10.1002/sim.3971
10.2147/TACG.S122250
10.1111/j.0006-341X.2001.01123.x
10.1109/TNNLS.2013.2292894
10.1093/biomet/86.4.843
10.1002/sim.6218
10.1002/pds.4693
10.1089/jwh.2008.1007
10.1111/j.1541-0420.2009.01330.x
10.1016/S0167-9473(03)00068-9
10.1016/j.ehb.2015.02.002
10.1007/s00439-014-1466-9
10.1080/00273171.2015.1095063
10.1111/1467-9868.00265
10.2147/JMDH.S104807
10.1016/j.trb.2023.03.001
10.1093/oxfordjournals.aje.a009251
10.1214/11‐EJS616
10.1080/00031305.2023.2250401
10.1001/jama.2015.14849
10.1201/9781420010138
10.1176/ajp.151.5.650
10.1016/B978-0-12-809633-8.20351-8
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
2025 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
– notice: 2025 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1002/sim.10316
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage n/a
ExternalDocumentID 39914461
10_1002_sim_10316
SIM10316
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: LinkedIn PhD Award (Cornell University Bowers CIS Strategic Partnership Program with LinkedIn)
– fundername: NIH
  funderid: 1P01‐AI159402; U19AI111143‐07
– fundername: NIH HHS
  grantid: 1P01-AI159402
– fundername: NIH HHS
  grantid: U19AI111143-07
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c3136-784aa9d2fae734d251a5d1fdb5157f993265c12fc1fc367346fd24bb429c1db13
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Fri Jul 11 03:52:03 EDT 2025
Fri Jul 25 21:37:29 EDT 2025
Mon Jul 21 05:31:10 EDT 2025
Thu Aug 14 00:14:19 EDT 2025
Wed Aug 20 07:26:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords MCMC
identification
association studies
bias correction
EM algorithm
label‐switching
Language English
License 2025 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3136-784aa9d2fae734d251a5d1fdb5157f993265c12fc1fc367346fd24bb429c1db13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1145-3024
PMID 39914461
PQID 3171762293
PQPubID 48361
PageCount 21
ParticipantIDs proquest_miscellaneous_3164395091
proquest_journals_3171762293
pubmed_primary_39914461
crossref_primary_10_1002_sim_10316
wiley_primary_10_1002_sim_10316_SIM10316
PublicationCentury 2000
PublicationDate 28 February 2025
PublicationDateYYYYMMDD 2025-02-28
PublicationDate_xml – month: 02
  year: 2025
  text: 28 February 2025
  day: 28
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2015; 34
2015; 17
2013; 25
1984; 26
2004; 45
1994; 151
2020; 39
2003; 59
2006
2016; 51
1999; 86
2003
2021; 220
2014; 133
2021; 30
2011; 5
2014; 23
1997; 146
2010; 66
2018; 5
2006; 62
2023
2015; 314
2022
2010; 29
2021
1977; 39
2020
2023; 172
2015; 85
2022; 78
2019; 28
2000; 62
1999; 12
2019
2011; 22
2017
2017; 18
2007; 41
2001; 57
2016; 9
2018; 37
2014; 33
1996; 42
2009; 18
e_1_2_13_24_1
e_1_2_13_26_1
e_1_2_13_47_1
e_1_2_13_20_1
e_1_2_13_45_1
e_1_2_13_22_1
e_1_2_13_43_1
e_1_2_13_8_1
e_1_2_13_41_1
e_1_2_13_6_1
Fogliato R. (e_1_2_13_15_1) 2020
e_1_2_13_17_1
e_1_2_13_19_1
e_1_2_13_13_1
e_1_2_13_36_1
e_1_2_13_38_1
e_1_2_13_32_1
e_1_2_13_55_1
e_1_2_13_11_1
e_1_2_13_34_1
e_1_2_13_51_1
e_1_2_13_30_1
e_1_2_13_4_1
e_1_2_13_2_1
Agresti A. (e_1_2_13_49_1) 2003
e_1_2_13_29_1
e_1_2_13_25_1
e_1_2_13_27_1
e_1_2_13_46_1
Kahn S. (e_1_2_13_7_1) 2020
e_1_2_13_21_1
e_1_2_13_44_1
e_1_2_13_23_1
e_1_2_13_42_1
e_1_2_13_9_1
e_1_2_13_40_1
R Core Team (e_1_2_13_48_1) 2021
e_1_2_13_18_1
e_1_2_13_39_1
e_1_2_13_14_1
e_1_2_13_35_1
e_1_2_13_16_1
e_1_2_13_37_1
e_1_2_13_10_1
e_1_2_13_31_1
e_1_2_13_56_1
e_1_2_13_12_1
e_1_2_13_33_1
e_1_2_13_54_1
AHRQ (e_1_2_13_53_1) 2022
e_1_2_13_52_1
e_1_2_13_50_1
e_1_2_13_5_1
e_1_2_13_3_1
e_1_2_13_28_1
References_xml – volume: 57
  start-page: 1123
  issue: 4
  year: 2001
  end-page: 1129
  article-title: Threshold Model for Misclassified Binary Responses With Applications to Animal Breeding
  publication-title: Biometrics
– volume: 314
  start-page: 1945
  issue: 18
  year: 2015
  end-page: 1954
  article-title: Prevalence and Correlates of Myocardial Scar in a US Cohort
  publication-title: Journal of the American Medical Association
– volume: 85
  start-page: 1000
  issue: 5
  year: 2015
  end-page: 1012
  article-title: Label Switching and Its Solutions for Frequentist Mixture Models
  publication-title: Journal of Statistical Computation and Simulation
– year: 2021
– volume: 45
  start-page: 467
  issue: 3
  year: 2004
  end-page: 479
  article-title: Parameter Subset Selection and Multiple Comparisons of Poisson Rate Parameters With Misclassification
  publication-title: Computational Statistics & Data Analysis
– volume: 62
  start-page: 795
  issue: 4
  year: 2000
  end-page: 809
  article-title: Dealing With Label Switching in Mixture Models
  publication-title: Journal of the Royal Statistical Society, Series B: Statistical Methodology
– volume: 25
  start-page: 845
  issue: 5
  year: 2013
  end-page: 869
  article-title: Classification in the Presence of Label Noise: A Survey
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 23
  start-page: 25
  issue: 1
  year: 2014
  end-page: 45
  article-title: Label Switching in Bayesian Mixture Models: Deterministic Relabeling Strategies
  publication-title: Journal of Computational and Graphical Statistics
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  end-page: 22
  article-title: Maximum Likelihood From Incomplete Data via the EM Algorithm
  publication-title: Journal of the Royal Statistical Society: Series B
– volume: 30
  start-page: 857
  issue: 3
  year: 2021
  end-page: 874
  article-title: Two‐Phase Analysis and Study Design for Survival Models With Error‐Prone Exposures
  publication-title: Statistical Methods in Medical Research
– volume: 42
  start-page: 769
  issue: 5
  year: 1996
  end-page: 776
  article-title: Non‐medical Influences on Medical Decision‐Making
  publication-title: Social Science & Medicine
– volume: 12
  start-page: 1253
  issue: 9
  year: 1999
  end-page: 1258
  article-title: On the Identifiability of Mixtures‐Of‐Experts
  publication-title: Neural Networks
– volume: 29
  start-page: 2297
  issue: 22
  year: 2010
  end-page: 2309
  article-title: Sensitivity Analysis for Misclassification in Logistic Regression via Likelihood Methods and Predictive Value Weighting
  publication-title: Statistics in Medicine
– volume: 78
  start-page: 214
  issue: 1
  year: 2022
  end-page: 226
  article-title: Statistical Inference for Association Studies Using Electronic Health Records: Handling Both Selection Bias and Outcome Misclassification
  publication-title: Biometrics
– volume: 22
  start-page: 589
  issue: 4
  year: 2011
  article-title: Validation Data‐Based Adjustments for Outcome Misclassification in Logistic Regression: An Illustration
  publication-title: Epidemiology
– volume: 26
  start-page: 195
  issue: 2
  year: 1984
  end-page: 239
  article-title: Mixture Densities, Maximum Likelihood and the EM Algorithm
  publication-title: SIAM Review
– volume: 133
  start-page: 1369
  year: 2014
  end-page: 1382
  article-title: Improving the Power of Genetic Association Tests With Imperfect Phenotype Derived From Electronic Medical Records
  publication-title: Human Genetics
– year: 2022
– year: 2020
  article-title: An Introduction to Classification Using Mislabeled Data
  publication-title: Towards Data Science
– volume: 9
  start-page: 169
  year: 2016
  end-page: 177
  article-title: Analysis of Binary Responses With Outcome‐Specific Misclassification Probability in Genome‐Wide Association Studies
  publication-title: Application of Clinical Genetics
– volume: 151
  start-page: 650
  issue: 5
  year: 1994
  end-page: 657
  article-title: Measuring Diagnostic Accuracy in the Absence of a Gold Standard
  publication-title: American Journal of Psychiatry
– volume: 41
  start-page: 57
  issue: 1
  year: 2007
  end-page: 67
  article-title: Extension of Mixture‐Of‐Experts Networks for Binary Classification of Hierarchical Data
  publication-title: Artificial Intelligence in Medicine
– volume: 5
  start-page: 264
  issue: 4
  year: 2018
  article-title: Sensitivity, Specificity, and Predictive Value of Cardiac Symptoms Assessed by Emergency Medical Services Providers in the Diagnosis of Acute Myocardial Infarction: A Multi‐Center Observational Study
  publication-title: Clinical and Experimental Emergency Medicine
– volume: 86
  start-page: 843
  issue: 4
  year: 1999
  end-page: 855
  article-title: Bias and Efficiency Loss due to Misclassified Responses in Binary Regression
  publication-title: Biometrika
– start-page: 2325
  year: 2020
  end-page: 2336
– volume: 17
  start-page: 116
  year: 2015
  end-page: 128
  article-title: Measuring Obesity in the Absence of a Gold Standard
  publication-title: Economics and Human Biology
– volume: 146
  start-page: 195
  issue: 2
  year: 1997
  end-page: 203
  article-title: Logistic Regression When the Outcome Is Measured With Uncertainty
  publication-title: American Journal of Epidemiology
– volume: 172
  start-page: 134
  year: 2023
  end-page: 173
  article-title: Finite Mixture (Or Latent Class) Modeling in Transportation: Trends, Usage, Potential, and Future Directions
  publication-title: Transportation Research Part B: Methodological
– year: 2003
– volume: 5
  start-page: 460
  year: 2011
  end-page: 483
  article-title: Maximum Likelihood Estimation in the Logistic Regression Model With a Cure Fraction
  publication-title: Electronic Journal of Statistics
– volume: 220
  start-page: 181
  issue: 1
  year: 2021
  end-page: 192
  article-title: Estimating the COVID‐19 Infection Rate: Anatomy of an Inference Problem
  publication-title: Journal of Econometrics
– volume: 28
  start-page: 217
  issue: 2
  year: 2019
  end-page: 226
  article-title: Comparing External and Internal Validation Methods in Correcting Outcome Misclassification Bias in Logistic Regression: A Simulation Study and Application to the Case of Postsurgical Venous Thromboembolism Following Total Hip and Knee Arthroplasty
  publication-title: Pharmacoepidemiology and Drug Safety
– volume: 18
  start-page: 1661
  issue: 10
  year: 2009
  end-page: 1667
  article-title: Disparities in Physicians' Interpretations of Heart Disease Symptoms by Patient Gender: Results of a Video Vignette Factorial Experiment
  publication-title: Journal of Women's Health
– volume: 9
  start-page: 211
  year: 2016
  end-page: 217
  article-title: Information Bias in Health Research: Definition, Pitfalls, and Adjustment Methods
  publication-title: Journal of Multidisciplinary Healthcare
– start-page: 546
  year: 2019
  end-page: 560
– volume: 39
  start-page: 3700
  issue: 26
  year: 2020
  end-page: 3719
  article-title: Genetic Association Studies With Bivariate Mixed Responses Subject to Measurement Error and Misclassification
  publication-title: Statistics in Medicine
– volume: 59
  start-page: 670
  issue: 3
  year: 2003
  end-page: 675
  article-title: Binomial Regression With Misclassification
  publication-title: Biometrics
– volume: 33
  start-page: 4141
  issue: 24
  year: 2014
  end-page: 4169
  article-title: Estimation of Diagnostic Test Accuracy Without Full Verification: A Review of Latent Class Methods
  publication-title: Statistics in Medicine
– volume: 37
  start-page: 933
  issue: 6
  year: 2018
  end-page: 947
  article-title: Bayesian Inference for Unidirectional Misclassification of a Binary Response Trait
  publication-title: Statistics in Medicine
– year: 2006
– year: 2020
– year: 2023
– volume: 62
  start-page: 103
  issue: 1
  year: 2006
  end-page: 115
  article-title: Patient Characteristics and Inequalities in Doctors' Diagnostic and Management Strategies Relating to CHD: A Video‐Simulation Experiment
  publication-title: Social Science & Medicine
– volume: 18
  start-page: 695
  issue: 4
  year: 2017
  end-page: 710
  article-title: Propensity Scores With Misclassified Treatment Assignment: A Likelihood‐Based Adjustment
  publication-title: Biostatistics
– volume: 78
  start-page: 1674
  issue: 4
  year: 2022
  end-page: 1685
  article-title: Efficient Odds Ratio Estimation Under Two‐Phase Sampling Using Error‐Prone Data From a Multi‐National HIV Research Cohort
  publication-title: Biometrics
– volume: 51
  start-page: 35
  issue: 1
  year: 2016
  end-page: 52
  article-title: Regression Mixture Models: Does Modeling the Covariance Between Independent Variables and Latent Classes Improve the Results?
  publication-title: Multivariate Behavioral Research
– year: 2017
– volume: 34
  start-page: 1605
  issue: 9
  year: 2015
  end-page: 1620
  article-title: Binary Regression With Differentially Misclassified Response and Exposure Variables
  publication-title: Statistics in Medicine
– volume: 66
  start-page: 855
  issue: 3
  year: 2010
  end-page: 863
  article-title: Identifiability of Models for Multiple Diagnostic Testing in the Absence of a Gold Standard
  publication-title: Biometrics
– ident: e_1_2_13_31_1
  doi: 10.1137/1026034
– ident: e_1_2_13_32_1
  doi: 10.1080/10618600.2012.735624
– ident: e_1_2_13_2_1
  doi: 10.1016/j.jeconom.2020.04.041
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2021
  ident: e_1_2_13_48_1
– ident: e_1_2_13_4_1
– ident: e_1_2_13_29_1
– ident: e_1_2_13_11_1
  doi: 10.1097/EDE.0b013e3182117c85
– ident: e_1_2_13_52_1
  doi: 10.32614/CRAN.package.SAMBA
– ident: e_1_2_13_19_1
  doi: 10.1111/1541-0420.00077
– year: 2020
  ident: e_1_2_13_7_1
  article-title: An Introduction to Classification Using Mislabeled Data
  publication-title: Towards Data Science
– ident: e_1_2_13_8_1
  doi: 10.1111/biom.13400
– ident: e_1_2_13_17_1
  doi: 10.1093/biostatistics/kxx014
– ident: e_1_2_13_44_1
  doi: 10.1016/j.socscimed.2005.05.028
– ident: e_1_2_13_13_1
  doi: 10.1111/biom.13512
– volume-title: Categorical Data Analysis
  year: 2003
  ident: e_1_2_13_49_1
– ident: e_1_2_13_41_1
  doi: 10.1016/S0893-6080(99)00066-0
– ident: e_1_2_13_9_1
  doi: 10.1002/sim.8688
– ident: e_1_2_13_22_1
  doi: 10.1002/sim.7555
– ident: e_1_2_13_14_1
  doi: 10.1002/sim.6440
– ident: e_1_2_13_33_1
  doi: 10.1080/00949655.2013.859259
– ident: e_1_2_13_54_1
  doi: 10.15441/ceem.17.257
– ident: e_1_2_13_30_1
– ident: e_1_2_13_27_1
– ident: e_1_2_13_47_1
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: e_1_2_13_16_1
  doi: 10.1177/0962280220978500
– ident: e_1_2_13_46_1
  doi: 10.1016/0277-9536(95)00342-8
– ident: e_1_2_13_42_1
  doi: 10.1016/j.artmed.2007.06.001
– ident: e_1_2_13_12_1
  doi: 10.1002/sim.3971
– ident: e_1_2_13_23_1
  doi: 10.2147/TACG.S122250
– ident: e_1_2_13_43_1
– ident: e_1_2_13_26_1
  doi: 10.1111/j.0006-341X.2001.01123.x
– ident: e_1_2_13_28_1
  doi: 10.1109/TNNLS.2013.2292894
– ident: e_1_2_13_10_1
  doi: 10.1093/biomet/86.4.843
– ident: e_1_2_13_37_1
  doi: 10.1002/sim.6218
– ident: e_1_2_13_36_1
  doi: 10.1002/pds.4693
– ident: e_1_2_13_45_1
  doi: 10.1089/jwh.2008.1007
– volume-title: Medical Expenditure Panel Survey
  year: 2022
  ident: e_1_2_13_53_1
– ident: e_1_2_13_38_1
  doi: 10.1111/j.1541-0420.2009.01330.x
– ident: e_1_2_13_21_1
  doi: 10.1016/S0167-9473(03)00068-9
– ident: e_1_2_13_25_1
  doi: 10.1016/j.ehb.2015.02.002
– ident: e_1_2_13_6_1
  doi: 10.1007/s00439-014-1466-9
– ident: e_1_2_13_34_1
– ident: e_1_2_13_51_1
  doi: 10.1080/00273171.2015.1095063
– ident: e_1_2_13_35_1
  doi: 10.1111/1467-9868.00265
– ident: e_1_2_13_5_1
  doi: 10.2147/JMDH.S104807
– ident: e_1_2_13_40_1
  doi: 10.1016/j.trb.2023.03.001
– ident: e_1_2_13_18_1
  doi: 10.1093/oxfordjournals.aje.a009251
– start-page: 2325
  volume-title: Proceedings of Machine Learning Research
  year: 2020
  ident: e_1_2_13_15_1
– ident: e_1_2_13_56_1
– ident: e_1_2_13_39_1
  doi: 10.1214/11‐EJS616
– ident: e_1_2_13_3_1
  doi: 10.1080/00031305.2023.2250401
– ident: e_1_2_13_55_1
  doi: 10.1001/jama.2015.14849
– ident: e_1_2_13_20_1
  doi: 10.1201/9781420010138
– ident: e_1_2_13_24_1
  doi: 10.1176/ajp.151.5.650
– ident: e_1_2_13_50_1
  doi: 10.1016/B978-0-12-809633-8.20351-8
SSID ssj0011527
Score 2.4588363
Snippet ABSTRACT In biomedical and public health association studies, binary outcome variables may be subject to misclassification, resulting in substantial bias in...
In biomedical and public health association studies, binary outcome variables may be subject to misclassification, resulting in substantial bias in effect...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e10316
SubjectTerms Algorithms
association studies
Bias
bias correction
Computer Simulation
Data Interpretation, Statistical
EM algorithm
Estimates
Humans
identification
label‐switching
Likelihood Functions
MCMC
Models, Statistical
Regression Analysis
Software
Title Statistical Inference for Association Studies in the Presence of Binary Outcome Misclassification
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.10316
https://www.ncbi.nlm.nih.gov/pubmed/39914461
https://www.proquest.com/docview/3171762293
https://www.proquest.com/docview/3164395091
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMcP4oMMxMu8TadE8cGX6pK1aYtPKooTpuIFfBBKkzYwxE7c9uKn95ykrTcE8a0lSZvm5PJrkvMPwG4kdaRUGniCK-n5gRGeisMOGiSWUSSjUNupi_6lPL_3Lx6Chyk4rHxhnD5EPeFGLcP219TAUzU6-BANHQ2eyWOck9w27dUiILqppaN4dVwrLVHKkAeVqlBHHNQpv45FPwDzK6_aAedsHh6rrLp9Jk_7k7Ha12_fVBz_-S0LMFeCKDtyNWcRpvKiCTP9cqm9CbNuQo85P6UmNAhLnarzEqT1DT6iV_kMMgRg9snerNykyAYFQ85k19bVCeMNDTu2fsDsajLGvOasPxhp4njauGTTLsP92endyblXHtbg6S4WvxdGfprGmTBpHnb9DLEpDTJuMoXAFJqYMDHQXBjNje5KjCJNJnylcDzUPFO8uwLTxbDI14CRpjyaTUjT8f04zJTiQe5rKfJMGyNVC3YqsyUvTpMjcerLIsGSTGxJtqBdGTQpm-UoQVji2Psj4rRguw7GBkWrJGmRDycUhyCNOKoFq64i1G9BmqP_ZwzZs-b8_fXJba9vL9b_HnUDGoJOF7YO822YHr9O8k1EnrHasnX7HeQy-uo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VVoJKqIWFwpYCBoHEJe3aSZzk0EN_qHZpUxC0Um9p7NjSCpFF7K5Q-0y8Cu_EjJ0ECkLi0gO3RJnYiT32fB7PfAZ4kUqdKlXGgeBKBlFsRaCyZIAdksk0lWminesiP5bD0-jNWXy2AN_aXBjPD9E53GhkuPmaBjg5pLd-soZOx58oZZzLJqTy0Fx8xQXbdHu0j737UoiD1yd7w6A5UyDQIQ9lkKRRWWaVsKVJwqhC617GFbeVQrue2IzQTKy5sJpbHUoUkbYSkVI4bWteKR5iuTdgiU4QJ6b-_fcdWRVvD4ilTVGZ8LjlMRqIre5Tr1q_PyDtVYTsTNzBKnxvG8dHtnzcnM_Upr78jTfyf2m9O7DSYG224wfHXVgwdQ9u5k00QQ9ue58l86lYPVgm5O2Jq-9B2d1gEaM2LZIhxme_qDRr4jDZuGYIpdk7l82FchPLdl2qM3s7n2HjGJaPp5qWKhSb5d69D6fX8vdrsFhPavMQGNHmo54IaQdRlCWVUjw2kZbCVNpaqfrwvNWT4rOnHSk8wbQosOcK13N92Gg1qGhmnmmBeJCjgUMU14dn3WOcM2gjqKzNZE4yhEMJKvbhgde8rhYErOQiwCevnP78vfriwyh3F-v_LvoUbg1P8qPiaHR8-AiWBR2m7PgBNmBx9mVuHiPCm6knbmAxOL9uXfwBIGlYqw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VVqoqVbQs0C5twSCQuKRdO46THDhQllWXsqUCKvUW4j9pVZGt2F1V7Sv1VXgoxnYSKAiJSw_cEsWxE8_Y89me-QbgeSZUJmWZRIxKEfHEskjmaQ8FkossE1mq_NbF6EgcnPB3p8npAlw3sTCBH6LdcHMjw8_XboCfa7v3kzR0Ov7qIsapqD0qD83lBa7Xpq-GfRTuC8YGbz-_OYjqlAKRimksojTjZZlrZkuTxlyjcS8TTa2WaNZTmzswkyjKrKJWxQKLCKsZlxJnbUW1pDHWeweWuOjlLk9E_2PLVUWb_LDuTFSkNGlojHpsr_3Um8bvD0R7EyB7CzdYg-9N3wTHlrPd-UzuqqvfaCP_k85bh7s10iavw9C4Bwum6sDyqPYl6MBq2LEkIRCrAysOdwfa6vtQtjdYxbAJiiSI8MkvCk1qL0wyrggCaXLsY7mw3MSSfR_oTD7MZ9g3hozGU-UWKs4zy7_7AE5u5e8fwmI1qcwmEEeaj2rChO1xnqdaSpoYrgQzWlkrZBeeNWpSnAfSkSLQS7MCJVd4yXVhu1Ggop53pgWiQYrmDTFcF562j3HGcMdAZWUmc1fGoVAHFLuwERSvbQXhqtsgwCcvvfr8vfni03DkLx79e9EnsHzcHxTvh0eHW7DCXCZlTw6wDYuzb3Ozg_BuJh_7YUXgy22r4g-jClda
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+Inference+for+Association+Studies+in+the+Presence+of+Binary+Outcome+Misclassification&rft.jtitle=Statistics+in+medicine&rft.au=Hochstedler+Webb%2C+Kimberly+A&rft.au=Wells%2C+Martin+T&rft.date=2025-02-28&rft.issn=1097-0258&rft.eissn=1097-0258&rft.volume=44&rft.issue=5&rft.spage=e10316&rft_id=info:doi/10.1002%2Fsim.10316&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon