Unraveling the Mechanism of Different Kinetics Performance between Ether and Carbonate Ester Electrolytes in Hard Carbon Electrode

Ether electrolytes exhibit better rate kinetics than carbonate ester electrolytes when used in several kinds of anode materials, especially in hard carbon (HC) for sodium‐ion batteries (SIBs). However, the mechanism causing the remarkable kinetics difference is still unclear. Here, a three‐electrode...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 32; no. 48
Main Authors Yi, Xiaoli, Li, Xinhai, Zhong, Jing, Wang, Siwu, Wang, Zhixing, Guo, Huajun, Wang, Jiexi, Yan, Guochun
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ether electrolytes exhibit better rate kinetics than carbonate ester electrolytes when used in several kinds of anode materials, especially in hard carbon (HC) for sodium‐ion batteries (SIBs). However, the mechanism causing the remarkable kinetics difference is still unclear. Here, a three‐electrode system is used first to eliminate the influence of polarization from the Na counter electrode. Then, there is systematic exploration from three steps of the electrode reaction process (Na+ storage in HC; de‐solvation; Na+ migration through solid electrolyte interphase (SE), and the underlying mysteries are uncovered. For Na+ storage in the bulk of the HC, it is found that two systems show the same storage mechanism and Na metallic nanoparticles will appear when discharged to 0.1 V. In addition, faster de‐solvation of the ether electrolyte is uncovered by three‐electrode temperature‐dependent EIS and solvation free energies calculation. Moreover, the difference of the SEI layers is unraveled by X‐ray photoelectron spectroscopy etching, scanning electron microscopy, and differential electrochemical mass spectrometry. Most importantly, by discriminating the impacts of the SEI layers and de‐solvation behavior, it can be concluded that the de‐solvation process is the rate‐controlling step of the electrode reaction process and is the main factor causing the kinetics differences between the two electrolytes. The research provides a clear mechanism to illuminate fast kinetics for ether electrolytes, which will promote its application in SIBs. Hard carbon electrodes show the same Na+ ion storage mechanism in two electrolytes. Ether electrolytes are favorable for a faster de‐solvation process. Solid electrolyte interphase (SEI) layers with more inorganic component and uniform morphology also favor faster Na+ ion transport for ether electrolytes. The de‐solvation behavior has a more profound effect than the SEI layers and is the main factor inducing the difference in kinetics.
AbstractList Ether electrolytes exhibit better rate kinetics than carbonate ester electrolytes when used in several kinds of anode materials, especially in hard carbon (HC) for sodium‐ion batteries (SIBs). However, the mechanism causing the remarkable kinetics difference is still unclear. Here, a three‐electrode system is used first to eliminate the influence of polarization from the Na counter electrode. Then, there is systematic exploration from three steps of the electrode reaction process (Na + storage in HC; de‐solvation; Na + migration through solid electrolyte interphase (SE), and the underlying mysteries are uncovered. For Na + storage in the bulk of the HC, it is found that two systems show the same storage mechanism and Na metallic nanoparticles will appear when discharged to 0.1 V. In addition, faster de‐solvation of the ether electrolyte is uncovered by three‐electrode temperature‐dependent EIS and solvation free energies calculation. Moreover, the difference of the SEI layers is unraveled by X‐ray photoelectron spectroscopy etching, scanning electron microscopy, and differential electrochemical mass spectrometry. Most importantly, by discriminating the impacts of the SEI layers and de‐solvation behavior, it can be concluded that the de‐solvation process is the rate‐controlling step of the electrode reaction process and is the main factor causing the kinetics differences between the two electrolytes. The research provides a clear mechanism to illuminate fast kinetics for ether electrolytes, which will promote its application in SIBs.
Ether electrolytes exhibit better rate kinetics than carbonate ester electrolytes when used in several kinds of anode materials, especially in hard carbon (HC) for sodium‐ion batteries (SIBs). However, the mechanism causing the remarkable kinetics difference is still unclear. Here, a three‐electrode system is used first to eliminate the influence of polarization from the Na counter electrode. Then, there is systematic exploration from three steps of the electrode reaction process (Na+ storage in HC; de‐solvation; Na+ migration through solid electrolyte interphase (SE), and the underlying mysteries are uncovered. For Na+ storage in the bulk of the HC, it is found that two systems show the same storage mechanism and Na metallic nanoparticles will appear when discharged to 0.1 V. In addition, faster de‐solvation of the ether electrolyte is uncovered by three‐electrode temperature‐dependent EIS and solvation free energies calculation. Moreover, the difference of the SEI layers is unraveled by X‐ray photoelectron spectroscopy etching, scanning electron microscopy, and differential electrochemical mass spectrometry. Most importantly, by discriminating the impacts of the SEI layers and de‐solvation behavior, it can be concluded that the de‐solvation process is the rate‐controlling step of the electrode reaction process and is the main factor causing the kinetics differences between the two electrolytes. The research provides a clear mechanism to illuminate fast kinetics for ether electrolytes, which will promote its application in SIBs.
Ether electrolytes exhibit better rate kinetics than carbonate ester electrolytes when used in several kinds of anode materials, especially in hard carbon (HC) for sodium‐ion batteries (SIBs). However, the mechanism causing the remarkable kinetics difference is still unclear. Here, a three‐electrode system is used first to eliminate the influence of polarization from the Na counter electrode. Then, there is systematic exploration from three steps of the electrode reaction process (Na+ storage in HC; de‐solvation; Na+ migration through solid electrolyte interphase (SE), and the underlying mysteries are uncovered. For Na+ storage in the bulk of the HC, it is found that two systems show the same storage mechanism and Na metallic nanoparticles will appear when discharged to 0.1 V. In addition, faster de‐solvation of the ether electrolyte is uncovered by three‐electrode temperature‐dependent EIS and solvation free energies calculation. Moreover, the difference of the SEI layers is unraveled by X‐ray photoelectron spectroscopy etching, scanning electron microscopy, and differential electrochemical mass spectrometry. Most importantly, by discriminating the impacts of the SEI layers and de‐solvation behavior, it can be concluded that the de‐solvation process is the rate‐controlling step of the electrode reaction process and is the main factor causing the kinetics differences between the two electrolytes. The research provides a clear mechanism to illuminate fast kinetics for ether electrolytes, which will promote its application in SIBs. Hard carbon electrodes show the same Na+ ion storage mechanism in two electrolytes. Ether electrolytes are favorable for a faster de‐solvation process. Solid electrolyte interphase (SEI) layers with more inorganic component and uniform morphology also favor faster Na+ ion transport for ether electrolytes. The de‐solvation behavior has a more profound effect than the SEI layers and is the main factor inducing the difference in kinetics.
Author Zhong, Jing
Yi, Xiaoli
Guo, Huajun
Wang, Zhixing
Yan, Guochun
Li, Xinhai
Wang, Siwu
Wang, Jiexi
Author_xml – sequence: 1
  givenname: Xiaoli
  surname: Yi
  fullname: Yi, Xiaoli
  organization: Central South University
– sequence: 2
  givenname: Xinhai
  surname: Li
  fullname: Li, Xinhai
  organization: Central South University
– sequence: 3
  givenname: Jing
  surname: Zhong
  fullname: Zhong, Jing
  organization: Central South University
– sequence: 4
  givenname: Siwu
  surname: Wang
  fullname: Wang, Siwu
  organization: Central South University
– sequence: 5
  givenname: Zhixing
  surname: Wang
  fullname: Wang, Zhixing
  organization: Central South University
– sequence: 6
  givenname: Huajun
  surname: Guo
  fullname: Guo, Huajun
  organization: Central South University
– sequence: 7
  givenname: Jiexi
  surname: Wang
  fullname: Wang, Jiexi
  organization: Central South University
– sequence: 8
  givenname: Guochun
  orcidid: 0000-0002-1892-9331
  surname: Yan
  fullname: Yan, Guochun
  email: happyygc@csu.edu.cn
  organization: Central South University
BookMark eNqFkE1LAzEQhoMo2FavngOeW_Oxn8fSVisqerDgbUmyE5uyTWoSLb36y91SW0EQLzND8jwz8HbRsXUWELqgZEAJYVei1ssBI4yRMmX8CHVoRrM-J6w4Psz05RR1Q1gQQvOcJx30ObNefEBj7CuOc8APoObCmrDETuOx0Ro82IjvjIVoVMBP4LXzS2EVYAlxDWDxpBU9FrbGI-GlsyICnoTYvk0aUNG7ZhMhYGPxVPg9tP-r4QydaNEEOP_uPTS7njyPpv37x5vb0fC-rzjlvK1MZrVijMsi0yotS5HwtCa5VHWmC1VICVld5omiHLROKKhE8jzPy0S1hOQ9dLnbu_Lu7R1CrBbu3dv2ZMXyhJAipTRrqWRHKe9C8KArZaKIxtnohWkqSqpt2tU27eqQdqsNfmkrb5bCb_4Wyp2wNg1s_qGr4fj64cf9AlC5lvY
CitedBy_id crossref_primary_10_1002_adma_202300002
crossref_primary_10_5796_electrochemistry_23_00051
crossref_primary_10_1016_j_ensm_2024_103573
crossref_primary_10_1021_acsnano_3c11171
crossref_primary_10_1021_acs_jpcc_3c02726
crossref_primary_10_3390_batteries10100362
crossref_primary_10_1039_D3EE02202A
crossref_primary_10_1039_D4TA04755A
crossref_primary_10_1021_acs_energyfuels_4c01974
crossref_primary_10_1007_s11426_024_2388_y
crossref_primary_10_1016_j_cej_2024_157457
crossref_primary_10_1002_bte2_20230033
crossref_primary_10_1016_j_est_2024_113167
crossref_primary_10_1016_j_cej_2024_154103
crossref_primary_10_1016_j_ensm_2024_103327
crossref_primary_10_1002_cey2_713
crossref_primary_10_1016_j_nanoen_2024_109920
crossref_primary_10_1002_celc_202300442
crossref_primary_10_1149_1945_7111_acf8fe
crossref_primary_10_1002_aenm_202303764
crossref_primary_10_1016_j_electacta_2024_144684
crossref_primary_10_1016_j_cej_2024_149558
crossref_primary_10_1016_j_cej_2024_151636
crossref_primary_10_1016_j_ensm_2024_103645
crossref_primary_10_1021_acscentsci_3c00301
crossref_primary_10_3390_nano14010065
crossref_primary_10_1016_j_cej_2024_153081
crossref_primary_10_1021_acsami_3c07402
crossref_primary_10_1021_acsnano_4c02046
crossref_primary_10_1007_s11426_024_2071_y
crossref_primary_10_1016_j_cej_2024_156115
crossref_primary_10_1039_D2QI02302D
crossref_primary_10_1016_j_cej_2025_161689
crossref_primary_10_1016_j_jcis_2025_01_110
crossref_primary_10_1002_adfm_202404320
crossref_primary_10_1007_s12274_024_6448_1
crossref_primary_10_20517_energymater_2024_291
crossref_primary_10_1002_anie_202307122
crossref_primary_10_1016_j_jelechem_2024_118754
crossref_primary_10_1002_adfm_202408242
crossref_primary_10_1016_j_cej_2024_150939
crossref_primary_10_1016_j_jcis_2025_02_028
crossref_primary_10_1021_acsami_4c03425
crossref_primary_10_1016_j_cej_2024_151949
crossref_primary_10_1016_S1872_5805_25_60953_X
crossref_primary_10_1002_aenm_202405363
crossref_primary_10_59761_RCR5100
crossref_primary_10_1007_s10854_024_12045_1
crossref_primary_10_1016_j_cej_2023_144237
crossref_primary_10_1021_acs_iecr_4c02402
crossref_primary_10_1002_smll_202304162
crossref_primary_10_1002_smll_202308684
crossref_primary_10_1021_acsnano_4c06571
crossref_primary_10_1007_s12274_024_6546_0
crossref_primary_10_1002_smll_202401215
crossref_primary_10_1142_S1793604723500182
crossref_primary_10_1007_s11426_024_1964_7
crossref_primary_10_1016_j_jcis_2025_137364
crossref_primary_10_1016_j_jpowsour_2023_233742
crossref_primary_10_1007_s41918_024_00215_y
crossref_primary_10_1002_adfm_202302277
crossref_primary_10_1039_D3SE01415K
crossref_primary_10_1016_j_jpowsour_2024_234875
crossref_primary_10_1016_j_electacta_2023_142617
crossref_primary_10_1016_j_ensm_2024_103627
crossref_primary_10_1016_j_cej_2024_150708
crossref_primary_10_1016_j_jcis_2024_03_050
crossref_primary_10_1021_acsami_3c19126
crossref_primary_10_1002_advs_202207751
crossref_primary_10_1002_ange_202307122
crossref_primary_10_1016_j_apsusc_2023_157711
crossref_primary_10_1016_j_jpowsour_2025_236234
crossref_primary_10_1002_smll_202309286
crossref_primary_10_1007_s11426_024_2094_0
crossref_primary_10_1002_adfm_202419275
crossref_primary_10_1016_j_nanoen_2024_110362
crossref_primary_10_1039_D4EE02578D
crossref_primary_10_1021_acs_nanolett_4c00842
crossref_primary_10_1021_acsenergylett_4c03323
crossref_primary_10_1002_adfm_202417725
crossref_primary_10_1016_j_jcis_2023_12_022
crossref_primary_10_1016_j_jpowsour_2024_235358
crossref_primary_10_1007_s40820_024_01560_9
crossref_primary_10_1021_acssuschemeng_3c03765
crossref_primary_10_1016_j_ensm_2024_103219
crossref_primary_10_1016_j_jpowsour_2025_236505
crossref_primary_10_1002_adfm_202315498
crossref_primary_10_1016_j_fuproc_2023_107998
crossref_primary_10_1021_acssuschemeng_3c07007
crossref_primary_10_1002_aenm_202401908
crossref_primary_10_5796_electrochemistry_23_00046
Cites_doi 10.1039/C7TA02515G
10.1002/batt.201900006
10.1039/C8TA07127F
10.1002/aenm.201602898
10.1360/SST-2019-0218
10.1149/2.1151605jes
10.1016/S0378-7753(01)00826-6
10.1038/nchem.2470
10.1016/j.mattod.2018.12.040
10.1002/anie.202011482
10.1088/2516-1083/aba5f5
10.1002/adma.201603212
10.1002/aenm.202000093
10.1016/j.cej.2021.133143
10.1002/adma.201808393
10.1039/C6EE03367A
10.1007/s12598-020-01605-z
10.1016/j.jpowsour.2007.11.110
10.1016/j.nanoen.2020.104895
10.1021/am404788e
10.1002/advs.201600275
10.1016/j.nanoen.2017.12.013
10.1002/aenm.202002704
10.1016/j.elecom.2014.05.003
10.1002/anie.201403734
10.1002/smll.201904740
10.1002/aenm.201501785
10.1016/j.ensm.2021.07.021
10.1021/acs.analchem.5b04696
10.1016/j.elecom.2012.10.038
10.1021/acsami.8b15274
10.1016/S0022-0728(81)80091-5
10.1002/anie.201105006
10.1002/adma.201702212
10.1038/s41467-019-10551-z
10.1002/aenm.201700403
10.1039/c3ta10241f
10.1016/j.jpowsour.2015.05.116
10.1002/aenm.201801441
10.1002/adfm.202100278
10.1016/j.jpowsour.2020.227904
10.1002/anie.198408313
10.1016/j.carbon.2018.12.112
10.1016/j.carbon.2015.09.091
10.1002/admi.201600449
10.1016/j.ensm.2021.07.005
10.1016/j.carbon.2019.05.030
10.1021/acsami.1c21683
10.1002/adma.201700622
10.1021/ed060p702
10.1016/S0013-4686(02)00250-5
10.1016/j.nanoen.2018.10.040
10.1142/S1793604718300037
10.1002/aenm.201802176
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202209523
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202209523
ADFM202209523
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of Hunan Province
  funderid: 2020JJ5755
– fundername: National Natural Science Foundation of China
  funderid: 51804344
– fundername: Key Research and Development Program of Yunnan Province
  funderid: 202103AA080019
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAHHS
AANHP
AASGY
AAYXX
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3133-c32b6dc223b86fc599a435d07bcd6f8c8bbe6d974c13eff41ec4b377794ccd6b3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 07:42:14 EDT 2025
Thu Apr 24 23:08:34 EDT 2025
Tue Jul 01 00:30:34 EDT 2025
Wed Aug 20 07:24:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 48
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3133-c32b6dc223b86fc599a435d07bcd6f8c8bbe6d974c13eff41ec4b377794ccd6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1892-9331
PQID 2740085116
PQPubID 2045204
PageCount 11
ParticipantIDs proquest_journals_2740085116
crossref_citationtrail_10_1002_adfm_202209523
crossref_primary_10_1002_adfm_202209523
wiley_primary_10_1002_adfm_202209523_ADFM202209523
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 430
2016 2021; 163 42
2019; 50
2020 2019; 10 31
2019; 2
2014 2017 2018; 44 4 6
1981 1984 1983; 117 23 60
2019; 15
2018 2002; 44 47
2014 2017; 6 7
2022 2012 2019 2020; 14 51 23 11
2019; 145
2016 2017; 98 7
2016; 6
2017 2020; 29 40
2018; 8
2020; 2
2019 2020; 55 471
2020; 74
2017 2018; 10 8
2014 2019 2015; 53 10 293
2020; 453
2016 2001; 88 102
2019; 151
2008; 178
2021; 60
2018 2021 2021; 10 42 31
2016; 8
2013 2016 2018 2017; 27 3 11 5
2013 2017 2016; 1 29 28
e_1_2_8_28_1
e_1_2_8_22_3
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_20_2
e_1_2_8_22_1
e_1_2_8_22_2
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_19_2
e_1_2_8_11_3
e_1_2_8_13_1
e_1_2_8_11_4
e_1_2_8_15_1
e_1_2_8_15_2
e_1_2_8_19_3
e_1_2_8_19_4
Chen C. (e_1_2_8_28_2) 2020; 471
e_1_2_8_30_2
e_1_2_8_11_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_29_2
e_1_2_8_25_1
e_1_2_8_25_2
e_1_2_8_25_3
e_1_2_8_27_1
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_2
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_16_2
e_1_2_8_16_3
e_1_2_8_18_1
e_1_2_8_12_2
e_1_2_8_12_3
e_1_2_8_14_1
e_1_2_8_14_2
e_1_2_8_14_3
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_10_2
e_1_2_8_12_1
Bommier C. (e_1_2_8_11_2) 2016; 3
References_xml – volume: 74
  year: 2020
  publication-title: Nano Energy
– volume: 14 51 23 11
  start-page: 5798 87
  year: 2022 2012 2019 2020
  publication-title: ACS Appl. Mater. Interfaces Angew. Chem., Int. Ed. Mater. Today Adv. Energy Mater.
– volume: 453
  year: 2020
  publication-title: J. Power Sources
– volume: 151
  start-page: 1
  year: 2019
  publication-title: Carbon
– volume: 8
  start-page: 426
  year: 2016
  publication-title: Nat. Chem.
– volume: 117 23 60
  start-page: 309 831 702
  year: 1981 1984 1983
  publication-title: J. Electroanal. Chem. Interfacial Electrochem. Angew. Chem., Int. Ed. Engl. J. Chem. Educ.
– volume: 44 4 6
  start-page: 74
  year: 2014 2017 2018
  publication-title: Electrochem. Commun. Adv. Sci. J. Mater. Chem. A
– volume: 44 47
  start-page: 327 3303
  year: 2018 2002
  publication-title: Nano Energy Electrochim. Acta
– volume: 178
  start-page: 409
  year: 2008
  publication-title: J. Power Sources
– volume: 60
  start-page: 4090
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 10 42 31
  start-page: 78
  year: 2018 2021 2021
  publication-title: ACS Appl. Mater. Interfaces Energy Stor. Mater. Adv. Funct. Mater.
– volume: 1 29 28
  start-page: 5256 9824
  year: 2013 2017 2016
  publication-title: J. Mater. Chem. A Adv. Mater. Adv. Mater.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 27 3 11 5
  start-page: 85 9528
  year: 2013 2016 2018 2017
  publication-title: Electrochem. Commun. Adv. Mater. Interfaces Funct. Mater. Lett. J. Mater. Chem. A
– volume: 29 40
  start-page: 272
  year: 2017 2020
  publication-title: Adv. Mater. Rare Met.
– volume: 55 471
  start-page: 327 2285
  year: 2019 2020
  publication-title: Nano Energy J. Power Sources
– volume: 163 42
  start-page: 798 12
  year: 2016 2021
  publication-title: J. Electrochem. Soc. Energy Stor. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 50
  start-page: 247
  year: 2019
  publication-title: Sci. Sin. Technol.
– volume: 53 10 293
  start-page: 2598 626
  year: 2014 2019 2015
  publication-title: Angew. Chem., Int. Ed. Nat. Commun. J. Power Sources
– volume: 145
  start-page: 67
  year: 2019
  publication-title: Carbon
– volume: 98 7
  start-page: 162
  year: 2016 2017
  publication-title: Carbon Adv. Energy Mater.
– volume: 430
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 88 102
  start-page: 2877 277
  year: 2016 2001
  publication-title: Anal. Chem. J. Power Sources
– volume: 2
  year: 2020
  publication-title: Prog. Energy
– volume: 6 7
  start-page: 1788
  year: 2014 2017
  publication-title: ACS Appl. Mater. Interfaces Adv. Energy Mater.
– volume: 10 31
  year: 2020 2019
  publication-title: Adv. Energy Mater. Adv. Mater.
– volume: 2
  start-page: 114
  year: 2019
  publication-title: Batteries Supercaps
– volume: 10 8
  start-page: 370
  year: 2017 2018
  publication-title: Energy Environ. Sci. Adv. Energy Mater.
– ident: e_1_2_8_11_4
  doi: 10.1039/C7TA02515G
– ident: e_1_2_8_18_1
  doi: 10.1002/batt.201900006
– ident: e_1_2_8_25_3
  doi: 10.1039/C8TA07127F
– ident: e_1_2_8_1_2
  doi: 10.1002/aenm.201602898
– ident: e_1_2_8_9_1
  doi: 10.1360/SST-2019-0218
– ident: e_1_2_8_29_1
  doi: 10.1149/2.1151605jes
– ident: e_1_2_8_30_2
  doi: 10.1016/S0378-7753(01)00826-6
– ident: e_1_2_8_24_1
  doi: 10.1038/nchem.2470
– ident: e_1_2_8_19_3
  doi: 10.1016/j.mattod.2018.12.040
– ident: e_1_2_8_26_1
  doi: 10.1002/anie.202011482
– ident: e_1_2_8_5_1
  doi: 10.1088/2516-1083/aba5f5
– ident: e_1_2_8_12_3
  doi: 10.1002/adma.201603212
– ident: e_1_2_8_10_1
  doi: 10.1002/aenm.202000093
– ident: e_1_2_8_17_1
  doi: 10.1016/j.cej.2021.133143
– ident: e_1_2_8_10_2
  doi: 10.1002/adma.201808393
– ident: e_1_2_8_15_1
  doi: 10.1039/C6EE03367A
– ident: e_1_2_8_2_2
  doi: 10.1007/s12598-020-01605-z
– ident: e_1_2_8_27_1
  doi: 10.1016/j.jpowsour.2007.11.110
– ident: e_1_2_8_7_1
  doi: 10.1016/j.nanoen.2020.104895
– ident: e_1_2_8_8_1
  doi: 10.1021/am404788e
– ident: e_1_2_8_25_2
  doi: 10.1002/advs.201600275
– ident: e_1_2_8_20_1
  doi: 10.1016/j.nanoen.2017.12.013
– ident: e_1_2_8_19_4
  doi: 10.1002/aenm.202002704
– ident: e_1_2_8_25_1
  doi: 10.1016/j.elecom.2014.05.003
– ident: e_1_2_8_14_1
  doi: 10.1002/anie.201403734
– ident: e_1_2_8_3_1
  doi: 10.1002/smll.201904740
– ident: e_1_2_8_13_1
  doi: 10.1002/aenm.201501785
– ident: e_1_2_8_16_2
  doi: 10.1016/j.ensm.2021.07.021
– ident: e_1_2_8_30_1
  doi: 10.1021/acs.analchem.5b04696
– ident: e_1_2_8_11_1
  doi: 10.1016/j.elecom.2012.10.038
– ident: e_1_2_8_16_1
  doi: 10.1021/acsami.8b15274
– ident: e_1_2_8_22_1
  doi: 10.1016/S0022-0728(81)80091-5
– ident: e_1_2_8_19_2
  doi: 10.1002/anie.201105006
– volume: 471
  start-page: 2285
  year: 2020
  ident: e_1_2_8_28_2
  publication-title: J. Power Sources
– ident: e_1_2_8_12_2
  doi: 10.1002/adma.201702212
– ident: e_1_2_8_14_2
  doi: 10.1038/s41467-019-10551-z
– ident: e_1_2_8_8_2
  doi: 10.1002/aenm.201700403
– ident: e_1_2_8_12_1
  doi: 10.1039/c3ta10241f
– ident: e_1_2_8_14_3
  doi: 10.1016/j.jpowsour.2015.05.116
– ident: e_1_2_8_15_2
  doi: 10.1002/aenm.201801441
– ident: e_1_2_8_16_3
  doi: 10.1002/adfm.202100278
– ident: e_1_2_8_4_1
  doi: 10.1016/j.jpowsour.2020.227904
– ident: e_1_2_8_22_2
  doi: 10.1002/anie.198408313
– ident: e_1_2_8_23_1
  doi: 10.1016/j.carbon.2018.12.112
– ident: e_1_2_8_1_1
  doi: 10.1016/j.carbon.2015.09.091
– volume: 3
  start-page: 600449
  year: 2016
  ident: e_1_2_8_11_2
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201600449
– ident: e_1_2_8_29_2
  doi: 10.1016/j.ensm.2021.07.005
– ident: e_1_2_8_6_1
  doi: 10.1016/j.carbon.2019.05.030
– ident: e_1_2_8_19_1
  doi: 10.1021/acsami.1c21683
– ident: e_1_2_8_2_1
  doi: 10.1002/adma.201700622
– ident: e_1_2_8_22_3
  doi: 10.1021/ed060p702
– ident: e_1_2_8_20_2
  doi: 10.1016/S0013-4686(02)00250-5
– ident: e_1_2_8_28_1
  doi: 10.1016/j.nanoen.2018.10.040
– ident: e_1_2_8_11_3
  doi: 10.1142/S1793604718300037
– ident: e_1_2_8_21_1
  doi: 10.1002/aenm.201802176
SSID ssj0017734
Score 2.653304
Snippet Ether electrolytes exhibit better rate kinetics than carbonate ester electrolytes when used in several kinds of anode materials, especially in hard carbon (HC)...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anodes
Carbon
de‐solvation
Electrode materials
Electrode polarization
Electrodes
Electrolytes
ester electrolytes
ether electrolytes
hard carbon
Kinetics
Mass spectrometry
Materials science
Nanoparticles
Photoelectrons
Sodium
Sodium-ion batteries
solid electrolyte interphase layers
Solid electrolytes
Solvation
Temperature dependence
three‐electrode systems
Title Unraveling the Mechanism of Different Kinetics Performance between Ether and Carbonate Ester Electrolytes in Hard Carbon Electrode
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202209523
https://www.proquest.com/docview/2740085116
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA8yL3rwW5zOkYPgqdv6la7HsXUMdSLqYLeSpAkMZyf7OOjRv9z3lrbbBBH0Ulr6UtLkJfm95L3fI-TKxaMg19VgloSB5TFQ47AZcsvnnp-AVktPYXBy_571Bt7N0B-uRfEbfohiww1HxnK-xgHOxay-Ig3licZIcscBkOAg3Sc6bCEqeiz4o-wgMMfKzEYHL3uYszY2nPpm8c1VaQU11wHrcsXp7hOe19U4mrzUFnNRkx_faBz_8zMHZC-Do7Rl9OeQbKn0iOyukRQek89BiimKMGydAlqkfYXBwqPZK51o2snyq8zpLZRAymf6sApFoJkXGI0QZlKeJrTNpwI37BWNkKKBRiYNz_gdIC8dpRQ9CTKh_F2iTsigGz23e1aWucGSLhi9cHUESyRAD9FkWvphyAGWJY1AyITppmwKoVgCpoy0XaW1ZyvpCTcIYHKQICHcU1JKJ6k6I5R7UoQNxZWvwZTXjPsKMGfohxJMMdHwysTKey6WGa05ZtcYx4aQ2YmxbeOibcvkupB_M4QeP0pWckWIs4E9i8GINyiVlYmz7NFfvhK3Ot1-8XT-l0IXZAfvTQRkhZTm04W6BCg0F1Wy3er0756qS7X_AvhVArQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5ROLQcgP4glgL1oVVPgcRxnM2BA2J3tXRZVFWstLfUdmwJlQbELkL02Dfqq_SJOrNOslAJVULi0EukJOMosmfsb-yZbwDex3QUFMcO3ZIsDYRENc7amQoSJZICtdoIS8nJwxPZH4lP42S8AL_qXBjPD9FsuJFlzOZrMnDakN6bs4aqwlEqOeeIEnhdv3pgb2_Qa5vsH3VwiD9w3uueHvaDqrBAYGL0yfDKtSwMroy6LZ1JskwhaijCVJtCurZpa21lgUjbRLF1TkTWCB2nKequQQkd43efwRKVESe6_s6XhrEqSlN_kC0jCimLxjVPZMj37v_v_XVwDm7vQuTZGtdbhd917_jQlm-711O9a378RRz5X3XfGqxUiJsdeBN5CQu2fAXLd3gYX8PPUUlVmCgznyEgZkNL-dBnk-_swrFOVUJmygbYglit2ed5tgWrAt1Yl5A0U2XBDtWVpjMJy7rEQsG6vtLQ-S2ienZWMgqWqITqd4V9A6Mn6YR1WCwvSrsBTAmjs9Aqm7hQSCdVYhFWZ0lm0NvUoWhBUKtKbirmdiogcp57zmme01jmzVi24GMjf-k5Sx6U3Ko1L6_mrknOU-GBuGwBn6nQP76SH3R6w-Zu8zGN3sHz_unwOD8-Ohm8hRf03Cd8bsHi9OrabiPym-qdma0x-PrU2vkH-zdhUQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE4QPmpWCjFBxCntInjOOtDD1Wzq5Zlqwqx0t5C_CdVlLTqboXKkSfiVXijzqyTbIuEkJB64BIpydiK7Bn7m3jmG4A3KR0FpalHt0TlkZCoxqqvqiirRGZRq41wlJw8PpT7E_F-mk1X4GebCxP4IbofbmQZi_WaDPzM-u0laWhlPWWSc44ggbflq0fu8hs6bbOdgwJn-C3nw8Gnvf2oqSsQmRRdMrxyLa3BjVH3pTeZUhWCBhvn2ljp-6avtZMWgbZJUue9SJwROs1zVF2DEjrFfu_AXSFjRcUiio8dYVWS5-EcWyYUUZZMW5rImG_f_N6b2-AS215HyIstbvgIfrWDEyJbvmxdzPWW-f4bb-T_NHpr8LDB22w3GMhjWHH1E3hwjYXxKfyY1FSDifLyGcJhNnaUDX08-8pOPSuaAjJzNsIWxGnNjpa5FqwJc2MDwtGsqi3bq841nUg4NiAOCjYIdYZOLhHTs-OaUahEI9S-s-4ZTG5lENZhtT6t3XNglTBaxa5ymY-F9LLKHIJqlSmDvqaORQ-iVlNK0_C2U_mQkzIwTvOS5rLs5rIH7zr5s8BY8kfJjVbxymblmpU8FwGGyx7whQb9pZdytxiOu7sX_9LoNdw7Koblh4PD0Uu4T49DtucGrM7PL9wrhH1zvbmwNAafb1s5rwBfL2AA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+the+Mechanism+of+Different+Kinetics+Performance+between+Ether+and+Carbonate+Ester+Electrolytes+in+Hard+Carbon+Electrode&rft.jtitle=Advanced+functional+materials&rft.au=Yi%2C+Xiaoli&rft.au=Li%2C+Xinhai&rft.au=Zhong%2C+Jing&rft.au=Wang%2C+Siwu&rft.date=2022-11-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=48&rft_id=info:doi/10.1002%2Fadfm.202209523&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202209523
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon