Unraveling the Mechanism of Different Kinetics Performance between Ether and Carbonate Ester Electrolytes in Hard Carbon Electrode
Ether electrolytes exhibit better rate kinetics than carbonate ester electrolytes when used in several kinds of anode materials, especially in hard carbon (HC) for sodium‐ion batteries (SIBs). However, the mechanism causing the remarkable kinetics difference is still unclear. Here, a three‐electrode...
Saved in:
Published in | Advanced functional materials Vol. 32; no. 48 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ether electrolytes exhibit better rate kinetics than carbonate ester electrolytes when used in several kinds of anode materials, especially in hard carbon (HC) for sodium‐ion batteries (SIBs). However, the mechanism causing the remarkable kinetics difference is still unclear. Here, a three‐electrode system is used first to eliminate the influence of polarization from the Na counter electrode. Then, there is systematic exploration from three steps of the electrode reaction process (Na+ storage in HC; de‐solvation; Na+ migration through solid electrolyte interphase (SE), and the underlying mysteries are uncovered. For Na+ storage in the bulk of the HC, it is found that two systems show the same storage mechanism and Na metallic nanoparticles will appear when discharged to 0.1 V. In addition, faster de‐solvation of the ether electrolyte is uncovered by three‐electrode temperature‐dependent EIS and solvation free energies calculation. Moreover, the difference of the SEI layers is unraveled by X‐ray photoelectron spectroscopy etching, scanning electron microscopy, and differential electrochemical mass spectrometry. Most importantly, by discriminating the impacts of the SEI layers and de‐solvation behavior, it can be concluded that the de‐solvation process is the rate‐controlling step of the electrode reaction process and is the main factor causing the kinetics differences between the two electrolytes. The research provides a clear mechanism to illuminate fast kinetics for ether electrolytes, which will promote its application in SIBs.
Hard carbon electrodes show the same Na+ ion storage mechanism in two electrolytes. Ether electrolytes are favorable for a faster de‐solvation process. Solid electrolyte interphase (SEI) layers with more inorganic component and uniform morphology also favor faster Na+ ion transport for ether electrolytes. The de‐solvation behavior has a more profound effect than the SEI layers and is the main factor inducing the difference in kinetics. |
---|---|
AbstractList | Ether electrolytes exhibit better rate kinetics than carbonate ester electrolytes when used in several kinds of anode materials, especially in hard carbon (HC) for sodium‐ion batteries (SIBs). However, the mechanism causing the remarkable kinetics difference is still unclear. Here, a three‐electrode system is used first to eliminate the influence of polarization from the Na counter electrode. Then, there is systematic exploration from three steps of the electrode reaction process (Na
+
storage in HC; de‐solvation; Na
+
migration through solid electrolyte interphase (SE), and the underlying mysteries are uncovered. For Na
+
storage in the bulk of the HC, it is found that two systems show the same storage mechanism and Na metallic nanoparticles will appear when discharged to 0.1 V. In addition, faster de‐solvation of the ether electrolyte is uncovered by three‐electrode temperature‐dependent EIS and solvation free energies calculation. Moreover, the difference of the SEI layers is unraveled by X‐ray photoelectron spectroscopy etching, scanning electron microscopy, and differential electrochemical mass spectrometry. Most importantly, by discriminating the impacts of the SEI layers and de‐solvation behavior, it can be concluded that the de‐solvation process is the rate‐controlling step of the electrode reaction process and is the main factor causing the kinetics differences between the two electrolytes. The research provides a clear mechanism to illuminate fast kinetics for ether electrolytes, which will promote its application in SIBs. Ether electrolytes exhibit better rate kinetics than carbonate ester electrolytes when used in several kinds of anode materials, especially in hard carbon (HC) for sodium‐ion batteries (SIBs). However, the mechanism causing the remarkable kinetics difference is still unclear. Here, a three‐electrode system is used first to eliminate the influence of polarization from the Na counter electrode. Then, there is systematic exploration from three steps of the electrode reaction process (Na+ storage in HC; de‐solvation; Na+ migration through solid electrolyte interphase (SE), and the underlying mysteries are uncovered. For Na+ storage in the bulk of the HC, it is found that two systems show the same storage mechanism and Na metallic nanoparticles will appear when discharged to 0.1 V. In addition, faster de‐solvation of the ether electrolyte is uncovered by three‐electrode temperature‐dependent EIS and solvation free energies calculation. Moreover, the difference of the SEI layers is unraveled by X‐ray photoelectron spectroscopy etching, scanning electron microscopy, and differential electrochemical mass spectrometry. Most importantly, by discriminating the impacts of the SEI layers and de‐solvation behavior, it can be concluded that the de‐solvation process is the rate‐controlling step of the electrode reaction process and is the main factor causing the kinetics differences between the two electrolytes. The research provides a clear mechanism to illuminate fast kinetics for ether electrolytes, which will promote its application in SIBs. Ether electrolytes exhibit better rate kinetics than carbonate ester electrolytes when used in several kinds of anode materials, especially in hard carbon (HC) for sodium‐ion batteries (SIBs). However, the mechanism causing the remarkable kinetics difference is still unclear. Here, a three‐electrode system is used first to eliminate the influence of polarization from the Na counter electrode. Then, there is systematic exploration from three steps of the electrode reaction process (Na+ storage in HC; de‐solvation; Na+ migration through solid electrolyte interphase (SE), and the underlying mysteries are uncovered. For Na+ storage in the bulk of the HC, it is found that two systems show the same storage mechanism and Na metallic nanoparticles will appear when discharged to 0.1 V. In addition, faster de‐solvation of the ether electrolyte is uncovered by three‐electrode temperature‐dependent EIS and solvation free energies calculation. Moreover, the difference of the SEI layers is unraveled by X‐ray photoelectron spectroscopy etching, scanning electron microscopy, and differential electrochemical mass spectrometry. Most importantly, by discriminating the impacts of the SEI layers and de‐solvation behavior, it can be concluded that the de‐solvation process is the rate‐controlling step of the electrode reaction process and is the main factor causing the kinetics differences between the two electrolytes. The research provides a clear mechanism to illuminate fast kinetics for ether electrolytes, which will promote its application in SIBs. Hard carbon electrodes show the same Na+ ion storage mechanism in two electrolytes. Ether electrolytes are favorable for a faster de‐solvation process. Solid electrolyte interphase (SEI) layers with more inorganic component and uniform morphology also favor faster Na+ ion transport for ether electrolytes. The de‐solvation behavior has a more profound effect than the SEI layers and is the main factor inducing the difference in kinetics. |
Author | Zhong, Jing Yi, Xiaoli Guo, Huajun Wang, Zhixing Yan, Guochun Li, Xinhai Wang, Siwu Wang, Jiexi |
Author_xml | – sequence: 1 givenname: Xiaoli surname: Yi fullname: Yi, Xiaoli organization: Central South University – sequence: 2 givenname: Xinhai surname: Li fullname: Li, Xinhai organization: Central South University – sequence: 3 givenname: Jing surname: Zhong fullname: Zhong, Jing organization: Central South University – sequence: 4 givenname: Siwu surname: Wang fullname: Wang, Siwu organization: Central South University – sequence: 5 givenname: Zhixing surname: Wang fullname: Wang, Zhixing organization: Central South University – sequence: 6 givenname: Huajun surname: Guo fullname: Guo, Huajun organization: Central South University – sequence: 7 givenname: Jiexi surname: Wang fullname: Wang, Jiexi organization: Central South University – sequence: 8 givenname: Guochun orcidid: 0000-0002-1892-9331 surname: Yan fullname: Yan, Guochun email: happyygc@csu.edu.cn organization: Central South University |
BookMark | eNqFkE1LAzEQhoMo2FavngOeW_Oxn8fSVisqerDgbUmyE5uyTWoSLb36y91SW0EQLzND8jwz8HbRsXUWELqgZEAJYVei1ssBI4yRMmX8CHVoRrM-J6w4Psz05RR1Q1gQQvOcJx30ObNefEBj7CuOc8APoObCmrDETuOx0Ro82IjvjIVoVMBP4LXzS2EVYAlxDWDxpBU9FrbGI-GlsyICnoTYvk0aUNG7ZhMhYGPxVPg9tP-r4QydaNEEOP_uPTS7njyPpv37x5vb0fC-rzjlvK1MZrVijMsi0yotS5HwtCa5VHWmC1VICVld5omiHLROKKhE8jzPy0S1hOQ9dLnbu_Lu7R1CrBbu3dv2ZMXyhJAipTRrqWRHKe9C8KArZaKIxtnohWkqSqpt2tU27eqQdqsNfmkrb5bCb_4Wyp2wNg1s_qGr4fj64cf9AlC5lvY |
CitedBy_id | crossref_primary_10_1002_adma_202300002 crossref_primary_10_5796_electrochemistry_23_00051 crossref_primary_10_1016_j_ensm_2024_103573 crossref_primary_10_1021_acsnano_3c11171 crossref_primary_10_1021_acs_jpcc_3c02726 crossref_primary_10_3390_batteries10100362 crossref_primary_10_1039_D3EE02202A crossref_primary_10_1039_D4TA04755A crossref_primary_10_1021_acs_energyfuels_4c01974 crossref_primary_10_1007_s11426_024_2388_y crossref_primary_10_1016_j_cej_2024_157457 crossref_primary_10_1002_bte2_20230033 crossref_primary_10_1016_j_est_2024_113167 crossref_primary_10_1016_j_cej_2024_154103 crossref_primary_10_1016_j_ensm_2024_103327 crossref_primary_10_1002_cey2_713 crossref_primary_10_1016_j_nanoen_2024_109920 crossref_primary_10_1002_celc_202300442 crossref_primary_10_1149_1945_7111_acf8fe crossref_primary_10_1002_aenm_202303764 crossref_primary_10_1016_j_electacta_2024_144684 crossref_primary_10_1016_j_cej_2024_149558 crossref_primary_10_1016_j_cej_2024_151636 crossref_primary_10_1016_j_ensm_2024_103645 crossref_primary_10_1021_acscentsci_3c00301 crossref_primary_10_3390_nano14010065 crossref_primary_10_1016_j_cej_2024_153081 crossref_primary_10_1021_acsami_3c07402 crossref_primary_10_1021_acsnano_4c02046 crossref_primary_10_1007_s11426_024_2071_y crossref_primary_10_1016_j_cej_2024_156115 crossref_primary_10_1039_D2QI02302D crossref_primary_10_1016_j_cej_2025_161689 crossref_primary_10_1016_j_jcis_2025_01_110 crossref_primary_10_1002_adfm_202404320 crossref_primary_10_1007_s12274_024_6448_1 crossref_primary_10_20517_energymater_2024_291 crossref_primary_10_1002_anie_202307122 crossref_primary_10_1016_j_jelechem_2024_118754 crossref_primary_10_1002_adfm_202408242 crossref_primary_10_1016_j_cej_2024_150939 crossref_primary_10_1016_j_jcis_2025_02_028 crossref_primary_10_1021_acsami_4c03425 crossref_primary_10_1016_j_cej_2024_151949 crossref_primary_10_1016_S1872_5805_25_60953_X crossref_primary_10_1002_aenm_202405363 crossref_primary_10_59761_RCR5100 crossref_primary_10_1007_s10854_024_12045_1 crossref_primary_10_1016_j_cej_2023_144237 crossref_primary_10_1021_acs_iecr_4c02402 crossref_primary_10_1002_smll_202304162 crossref_primary_10_1002_smll_202308684 crossref_primary_10_1021_acsnano_4c06571 crossref_primary_10_1007_s12274_024_6546_0 crossref_primary_10_1002_smll_202401215 crossref_primary_10_1142_S1793604723500182 crossref_primary_10_1007_s11426_024_1964_7 crossref_primary_10_1016_j_jcis_2025_137364 crossref_primary_10_1016_j_jpowsour_2023_233742 crossref_primary_10_1007_s41918_024_00215_y crossref_primary_10_1002_adfm_202302277 crossref_primary_10_1039_D3SE01415K crossref_primary_10_1016_j_jpowsour_2024_234875 crossref_primary_10_1016_j_electacta_2023_142617 crossref_primary_10_1016_j_ensm_2024_103627 crossref_primary_10_1016_j_cej_2024_150708 crossref_primary_10_1016_j_jcis_2024_03_050 crossref_primary_10_1021_acsami_3c19126 crossref_primary_10_1002_advs_202207751 crossref_primary_10_1002_ange_202307122 crossref_primary_10_1016_j_apsusc_2023_157711 crossref_primary_10_1016_j_jpowsour_2025_236234 crossref_primary_10_1002_smll_202309286 crossref_primary_10_1007_s11426_024_2094_0 crossref_primary_10_1002_adfm_202419275 crossref_primary_10_1016_j_nanoen_2024_110362 crossref_primary_10_1039_D4EE02578D crossref_primary_10_1021_acs_nanolett_4c00842 crossref_primary_10_1021_acsenergylett_4c03323 crossref_primary_10_1002_adfm_202417725 crossref_primary_10_1016_j_jcis_2023_12_022 crossref_primary_10_1016_j_jpowsour_2024_235358 crossref_primary_10_1007_s40820_024_01560_9 crossref_primary_10_1021_acssuschemeng_3c03765 crossref_primary_10_1016_j_ensm_2024_103219 crossref_primary_10_1016_j_jpowsour_2025_236505 crossref_primary_10_1002_adfm_202315498 crossref_primary_10_1016_j_fuproc_2023_107998 crossref_primary_10_1021_acssuschemeng_3c07007 crossref_primary_10_1002_aenm_202401908 crossref_primary_10_5796_electrochemistry_23_00046 |
Cites_doi | 10.1039/C7TA02515G 10.1002/batt.201900006 10.1039/C8TA07127F 10.1002/aenm.201602898 10.1360/SST-2019-0218 10.1149/2.1151605jes 10.1016/S0378-7753(01)00826-6 10.1038/nchem.2470 10.1016/j.mattod.2018.12.040 10.1002/anie.202011482 10.1088/2516-1083/aba5f5 10.1002/adma.201603212 10.1002/aenm.202000093 10.1016/j.cej.2021.133143 10.1002/adma.201808393 10.1039/C6EE03367A 10.1007/s12598-020-01605-z 10.1016/j.jpowsour.2007.11.110 10.1016/j.nanoen.2020.104895 10.1021/am404788e 10.1002/advs.201600275 10.1016/j.nanoen.2017.12.013 10.1002/aenm.202002704 10.1016/j.elecom.2014.05.003 10.1002/anie.201403734 10.1002/smll.201904740 10.1002/aenm.201501785 10.1016/j.ensm.2021.07.021 10.1021/acs.analchem.5b04696 10.1016/j.elecom.2012.10.038 10.1021/acsami.8b15274 10.1016/S0022-0728(81)80091-5 10.1002/anie.201105006 10.1002/adma.201702212 10.1038/s41467-019-10551-z 10.1002/aenm.201700403 10.1039/c3ta10241f 10.1016/j.jpowsour.2015.05.116 10.1002/aenm.201801441 10.1002/adfm.202100278 10.1016/j.jpowsour.2020.227904 10.1002/anie.198408313 10.1016/j.carbon.2018.12.112 10.1016/j.carbon.2015.09.091 10.1002/admi.201600449 10.1016/j.ensm.2021.07.005 10.1016/j.carbon.2019.05.030 10.1021/acsami.1c21683 10.1002/adma.201700622 10.1021/ed060p702 10.1016/S0013-4686(02)00250-5 10.1016/j.nanoen.2018.10.040 10.1142/S1793604718300037 10.1002/aenm.201802176 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202209523 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202209523 ADFM202209523 |
Genre | article |
GrantInformation_xml | – fundername: Natural Science Foundation of Hunan Province funderid: 2020JJ5755 – fundername: National Natural Science Foundation of China funderid: 51804344 – fundername: Key Research and Development Program of Yunnan Province funderid: 202103AA080019 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAHHS AANHP AASGY AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADNMO ADZOD AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3133-c32b6dc223b86fc599a435d07bcd6f8c8bbe6d974c13eff41ec4b377794ccd6b3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 07:42:14 EDT 2025 Thu Apr 24 23:08:34 EDT 2025 Tue Jul 01 00:30:34 EDT 2025 Wed Aug 20 07:24:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 48 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3133-c32b6dc223b86fc599a435d07bcd6f8c8bbe6d974c13eff41ec4b377794ccd6b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1892-9331 |
PQID | 2740085116 |
PQPubID | 2045204 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2740085116 crossref_citationtrail_10_1002_adfm_202209523 crossref_primary_10_1002_adfm_202209523 wiley_primary_10_1002_adfm_202209523_ADFM202209523 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2022; 430 2016 2021; 163 42 2019; 50 2020 2019; 10 31 2019; 2 2014 2017 2018; 44 4 6 1981 1984 1983; 117 23 60 2019; 15 2018 2002; 44 47 2014 2017; 6 7 2022 2012 2019 2020; 14 51 23 11 2019; 145 2016 2017; 98 7 2016; 6 2017 2020; 29 40 2018; 8 2020; 2 2019 2020; 55 471 2020; 74 2017 2018; 10 8 2014 2019 2015; 53 10 293 2020; 453 2016 2001; 88 102 2019; 151 2008; 178 2021; 60 2018 2021 2021; 10 42 31 2016; 8 2013 2016 2018 2017; 27 3 11 5 2013 2017 2016; 1 29 28 e_1_2_8_28_1 e_1_2_8_22_3 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_20_2 e_1_2_8_22_1 e_1_2_8_22_2 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_19_2 e_1_2_8_11_3 e_1_2_8_13_1 e_1_2_8_11_4 e_1_2_8_15_1 e_1_2_8_15_2 e_1_2_8_19_3 e_1_2_8_19_4 Chen C. (e_1_2_8_28_2) 2020; 471 e_1_2_8_30_2 e_1_2_8_11_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_29_2 e_1_2_8_25_1 e_1_2_8_25_2 e_1_2_8_25_3 e_1_2_8_27_1 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_2 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_23_1 e_1_2_8_16_2 e_1_2_8_16_3 e_1_2_8_18_1 e_1_2_8_12_2 e_1_2_8_12_3 e_1_2_8_14_1 e_1_2_8_14_2 e_1_2_8_14_3 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_10_2 e_1_2_8_12_1 Bommier C. (e_1_2_8_11_2) 2016; 3 |
References_xml | – volume: 74 year: 2020 publication-title: Nano Energy – volume: 14 51 23 11 start-page: 5798 87 year: 2022 2012 2019 2020 publication-title: ACS Appl. Mater. Interfaces Angew. Chem., Int. Ed. Mater. Today Adv. Energy Mater. – volume: 453 year: 2020 publication-title: J. Power Sources – volume: 151 start-page: 1 year: 2019 publication-title: Carbon – volume: 8 start-page: 426 year: 2016 publication-title: Nat. Chem. – volume: 117 23 60 start-page: 309 831 702 year: 1981 1984 1983 publication-title: J. Electroanal. Chem. Interfacial Electrochem. Angew. Chem., Int. Ed. Engl. J. Chem. Educ. – volume: 44 4 6 start-page: 74 year: 2014 2017 2018 publication-title: Electrochem. Commun. Adv. Sci. J. Mater. Chem. A – volume: 44 47 start-page: 327 3303 year: 2018 2002 publication-title: Nano Energy Electrochim. Acta – volume: 178 start-page: 409 year: 2008 publication-title: J. Power Sources – volume: 60 start-page: 4090 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 10 42 31 start-page: 78 year: 2018 2021 2021 publication-title: ACS Appl. Mater. Interfaces Energy Stor. Mater. Adv. Funct. Mater. – volume: 1 29 28 start-page: 5256 9824 year: 2013 2017 2016 publication-title: J. Mater. Chem. A Adv. Mater. Adv. Mater. – volume: 15 year: 2019 publication-title: Small – volume: 27 3 11 5 start-page: 85 9528 year: 2013 2016 2018 2017 publication-title: Electrochem. Commun. Adv. Mater. Interfaces Funct. Mater. Lett. J. Mater. Chem. A – volume: 29 40 start-page: 272 year: 2017 2020 publication-title: Adv. Mater. Rare Met. – volume: 55 471 start-page: 327 2285 year: 2019 2020 publication-title: Nano Energy J. Power Sources – volume: 163 42 start-page: 798 12 year: 2016 2021 publication-title: J. Electrochem. Soc. Energy Stor. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 50 start-page: 247 year: 2019 publication-title: Sci. Sin. Technol. – volume: 53 10 293 start-page: 2598 626 year: 2014 2019 2015 publication-title: Angew. Chem., Int. Ed. Nat. Commun. J. Power Sources – volume: 145 start-page: 67 year: 2019 publication-title: Carbon – volume: 98 7 start-page: 162 year: 2016 2017 publication-title: Carbon Adv. Energy Mater. – volume: 430 year: 2022 publication-title: Chem. Eng. J. – volume: 88 102 start-page: 2877 277 year: 2016 2001 publication-title: Anal. Chem. J. Power Sources – volume: 2 year: 2020 publication-title: Prog. Energy – volume: 6 7 start-page: 1788 year: 2014 2017 publication-title: ACS Appl. Mater. Interfaces Adv. Energy Mater. – volume: 10 31 year: 2020 2019 publication-title: Adv. Energy Mater. Adv. Mater. – volume: 2 start-page: 114 year: 2019 publication-title: Batteries Supercaps – volume: 10 8 start-page: 370 year: 2017 2018 publication-title: Energy Environ. Sci. Adv. Energy Mater. – ident: e_1_2_8_11_4 doi: 10.1039/C7TA02515G – ident: e_1_2_8_18_1 doi: 10.1002/batt.201900006 – ident: e_1_2_8_25_3 doi: 10.1039/C8TA07127F – ident: e_1_2_8_1_2 doi: 10.1002/aenm.201602898 – ident: e_1_2_8_9_1 doi: 10.1360/SST-2019-0218 – ident: e_1_2_8_29_1 doi: 10.1149/2.1151605jes – ident: e_1_2_8_30_2 doi: 10.1016/S0378-7753(01)00826-6 – ident: e_1_2_8_24_1 doi: 10.1038/nchem.2470 – ident: e_1_2_8_19_3 doi: 10.1016/j.mattod.2018.12.040 – ident: e_1_2_8_26_1 doi: 10.1002/anie.202011482 – ident: e_1_2_8_5_1 doi: 10.1088/2516-1083/aba5f5 – ident: e_1_2_8_12_3 doi: 10.1002/adma.201603212 – ident: e_1_2_8_10_1 doi: 10.1002/aenm.202000093 – ident: e_1_2_8_17_1 doi: 10.1016/j.cej.2021.133143 – ident: e_1_2_8_10_2 doi: 10.1002/adma.201808393 – ident: e_1_2_8_15_1 doi: 10.1039/C6EE03367A – ident: e_1_2_8_2_2 doi: 10.1007/s12598-020-01605-z – ident: e_1_2_8_27_1 doi: 10.1016/j.jpowsour.2007.11.110 – ident: e_1_2_8_7_1 doi: 10.1016/j.nanoen.2020.104895 – ident: e_1_2_8_8_1 doi: 10.1021/am404788e – ident: e_1_2_8_25_2 doi: 10.1002/advs.201600275 – ident: e_1_2_8_20_1 doi: 10.1016/j.nanoen.2017.12.013 – ident: e_1_2_8_19_4 doi: 10.1002/aenm.202002704 – ident: e_1_2_8_25_1 doi: 10.1016/j.elecom.2014.05.003 – ident: e_1_2_8_14_1 doi: 10.1002/anie.201403734 – ident: e_1_2_8_3_1 doi: 10.1002/smll.201904740 – ident: e_1_2_8_13_1 doi: 10.1002/aenm.201501785 – ident: e_1_2_8_16_2 doi: 10.1016/j.ensm.2021.07.021 – ident: e_1_2_8_30_1 doi: 10.1021/acs.analchem.5b04696 – ident: e_1_2_8_11_1 doi: 10.1016/j.elecom.2012.10.038 – ident: e_1_2_8_16_1 doi: 10.1021/acsami.8b15274 – ident: e_1_2_8_22_1 doi: 10.1016/S0022-0728(81)80091-5 – ident: e_1_2_8_19_2 doi: 10.1002/anie.201105006 – volume: 471 start-page: 2285 year: 2020 ident: e_1_2_8_28_2 publication-title: J. Power Sources – ident: e_1_2_8_12_2 doi: 10.1002/adma.201702212 – ident: e_1_2_8_14_2 doi: 10.1038/s41467-019-10551-z – ident: e_1_2_8_8_2 doi: 10.1002/aenm.201700403 – ident: e_1_2_8_12_1 doi: 10.1039/c3ta10241f – ident: e_1_2_8_14_3 doi: 10.1016/j.jpowsour.2015.05.116 – ident: e_1_2_8_15_2 doi: 10.1002/aenm.201801441 – ident: e_1_2_8_16_3 doi: 10.1002/adfm.202100278 – ident: e_1_2_8_4_1 doi: 10.1016/j.jpowsour.2020.227904 – ident: e_1_2_8_22_2 doi: 10.1002/anie.198408313 – ident: e_1_2_8_23_1 doi: 10.1016/j.carbon.2018.12.112 – ident: e_1_2_8_1_1 doi: 10.1016/j.carbon.2015.09.091 – volume: 3 start-page: 600449 year: 2016 ident: e_1_2_8_11_2 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201600449 – ident: e_1_2_8_29_2 doi: 10.1016/j.ensm.2021.07.005 – ident: e_1_2_8_6_1 doi: 10.1016/j.carbon.2019.05.030 – ident: e_1_2_8_19_1 doi: 10.1021/acsami.1c21683 – ident: e_1_2_8_2_1 doi: 10.1002/adma.201700622 – ident: e_1_2_8_22_3 doi: 10.1021/ed060p702 – ident: e_1_2_8_20_2 doi: 10.1016/S0013-4686(02)00250-5 – ident: e_1_2_8_28_1 doi: 10.1016/j.nanoen.2018.10.040 – ident: e_1_2_8_11_3 doi: 10.1142/S1793604718300037 – ident: e_1_2_8_21_1 doi: 10.1002/aenm.201802176 |
SSID | ssj0017734 |
Score | 2.653304 |
Snippet | Ether electrolytes exhibit better rate kinetics than carbonate ester electrolytes when used in several kinds of anode materials, especially in hard carbon (HC)... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anodes Carbon de‐solvation Electrode materials Electrode polarization Electrodes Electrolytes ester electrolytes ether electrolytes hard carbon Kinetics Mass spectrometry Materials science Nanoparticles Photoelectrons Sodium Sodium-ion batteries solid electrolyte interphase layers Solid electrolytes Solvation Temperature dependence three‐electrode systems |
Title | Unraveling the Mechanism of Different Kinetics Performance between Ether and Carbonate Ester Electrolytes in Hard Carbon Electrode |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202209523 https://www.proquest.com/docview/2740085116 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA8yL3rwW5zOkYPgqdv6la7HsXUMdSLqYLeSpAkMZyf7OOjRv9z3lrbbBBH0Ulr6UtLkJfm95L3fI-TKxaMg19VgloSB5TFQ47AZcsvnnp-AVktPYXBy_571Bt7N0B-uRfEbfohiww1HxnK-xgHOxay-Ig3licZIcscBkOAg3Sc6bCEqeiz4o-wgMMfKzEYHL3uYszY2nPpm8c1VaQU11wHrcsXp7hOe19U4mrzUFnNRkx_faBz_8zMHZC-Do7Rl9OeQbKn0iOyukRQek89BiimKMGydAlqkfYXBwqPZK51o2snyq8zpLZRAymf6sApFoJkXGI0QZlKeJrTNpwI37BWNkKKBRiYNz_gdIC8dpRQ9CTKh_F2iTsigGz23e1aWucGSLhi9cHUESyRAD9FkWvphyAGWJY1AyITppmwKoVgCpoy0XaW1ZyvpCTcIYHKQICHcU1JKJ6k6I5R7UoQNxZWvwZTXjPsKMGfohxJMMdHwysTKey6WGa05ZtcYx4aQ2YmxbeOibcvkupB_M4QeP0pWckWIs4E9i8GINyiVlYmz7NFfvhK3Ot1-8XT-l0IXZAfvTQRkhZTm04W6BCg0F1Wy3er0756qS7X_AvhVArQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5ROLQcgP4glgL1oVVPgcRxnM2BA2J3tXRZVFWstLfUdmwJlQbELkL02Dfqq_SJOrNOslAJVULi0EukJOMosmfsb-yZbwDex3QUFMcO3ZIsDYRENc7amQoSJZICtdoIS8nJwxPZH4lP42S8AL_qXBjPD9FsuJFlzOZrMnDakN6bs4aqwlEqOeeIEnhdv3pgb2_Qa5vsH3VwiD9w3uueHvaDqrBAYGL0yfDKtSwMroy6LZ1JskwhaijCVJtCurZpa21lgUjbRLF1TkTWCB2nKequQQkd43efwRKVESe6_s6XhrEqSlN_kC0jCimLxjVPZMj37v_v_XVwDm7vQuTZGtdbhd917_jQlm-711O9a378RRz5X3XfGqxUiJsdeBN5CQu2fAXLd3gYX8PPUUlVmCgznyEgZkNL-dBnk-_swrFOVUJmygbYglit2ed5tgWrAt1Yl5A0U2XBDtWVpjMJy7rEQsG6vtLQ-S2ienZWMgqWqITqd4V9A6Mn6YR1WCwvSrsBTAmjs9Aqm7hQSCdVYhFWZ0lm0NvUoWhBUKtKbirmdiogcp57zmme01jmzVi24GMjf-k5Sx6U3Ko1L6_mrknOU-GBuGwBn6nQP76SH3R6w-Zu8zGN3sHz_unwOD8-Ohm8hRf03Cd8bsHi9OrabiPym-qdma0x-PrU2vkH-zdhUQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE4QPmpWCjFBxCntInjOOtDD1Wzq5Zlqwqx0t5C_CdVlLTqboXKkSfiVXijzqyTbIuEkJB64BIpydiK7Bn7m3jmG4A3KR0FpalHt0TlkZCoxqqvqiirRGZRq41wlJw8PpT7E_F-mk1X4GebCxP4IbofbmQZi_WaDPzM-u0laWhlPWWSc44ggbflq0fu8hs6bbOdgwJn-C3nw8Gnvf2oqSsQmRRdMrxyLa3BjVH3pTeZUhWCBhvn2ljp-6avtZMWgbZJUue9SJwROs1zVF2DEjrFfu_AXSFjRcUiio8dYVWS5-EcWyYUUZZMW5rImG_f_N6b2-AS215HyIstbvgIfrWDEyJbvmxdzPWW-f4bb-T_NHpr8LDB22w3GMhjWHH1E3hwjYXxKfyY1FSDifLyGcJhNnaUDX08-8pOPSuaAjJzNsIWxGnNjpa5FqwJc2MDwtGsqi3bq841nUg4NiAOCjYIdYZOLhHTs-OaUahEI9S-s-4ZTG5lENZhtT6t3XNglTBaxa5ymY-F9LLKHIJqlSmDvqaORQ-iVlNK0_C2U_mQkzIwTvOS5rLs5rIH7zr5s8BY8kfJjVbxymblmpU8FwGGyx7whQb9pZdytxiOu7sX_9LoNdw7Koblh4PD0Uu4T49DtucGrM7PL9wrhH1zvbmwNAafb1s5rwBfL2AA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+the+Mechanism+of+Different+Kinetics+Performance+between+Ether+and+Carbonate+Ester+Electrolytes+in+Hard+Carbon+Electrode&rft.jtitle=Advanced+functional+materials&rft.au=Yi%2C+Xiaoli&rft.au=Li%2C+Xinhai&rft.au=Zhong%2C+Jing&rft.au=Wang%2C+Siwu&rft.date=2022-11-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=48&rft_id=info:doi/10.1002%2Fadfm.202209523&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202209523 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |