Actuator-line CFD modelling of tidal-stream turbines in arrays
CFD modelling of tidal turbines in arrays is described and assessed against experimental studies of turbines operating either at constant speed or constant torque. Rotor blades are represented by rotating actuator lines, whilst supports are represented by partially-blocked-out cells. For a single tu...
Saved in:
Published in | Journal of ocean engineering and marine energy Vol. 4; no. 4; pp. 259 - 271 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.11.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2198-6444 2198-6452 |
DOI | 10.1007/s40722-018-0120-3 |
Cover
Loading…
Abstract | CFD modelling of tidal turbines in arrays is described and assessed against experimental studies of turbines operating either at constant speed or constant torque. Rotor blades are represented by rotating actuator lines, whilst supports are represented by partially-blocked-out cells. For a single turbine the model successfully reproduces towing-tank measurements of thrust and power coefficients across a range of tip-speed ratios. For two turbines staggered streamwise, it is demonstrated that loads may be reduced or augmented, according as the downstream turbine is in the wake or bypass flow of the upstream turbine. When the downstream turbine is partially in the wake, individual blades are subject to large cyclic load fluctuations. Array performance is evaluated by comparison with experimental data, modelling up to 12 turbines in up to three staggered rows. The speed of each turbine is continuously adjusted in response to flow-induced torque. Distribution of thrust coefficients within the array is well reproduced, but there is greater discrepancy in angular speed. With actuator representation of blades, the choice of turbulence model has little effect on load coefficients for an isolated turbine or row of turbines, but a significant effect on the wake, and hence on downstream turbines in an array. |
---|---|
AbstractList | CFD modelling of tidal turbines in arrays is described and assessed against experimental studies of turbines operating either at constant speed or constant torque. Rotor blades are represented by rotating actuator lines, whilst supports are represented by partially-blocked-out cells. For a single turbine the model successfully reproduces towing-tank measurements of thrust and power coefficients across a range of tip-speed ratios. For two turbines staggered streamwise, it is demonstrated that loads may be reduced or augmented, according as the downstream turbine is in the wake or bypass flow of the upstream turbine. When the downstream turbine is partially in the wake, individual blades are subject to large cyclic load fluctuations. Array performance is evaluated by comparison with experimental data, modelling up to 12 turbines in up to three staggered rows. The speed of each turbine is continuously adjusted in response to flow-induced torque. Distribution of thrust coefficients within the array is well reproduced, but there is greater discrepancy in angular speed. With actuator representation of blades, the choice of turbulence model has little effect on load coefficients for an isolated turbine or row of turbines, but a significant effect on the wake, and hence on downstream turbines in an array. CFD modelling of tidal turbines in arrays is described and assessed against experimental studies of turbines operating either at constant speed or constant torque. Rotor blades are represented by rotating actuator lines, whilst supports are represented by partially-blocked-out cells. For a single turbine the model successfully reproduces towing-tank measurements of thrust and power coefficients across a range of tip-speed ratios. For two turbines staggered streamwise, it is demonstrated that loads may be reduced or augmented, according as the downstream turbine is in the wake or bypass flow of the upstream turbine. When the downstream turbine is partially in the wake, individual blades are subject to large cyclic load fluctuations. Array performance is evaluated by comparison with experimental data, modelling up to 12 turbines in up to three staggered rows. The speed of each turbine is continuously adjusted in response to flow-induced torque. Distribution of thrust coefficients within the array is well reproduced, but there is greater discrepancy in angular speed. With actuator representation of blades, the choice of turbulence model has little effect on load coefficients for an isolated turbine or row of turbines, but a significant effect on the wake, and hence on downstream turbines in an array. |
Author | Stansby, Peter K. Stallard, Tim Apsley, David D. |
Author_xml | – sequence: 1 givenname: David D. orcidid: 0000-0002-1791-4584 surname: Apsley fullname: Apsley, David D. email: d.apsley@manchester.ac.uk organization: University of Manchester – sequence: 2 givenname: Tim surname: Stallard fullname: Stallard, Tim organization: University of Manchester – sequence: 3 givenname: Peter K. surname: Stansby fullname: Stansby, Peter K. organization: University of Manchester |
BookMark | eNp9kEFLAzEQhYNUsNb-AG8LnqPJJJvdvQilWhUKXvQcZrfZkrLd1CR76L83ZUVB0MMwM_C-mce7JJPe9YaQa85uOWPFXZCsAKCMl6mAUXFGpsCrkiqZw-R7lvKCzEPYMcagELJQ-ZTcL5o4YHSedrY32XL1kO3dxnRp22auzaLdYEdD9Ab3WRx8nVQhs32G3uMxXJHzFrtg5l99Rt5Xj2_LZ7p-fXpZLta0EVwImtfYIoCpQEAjlSlKJaThsq5LEHUpFFSIlWyTszJvkFeqBiZRIs8lGmzEjNyMdw_efQwmRL1zg-_TSw1c5KpguVJJVYyqxrsQvGl1YyNG6_ro0XaaM33KS4956ZSXPuWlRSL5L_Lg7R798V8GRiYkbb81_sfT39An4et8kQ |
CitedBy_id | crossref_primary_10_1016_j_jfluidstructs_2019_102732 crossref_primary_10_1080_00221686_2021_2022032 crossref_primary_10_1002_we_2965 crossref_primary_10_1016_j_oceaneng_2023_116577 crossref_primary_10_1016_j_energy_2024_131207 crossref_primary_10_1016_j_renene_2021_05_133 crossref_primary_10_1016_j_euromechflu_2023_07_003 crossref_primary_10_3390_su12218768 crossref_primary_10_1016_j_compositesa_2024_108140 crossref_primary_10_1016_j_apor_2022_103329 crossref_primary_10_1115_1_4067787 crossref_primary_10_1016_j_energy_2021_120361 crossref_primary_10_2514_1_J062398 crossref_primary_10_1016_j_renene_2024_120315 crossref_primary_10_3390_en12163188 crossref_primary_10_3390_en16207057 crossref_primary_10_1088_1742_6596_2505_1_012020 crossref_primary_10_3390_en14175470 crossref_primary_10_3390_en16227526 crossref_primary_10_1016_j_oceaneng_2022_111331 crossref_primary_10_3390_en17051198 crossref_primary_10_1063_5_0162698 crossref_primary_10_1063_5_0246459 crossref_primary_10_3390_jmse12071062 crossref_primary_10_1016_j_oceaneng_2022_112127 crossref_primary_10_1016_j_renene_2020_06_090 crossref_primary_10_1016_j_jfluidstructs_2022_103698 crossref_primary_10_1016_j_renene_2024_120133 crossref_primary_10_1016_j_renene_2024_120653 crossref_primary_10_1016_j_renene_2020_05_084 crossref_primary_10_1016_j_ijsrc_2021_02_003 crossref_primary_10_1109_ACCESS_2020_2989344 crossref_primary_10_1016_j_apenergy_2023_121460 crossref_primary_10_1016_j_renene_2024_122110 crossref_primary_10_1016_j_oceaneng_2021_108920 crossref_primary_10_1063_5_0239667 crossref_primary_10_1016_j_renene_2024_120767 crossref_primary_10_1016_j_renene_2020_08_148 crossref_primary_10_2139_ssrn_3906064 crossref_primary_10_1016_j_oceaneng_2020_107035 crossref_primary_10_1016_j_jfluidstructs_2020_103141 crossref_primary_10_3390_en16093891 |
Cites_doi | 10.1016/j.ijheatfluidflow.2012.05.002 10.1016/0045-7825(74)90029-2 10.1016/0045-7930(94)00032-T 10.1017/S0022112007007781 10.1016/j.renene.2015.02.050 10.1098/rsta.2012.0159 10.1115/1.1471361 10.1016/j.jweia.2011.01.011 10.1016/j.ijheatfluidflow.2013.03.010 10.1017/S0022112078001251 10.1002/fld.3849 10.1016/j.renene.2006.01.012 10.1016/j.renene.2017.05.048 10.1016/j.renene.2017.06.035 10.1002/we.1770 10.1016/j.renene.2007.05.043 10.2514/3.12149 10.1016/j.renene.2016.01.101 10.1002/fld.523 10.1023/A:1009930107544 10.1016/j.jfluidstructs.2014.10.017 10.1016/j.jfluidstructs.2016.04.001 10.1016/0045-7825(94)90165-1 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 Copyright Springer Science & Business Media 2018 |
Copyright_xml | – notice: The Author(s) 2018 – notice: Copyright Springer Science & Business Media 2018 |
DBID | C6C AAYXX CITATION 7TN F1W H96 L.G |
DOI | 10.1007/s40722-018-0120-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: C6C name: Springer Open Access url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Oceanography |
EISSN | 2198-6452 |
EndPage | 271 |
ExternalDocumentID | 10_1007_s40722_018_0120_3 |
GroupedDBID | -EM 0R~ 203 4.4 406 AAAVM AACDK AAHNG AAIAL AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYQN AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACMLO ACOKC ACPIV ACZOJ ADHHG ADINQ ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFQWF AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ASPBG AUKKA AVWKF AVXWI AXYYD AZFZN BGNMA C6C CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FEDTE FERAY FIGPU FINBP FNLPD FSGXE GGCAI GGRSB GJIRD HQYDN HRMNR HVGLF IAO IGS IKXTQ ITC IWAJR J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7TN ABRTQ F1W H96 L.G |
ID | FETCH-LOGICAL-c3133-5bafa22e9232c46e78634e14bb823b83629aa94f00085ca196b204a4a154aeac3 |
IEDL.DBID | C6C |
ISSN | 2198-6444 |
IngestDate | Fri Jul 25 10:51:20 EDT 2025 Tue Jul 01 03:33:53 EDT 2025 Thu Apr 24 23:10:30 EDT 2025 Fri Feb 21 02:34:33 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | CFD Actuator-line methods Turbine arrays Tidal-stream turbines |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3133-5bafa22e9232c46e78634e14bb823b83629aa94f00085ca196b204a4a154aeac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1791-4584 |
OpenAccessLink | https://doi.org/10.1007/s40722-018-0120-3 |
PQID | 2135670566 |
PQPubID | 2044334 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2135670566 crossref_citationtrail_10_1007_s40722_018_0120_3 crossref_primary_10_1007_s40722_018_0120_3 springer_journals_10_1007_s40722_018_0120_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20181100 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 20181100 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Journal of ocean engineering and marine energy |
PublicationTitleAbbrev | J. Ocean Eng. Mar. Energy |
PublicationYear | 2018 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Bahaj, Molland, Chaplin, Batten (CR7) 2007; 32 McNaughton, Afgan, Apsley, Rolfo, Stallard, Stansby (CR15) 2014; 74 Apsley, Hu (CR3) 2003; 42 Olczak, Stallard, Feng, Stansby (CR18) 2016; 64 Launder, Spalding (CR13) 1974; 3 Shih, Liou, Shammir, Yang, Zhu (CR23) 1995; 24 Batten, Bahaj, Molland, Chaplin (CR8) 2008; 33 Schluntz, Willden (CR22) 2015; 18 Gibson, Launder (CR12) 1978; 86 Sørensen, Shen (CR24) 2002; 124 Ahmed, Apsley, Afgan, Stallard, Stansby (CR2) 2017; 112 Nishino, Willden (CR17) 2012; 37 Stallard, Collings, Feng, Whelan (CR25) 2013; 871 Apsley, Leschziner (CR4) 2000; 63 CR5 CR9 Porté-Agel, Wu, Lu, Conzemius (CR19) 2011; 99 Menter (CR16) 1994; 32 Sarlak, Nishino, Martìnez-Tossas, Meneveau, Sørensen (CR20) 2016; 93 Garrett, Cummins (CR11) 2007; 588 Lien, Leschziner (CR14) 1994; 114 Baba-Ahmadi, Dong (CR6) 2017; 113 Schluntz, Willden (CR21) 2015; 81 Stallard, Feng, Stansby (CR26) 2015; 54 Afgan, McNaughton, Apsley, Rolfo, Stallard, Stansby (CR1) 2013; 43 MH Baba-Ahmadi (120_CR6) 2017; 113 C Garrett (120_CR11) 2007; 588 FS Lien (120_CR14) 1994; 114 T Nishino (120_CR17) 2012; 37 I Afgan (120_CR1) 2013; 43 AS Bahaj (120_CR7) 2007; 32 J McNaughton (120_CR15) 2014; 74 T Stallard (120_CR26) 2015; 54 DD Apsley (120_CR3) 2003; 42 120_CR5 A Olczak (120_CR18) 2016; 64 J Schluntz (120_CR21) 2015; 81 BE Launder (120_CR13) 1974; 3 H Sarlak (120_CR20) 2016; 93 U Ahmed (120_CR2) 2017; 112 DD Apsley (120_CR4) 2000; 63 MM Gibson (120_CR12) 1978; 86 T Stallard (120_CR25) 2013; 871 JN Sørensen (120_CR24) 2002; 124 WMJ Batten (120_CR8) 2008; 33 120_CR9 FR Menter (120_CR16) 1994; 32 T-H Shih (120_CR23) 1995; 24 F Porté-Agel (120_CR19) 2011; 99 J Schluntz (120_CR22) 2015; 18 |
References_xml | – volume: 37 start-page: 123 year: 2012 end-page: 135 ident: CR17 article-title: Effects of 3-D channel blockage and turbulent wake mixing on the limit of power extraction by tidal turbines publication-title: Int J Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2012.05.002 – volume: 3 start-page: 269 year: 1974 end-page: 289 ident: CR13 article-title: The numerical computation of turbulent flows publication-title: Comput Method Appl Mech Eng doi: 10.1016/0045-7825(74)90029-2 – volume: 24 start-page: 227 year: 1995 end-page: 238 ident: CR23 article-title: A new k-ε eddy-viscosity model for high Reynolds number turbulent flows publication-title: Comput Fluids doi: 10.1016/0045-7930(94)00032-T – volume: 588 start-page: 243 year: 2007 end-page: 251 ident: CR11 article-title: The efficiency of a turbine in a tidal channel publication-title: J Fluid Mech doi: 10.1017/S0022112007007781 – volume: 81 start-page: 432 year: 2015 end-page: 441 ident: CR21 article-title: The effect of blockage on tidal turbine rotor design and performance publication-title: Renew Energy doi: 10.1016/j.renene.2015.02.050 – volume: 871 start-page: 20120159 year: 2013 ident: CR25 article-title: Interactions between tidal turbine wakes: experimental study of a group of 3-bladed rotors publication-title: Phil Trans R Soc A Math Phys Eng Sci doi: 10.1098/rsta.2012.0159 – volume: 124 start-page: 393 year: 2002 end-page: 399 ident: CR24 article-title: Numerical modelling of wind turbine wakes publication-title: J Fluids Eng doi: 10.1115/1.1471361 – volume: 99 start-page: 154 year: 2011 end-page: 168 ident: CR19 article-title: Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2011.01.011 – volume: 43 start-page: 96 year: 2013 end-page: 108 ident: CR1 article-title: Turbulent flow and loading on a tidal stream turbine by LES and RANS publication-title: Int J Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2013.03.010 – volume: 86 start-page: 491 year: 1978 end-page: 511 ident: CR12 article-title: Ground effects on pressure fluctuations in the atmospheric boundary layer publication-title: J Fluid Mech doi: 10.1017/S0022112078001251 – volume: 74 start-page: 250 year: 2014 end-page: 269 ident: CR15 article-title: A simple sliding-mesh interface procedure and its application to the CFD simulation of a tidal-stream turbine publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.3849 – volume: 32 start-page: 407 year: 2007 end-page: 426 ident: CR7 article-title: Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank publication-title: Renew Energy doi: 10.1016/j.renene.2006.01.012 – volume: 112 start-page: 235 year: 2017 end-page: 246 ident: CR2 article-title: Fluctuating loads on a tidal turbine due to velocity shear and turbulence: comparison of CFD with field data publication-title: Renew Energy doi: 10.1016/j.renene.2017.05.048 – volume: 113 start-page: 669 year: 2017 end-page: 678 ident: CR6 article-title: Numerical simulations of wake characteristics of a horizontal axis tidal stream turbine using actuator line model publication-title: Renew Energy doi: 10.1016/j.renene.2017.06.035 – volume: 18 start-page: 1469 year: 2015 end-page: 1485 ident: CR22 article-title: An actuator line method with novel blade flow field coupling based on potential flow equivalence publication-title: Wind Energy doi: 10.1002/we.1770 – volume: 33 start-page: 1085 year: 2008 end-page: 1096 ident: CR8 article-title: The prediction of the hydrodynamic performance of marine current turbines publication-title: Renew Energy doi: 10.1016/j.renene.2007.05.043 – volume: 32 start-page: 1598 year: 1994 end-page: 1605 ident: CR16 article-title: Two-equation eddy-viscosity turbulence models for engineering applications publication-title: AIAA J doi: 10.2514/3.12149 – volume: 93 start-page: 340 year: 2016 end-page: 352 ident: CR20 article-title: Assessment of blockage effects on the wake characteristics and power of wind turbines publication-title: Renew Energy doi: 10.1016/j.renene.2016.01.101 – volume: 42 start-page: 465 year: 2003 end-page: 491 ident: CR3 article-title: CFD simulation of two- and three-dimensional free-surface flow publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.523 – volume: 63 start-page: 81 year: 2000 end-page: 112 ident: CR4 article-title: Advanced turbulence modelling of separated flow in a diffuser, Flow publication-title: Turbul Combust doi: 10.1023/A:1009930107544 – ident: CR9 – volume: 54 start-page: 235 year: 2015 end-page: 246 ident: CR26 article-title: Experimental study of the mean wake of a tidal stream rotor in a shallow turbulent flow publication-title: J Fluids Struct doi: 10.1016/j.jfluidstructs.2014.10.017 – ident: CR5 – volume: 64 start-page: 87 year: 2016 end-page: 106 ident: CR18 article-title: Comparison of a RANS blade element model for tidal turbine arrays with laboratory scale measurements of wake velocity and rotor thrust publication-title: J Fluids Struct doi: 10.1016/j.jfluidstructs.2016.04.001 – volume: 114 start-page: 123 year: 1994 end-page: 148 ident: CR14 article-title: A general non-orthogonal collocated finite volume algorithm for turbulent flow at all speeds incorporating second-moment turbulence-transport closure, Part 1: computational implementation publication-title: Comp Methods Appl Mech Eng doi: 10.1016/0045-7825(94)90165-1 – volume: 112 start-page: 235 year: 2017 ident: 120_CR2 publication-title: Renew Energy doi: 10.1016/j.renene.2017.05.048 – volume: 33 start-page: 1085 year: 2008 ident: 120_CR8 publication-title: Renew Energy doi: 10.1016/j.renene.2007.05.043 – volume: 588 start-page: 243 year: 2007 ident: 120_CR11 publication-title: J Fluid Mech doi: 10.1017/S0022112007007781 – volume: 24 start-page: 227 year: 1995 ident: 120_CR23 publication-title: Comput Fluids doi: 10.1016/0045-7930(94)00032-T – volume: 18 start-page: 1469 year: 2015 ident: 120_CR22 publication-title: Wind Energy doi: 10.1002/we.1770 – volume: 54 start-page: 235 year: 2015 ident: 120_CR26 publication-title: J Fluids Struct doi: 10.1016/j.jfluidstructs.2014.10.017 – volume: 63 start-page: 81 year: 2000 ident: 120_CR4 publication-title: Turbul Combust doi: 10.1023/A:1009930107544 – volume: 3 start-page: 269 year: 1974 ident: 120_CR13 publication-title: Comput Method Appl Mech Eng doi: 10.1016/0045-7825(74)90029-2 – volume: 86 start-page: 491 year: 1978 ident: 120_CR12 publication-title: J Fluid Mech doi: 10.1017/S0022112078001251 – volume: 74 start-page: 250 year: 2014 ident: 120_CR15 publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.3849 – volume: 32 start-page: 407 year: 2007 ident: 120_CR7 publication-title: Renew Energy doi: 10.1016/j.renene.2006.01.012 – volume: 124 start-page: 393 year: 2002 ident: 120_CR24 publication-title: J Fluids Eng doi: 10.1115/1.1471361 – volume: 93 start-page: 340 year: 2016 ident: 120_CR20 publication-title: Renew Energy doi: 10.1016/j.renene.2016.01.101 – volume: 32 start-page: 1598 year: 1994 ident: 120_CR16 publication-title: AIAA J doi: 10.2514/3.12149 – volume: 113 start-page: 669 year: 2017 ident: 120_CR6 publication-title: Renew Energy doi: 10.1016/j.renene.2017.06.035 – volume: 81 start-page: 432 year: 2015 ident: 120_CR21 publication-title: Renew Energy doi: 10.1016/j.renene.2015.02.050 – volume: 37 start-page: 123 year: 2012 ident: 120_CR17 publication-title: Int J Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2012.05.002 – volume: 43 start-page: 96 year: 2013 ident: 120_CR1 publication-title: Int J Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2013.03.010 – ident: 120_CR5 – volume: 42 start-page: 465 year: 2003 ident: 120_CR3 publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.523 – ident: 120_CR9 – volume: 99 start-page: 154 year: 2011 ident: 120_CR19 publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2011.01.011 – volume: 64 start-page: 87 year: 2016 ident: 120_CR18 publication-title: J Fluids Struct doi: 10.1016/j.jfluidstructs.2016.04.001 – volume: 114 start-page: 123 year: 1994 ident: 120_CR14 publication-title: Comp Methods Appl Mech Eng doi: 10.1016/0045-7825(94)90165-1 – volume: 871 start-page: 20120159 year: 2013 ident: 120_CR25 publication-title: Phil Trans R Soc A Math Phys Eng Sci doi: 10.1098/rsta.2012.0159 |
SSID | ssj0002734765 |
Score | 2.1302776 |
Snippet | CFD modelling of tidal turbines in arrays is described and assessed against experimental studies of turbines operating either at constant speed or constant... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 259 |
SubjectTerms | Actuators Angular speed Arrays Coastal Sciences Coefficients Computational fluid dynamics Cyclic loads Downstream effects Engineering Engineering Fluid Dynamics Load fluctuation Mechanical Engineering Modelling Oceanography Offshore Engineering Ratios Renewable and Green Energy Research Article Rotor blades Rotor blades (turbomachinery) Thrust Torque Towing Turbine engines Turbines Turbulence Turbulence models |
Title | Actuator-line CFD modelling of tidal-stream turbines in arrays |
URI | https://link.springer.com/article/10.1007/s40722-018-0120-3 https://www.proquest.com/docview/2135670566 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB20vaggWhWrtezBk7KYj91N9iK00VAE68VCb2G_AgVNpa0H_727adJqUcFzNnuYncm8zcx7A3Cp_dwzzEhsiI4w0ZrgmFGFtbLpRnGiPOPIyY9DNhiRhzEdV2LRjguzUb-_mTsBL9c84FquHNl3G5rUD5lz4IQlq98pTqUlKgdH2hCMsc3ypK5h_rTL9yy0hpYb1dAyyaQHsF-hQ9RbHuchbJmiBbtfNANbsPekjCgqoekjuO05Boi9OGOHF1GS3qFyuI1jmaNpjhYTLV6wY4SIV2TTi3Rt7mhSIDGbiY_5MYzS--dkgKuZCFiF9jqJqRS5CAJjcVmgCDNRzEJifCJlHIQytumIC8FJXmIpJWx8ycAjgggLlYT9yIYn0CimhTkFJCjNeWy4ryNNOIuk8i12yxmnlHERyDZ4tY0yVQmGu7kVL9lK6rg0a2bNmjmzZmEbrlavvC3VMv5a3KkNn1WBM88CP6QssqiMteG6Poz14183O_vX6nPYCZwzlJzCDjQWs3dzYcHFQnah2Uv7_WG3dK9PbFbDgQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0oHvxIjKJGFHUPnjQb6Xa77V5MSJWgAl4g8dbsVxMSLAbw4L93t7SgRE08d7uH2Z3Om868NwCX2ksbhhmJDdUhplpTHLFAYa1suFGcqoZx5ORuj7UH9PEleCnEoh0XZqV-fzN1Al6uecC1XDmy7zpsUJsou-69mMWL3ylOpSXMB0daF4ywjfK0rGH-tMv3KLSElivV0DzItPZgt0CHqDk_zn1YM1kVtr9oBlZh51kZkRVC0wdw23QMEJs4Y4cXUdy6Q_lwG8cyR-MUzYZajLBjhIhXZMOLdG3uaJghMZmIj-khDFr3_biNi5kIWPk2ncSBFKkgxFhcRhRlJoyYT41HpYyILyMbjrgQnKY5llLC-pckDSqosFBJ2I-sfwSVbJyZY0AiCFIeGe7pUFPOQqk8i91SxoOAcUFkDRqljRJVCIa7uRWjZCF1nJs1sWZNnFkTvwZXi1fe5moZfy2ul4ZPCseZJsTzAxZaVMZqcF0exvLxr5ud_Gv1BWy2-91O0nnoPZ3CFnEXI-cX1qEym7ybMws0ZvI8v2Kfl0bE8g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60gqggWhWrVffgSVnMY7NJLkJJDfVVPVjoLewrUKhpaePBf-9umqQqKnjOZg-zO5lvMvN9A3Au7dRSVHGsiPQxkZLggHoCS6HDjQiJsJQhJz_2aW9A7obesJxzOq-63auS5ILTYFSasvxqKtOrmvhmZL1MS4FpxDIU4FVY04lKUaeNaFT_ZDHaLX4xTlI7ZoB17CdVZfOnXb7GpiXg_FYjLUJPvAPbJWZEncUh78KKypqw-UlJsAlbT0KxrJSf3oPrjuGF6HQaGxSJoriLipE3hnuOJinKR5KNseGJsFekgw43ze9olCE2m7H3-T4M4puXqIfLSQlYuDrJxB5nKXMcpdGaIwhVfkBdomzCeeC4PNBBKmQsJGmBsATTXscdizDCNIBi-tPrHkAjm2TqEBDzvDQMVGhLX5KQ-lzYGtGlNPQ8GjKHt8CqbJSIUkbcTLMYJ7UAcmHWRJs1MWZN3BZc1K9MFxoafy1uV4ZPSneaJ47tetTXWI224LI6jOXjXzc7-tfqM1h_7sbJw23__hg2HHMvCtJhGxr57E2daPSR89Pihn0Aw47NOQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Actuator-line+CFD+modelling+of+tidal-stream+turbines+in+arrays&rft.jtitle=Journal+of+ocean+engineering+and+marine+energy&rft.au=Apsley%2C+David+D.&rft.au=Stallard%2C+Tim&rft.au=Stansby%2C+Peter+K.&rft.date=2018-11-01&rft.pub=Springer+International+Publishing&rft.issn=2198-6444&rft.eissn=2198-6452&rft.volume=4&rft.issue=4&rft.spage=259&rft.epage=271&rft_id=info:doi/10.1007%2Fs40722-018-0120-3&rft.externalDocID=10_1007_s40722_018_0120_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-6444&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-6444&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-6444&client=summon |