Actuator-line CFD modelling of tidal-stream turbines in arrays

CFD modelling of tidal turbines in arrays is described and assessed against experimental studies of turbines operating either at constant speed or constant torque. Rotor blades are represented by rotating actuator lines, whilst supports are represented by partially-blocked-out cells. For a single tu...

Full description

Saved in:
Bibliographic Details
Published inJournal of ocean engineering and marine energy Vol. 4; no. 4; pp. 259 - 271
Main Authors Apsley, David D., Stallard, Tim, Stansby, Peter K.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.11.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2198-6444
2198-6452
DOI10.1007/s40722-018-0120-3

Cover

Loading…
Abstract CFD modelling of tidal turbines in arrays is described and assessed against experimental studies of turbines operating either at constant speed or constant torque. Rotor blades are represented by rotating actuator lines, whilst supports are represented by partially-blocked-out cells. For a single turbine the model successfully reproduces towing-tank measurements of thrust and power coefficients across a range of tip-speed ratios. For two turbines staggered streamwise, it is demonstrated that loads may be reduced or augmented, according as the downstream turbine is in the wake or bypass flow of the upstream turbine. When the downstream turbine is partially in the wake, individual blades are subject to large cyclic load fluctuations. Array performance is evaluated by comparison with experimental data, modelling up to 12 turbines in up to three staggered rows. The speed of each turbine is continuously adjusted in response to flow-induced torque. Distribution of thrust coefficients within the array is well reproduced, but there is greater discrepancy in angular speed. With actuator representation of blades, the choice of turbulence model has little effect on load coefficients for an isolated turbine or row of turbines, but a significant effect on the wake, and hence on downstream turbines in an array.
AbstractList CFD modelling of tidal turbines in arrays is described and assessed against experimental studies of turbines operating either at constant speed or constant torque. Rotor blades are represented by rotating actuator lines, whilst supports are represented by partially-blocked-out cells. For a single turbine the model successfully reproduces towing-tank measurements of thrust and power coefficients across a range of tip-speed ratios. For two turbines staggered streamwise, it is demonstrated that loads may be reduced or augmented, according as the downstream turbine is in the wake or bypass flow of the upstream turbine. When the downstream turbine is partially in the wake, individual blades are subject to large cyclic load fluctuations. Array performance is evaluated by comparison with experimental data, modelling up to 12 turbines in up to three staggered rows. The speed of each turbine is continuously adjusted in response to flow-induced torque. Distribution of thrust coefficients within the array is well reproduced, but there is greater discrepancy in angular speed. With actuator representation of blades, the choice of turbulence model has little effect on load coefficients for an isolated turbine or row of turbines, but a significant effect on the wake, and hence on downstream turbines in an array.
CFD modelling of tidal turbines in arrays is described and assessed against experimental studies of turbines operating either at constant speed or constant torque. Rotor blades are represented by rotating actuator lines, whilst supports are represented by partially-blocked-out cells. For a single turbine the model successfully reproduces towing-tank measurements of thrust and power coefficients across a range of tip-speed ratios. For two turbines staggered streamwise, it is demonstrated that loads may be reduced or augmented, according as the downstream turbine is in the wake or bypass flow of the upstream turbine. When the downstream turbine is partially in the wake, individual blades are subject to large cyclic load fluctuations. Array performance is evaluated by comparison with experimental data, modelling up to 12 turbines in up to three staggered rows. The speed of each turbine is continuously adjusted in response to flow-induced torque. Distribution of thrust coefficients within the array is well reproduced, but there is greater discrepancy in angular speed. With actuator representation of blades, the choice of turbulence model has little effect on load coefficients for an isolated turbine or row of turbines, but a significant effect on the wake, and hence on downstream turbines in an array.
Author Stansby, Peter K.
Stallard, Tim
Apsley, David D.
Author_xml – sequence: 1
  givenname: David D.
  orcidid: 0000-0002-1791-4584
  surname: Apsley
  fullname: Apsley, David D.
  email: d.apsley@manchester.ac.uk
  organization: University of Manchester
– sequence: 2
  givenname: Tim
  surname: Stallard
  fullname: Stallard, Tim
  organization: University of Manchester
– sequence: 3
  givenname: Peter K.
  surname: Stansby
  fullname: Stansby, Peter K.
  organization: University of Manchester
BookMark eNp9kEFLAzEQhYNUsNb-AG8LnqPJJJvdvQilWhUKXvQcZrfZkrLd1CR76L83ZUVB0MMwM_C-mce7JJPe9YaQa85uOWPFXZCsAKCMl6mAUXFGpsCrkiqZw-R7lvKCzEPYMcagELJQ-ZTcL5o4YHSedrY32XL1kO3dxnRp22auzaLdYEdD9Ab3WRx8nVQhs32G3uMxXJHzFrtg5l99Rt5Xj2_LZ7p-fXpZLta0EVwImtfYIoCpQEAjlSlKJaThsq5LEHUpFFSIlWyTszJvkFeqBiZRIs8lGmzEjNyMdw_efQwmRL1zg-_TSw1c5KpguVJJVYyqxrsQvGl1YyNG6_ro0XaaM33KS4956ZSXPuWlRSL5L_Lg7R798V8GRiYkbb81_sfT39An4et8kQ
CitedBy_id crossref_primary_10_1016_j_jfluidstructs_2019_102732
crossref_primary_10_1080_00221686_2021_2022032
crossref_primary_10_1002_we_2965
crossref_primary_10_1016_j_oceaneng_2023_116577
crossref_primary_10_1016_j_energy_2024_131207
crossref_primary_10_1016_j_renene_2021_05_133
crossref_primary_10_1016_j_euromechflu_2023_07_003
crossref_primary_10_3390_su12218768
crossref_primary_10_1016_j_compositesa_2024_108140
crossref_primary_10_1016_j_apor_2022_103329
crossref_primary_10_1115_1_4067787
crossref_primary_10_1016_j_energy_2021_120361
crossref_primary_10_2514_1_J062398
crossref_primary_10_1016_j_renene_2024_120315
crossref_primary_10_3390_en12163188
crossref_primary_10_3390_en16207057
crossref_primary_10_1088_1742_6596_2505_1_012020
crossref_primary_10_3390_en14175470
crossref_primary_10_3390_en16227526
crossref_primary_10_1016_j_oceaneng_2022_111331
crossref_primary_10_3390_en17051198
crossref_primary_10_1063_5_0162698
crossref_primary_10_1063_5_0246459
crossref_primary_10_3390_jmse12071062
crossref_primary_10_1016_j_oceaneng_2022_112127
crossref_primary_10_1016_j_renene_2020_06_090
crossref_primary_10_1016_j_jfluidstructs_2022_103698
crossref_primary_10_1016_j_renene_2024_120133
crossref_primary_10_1016_j_renene_2024_120653
crossref_primary_10_1016_j_renene_2020_05_084
crossref_primary_10_1016_j_ijsrc_2021_02_003
crossref_primary_10_1109_ACCESS_2020_2989344
crossref_primary_10_1016_j_apenergy_2023_121460
crossref_primary_10_1016_j_renene_2024_122110
crossref_primary_10_1016_j_oceaneng_2021_108920
crossref_primary_10_1063_5_0239667
crossref_primary_10_1016_j_renene_2024_120767
crossref_primary_10_1016_j_renene_2020_08_148
crossref_primary_10_2139_ssrn_3906064
crossref_primary_10_1016_j_oceaneng_2020_107035
crossref_primary_10_1016_j_jfluidstructs_2020_103141
crossref_primary_10_3390_en16093891
Cites_doi 10.1016/j.ijheatfluidflow.2012.05.002
10.1016/0045-7825(74)90029-2
10.1016/0045-7930(94)00032-T
10.1017/S0022112007007781
10.1016/j.renene.2015.02.050
10.1098/rsta.2012.0159
10.1115/1.1471361
10.1016/j.jweia.2011.01.011
10.1016/j.ijheatfluidflow.2013.03.010
10.1017/S0022112078001251
10.1002/fld.3849
10.1016/j.renene.2006.01.012
10.1016/j.renene.2017.05.048
10.1016/j.renene.2017.06.035
10.1002/we.1770
10.1016/j.renene.2007.05.043
10.2514/3.12149
10.1016/j.renene.2016.01.101
10.1002/fld.523
10.1023/A:1009930107544
10.1016/j.jfluidstructs.2014.10.017
10.1016/j.jfluidstructs.2016.04.001
10.1016/0045-7825(94)90165-1
ContentType Journal Article
Copyright The Author(s) 2018
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: The Author(s) 2018
– notice: Copyright Springer Science & Business Media 2018
DBID C6C
AAYXX
CITATION
7TN
F1W
H96
L.G
DOI 10.1007/s40722-018-0120-3
DatabaseName Springer Nature OA Free Journals
CrossRef
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Open Access
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
EISSN 2198-6452
EndPage 271
ExternalDocumentID 10_1007_s40722_018_0120_3
GroupedDBID -EM
0R~
203
4.4
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYQN
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFQWF
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ASPBG
AUKKA
AVWKF
AVXWI
AXYYD
AZFZN
BGNMA
C6C
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GGRSB
GJIRD
HQYDN
HRMNR
HVGLF
IAO
IGS
IKXTQ
ITC
IWAJR
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7TN
ABRTQ
F1W
H96
L.G
ID FETCH-LOGICAL-c3133-5bafa22e9232c46e78634e14bb823b83629aa94f00085ca196b204a4a154aeac3
IEDL.DBID C6C
ISSN 2198-6444
IngestDate Fri Jul 25 10:51:20 EDT 2025
Tue Jul 01 03:33:53 EDT 2025
Thu Apr 24 23:10:30 EDT 2025
Fri Feb 21 02:34:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords CFD
Actuator-line methods
Turbine arrays
Tidal-stream turbines
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3133-5bafa22e9232c46e78634e14bb823b83629aa94f00085ca196b204a4a154aeac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1791-4584
OpenAccessLink https://doi.org/10.1007/s40722-018-0120-3
PQID 2135670566
PQPubID 2044334
PageCount 13
ParticipantIDs proquest_journals_2135670566
crossref_citationtrail_10_1007_s40722_018_0120_3
crossref_primary_10_1007_s40722_018_0120_3
springer_journals_10_1007_s40722_018_0120_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20181100
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 20181100
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Journal of ocean engineering and marine energy
PublicationTitleAbbrev J. Ocean Eng. Mar. Energy
PublicationYear 2018
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Bahaj, Molland, Chaplin, Batten (CR7) 2007; 32
McNaughton, Afgan, Apsley, Rolfo, Stallard, Stansby (CR15) 2014; 74
Apsley, Hu (CR3) 2003; 42
Olczak, Stallard, Feng, Stansby (CR18) 2016; 64
Launder, Spalding (CR13) 1974; 3
Shih, Liou, Shammir, Yang, Zhu (CR23) 1995; 24
Batten, Bahaj, Molland, Chaplin (CR8) 2008; 33
Schluntz, Willden (CR22) 2015; 18
Gibson, Launder (CR12) 1978; 86
Sørensen, Shen (CR24) 2002; 124
Ahmed, Apsley, Afgan, Stallard, Stansby (CR2) 2017; 112
Nishino, Willden (CR17) 2012; 37
Stallard, Collings, Feng, Whelan (CR25) 2013; 871
Apsley, Leschziner (CR4) 2000; 63
CR5
CR9
Porté-Agel, Wu, Lu, Conzemius (CR19) 2011; 99
Menter (CR16) 1994; 32
Sarlak, Nishino, Martìnez-Tossas, Meneveau, Sørensen (CR20) 2016; 93
Garrett, Cummins (CR11) 2007; 588
Lien, Leschziner (CR14) 1994; 114
Baba-Ahmadi, Dong (CR6) 2017; 113
Schluntz, Willden (CR21) 2015; 81
Stallard, Feng, Stansby (CR26) 2015; 54
Afgan, McNaughton, Apsley, Rolfo, Stallard, Stansby (CR1) 2013; 43
MH Baba-Ahmadi (120_CR6) 2017; 113
C Garrett (120_CR11) 2007; 588
FS Lien (120_CR14) 1994; 114
T Nishino (120_CR17) 2012; 37
I Afgan (120_CR1) 2013; 43
AS Bahaj (120_CR7) 2007; 32
J McNaughton (120_CR15) 2014; 74
T Stallard (120_CR26) 2015; 54
DD Apsley (120_CR3) 2003; 42
120_CR5
A Olczak (120_CR18) 2016; 64
J Schluntz (120_CR21) 2015; 81
BE Launder (120_CR13) 1974; 3
H Sarlak (120_CR20) 2016; 93
U Ahmed (120_CR2) 2017; 112
DD Apsley (120_CR4) 2000; 63
MM Gibson (120_CR12) 1978; 86
T Stallard (120_CR25) 2013; 871
JN Sørensen (120_CR24) 2002; 124
WMJ Batten (120_CR8) 2008; 33
120_CR9
FR Menter (120_CR16) 1994; 32
T-H Shih (120_CR23) 1995; 24
F Porté-Agel (120_CR19) 2011; 99
J Schluntz (120_CR22) 2015; 18
References_xml – volume: 37
  start-page: 123
  year: 2012
  end-page: 135
  ident: CR17
  article-title: Effects of 3-D channel blockage and turbulent wake mixing on the limit of power extraction by tidal turbines
  publication-title: Int J Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2012.05.002
– volume: 3
  start-page: 269
  year: 1974
  end-page: 289
  ident: CR13
  article-title: The numerical computation of turbulent flows
  publication-title: Comput Method Appl Mech Eng
  doi: 10.1016/0045-7825(74)90029-2
– volume: 24
  start-page: 227
  year: 1995
  end-page: 238
  ident: CR23
  article-title: A new k-ε eddy-viscosity model for high Reynolds number turbulent flows
  publication-title: Comput Fluids
  doi: 10.1016/0045-7930(94)00032-T
– volume: 588
  start-page: 243
  year: 2007
  end-page: 251
  ident: CR11
  article-title: The efficiency of a turbine in a tidal channel
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112007007781
– volume: 81
  start-page: 432
  year: 2015
  end-page: 441
  ident: CR21
  article-title: The effect of blockage on tidal turbine rotor design and performance
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.02.050
– volume: 871
  start-page: 20120159
  year: 2013
  ident: CR25
  article-title: Interactions between tidal turbine wakes: experimental study of a group of 3-bladed rotors
  publication-title: Phil Trans R Soc A Math Phys Eng Sci
  doi: 10.1098/rsta.2012.0159
– volume: 124
  start-page: 393
  year: 2002
  end-page: 399
  ident: CR24
  article-title: Numerical modelling of wind turbine wakes
  publication-title: J Fluids Eng
  doi: 10.1115/1.1471361
– volume: 99
  start-page: 154
  year: 2011
  end-page: 168
  ident: CR19
  article-title: Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2011.01.011
– volume: 43
  start-page: 96
  year: 2013
  end-page: 108
  ident: CR1
  article-title: Turbulent flow and loading on a tidal stream turbine by LES and RANS
  publication-title: Int J Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2013.03.010
– volume: 86
  start-page: 491
  year: 1978
  end-page: 511
  ident: CR12
  article-title: Ground effects on pressure fluctuations in the atmospheric boundary layer
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112078001251
– volume: 74
  start-page: 250
  year: 2014
  end-page: 269
  ident: CR15
  article-title: A simple sliding-mesh interface procedure and its application to the CFD simulation of a tidal-stream turbine
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.3849
– volume: 32
  start-page: 407
  year: 2007
  end-page: 426
  ident: CR7
  article-title: Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2006.01.012
– volume: 112
  start-page: 235
  year: 2017
  end-page: 246
  ident: CR2
  article-title: Fluctuating loads on a tidal turbine due to velocity shear and turbulence: comparison of CFD with field data
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.05.048
– volume: 113
  start-page: 669
  year: 2017
  end-page: 678
  ident: CR6
  article-title: Numerical simulations of wake characteristics of a horizontal axis tidal stream turbine using actuator line model
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.06.035
– volume: 18
  start-page: 1469
  year: 2015
  end-page: 1485
  ident: CR22
  article-title: An actuator line method with novel blade flow field coupling based on potential flow equivalence
  publication-title: Wind Energy
  doi: 10.1002/we.1770
– volume: 33
  start-page: 1085
  year: 2008
  end-page: 1096
  ident: CR8
  article-title: The prediction of the hydrodynamic performance of marine current turbines
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2007.05.043
– volume: 32
  start-page: 1598
  year: 1994
  end-page: 1605
  ident: CR16
  article-title: Two-equation eddy-viscosity turbulence models for engineering applications
  publication-title: AIAA J
  doi: 10.2514/3.12149
– volume: 93
  start-page: 340
  year: 2016
  end-page: 352
  ident: CR20
  article-title: Assessment of blockage effects on the wake characteristics and power of wind turbines
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.01.101
– volume: 42
  start-page: 465
  year: 2003
  end-page: 491
  ident: CR3
  article-title: CFD simulation of two- and three-dimensional free-surface flow
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.523
– volume: 63
  start-page: 81
  year: 2000
  end-page: 112
  ident: CR4
  article-title: Advanced turbulence modelling of separated flow in a diffuser, Flow
  publication-title: Turbul Combust
  doi: 10.1023/A:1009930107544
– ident: CR9
– volume: 54
  start-page: 235
  year: 2015
  end-page: 246
  ident: CR26
  article-title: Experimental study of the mean wake of a tidal stream rotor in a shallow turbulent flow
  publication-title: J Fluids Struct
  doi: 10.1016/j.jfluidstructs.2014.10.017
– ident: CR5
– volume: 64
  start-page: 87
  year: 2016
  end-page: 106
  ident: CR18
  article-title: Comparison of a RANS blade element model for tidal turbine arrays with laboratory scale measurements of wake velocity and rotor thrust
  publication-title: J Fluids Struct
  doi: 10.1016/j.jfluidstructs.2016.04.001
– volume: 114
  start-page: 123
  year: 1994
  end-page: 148
  ident: CR14
  article-title: A general non-orthogonal collocated finite volume algorithm for turbulent flow at all speeds incorporating second-moment turbulence-transport closure, Part 1: computational implementation
  publication-title: Comp Methods Appl Mech Eng
  doi: 10.1016/0045-7825(94)90165-1
– volume: 112
  start-page: 235
  year: 2017
  ident: 120_CR2
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.05.048
– volume: 33
  start-page: 1085
  year: 2008
  ident: 120_CR8
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2007.05.043
– volume: 588
  start-page: 243
  year: 2007
  ident: 120_CR11
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112007007781
– volume: 24
  start-page: 227
  year: 1995
  ident: 120_CR23
  publication-title: Comput Fluids
  doi: 10.1016/0045-7930(94)00032-T
– volume: 18
  start-page: 1469
  year: 2015
  ident: 120_CR22
  publication-title: Wind Energy
  doi: 10.1002/we.1770
– volume: 54
  start-page: 235
  year: 2015
  ident: 120_CR26
  publication-title: J Fluids Struct
  doi: 10.1016/j.jfluidstructs.2014.10.017
– volume: 63
  start-page: 81
  year: 2000
  ident: 120_CR4
  publication-title: Turbul Combust
  doi: 10.1023/A:1009930107544
– volume: 3
  start-page: 269
  year: 1974
  ident: 120_CR13
  publication-title: Comput Method Appl Mech Eng
  doi: 10.1016/0045-7825(74)90029-2
– volume: 86
  start-page: 491
  year: 1978
  ident: 120_CR12
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112078001251
– volume: 74
  start-page: 250
  year: 2014
  ident: 120_CR15
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.3849
– volume: 32
  start-page: 407
  year: 2007
  ident: 120_CR7
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2006.01.012
– volume: 124
  start-page: 393
  year: 2002
  ident: 120_CR24
  publication-title: J Fluids Eng
  doi: 10.1115/1.1471361
– volume: 93
  start-page: 340
  year: 2016
  ident: 120_CR20
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.01.101
– volume: 32
  start-page: 1598
  year: 1994
  ident: 120_CR16
  publication-title: AIAA J
  doi: 10.2514/3.12149
– volume: 113
  start-page: 669
  year: 2017
  ident: 120_CR6
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.06.035
– volume: 81
  start-page: 432
  year: 2015
  ident: 120_CR21
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.02.050
– volume: 37
  start-page: 123
  year: 2012
  ident: 120_CR17
  publication-title: Int J Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2012.05.002
– volume: 43
  start-page: 96
  year: 2013
  ident: 120_CR1
  publication-title: Int J Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2013.03.010
– ident: 120_CR5
– volume: 42
  start-page: 465
  year: 2003
  ident: 120_CR3
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.523
– ident: 120_CR9
– volume: 99
  start-page: 154
  year: 2011
  ident: 120_CR19
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2011.01.011
– volume: 64
  start-page: 87
  year: 2016
  ident: 120_CR18
  publication-title: J Fluids Struct
  doi: 10.1016/j.jfluidstructs.2016.04.001
– volume: 114
  start-page: 123
  year: 1994
  ident: 120_CR14
  publication-title: Comp Methods Appl Mech Eng
  doi: 10.1016/0045-7825(94)90165-1
– volume: 871
  start-page: 20120159
  year: 2013
  ident: 120_CR25
  publication-title: Phil Trans R Soc A Math Phys Eng Sci
  doi: 10.1098/rsta.2012.0159
SSID ssj0002734765
Score 2.1302776
Snippet CFD modelling of tidal turbines in arrays is described and assessed against experimental studies of turbines operating either at constant speed or constant...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 259
SubjectTerms Actuators
Angular speed
Arrays
Coastal Sciences
Coefficients
Computational fluid dynamics
Cyclic loads
Downstream effects
Engineering
Engineering Fluid Dynamics
Load fluctuation
Mechanical Engineering
Modelling
Oceanography
Offshore Engineering
Ratios
Renewable and Green Energy
Research Article
Rotor blades
Rotor blades (turbomachinery)
Thrust
Torque
Towing
Turbine engines
Turbines
Turbulence
Turbulence models
Title Actuator-line CFD modelling of tidal-stream turbines in arrays
URI https://link.springer.com/article/10.1007/s40722-018-0120-3
https://www.proquest.com/docview/2135670566
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB20vaggWhWrtezBk7KYj91N9iK00VAE68VCb2G_AgVNpa0H_727adJqUcFzNnuYncm8zcx7A3Cp_dwzzEhsiI4w0ZrgmFGFtbLpRnGiPOPIyY9DNhiRhzEdV2LRjguzUb-_mTsBL9c84FquHNl3G5rUD5lz4IQlq98pTqUlKgdH2hCMsc3ypK5h_rTL9yy0hpYb1dAyyaQHsF-hQ9RbHuchbJmiBbtfNANbsPekjCgqoekjuO05Boi9OGOHF1GS3qFyuI1jmaNpjhYTLV6wY4SIV2TTi3Rt7mhSIDGbiY_5MYzS--dkgKuZCFiF9jqJqRS5CAJjcVmgCDNRzEJifCJlHIQytumIC8FJXmIpJWx8ycAjgggLlYT9yIYn0CimhTkFJCjNeWy4ryNNOIuk8i12yxmnlHERyDZ4tY0yVQmGu7kVL9lK6rg0a2bNmjmzZmEbrlavvC3VMv5a3KkNn1WBM88CP6QssqiMteG6Poz14183O_vX6nPYCZwzlJzCDjQWs3dzYcHFQnah2Uv7_WG3dK9PbFbDgQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0oHvxIjKJGFHUPnjQb6Xa77V5MSJWgAl4g8dbsVxMSLAbw4L93t7SgRE08d7uH2Z3Om868NwCX2ksbhhmJDdUhplpTHLFAYa1suFGcqoZx5ORuj7UH9PEleCnEoh0XZqV-fzN1Al6uecC1XDmy7zpsUJsou-69mMWL3ylOpSXMB0daF4ywjfK0rGH-tMv3KLSElivV0DzItPZgt0CHqDk_zn1YM1kVtr9oBlZh51kZkRVC0wdw23QMEJs4Y4cXUdy6Q_lwG8cyR-MUzYZajLBjhIhXZMOLdG3uaJghMZmIj-khDFr3_biNi5kIWPk2ncSBFKkgxFhcRhRlJoyYT41HpYyILyMbjrgQnKY5llLC-pckDSqosFBJ2I-sfwSVbJyZY0AiCFIeGe7pUFPOQqk8i91SxoOAcUFkDRqljRJVCIa7uRWjZCF1nJs1sWZNnFkTvwZXi1fe5moZfy2ul4ZPCseZJsTzAxZaVMZqcF0exvLxr5ud_Gv1BWy2-91O0nnoPZ3CFnEXI-cX1qEym7ybMws0ZvI8v2Kfl0bE8g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60gqggWhWrVffgSVnMY7NJLkJJDfVVPVjoLewrUKhpaePBf-9umqQqKnjOZg-zO5lvMvN9A3Au7dRSVHGsiPQxkZLggHoCS6HDjQiJsJQhJz_2aW9A7obesJxzOq-63auS5ILTYFSasvxqKtOrmvhmZL1MS4FpxDIU4FVY04lKUaeNaFT_ZDHaLX4xTlI7ZoB17CdVZfOnXb7GpiXg_FYjLUJPvAPbJWZEncUh78KKypqw-UlJsAlbT0KxrJSf3oPrjuGF6HQaGxSJoriLipE3hnuOJinKR5KNseGJsFekgw43ze9olCE2m7H3-T4M4puXqIfLSQlYuDrJxB5nKXMcpdGaIwhVfkBdomzCeeC4PNBBKmQsJGmBsATTXscdizDCNIBi-tPrHkAjm2TqEBDzvDQMVGhLX5KQ-lzYGtGlNPQ8GjKHt8CqbJSIUkbcTLMYJ7UAcmHWRJs1MWZN3BZc1K9MFxoafy1uV4ZPSneaJ47tetTXWI224LI6jOXjXzc7-tfqM1h_7sbJw23__hg2HHMvCtJhGxr57E2daPSR89Pihn0Aw47NOQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Actuator-line+CFD+modelling+of+tidal-stream+turbines+in+arrays&rft.jtitle=Journal+of+ocean+engineering+and+marine+energy&rft.au=Apsley%2C+David+D.&rft.au=Stallard%2C+Tim&rft.au=Stansby%2C+Peter+K.&rft.date=2018-11-01&rft.pub=Springer+International+Publishing&rft.issn=2198-6444&rft.eissn=2198-6452&rft.volume=4&rft.issue=4&rft.spage=259&rft.epage=271&rft_id=info:doi/10.1007%2Fs40722-018-0120-3&rft.externalDocID=10_1007_s40722_018_0120_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-6444&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-6444&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-6444&client=summon