An augmented illness‐death model for semi‐competing risks with clinically immediate terminal events

Preeclampsia is a pregnancy‐associated condition posing risks of both fetal and maternal mortality and morbidity that can only resolve following delivery and removal of the placenta. Because in its typical form preeclampsia can arise before delivery, but not after, these two events exemplify the tim...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 43; no. 21; pp. 4194 - 4211
Main Authors Reeder, Harrison T., Lee, Kyu Ha, Papatheodorou, Stefania I., Haneuse, Sebastien
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 20.09.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
1097-0258
DOI10.1002/sim.10181

Cover

Abstract Preeclampsia is a pregnancy‐associated condition posing risks of both fetal and maternal mortality and morbidity that can only resolve following delivery and removal of the placenta. Because in its typical form preeclampsia can arise before delivery, but not after, these two events exemplify the time‐to‐event setting of “semi‐competing risks” in which a non‐terminal event of interest is subject to the occurrence of a terminal event of interest. The semi‐competing risks framework presents a valuable opportunity to simultaneously address two clinically meaningful risk modeling tasks: (i) characterizing risk of developing preeclampsia, and (ii) characterizing time to delivery after onset of preeclampsia. However, some people with preeclampsia deliver immediately upon diagnosis, while others are admitted and monitored for an extended period before giving birth, resulting in two distinct trajectories following the non‐terminal event, which we call “clinically immediate” and “non‐immediate” terminal events. Though such phenomena arise in many clinical contexts, to‐date there have not been methods developed to acknowledge the complex dependencies between such outcomes, nor leverage these phenomena to gain new insight into individualized risk. We address this gap by proposing a novel augmented frailty‐based illness‐death model with a binary submodel to distinguish risk of immediate terminal event following the non‐terminal event. The model admits direct dependence of the terminal event on the non‐terminal event through flexible regression specification, as well as indirect dependence via a shared frailty term linking each submodel. We develop an efficient Bayesian sampler for estimation and corresponding model fit metrics, and derive formulae for dynamic risk prediction. In an extended example using pregnancy outcome data from an electronic health record, we demonstrate the proposed model's direct applicability to address a broad range of clinical questions.
AbstractList Preeclampsia is a pregnancy‐associated condition posing risks of both fetal and maternal mortality and morbidity that can only resolve following delivery and removal of the placenta. Because in its typical form preeclampsia can arise before delivery, but not after, these two events exemplify the time‐to‐event setting of “semi‐competing risks” in which a non‐terminal event of interest is subject to the occurrence of a terminal event of interest. The semi‐competing risks framework presents a valuable opportunity to simultaneously address two clinically meaningful risk modeling tasks: (i) characterizing risk of developing preeclampsia, and (ii) characterizing time to delivery after onset of preeclampsia. However, some people with preeclampsia deliver immediately upon diagnosis, while others are admitted and monitored for an extended period before giving birth, resulting in two distinct trajectories following the non‐terminal event, which we call “clinically immediate” and “non‐immediate” terminal events. Though such phenomena arise in many clinical contexts, to‐date there have not been methods developed to acknowledge the complex dependencies between such outcomes, nor leverage these phenomena to gain new insight into individualized risk. We address this gap by proposing a novel augmented frailty‐based illness‐death model with a binary submodel to distinguish risk of immediate terminal event following the non‐terminal event. The model admits direct dependence of the terminal event on the non‐terminal event through flexible regression specification, as well as indirect dependence via a shared frailty term linking each submodel. We develop an efficient Bayesian sampler for estimation and corresponding model fit metrics, and derive formulae for dynamic risk prediction. In an extended example using pregnancy outcome data from an electronic health record, we demonstrate the proposed model's direct applicability to address a broad range of clinical questions.
Preeclampsia is a pregnancy-associated condition posing risks of both fetal and maternal mortality and morbidity that can only resolve following delivery and removal of the placenta. Because in its typical form preeclampsia can arise before delivery, but not after, these two events exemplify the time-to-event setting of "semi-competing risks" in which a non-terminal event of interest is subject to the occurrence of a terminal event of interest. The semi-competing risks framework presents a valuable opportunity to simultaneously address two clinically meaningful risk modeling tasks: (i) characterizing risk of developing preeclampsia, and (ii) characterizing time to delivery after onset of preeclampsia. However, some people with preeclampsia deliver immediately upon diagnosis, while others are admitted and monitored for an extended period before giving birth, resulting in two distinct trajectories following the non-terminal event, which we call "clinically immediate" and "non-immediate" terminal events. Though such phenomena arise in many clinical contexts, to-date there have not been methods developed to acknowledge the complex dependencies between such outcomes, nor leverage these phenomena to gain new insight into individualized risk. We address this gap by proposing a novel augmented frailty-based illness-death model with a binary submodel to distinguish risk of immediate terminal event following the non-terminal event. The model admits direct dependence of the terminal event on the non-terminal event through flexible regression specification, as well as indirect dependence via a shared frailty term linking each submodel. We develop an efficient Bayesian sampler for estimation and corresponding model fit metrics, and derive formulae for dynamic risk prediction. In an extended example using pregnancy outcome data from an electronic health record, we demonstrate the proposed model's direct applicability to address a broad range of clinical questions.Preeclampsia is a pregnancy-associated condition posing risks of both fetal and maternal mortality and morbidity that can only resolve following delivery and removal of the placenta. Because in its typical form preeclampsia can arise before delivery, but not after, these two events exemplify the time-to-event setting of "semi-competing risks" in which a non-terminal event of interest is subject to the occurrence of a terminal event of interest. The semi-competing risks framework presents a valuable opportunity to simultaneously address two clinically meaningful risk modeling tasks: (i) characterizing risk of developing preeclampsia, and (ii) characterizing time to delivery after onset of preeclampsia. However, some people with preeclampsia deliver immediately upon diagnosis, while others are admitted and monitored for an extended period before giving birth, resulting in two distinct trajectories following the non-terminal event, which we call "clinically immediate" and "non-immediate" terminal events. Though such phenomena arise in many clinical contexts, to-date there have not been methods developed to acknowledge the complex dependencies between such outcomes, nor leverage these phenomena to gain new insight into individualized risk. We address this gap by proposing a novel augmented frailty-based illness-death model with a binary submodel to distinguish risk of immediate terminal event following the non-terminal event. The model admits direct dependence of the terminal event on the non-terminal event through flexible regression specification, as well as indirect dependence via a shared frailty term linking each submodel. We develop an efficient Bayesian sampler for estimation and corresponding model fit metrics, and derive formulae for dynamic risk prediction. In an extended example using pregnancy outcome data from an electronic health record, we demonstrate the proposed model's direct applicability to address a broad range of clinical questions.
Author Lee, Kyu Ha
Papatheodorou, Stefania I.
Reeder, Harrison T.
Haneuse, Sebastien
Author_xml – sequence: 1
  givenname: Harrison T.
  orcidid: 0000-0001-8813-9127
  surname: Reeder
  fullname: Reeder, Harrison T.
  email: hreeder@mgh.harvard.edu
  organization: Harvard Medical School
– sequence: 2
  givenname: Kyu Ha
  surname: Lee
  fullname: Lee, Kyu Ha
  organization: Harvard T.H. Chan School of Public Health
– sequence: 3
  givenname: Stefania I.
  surname: Papatheodorou
  fullname: Papatheodorou, Stefania I.
  organization: Rutgers University
– sequence: 4
  givenname: Sebastien
  surname: Haneuse
  fullname: Haneuse, Sebastien
  organization: Harvard T.H. Chan School of Public Health
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39039022$$D View this record in MEDLINE/PubMed
BookMark eNp10UFvFCEUB3DS1Nht9dAvYEh6qYexD1gG5tg0VZvUeFDPExberFRgtjDTZm9-BD-jn0TqVg9NmpBAyI-Xx_sfkv00JiTkmME7BsDPio_1wDTbIwsGnWqAS71PFsCValrF5AE5LOUGgDHJ1UtyIDqoi_MFWZ8nauZ1xDShoz6EhKX8_vnLoZm-0zg6DHQYMy0Yfb22Y9zg5NOaZl9-FHrvq7LBJ29NCFvqY0TnzYR0whx9MoHiXa1dXpEXgwkFXz_uR-Tb-8uvFx-b688fri7OrxsrmGANKrBL61Z2ZaVwXANruWkV8OXAW4YtKg26s9a5AVtwXEppWr2SXTtoobQRR-R0V3eTx9sZy9RHXyyGYBKOc-kFaFEnwjmr9OQJvRnnXFt-UJ0EqZYgqnrzqOZV_Vu_yT6avO3_jbCCtztg81hKxuE_YdA_xNPXePq_8VR7trP3PuD2edh_ufq0e_EHR0iSfQ
Cites_doi 10.1016/j.ajog.2022.08.045
10.1161/CIRCOUTCOMES.119.005675
10.1002/uog.18959
10.1002/sim.8511
10.1080/01621459.2017.1356316
10.1002/sim.8103
10.1111/1467‐9868.00353
10.1093/biomet/88.4.907
10.1111/j.1541‐0420.2008.01162.x
10.1111/j.1541‐0420.2009.01340.x
10.1007/978-1-4612-1276-8
10.2147/IBPC.S77344
10.1111/biom.12696
10.1111/biom.13761
10.1007/s11222‐013‐9416‐2
10.1177/0962280219869364
10.1080/01621459.2016.1164052
10.1214/19‐AOAS1268
10.1093/biostatistics/kxp013
10.1111/rssc.12078
10.1111/nure.12055
10.1002/sim.6056
10.1007/s11222‐016‐9696‐4
10.2307/2286745
10.1080/01621459.2013.829001
10.1002/bimj.201600191
10.1002/sim.2712
10.1111/biom.13480
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1002/sim.10181
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
MEDLINE
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 4211
ExternalDocumentID 39039022
10_1002_sim_10181
SIM10181
Genre researchArticle
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Eunice Kennedy Shriver National Institute of Child Health and Human Development
  funderid: F31HD102159
– fundername: Eunice Kennedy Shriver National Institute of Child Health and Human Development
  grantid: F31HD102159
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c3131-e70c4cdbcbc53d280162a67024f261e6e78089ccddfe60d2555a68b596f8378a3
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Fri Jul 11 07:04:02 EDT 2025
Sat Jul 26 02:44:57 EDT 2025
Fri Jul 04 01:52:29 EDT 2025
Tue Jul 01 03:28:19 EDT 2025
Wed Jan 22 17:14:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords time‐to‐event analysis
semi‐competing risks
logistic model
multi‐state model
Bayesian survival analysis
risk prediction
Language English
License 2024 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3131-e70c4cdbcbc53d280162a67024f261e6e78089ccddfe60d2555a68b596f8378a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8813-9127
PMID 39039022
PQID 3095057403
PQPubID 48361
PageCount 18
ParticipantIDs proquest_miscellaneous_3083671221
proquest_journals_3095057403
pubmed_primary_39039022
crossref_primary_10_1002_sim_10181
wiley_primary_10_1002_sim_10181_SIM10181
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20 September 2024
PublicationDateYYYYMMDD 2024-09-20
PublicationDate_xml – month: 09
  year: 2024
  text: 20 September 2024
  day: 20
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2009; 65
2013; 108
2017; 27
2019; 12
2020; 39
2019; 38
2013; 71
2014; 24
2020; 14
2023; 228
2018; 60
2001; 88
1979; 74
2017; 73
2010; 66
2009; 10
2021; 78
2001
2000
2002; 64
2018; 113
2015; 64
2022; 79
2016; 111
2018; 51
2016; 9
2014; 33
2007; 26
2020; 29
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
McCulloch CE (e_1_2_10_17_1) 2001
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_10_1
e_1_2_10_11_1
e_1_2_10_31_1
e_1_2_10_30_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 51
  start-page: 720
  issue: 6
  year: 2018
  end-page: 730
  article-title: Genetic and non‐genetic risk factors for pre‐eclampsia: umbrella review of systematic reviews and meta‐analyses of observational studies
  publication-title: Ultrasound Obstet Gynecol
– volume: 228
  start-page: 338.e1
  issue: 3
  year: 2023
  end-page: 338.e12
  article-title: A novel approach to joint prediction of preeclampsia and delivery timing using semicompeting risks
  publication-title: Am J Obstet Gynecol
– volume: 71
  start-page: S18
  issue: suppl_1
  year: 2013
  end-page: S25
  article-title: Epidemiology of preeclampsia: impact of obesity
  publication-title: Nutr Rev
– volume: 39
  start-page: 1766
  issue: 12
  year: 2020
  end-page: 1780
  article-title: A novel Bayesian continuous piecewise linear log‐hazard model, with estimation and inference via reversible jump Markov chain Monte Carlo
  publication-title: Stat Med
– volume: 113
  start-page: 571
  issue: 522
  year: 2018
  end-page: 581
  article-title: A unified framework for fitting Bayesian semiparametric models to arbitrarily censored survival data, including spatially referenced data
  publication-title: J Am Stat Assoc
– volume: 33
  start-page: 1750
  issue: 10
  year: 2014
  end-page: 1766
  article-title: Multi‐state models for colon cancer recurrence and death with a cured fraction
  publication-title: Stat Med
– volume: 108
  start-page: 1339
  issue: 504
  year: 2013
  end-page: 1349
  article-title: Bayesian inference for logistic models using Pólya–Gamma latent variables
  publication-title: J Am Stat Assoc
– volume: 24
  start-page: 997
  issue: 6
  year: 2014
  end-page: 1016
  article-title: Understanding predictive information criteria for Bayesian models
  publication-title: Stat Comput
– volume: 65
  start-page: 962
  issue: 3
  year: 2009
  end-page: 969
  article-title: Comparison of hierarchical Bayesian models for overdispersed count data using DIC and Bayes' factors
  publication-title: Biometrics
– year: 2001
– year: 2000
– volume: 14
  start-page: 28
  issue: 1
  year: 2020
  end-page: 50
  article-title: BART with targeted smoothing: an analysis of patient‐specific stillbirth risk
  publication-title: Ann Appl Stat
– volume: 88
  start-page: 907
  issue: 4
  year: 2001
  end-page: 919
  article-title: On semi‐competing risks data
  publication-title: Biometrika
– volume: 38
  start-page: 2477
  issue: 13
  year: 2019
  end-page: 2503
  article-title: Evaluating classification accuracy for modern learning approaches
  publication-title: Stat Med
– volume: 12
  issue: 8
  year: 2019
  article-title: Joint shock/death risk prediction model for patients considering implantable cardioverter‐defibrillators: a secondary analysis of the SCD‐HeFT trial
  publication-title: Circ Cardiovasc Qual Outcomes
– volume: 64
  start-page: 583
  issue: 4
  year: 2002
  end-page: 639
  article-title: Bayesian measures of model complexity and fit
  publication-title: J R Stat Soc Series B Stat Methodology
– volume: 9
  start-page: 79
  year: 2016
  end-page: 94
  article-title: Current best practice in the management of hypertensive disorders in pregnancy
  publication-title: Integr Blood Press Control
– volume: 78
  start-page: 922
  year: 2021
  end-page: 936
  article-title: Modeling semi‐competing risks data as a longitudinal bivariate process
  publication-title: Biometrics
– volume: 29
  start-page: 1573
  issue: 6
  year: 2020
  end-page: 1591
  article-title: Time‐to‐event analysis when the event is defined on a finite time interval
  publication-title: Stat Methods Med Res
– volume: 66
  start-page: 716
  issue: 3
  year: 2010
  end-page: 725
  article-title: Statistical analysis of illness‐death processes and semicompeting risks data
  publication-title: Biometrics
– volume: 74
  start-page: 153
  issue: 365
  year: 1979
  end-page: 160
  article-title: A predictive approach to model selection
  publication-title: J Am Stat Assoc
– volume: 10
  start-page: 575
  issue: 3
  year: 2009
  end-page: 587
  article-title: Joint analysis of prevalence and incidence data using conditional likelihood
  publication-title: Biostatistics
– volume: 27
  start-page: 1413
  issue: 5
  year: 2017
  end-page: 1432
  article-title: Practical Bayesian model evaluation using leave‐one‐out cross‐validation and WAIC
  publication-title: Stat Comput
– volume: 79
  start-page: 1657
  year: 2022
  end-page: 1669
  article-title: Penalized estimation of frailty‐based illness‐death models for semi‐competing risks
  publication-title: Biometrics
– volume: 60
  start-page: 34
  issue: 1
  year: 2018
  end-page: 48
  article-title: Prediction errors for state occupation and transition probabilities in multi‐state models
  publication-title: Biom J
– volume: 26
  start-page: 2389
  issue: 11
  year: 2007
  end-page: 2430
  article-title: Tutorial in biostatistics: competing risks and multi‐state models
  publication-title: Stat Med
– volume: 73
  start-page: 1401
  issue: 4
  year: 2017
  end-page: 1412
  article-title: Accelerated failure time models for semi‐competing risks data in the presence of complex censoring
  publication-title: Biometrics
– volume: 64
  start-page: 253
  issue: 2
  year: 2015
  end-page: 273
  article-title: Bayesian semiparametric analysis of semicompeting risks data: investigating hospital readmission after a pancreatic cancer diagnosis
  publication-title: J R Stat Soc Ser C Appl Stat
– volume: 111
  start-page: 1075
  issue: 515
  year: 2016
  end-page: 1095
  article-title: Hierarchical models for semicompeting risks data with application to quality of end‐of‐life care for pancreatic cancer
  publication-title: J Am Stat Assoc
– ident: e_1_2_10_6_1
  doi: 10.1016/j.ajog.2022.08.045
– ident: e_1_2_10_15_1
  doi: 10.1161/CIRCOUTCOMES.119.005675
– ident: e_1_2_10_3_1
  doi: 10.1002/uog.18959
– ident: e_1_2_10_28_1
  doi: 10.1002/sim.8511
– ident: e_1_2_10_18_1
  doi: 10.1080/01621459.2017.1356316
– ident: e_1_2_10_31_1
  doi: 10.1002/sim.8103
– ident: e_1_2_10_24_1
  doi: 10.1111/1467‐9868.00353
– ident: e_1_2_10_5_1
  doi: 10.1093/biomet/88.4.907
– ident: e_1_2_10_25_1
  doi: 10.1111/j.1541‐0420.2008.01162.x
– ident: e_1_2_10_9_1
  doi: 10.1111/j.1541‐0420.2009.01340.x
– ident: e_1_2_10_23_1
  doi: 10.1007/978-1-4612-1276-8
– ident: e_1_2_10_16_1
– ident: e_1_2_10_4_1
  doi: 10.2147/IBPC.S77344
– ident: e_1_2_10_30_1
  doi: 10.1111/biom.12696
– ident: e_1_2_10_7_1
  doi: 10.1111/biom.13761
– ident: e_1_2_10_20_1
  doi: 10.1007/s11222‐013‐9416‐2
– ident: e_1_2_10_14_1
  doi: 10.1177/0962280219869364
– ident: e_1_2_10_10_1
  doi: 10.1080/01621459.2016.1164052
– ident: e_1_2_10_29_1
  doi: 10.1214/19‐AOAS1268
– ident: e_1_2_10_11_1
  doi: 10.1093/biostatistics/kxp013
– ident: e_1_2_10_27_1
  doi: 10.1111/rssc.12078
– ident: e_1_2_10_2_1
  doi: 10.1111/nure.12055
– ident: e_1_2_10_13_1
  doi: 10.1002/sim.6056
– ident: e_1_2_10_21_1
  doi: 10.1007/s11222‐016‐9696‐4
– ident: e_1_2_10_22_1
  doi: 10.2307/2286745
– volume-title: Generalized, Linear, and Mixed Models
  year: 2001
  ident: e_1_2_10_17_1
– ident: e_1_2_10_19_1
  doi: 10.1080/01621459.2013.829001
– ident: e_1_2_10_26_1
  doi: 10.1002/bimj.201600191
– ident: e_1_2_10_8_1
  doi: 10.1002/sim.2712
– ident: e_1_2_10_12_1
  doi: 10.1111/biom.13480
SSID ssj0011527
Score 2.4458015
Snippet Preeclampsia is a pregnancy‐associated condition posing risks of both fetal and maternal mortality and morbidity that can only resolve following delivery and...
Preeclampsia is a pregnancy-associated condition posing risks of both fetal and maternal mortality and morbidity that can only resolve following delivery and...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 4194
SubjectTerms Bayes Theorem
Bayesian survival analysis
Computer Simulation
Female
Humans
logistic model
Models, Statistical
Morbidity
Mortality
multi‐state model
Pre-Eclampsia - epidemiology
Pre-Eclampsia - mortality
Preeclampsia
Pregnancy
Regression analysis
Risk Assessment - methods
risk prediction
semi‐competing risks
time‐to‐event analysis
Title An augmented illness‐death model for semi‐competing risks with clinically immediate terminal events
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.10181
https://www.ncbi.nlm.nih.gov/pubmed/39039022
https://www.proquest.com/docview/3095057403
https://www.proquest.com/docview/3083671221
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VPVSVEIUt0IWCDOLAJVvHTpxEnCqgapGWA1CpB6TIv9Wquykiuwc48Qh9xj5Jx3aSqlSVKqQcosSJE3vG84098xngraO6oIqrBMF6nqA9dkmpK_RSqKy4czZzIT16-kUcHmefT_KTNXjf58JEfohhws1rRhivvYJL1e5dk4a2s8Uk0E3h-Jty4XnzP34dqKPSfrtWv0QpijTvWYUo2xuevGmLbgHMm3g1GJyDLfjRf2qMMzmbrJZqov_8w-L4n__yCB52QJTsR8l5DGu2GcHGtFtqH8GDOKFHYp7SCDY9LI2szttwut8QuToNhJ6GzOZzP2Be_r0wHlCSsLsOQTRMWruY4WUdwDkaSeIj2VviJ39Jn5M5_01mi5DAsrSki82Zk0As1T6B44NP3z8cJt2WDYnmKU8TW1CdaaO00jk3DM2fYFIUCAQcumpW2KKkZaW1Mc4KatCfyaUoVV4J55ntJX8K6815Y3eAGCYtNUJqaVTmeCkrTXOrclsaV1bUjeFN33n1z8jMUUcOZlZje9ahPcew23dr3SlnW3OElQhTM8rH8Hq4jWrl10pkY89XvkzJUWwYw1c8i-Iw1MIrigdjY3gXOvXu6utvR9Nw8vz-RV_AJsP28jEpjO7C-vLXyr5E4LNUr4KEXwFxfQET
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIkElxM9SYGkBgzhwydZrJ04i9VIVqi10e4BW6gVF_q1W7KaI7B7gxCPwjDxJx3YSVBASQsohSpw4sceeb8YznwFeOqpzqrhKEKxnCepjlxS6RCuFypI7Z1MX0qOnx2Jymr49y87WYLfLhYn8EL3DzY-MMF_7Ae4d0ju_WEOb2WIU-KauwfUUgYY3vV6_78mjxt2GrX6RUuTjrOMVomynf_SqNvoDYl5FrEHlHNyBj93HxkiTT6PVUo30t994HP_3b-7C7RaLkr0oPPdgzdYDuDFtV9sHcCv69EhMVRrAhkemkdj5Ppzv1USuzgOnpyGz-dzPmT-__zAeU5KwwQ5BQEwau5jhZR3wOepJ4oPZG-L9v6RLy5x_JbNFyGFZWtKG58xJ4JZqNuH04M3J_iRpd21INB_zcWJzqlNtlFY644ahBhRMihyxgENrzQqbF7QotTbGWUENmjSZFIXKSuE8ub3kD2C9vqjtIyCGSUuNkFoalTpeyFLTzKrMFsYVJXVDeNH1XvU5knNUkYaZVdieVWjPIWx3_Vq147OpOCJLRKop5UN43t_GkeWXS2RtL1a-TMFRbhjDVzyM8tDXwkuKB2NDeBV69e_VVx8Op-Hk8b8XfQY3JyfTo-ro8PjdFmwwbDsfosLoNqwvv6zsE8RBS_U0iPsleNQFMg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIlWVED8LhYUCBnHgkq3XTpxEPVUtqxbYCgGVekCK_Fut2E0rsnuAE4_AM_IkHdtJUEFICCmHKHHixJ7xfB7PfAZ44ajOqeIqQbCeJWiPXVLoEmcpVJbcOZu6kB49PRaHJ-nr0-x0DXa7XJjID9E73LxmhPHaK_iFcTu_SEOb2WIU6KauwfVUIJLwiOh9zx017vZr9WuUIh9nHa0QZTv9o1eN0R8I8ypgDRZncgs-dd8aA00-j1ZLNdLffqNx_M-fuQ03WyRK9qLo3IE1Ww9gY9qutQ_gRvTokZioNIBNj0sjrfNdONuriVydBUZPQ2bzuR8xf37_YTyiJGF7HYJwmDR2McPLOqBztJLEh7I3xHt_SZeUOf9KZouQwbK0pA3OmZPALNXcg5PJq4_7h0m7Z0Oi-ZiPE5tTnWqjtNIZNwztn2BS5IgEHM7VrLB5QYtSa2OcFdTghCaTolBZKZyntpd8C9br89o-AGKYtNQIqaVRqeOFLDXNrMpsYVxRUjeE513nVReRmqOKJMyswvasQnsOYbvr1qrVzqbiiCsRp6aUD-FZfxv1yi-WyNqer3yZgqPYMIavuB_Foa-FlxQPxobwMnTq36uvPhxNw8nDfy_6FDbeHUyqt0fHbx7BJsOm8_EpjG7D-vLLyj5GELRUT4KwXwJySwPh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+augmented+illness%E2%80%90death+model+for+semi%E2%80%90competing+risks+with+clinically+immediate+terminal+events&rft.jtitle=Statistics+in+medicine&rft.au=Reeder%2C+Harrison+T.&rft.au=Lee%2C+Kyu+Ha&rft.au=Papatheodorou%2C+Stefania+I.&rft.au=Haneuse%2C+Sebastien&rft.date=2024-09-20&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=43&rft.issue=21&rft.spage=4194&rft.epage=4211&rft_id=info:doi/10.1002%2Fsim.10181&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_sim_10181
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon