Retrospective motion correction for cardiac multi‐parametric mapping with dictionary matching‐based image synthesis and a low‐rank constraint
Purpose To develop a model‐based motion correction (MoCo) method that does not need an analytical signal model to improve the quality of cardiac multi‐parametric mapping. Methods The proposed method constructs a hybrid loss that includes a dictionary‐matching loss and a signal low‐rankness loss, whe...
Saved in:
Published in | Magnetic resonance in medicine Vol. 93; no. 2; pp. 550 - 562 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
To develop a model‐based motion correction (MoCo) method that does not need an analytical signal model to improve the quality of cardiac multi‐parametric mapping.
Methods
The proposed method constructs a hybrid loss that includes a dictionary‐matching loss and a signal low‐rankness loss, where the former registers the multi‐contrast original images to a set of motion‐free synthetic images and the latter forces the deformed images to be spatiotemporally coherent. We compared the proposed method with non‐MoCo, a pairwise registration method (Pairwise‐MI), and a groupwise registration method (pTVreg) via a free‐breathing Multimapping dataset of 15 healthy subjects, both quantitatively and qualitatively.
Results
The proposed method achieved the lowest contour tracking errors (epicardium: 2.00 ± 0.39 mm vs 4.93 ± 2.29 mm, 3.50 ± 1.26 mm, and 2.61 ± 1.00 mm, and endocardium: 1.84 ± 0.34 mm vs 4.93 ± 2.40 mm, 3.43 ± 1.27 mm, and 2.55 ± 1.09 mm for the proposed method, non‐MoCo, Pairwise‐MI, and pTVreg, respectively; all p < 0.01) and the lowest dictionary matching errors among all methods. The proposed method also achieved the highest scores on the visual quality of mapping (T1: 4.74 ± 0.33 vs 2.91 ± 0.82, 3.58 ± 0.87, and 3.97 ± 1.05, and T2: 4.48 ± 0.56 vs 2.59 ± 0.81, 3.56 ± 0.93, and 4.14 ± 0.80 for the proposed method, non‐MoCo, Pairwise‐MI, and pTVreg, respectively; all p < 0.01). Finally, the proposed method had similar T1 and T2 mean values and SDs relative to the breath‐hold reference in nearly all myocardial segments, whereas all other methods led to significantly different T1 and T2 measures and increases of SDs in multiple segments.
Conclusion
The proposed method significantly improves the motion correction accuracy and mapping quality compared with non‐MoCo and alternative image‐based methods. |
---|---|
AbstractList | To develop a model-based motion correction (MoCo) method that does not need an analytical signal model to improve the quality of cardiac multi-parametric mapping.PURPOSETo develop a model-based motion correction (MoCo) method that does not need an analytical signal model to improve the quality of cardiac multi-parametric mapping.The proposed method constructs a hybrid loss that includes a dictionary-matching loss and a signal low-rankness loss, where the former registers the multi-contrast original images to a set of motion-free synthetic images and the latter forces the deformed images to be spatiotemporally coherent. We compared the proposed method with non-MoCo, a pairwise registration method (Pairwise-MI), and a groupwise registration method (pTVreg) via a free-breathing Multimapping dataset of 15 healthy subjects, both quantitatively and qualitatively.METHODSThe proposed method constructs a hybrid loss that includes a dictionary-matching loss and a signal low-rankness loss, where the former registers the multi-contrast original images to a set of motion-free synthetic images and the latter forces the deformed images to be spatiotemporally coherent. We compared the proposed method with non-MoCo, a pairwise registration method (Pairwise-MI), and a groupwise registration method (pTVreg) via a free-breathing Multimapping dataset of 15 healthy subjects, both quantitatively and qualitatively.The proposed method achieved the lowest contour tracking errors (epicardium: 2.00 ± 0.39 mm vs 4.93 ± 2.29 mm, 3.50 ± 1.26 mm, and 2.61 ± 1.00 mm, and endocardium: 1.84 ± 0.34 mm vs 4.93 ± 2.40 mm, 3.43 ± 1.27 mm, and 2.55 ± 1.09 mm for the proposed method, non-MoCo, Pairwise-MI, and pTVreg, respectively; all p < 0.01) and the lowest dictionary matching errors among all methods. The proposed method also achieved the highest scores on the visual quality of mapping (T1: 4.74 ± 0.33 vs 2.91 ± 0.82, 3.58 ± 0.87, and 3.97 ± 1.05, and T2: 4.48 ± 0.56 vs 2.59 ± 0.81, 3.56 ± 0.93, and 4.14 ± 0.80 for the proposed method, non-MoCo, Pairwise-MI, and pTVreg, respectively; all p < 0.01). Finally, the proposed method had similar T1 and T2 mean values and SDs relative to the breath-hold reference in nearly all myocardial segments, whereas all other methods led to significantly different T1 and T2 measures and increases of SDs in multiple segments.RESULTSThe proposed method achieved the lowest contour tracking errors (epicardium: 2.00 ± 0.39 mm vs 4.93 ± 2.29 mm, 3.50 ± 1.26 mm, and 2.61 ± 1.00 mm, and endocardium: 1.84 ± 0.34 mm vs 4.93 ± 2.40 mm, 3.43 ± 1.27 mm, and 2.55 ± 1.09 mm for the proposed method, non-MoCo, Pairwise-MI, and pTVreg, respectively; all p < 0.01) and the lowest dictionary matching errors among all methods. The proposed method also achieved the highest scores on the visual quality of mapping (T1: 4.74 ± 0.33 vs 2.91 ± 0.82, 3.58 ± 0.87, and 3.97 ± 1.05, and T2: 4.48 ± 0.56 vs 2.59 ± 0.81, 3.56 ± 0.93, and 4.14 ± 0.80 for the proposed method, non-MoCo, Pairwise-MI, and pTVreg, respectively; all p < 0.01). Finally, the proposed method had similar T1 and T2 mean values and SDs relative to the breath-hold reference in nearly all myocardial segments, whereas all other methods led to significantly different T1 and T2 measures and increases of SDs in multiple segments.The proposed method significantly improves the motion correction accuracy and mapping quality compared with non-MoCo and alternative image-based methods.CONCLUSIONThe proposed method significantly improves the motion correction accuracy and mapping quality compared with non-MoCo and alternative image-based methods. Purpose To develop a model‐based motion correction (MoCo) method that does not need an analytical signal model to improve the quality of cardiac multi‐parametric mapping. Methods The proposed method constructs a hybrid loss that includes a dictionary‐matching loss and a signal low‐rankness loss, where the former registers the multi‐contrast original images to a set of motion‐free synthetic images and the latter forces the deformed images to be spatiotemporally coherent. We compared the proposed method with non‐MoCo, a pairwise registration method (Pairwise‐MI), and a groupwise registration method (pTVreg) via a free‐breathing Multimapping dataset of 15 healthy subjects, both quantitatively and qualitatively. Results The proposed method achieved the lowest contour tracking errors (epicardium: 2.00 ± 0.39 mm vs 4.93 ± 2.29 mm, 3.50 ± 1.26 mm, and 2.61 ± 1.00 mm, and endocardium: 1.84 ± 0.34 mm vs 4.93 ± 2.40 mm, 3.43 ± 1.27 mm, and 2.55 ± 1.09 mm for the proposed method, non‐MoCo, Pairwise‐MI, and pTVreg, respectively; all p < 0.01) and the lowest dictionary matching errors among all methods. The proposed method also achieved the highest scores on the visual quality of mapping (T1: 4.74 ± 0.33 vs 2.91 ± 0.82, 3.58 ± 0.87, and 3.97 ± 1.05, and T2: 4.48 ± 0.56 vs 2.59 ± 0.81, 3.56 ± 0.93, and 4.14 ± 0.80 for the proposed method, non‐MoCo, Pairwise‐MI, and pTVreg, respectively; all p < 0.01). Finally, the proposed method had similar T1 and T2 mean values and SDs relative to the breath‐hold reference in nearly all myocardial segments, whereas all other methods led to significantly different T1 and T2 measures and increases of SDs in multiple segments. Conclusion The proposed method significantly improves the motion correction accuracy and mapping quality compared with non‐MoCo and alternative image‐based methods. PurposeTo develop a model‐based motion correction (MoCo) method that does not need an analytical signal model to improve the quality of cardiac multi‐parametric mapping.MethodsThe proposed method constructs a hybrid loss that includes a dictionary‐matching loss and a signal low‐rankness loss, where the former registers the multi‐contrast original images to a set of motion‐free synthetic images and the latter forces the deformed images to be spatiotemporally coherent. We compared the proposed method with non‐MoCo, a pairwise registration method (Pairwise‐MI), and a groupwise registration method (pTVreg) via a free‐breathing Multimapping dataset of 15 healthy subjects, both quantitatively and qualitatively.ResultsThe proposed method achieved the lowest contour tracking errors (epicardium: 2.00 ± 0.39 mm vs 4.93 ± 2.29 mm, 3.50 ± 1.26 mm, and 2.61 ± 1.00 mm, and endocardium: 1.84 ± 0.34 mm vs 4.93 ± 2.40 mm, 3.43 ± 1.27 mm, and 2.55 ± 1.09 mm for the proposed method, non‐MoCo, Pairwise‐MI, and pTVreg, respectively; all p < 0.01) and the lowest dictionary matching errors among all methods. The proposed method also achieved the highest scores on the visual quality of mapping (T1: 4.74 ± 0.33 vs 2.91 ± 0.82, 3.58 ± 0.87, and 3.97 ± 1.05, and T2: 4.48 ± 0.56 vs 2.59 ± 0.81, 3.56 ± 0.93, and 4.14 ± 0.80 for the proposed method, non‐MoCo, Pairwise‐MI, and pTVreg, respectively; all p < 0.01). Finally, the proposed method had similar T1 and T2 mean values and SDs relative to the breath‐hold reference in nearly all myocardial segments, whereas all other methods led to significantly different T1 and T2 measures and increases of SDs in multiple segments.ConclusionThe proposed method significantly improves the motion correction accuracy and mapping quality compared with non‐MoCo and alternative image‐based methods. To develop a model-based motion correction (MoCo) method that does not need an analytical signal model to improve the quality of cardiac multi-parametric mapping. The proposed method constructs a hybrid loss that includes a dictionary-matching loss and a signal low-rankness loss, where the former registers the multi-contrast original images to a set of motion-free synthetic images and the latter forces the deformed images to be spatiotemporally coherent. We compared the proposed method with non-MoCo, a pairwise registration method (Pairwise-MI), and a groupwise registration method (pTVreg) via a free-breathing Multimapping dataset of 15 healthy subjects, both quantitatively and qualitatively. The proposed method achieved the lowest contour tracking errors (epicardium: 2.00 ± 0.39 mm vs 4.93 ± 2.29 mm, 3.50 ± 1.26 mm, and 2.61 ± 1.00 mm, and endocardium: 1.84 ± 0.34 mm vs 4.93 ± 2.40 mm, 3.43 ± 1.27 mm, and 2.55 ± 1.09 mm for the proposed method, non-MoCo, Pairwise-MI, and pTVreg, respectively; all p < 0.01) and the lowest dictionary matching errors among all methods. The proposed method also achieved the highest scores on the visual quality of mapping (T1: 4.74 ± 0.33 vs 2.91 ± 0.82, 3.58 ± 0.87, and 3.97 ± 1.05, and T2: 4.48 ± 0.56 vs 2.59 ± 0.81, 3.56 ± 0.93, and 4.14 ± 0.80 for the proposed method, non-MoCo, Pairwise-MI, and pTVreg, respectively; all p < 0.01). Finally, the proposed method had similar T1 and T2 mean values and SDs relative to the breath-hold reference in nearly all myocardial segments, whereas all other methods led to significantly different T1 and T2 measures and increases of SDs in multiple segments. The proposed method significantly improves the motion correction accuracy and mapping quality compared with non-MoCo and alternative image-based methods. |
Author | Chen, Haiyang Emu, Yixin Gao, Juan Chen, Zhuo Aburas, Ahmed Hu, Chenxi |
Author_xml | – sequence: 1 givenname: Haiyang orcidid: 0009-0007-9700-5092 surname: Chen fullname: Chen, Haiyang organization: Shanghai Jiao Tong University – sequence: 2 givenname: Yixin orcidid: 0009-0000-9420-9208 surname: Emu fullname: Emu, Yixin organization: Shanghai Jiao Tong University – sequence: 3 givenname: Juan surname: Gao fullname: Gao, Juan organization: Shanghai Jiao Tong University – sequence: 4 givenname: Zhuo orcidid: 0009-0002-1299-5175 surname: Chen fullname: Chen, Zhuo organization: Shanghai Jiao Tong University – sequence: 5 givenname: Ahmed surname: Aburas fullname: Aburas, Ahmed organization: Shanghai Jiao Tong University – sequence: 6 givenname: Chenxi orcidid: 0000-0003-2551-3075 surname: Hu fullname: Hu, Chenxi email: chenxi.hu@sjtu.edu.cn organization: Shanghai Jiao Tong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39285623$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctuFDEQRS0URCaBBT-ALLGBRSd-9HOJIl5SIqQI1q2yuybj0G03tjuj2fEJSPwhX0JNJrBAYmXr1rkuV90TduSDR8aeS3EmhVDnU5zOtFCdfMRWslKqUFVXHrGVaEpRaNmVx-wkpVshRNc15RN2rDvVVrXSK_bzGnMMaUab3R3yKWQXPLchxr1C13WI3EIcHFg-LWN2v77_mCHCRD5HEsyz8zd86_KGD-7eA3FHerYbKhBtIOHA3QQ3yNPO5w0mlzj4gQMfw5aICP4r9fQpR3A-P2WP1zAmfPZwnrIv795-vvhQXH56__HizWVhtdSywMoqqACwtq2UlWloJClU3QxKVfuiRQtDaVrbGlFLa-rWmGYYEMo1GCP0KXt1eHeO4duCKfeTSxbHETyGJfVakq2rVVMT-vIf9DYs0dPviNK6LVWrS6JePFCLmXDo50hTx13_Z90EvD4AlnaeIq7_IlL0-yh7irK_j5LY8wO7dSPu_g_2V9dXB8dv6sumLA |
Cites_doi | 10.1016/j.media.2022.102615 10.1186/s12968-023-00973-6 10.4070/kcj.2020.0157 10.1007/978-3-031-43990-2_22 10.1002/mrm.25270 10.1186/s12968-015-0141-1 10.1016/j.media.2018.12.004 10.3389/fcvm.2022.953823 10.1002/mrm.28753 10.1002/mrm.25421 10.1109/42.796284 10.1002/mrm.23153 10.1007/s00259-021-05384-2 10.3348/kjr.2017.18.1.113 10.1002/jmri.27023 10.1002/mrm.24139 10.1002/jmri.29206 10.1007/978-3-031-16446-0_28 10.1109/ISBI.2004.1398686 10.1002/mrm.29143 10.1109/TMI.2019.2897538 10.1002/mrm.25439 10.1002/mrm.20110 10.1016/j.media.2015.12.004 10.1002/mrm.25402 10.1007/s10334-017-0668-2 10.1109/TMI.2016.2610583 10.1186/1532-429X-11-56 10.1109/CVPRW.2016.84 10.1016/j.jcmg.2017.09.010 10.1109/TMI.2014.2337321 10.3389/fcvm.2021.768245 10.1186/1532-429X-14-63 10.1109/ISBI.2013.6556655 10.1109/JPROC.2019.2936998 |
ContentType | Journal Article |
Copyright | 2024 International Society for Magnetic Resonance in Medicine. 2025 International Society for Magnetic Resonance in Medicine. |
Copyright_xml | – notice: 2024 International Society for Magnetic Resonance in Medicine. – notice: 2025 International Society for Magnetic Resonance in Medicine. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 |
DOI | 10.1002/mrm.30291 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Biochemistry Abstracts 1 MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 562 |
ExternalDocumentID | 39285623 10_1002_mrm_30291 MRM30291 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: Shanghai Science and Technology Commission funderid: 22TS1400200 – fundername: National Natural Science Foundation of China funderid: 62001288 – fundername: National Natural Science Foundation of China grantid: 62001288 – fundername: Shanghai Science and Technology Commission grantid: 22TS1400200 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. M7Z P64 7X8 |
ID | FETCH-LOGICAL-c3131-e5c2a5aae6c8115b785610267d225e5c2cecad4b8c8b061cb68bb7ddea4fabb03 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Thu Jul 10 17:49:38 EDT 2025 Fri Jul 25 12:18:40 EDT 2025 Wed Feb 19 02:04:23 EST 2025 Tue Jul 01 05:13:02 EDT 2025 Wed Jan 22 17:12:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | multi‐parametric mapping motion correction cardiac quantitative MRI dictionary matching low‐rank constraint |
Language | English |
License | 2024 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3131-e5c2a5aae6c8115b785610267d225e5c2cecad4b8c8b061cb68bb7ddea4fabb03 |
Notes | Haiyang Chen and Yixin Emu contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0007-9700-5092 0009-0002-1299-5175 0000-0003-2551-3075 0009-0000-9420-9208 |
PMID | 39285623 |
PQID | 3133842834 |
PQPubID | 1016391 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_3106196276 proquest_journals_3133842834 pubmed_primary_39285623 crossref_primary_10_1002_mrm_30291 wiley_primary_10_1002_mrm_30291_MRM30291 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2025 2025-02-00 2025-Feb 20250201 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 8 2021; 48 2015; 17 2021; 86 2019; 52 2015; 73 2015; 74 2019; 38 2004 2022; 87 2012; 14 2020; 108 2009; 11 2004; 52 2023; 25 2023 2020; 52 2017; 36 2022 2022; 82 2020; 50 1999; 18 2022; 9 2016 2017; 18 2013 2016; 29 2012; 68 2018; 11 2012; 67 2018; 31 2014; 33 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 9 start-page: 9 year: 2022 article-title: Simultaneous multi‐parametric acquisition and reconstruction techniques in cardiac magnetic resonance imaging: basic concepts and status of clinical development publication-title: Front Cardiovasc Med – volume: 31 start-page: 115 year: 2018 end-page: 129 article-title: Cardiac magnetic resonance T1 and extracellular volume mapping with motion correction and co‐registration based on fast elastic image registration publication-title: Magn Reson Mater Phy – volume: 14 start-page: 63 year: 2012 article-title: Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method publication-title: J Cardiovasc Magn Reson – volume: 38 start-page: 1788 year: 2019 end-page: 1800 article-title: VoxelMorph: a learning framework for deformable medical image registration publication-title: IEEE Trans Med Imaging – volume: 11 start-page: 56 year: 2009 article-title: T2 quantification for improved detection of myocardial edema publication-title: J Cardiovasc Magn Reson – volume: 25 start-page: 63 year: 2023 article-title: Free‐breathing simultaneous native myocardial T1, T2 and T1ρ mapping with cartesian acquisition and dictionary matching publication-title: J Cardiovasc Magn Reson – volume: 74 start-page: 489 year: 2015 end-page: 498 article-title: Accelerated MR parameter mapping with low‐rank and sparsity constraints publication-title: Magn Reson Med – volume: 74 start-page: 523 year: 2015 end-page: 528 article-title: Fast group matching for MR fingerprinting reconstruction publication-title: Magn Reson Med – volume: 33 start-page: 2311 year: 2014 end-page: 2322 article-title: SVD compression for magnetic resonance fingerprinting in the time domain publication-title: IEEE Trans Med Imaging – volume: 50 start-page: 658 year: 2020 end-page: 676 article-title: CMR parametric mapping as a tool for myocardial tissue characterization publication-title: Korean Circ J – volume: 18 start-page: 113 year: 2017 end-page: 131 article-title: Myocardial T1 and T2 mapping: techniques and clinical applications publication-title: Korean J Radiol – volume: 17 start-page: 46 year: 2015 article-title: Impact of motion correction on reproducibility and spatial variability of quantitative myocardial T2 mapping publication-title: J Cardiovasc Magn Reson – volume: 86 start-page: 1226 year: 2021 end-page: 1240 article-title: Free‐breathing simultaneous T1, T2, and T2* quantification in the myocardium publication-title: Magn Reson Med – volume: 8 start-page: 8 year: 2021 article-title: MOCOnet: robust motion correction of cardiovascular magnetic resonance T1 mapping using convolutional neural networks publication-title: Front Cardiovasc Med – volume: 11 start-page: 926 year: 2018 end-page: 928 article-title: Definition of left ventricular segments for cardiac magnetic resonance imaging publication-title: JACC Cardiovasc Imaging – volume: 52 start-page: 141 year: 2004 end-page: 146 article-title: Modified look‐locker inversion recovery (MOLLI) for high‐resolution T1 mapping of the heart publication-title: Magn Reson Med – volume: 68 start-page: 1570 year: 2012 end-page: 1578 article-title: Myocardial T2 mapping with respiratory navigator and automatic nonrigid motion correction publication-title: Magn Reson Med – volume: 87 start-page: 2347 year: 2022 end-page: 2362 article-title: Cartesian dictionary‐based native T1 and T2 mapping of the myocardium publication-title: Magn Reson Med – start-page: 626 year: 2016 end-page: 633 – year: 2023 article-title: Cardiac MR fingerprinting: overview, technical developments, and applications publication-title: J Magn Reson Imaging – start-page: 291 year: 2022 end-page: 300 – start-page: 1038 year: 2013 end-page: 1041 – volume: 52 start-page: 1340 year: 2020 end-page: 1351 article-title: Cardiac T * mapping: techniques and clinical applications publication-title: J Magn Reson Imaging – volume: 18 start-page: 712 year: 1999 end-page: 721 article-title: Nonrigid registration using free‐form deformations: application to breast MR images publication-title: IEEE Trans Med Imaging – volume: 36 start-page: 385 year: 2017 end-page: 395 article-title: Isotropic Total variation regularization of displacements in parametric image registration publication-title: IEEE Trans Med Imaging – volume: 29 start-page: 65 year: 2016 end-page: 78 article-title: PCA‐based groupwise image registration for quantitative MRI publication-title: Med Image Anal – year: 2023 – volume: 67 start-page: 1644 year: 2012 end-page: 1655 article-title: Motion correction for myocardial T1 mapping using image registration with synthetic image estimation publication-title: Magn Reson Med – start-page: 908 year: 2004 end-page: 911 – volume: 74 start-page: 365 year: 2015 end-page: 371 article-title: Simultaneous T1 and T2 quantification of the myocardium using cardiac balanced‐SSFP inversion recovery with interleaved sampling acquisition (CABIRIA) publication-title: Magn Reson Med – volume: 73 start-page: 1469 year: 2015 end-page: 1482 article-title: Adaptive registration of varying contrast‐weighted images for improved tissue characterization (ARCTIC): application to T1 mapping publication-title: Magn Reson Med – volume: 82 year: 2022 article-title: TransMorph: transformer for unsupervised medical image registration publication-title: Med Image Anal – volume: 48 start-page: 4189 year: 2021 end-page: 4200 article-title: Magnetic resonance fingerprinting: an overview publication-title: Eur J Nucl Med Mol Imaging – volume: 108 start-page: 69 year: 2020 end-page: 85 article-title: Machine learning for rapid magnetic resonance fingerprinting tissue property quantification publication-title: Proc IEEE – volume: 52 start-page: 212 year: 2019 end-page: 227 article-title: Robust motion correction for cardiac T1 and ECV mapping using a T1 relaxation model approach publication-title: Med Image Anal – ident: e_1_2_6_37_1 doi: 10.1016/j.media.2022.102615 – ident: e_1_2_6_27_1 doi: 10.1186/s12968-023-00973-6 – ident: e_1_2_6_3_1 doi: 10.4070/kcj.2020.0157 – ident: e_1_2_6_31_1 doi: 10.1007/978-3-031-43990-2_22 – ident: e_1_2_6_9_1 doi: 10.1002/mrm.25270 – ident: e_1_2_6_10_1 doi: 10.1186/s12968-015-0141-1 – ident: e_1_2_6_17_1 doi: 10.1016/j.media.2018.12.004 – ident: e_1_2_6_7_1 doi: 10.3389/fcvm.2022.953823 – ident: e_1_2_6_23_1 doi: 10.1002/mrm.28753 – ident: e_1_2_6_20_1 doi: 10.1002/mrm.25421 – ident: e_1_2_6_19_1 doi: 10.1109/42.796284 – ident: e_1_2_6_14_1 doi: 10.1002/mrm.23153 – ident: e_1_2_6_28_1 doi: 10.1007/s00259-021-05384-2 – ident: e_1_2_6_2_1 doi: 10.3348/kjr.2017.18.1.113 – ident: e_1_2_6_6_1 doi: 10.1002/jmri.27023 – ident: e_1_2_6_8_1 doi: 10.1002/mrm.24139 – ident: e_1_2_6_29_1 doi: 10.1002/jmri.29206 – ident: e_1_2_6_30_1 doi: 10.1007/978-3-031-16446-0_28 – ident: e_1_2_6_21_1 doi: 10.1109/ISBI.2004.1398686 – ident: e_1_2_6_18_1 doi: 10.1002/mrm.29143 – ident: e_1_2_6_25_1 – ident: e_1_2_6_36_1 doi: 10.1109/TMI.2019.2897538 – ident: e_1_2_6_35_1 doi: 10.1002/mrm.25439 – ident: e_1_2_6_4_1 doi: 10.1002/mrm.20110 – ident: e_1_2_6_11_1 doi: 10.1016/j.media.2015.12.004 – ident: e_1_2_6_22_1 doi: 10.1002/mrm.25402 – ident: e_1_2_6_13_1 doi: 10.1007/s10334-017-0668-2 – ident: e_1_2_6_24_1 doi: 10.1109/TMI.2016.2610583 – ident: e_1_2_6_5_1 doi: 10.1186/1532-429X-11-56 – ident: e_1_2_6_12_1 doi: 10.1109/CVPRW.2016.84 – ident: e_1_2_6_26_1 doi: 10.1016/j.jcmg.2017.09.010 – ident: e_1_2_6_34_1 doi: 10.1109/TMI.2014.2337321 – ident: e_1_2_6_32_1 doi: 10.3389/fcvm.2021.768245 – ident: e_1_2_6_15_1 doi: 10.1186/1532-429X-14-63 – ident: e_1_2_6_16_1 doi: 10.1109/ISBI.2013.6556655 – ident: e_1_2_6_33_1 doi: 10.1109/JPROC.2019.2936998 |
SSID | ssj0009974 |
Score | 2.465808 |
Snippet | Purpose
To develop a model‐based motion correction (MoCo) method that does not need an analytical signal model to improve the quality of cardiac... To develop a model-based motion correction (MoCo) method that does not need an analytical signal model to improve the quality of cardiac multi-parametric... PurposeTo develop a model‐based motion correction (MoCo) method that does not need an analytical signal model to improve the quality of cardiac... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 550 |
SubjectTerms | Adult Algorithms cardiac quantitative MRI Dictionaries dictionary matching Epicardium Female Healthy Volunteers Heart Heart - diagnostic imaging Humans Image contrast Image Interpretation, Computer-Assisted - methods Image Processing, Computer-Assisted - methods Image quality low‐rank constraint Magnetic Resonance Imaging - methods Male Mapping Matching Methods Motion motion correction multi‐parametric mapping Reproducibility of Results Retrospective Studies Segments Signal quality Synthetic data Tracking errors |
Title | Retrospective motion correction for cardiac multi‐parametric mapping with dictionary matching‐based image synthesis and a low‐rank constraint |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30291 https://www.ncbi.nlm.nih.gov/pubmed/39285623 https://www.proquest.com/docview/3133842834 https://www.proquest.com/docview/3106196276 |
Volume | 93 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fSxwxEB9EUHxpq9Z2W5VYfOjLnntJdjdLn0QUEc6Ho4IPhSX_lKO9vXK7R2mf-hEEv6GfpDPZ2xMtgvi2JLMkm0wmv01mfgOwrxAmJIansUp9EsvCu1gLbuKi0GgnVaqTPgU4D86z0wt5dpleLsGXLham5YdYHLjRygj2mha4NvXBPWnoeDruiYSHyHXy1SJANLynjiqKloE5l2RnCtmxCiX8YPHmw73oP4D5EK-GDefkNXzrutr6mXzvzRrTs38esTi-8FvewKs5EGWHreasw5KvNmB1ML9q34CV4Btq6024HfpmOulCMlmb94dZSusRgiIY4l5mg6ZZFhwU7_7eEKX4mLJ1YZEmDohrRke-zI3CO9hVLG-CIydK017q2GiMxo3VvysEpfWoZrpyTLMfk18oQbnlsU3iu9WjqnkLFyfHX49O43kuh9iKvujHPrVcp1r7zCoEoSZXBNx4ljs0KFRpvdVOGmWVQYhhTaaMydH2anmljUnEFixXk8q_B6bS3GXaOCGwUuWohbmV3AnpcyGccBF86ma1_NlSdpQtOTMvcaDLMNARbHfzXc5XbV0K-mEnBjoZwd6iGtcbXaLoyk9mJIPdo4xFWQTvWj1ZtIJYUxGejOBzmO2nmy8Hw0F4-PB80Y-wxin5cHAZ34blZjrzO4iIGrMbVP8feJQNZw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRQUuUMor0IJBHLhkm7WdxJG4INRqgaaHVSv1giK_ilawWbTJCtFTfwIS_5Bfwoyz2apFlRC3yA_ZsT3jz_bMNwCvFMKExPA0VqlPYll4F2vBTVwUGvWkSnUyJAfn8jAbHcsPJ-nJGrzpfWE6fojVhRtJRtDXJOB0Ib17wRo6nU8HIuHkun6DInqHA9X4gjyqKDoO5lySpilkzyuU8N1V1cu70V8Q8zJiDVvO_l341He2szT5Mli0ZmDPrvA4_u_fbMKdJRZlb7vFcw_WfL0FN8vla_sWbATzUNvch19j385nvVcm60L_MEuRPYJfBEPoy2xYbJYFG8Xf5z-JVXxKAbswSRMNxGdGt77MTUId7Cumt8GWE0vTdurYZIr6jTU_asSlzaRhunZMs6-z71iCwstjm0R5qyd1-wCO9_eO3o3iZTiH2IqhGMY-tVynWvvMKsShJleE3XiWO9QplGm91U4aZZVBlGFNpozJUf1qeaqNScRDWK9ntX8MTKW5y7RxQmCmynEh5lZyJ6TPhXDCRfCyn9bqW8faUXX8zLzCga7CQEew3U94tRTcphJ0ZicSOhnBi1U2ihy9o-jazxZUBrtHQYuyCB51C2XVCsJNRZAygtdhuq9vvirHZfh48u9Fn8Ot0VF5UB28P_z4FG5zikUcLMi3Yb2dL_wOAqTWPAty8Ack_xGC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VRa24FCh_gRbcigOXbLO2kzjihGhXhXYrtKJSD0iR_4pWdLPVJisEJx4BiTfkSZhxNluVCglxi2xHduyZ8Rd75huAFwphQmJ4GqvUJ7EsvIu14CYuCo12UqU66VOA8_AkOzyV787SsxV41cXCtPwQywM30oxgr0nBL9353hVp6GQ26YmEU-T6LZklikR6f3TFHVUULQVzLsnQFLKjFUr43vLV65vRDYR5HbCGHWdwBz52Y20dTT735o3p2W9_0Dj-58fchY0FEmWvW9G5Byu-2oT14eKufRPWgnOore_Dz5FvZtMuJpO1iX-YpbweISqCIfBlNoiaZcFD8df3H8QpPqF0XVikiQTiE6MzX-bG4R0cKpY3wZMTW9Nm6th4gtaN1V8rRKX1uGa6ckyzi-kXbEHJ5bFPIrzV46p5AKeDgw9vDuNFMofYir7oxz61XKda-8wqRKEmV4TceJY7tChUab3VThpllUGMYU2mjMnR-Gp5ro1JxENYraaVfwxMpbnLtHFCYKXKUQxzK7kT0udCOOEi2O1WtbxsOTvKlp2ZlzjRZZjoCLa69S4XaluXgv7YiYJORrCzrEaFo1sUXfnpnNrg8ChlURbBo1ZOlr0g2FQEKCN4GVb7792Xw9EwPDz596bPYf39_qA8fnty9BRuc0pEHNzHt2C1mc39NqKjxjwLWvAbFnMQOg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Retrospective+motion+correction+for+cardiac+multi%E2%80%90parametric+mapping+with+dictionary+matching%E2%80%90based+image+synthesis+and+a+low%E2%80%90rank+constraint&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Chen%2C+Haiyang&rft.au=Emu%2C+Yixin&rft.au=Gao%2C+Juan&rft.au=Chen%2C+Zhuo&rft.date=2025-02-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=93&rft.issue=2&rft.spage=550&rft.epage=562&rft_id=info:doi/10.1002%2Fmrm.30291&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_30291 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |