Retrospective motion correction for cardiac multi‐parametric mapping with dictionary matching‐based image synthesis and a low‐rank constraint

Purpose To develop a model‐based motion correction (MoCo) method that does not need an analytical signal model to improve the quality of cardiac multi‐parametric mapping. Methods The proposed method constructs a hybrid loss that includes a dictionary‐matching loss and a signal low‐rankness loss, whe...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 93; no. 2; pp. 550 - 562
Main Authors Chen, Haiyang, Emu, Yixin, Gao, Juan, Chen, Zhuo, Aburas, Ahmed, Hu, Chenxi
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose To develop a model‐based motion correction (MoCo) method that does not need an analytical signal model to improve the quality of cardiac multi‐parametric mapping. Methods The proposed method constructs a hybrid loss that includes a dictionary‐matching loss and a signal low‐rankness loss, where the former registers the multi‐contrast original images to a set of motion‐free synthetic images and the latter forces the deformed images to be spatiotemporally coherent. We compared the proposed method with non‐MoCo, a pairwise registration method (Pairwise‐MI), and a groupwise registration method (pTVreg) via a free‐breathing Multimapping dataset of 15 healthy subjects, both quantitatively and qualitatively. Results The proposed method achieved the lowest contour tracking errors (epicardium: 2.00 ± 0.39 mm vs 4.93 ± 2.29 mm, 3.50 ± 1.26 mm, and 2.61 ± 1.00 mm, and endocardium: 1.84 ± 0.34 mm vs 4.93 ± 2.40 mm, 3.43 ± 1.27 mm, and 2.55 ± 1.09 mm for the proposed method, non‐MoCo, Pairwise‐MI, and pTVreg, respectively; all p < 0.01) and the lowest dictionary matching errors among all methods. The proposed method also achieved the highest scores on the visual quality of mapping (T1: 4.74 ± 0.33 vs 2.91 ± 0.82, 3.58 ± 0.87, and 3.97 ± 1.05, and T2: 4.48 ± 0.56 vs 2.59 ± 0.81, 3.56 ± 0.93, and 4.14 ± 0.80 for the proposed method, non‐MoCo, Pairwise‐MI, and pTVreg, respectively; all p < 0.01). Finally, the proposed method had similar T1 and T2 mean values and SDs relative to the breath‐hold reference in nearly all myocardial segments, whereas all other methods led to significantly different T1 and T2 measures and increases of SDs in multiple segments. Conclusion The proposed method significantly improves the motion correction accuracy and mapping quality compared with non‐MoCo and alternative image‐based methods.
AbstractList To develop a model-based motion correction (MoCo) method that does not need an analytical signal model to improve the quality of cardiac multi-parametric mapping.PURPOSETo develop a model-based motion correction (MoCo) method that does not need an analytical signal model to improve the quality of cardiac multi-parametric mapping.The proposed method constructs a hybrid loss that includes a dictionary-matching loss and a signal low-rankness loss, where the former registers the multi-contrast original images to a set of motion-free synthetic images and the latter forces the deformed images to be spatiotemporally coherent. We compared the proposed method with non-MoCo, a pairwise registration method (Pairwise-MI), and a groupwise registration method (pTVreg) via a free-breathing Multimapping dataset of 15 healthy subjects, both quantitatively and qualitatively.METHODSThe proposed method constructs a hybrid loss that includes a dictionary-matching loss and a signal low-rankness loss, where the former registers the multi-contrast original images to a set of motion-free synthetic images and the latter forces the deformed images to be spatiotemporally coherent. We compared the proposed method with non-MoCo, a pairwise registration method (Pairwise-MI), and a groupwise registration method (pTVreg) via a free-breathing Multimapping dataset of 15 healthy subjects, both quantitatively and qualitatively.The proposed method achieved the lowest contour tracking errors (epicardium: 2.00 ± 0.39 mm vs 4.93 ± 2.29 mm, 3.50 ± 1.26 mm, and 2.61 ± 1.00 mm, and endocardium: 1.84 ± 0.34 mm vs 4.93 ± 2.40 mm, 3.43 ± 1.27 mm, and 2.55 ± 1.09 mm for the proposed method, non-MoCo, Pairwise-MI, and pTVreg, respectively; all p < 0.01) and the lowest dictionary matching errors among all methods. The proposed method also achieved the highest scores on the visual quality of mapping (T1: 4.74 ± 0.33 vs 2.91 ± 0.82, 3.58 ± 0.87, and 3.97 ± 1.05, and T2: 4.48 ± 0.56 vs 2.59 ± 0.81, 3.56 ± 0.93, and 4.14 ± 0.80 for the proposed method, non-MoCo, Pairwise-MI, and pTVreg, respectively; all p < 0.01). Finally, the proposed method had similar T1 and T2 mean values and SDs relative to the breath-hold reference in nearly all myocardial segments, whereas all other methods led to significantly different T1 and T2 measures and increases of SDs in multiple segments.RESULTSThe proposed method achieved the lowest contour tracking errors (epicardium: 2.00 ± 0.39 mm vs 4.93 ± 2.29 mm, 3.50 ± 1.26 mm, and 2.61 ± 1.00 mm, and endocardium: 1.84 ± 0.34 mm vs 4.93 ± 2.40 mm, 3.43 ± 1.27 mm, and 2.55 ± 1.09 mm for the proposed method, non-MoCo, Pairwise-MI, and pTVreg, respectively; all p < 0.01) and the lowest dictionary matching errors among all methods. The proposed method also achieved the highest scores on the visual quality of mapping (T1: 4.74 ± 0.33 vs 2.91 ± 0.82, 3.58 ± 0.87, and 3.97 ± 1.05, and T2: 4.48 ± 0.56 vs 2.59 ± 0.81, 3.56 ± 0.93, and 4.14 ± 0.80 for the proposed method, non-MoCo, Pairwise-MI, and pTVreg, respectively; all p < 0.01). Finally, the proposed method had similar T1 and T2 mean values and SDs relative to the breath-hold reference in nearly all myocardial segments, whereas all other methods led to significantly different T1 and T2 measures and increases of SDs in multiple segments.The proposed method significantly improves the motion correction accuracy and mapping quality compared with non-MoCo and alternative image-based methods.CONCLUSIONThe proposed method significantly improves the motion correction accuracy and mapping quality compared with non-MoCo and alternative image-based methods.
Purpose To develop a model‐based motion correction (MoCo) method that does not need an analytical signal model to improve the quality of cardiac multi‐parametric mapping. Methods The proposed method constructs a hybrid loss that includes a dictionary‐matching loss and a signal low‐rankness loss, where the former registers the multi‐contrast original images to a set of motion‐free synthetic images and the latter forces the deformed images to be spatiotemporally coherent. We compared the proposed method with non‐MoCo, a pairwise registration method (Pairwise‐MI), and a groupwise registration method (pTVreg) via a free‐breathing Multimapping dataset of 15 healthy subjects, both quantitatively and qualitatively. Results The proposed method achieved the lowest contour tracking errors (epicardium: 2.00 ± 0.39 mm vs 4.93 ± 2.29 mm, 3.50 ± 1.26 mm, and 2.61 ± 1.00 mm, and endocardium: 1.84 ± 0.34 mm vs 4.93 ± 2.40 mm, 3.43 ± 1.27 mm, and 2.55 ± 1.09 mm for the proposed method, non‐MoCo, Pairwise‐MI, and pTVreg, respectively; all p < 0.01) and the lowest dictionary matching errors among all methods. The proposed method also achieved the highest scores on the visual quality of mapping (T1: 4.74 ± 0.33 vs 2.91 ± 0.82, 3.58 ± 0.87, and 3.97 ± 1.05, and T2: 4.48 ± 0.56 vs 2.59 ± 0.81, 3.56 ± 0.93, and 4.14 ± 0.80 for the proposed method, non‐MoCo, Pairwise‐MI, and pTVreg, respectively; all p < 0.01). Finally, the proposed method had similar T1 and T2 mean values and SDs relative to the breath‐hold reference in nearly all myocardial segments, whereas all other methods led to significantly different T1 and T2 measures and increases of SDs in multiple segments. Conclusion The proposed method significantly improves the motion correction accuracy and mapping quality compared with non‐MoCo and alternative image‐based methods.
PurposeTo develop a model‐based motion correction (MoCo) method that does not need an analytical signal model to improve the quality of cardiac multi‐parametric mapping.MethodsThe proposed method constructs a hybrid loss that includes a dictionary‐matching loss and a signal low‐rankness loss, where the former registers the multi‐contrast original images to a set of motion‐free synthetic images and the latter forces the deformed images to be spatiotemporally coherent. We compared the proposed method with non‐MoCo, a pairwise registration method (Pairwise‐MI), and a groupwise registration method (pTVreg) via a free‐breathing Multimapping dataset of 15 healthy subjects, both quantitatively and qualitatively.ResultsThe proposed method achieved the lowest contour tracking errors (epicardium: 2.00 ± 0.39 mm vs 4.93 ± 2.29 mm, 3.50 ± 1.26 mm, and 2.61 ± 1.00 mm, and endocardium: 1.84 ± 0.34 mm vs 4.93 ± 2.40 mm, 3.43 ± 1.27 mm, and 2.55 ± 1.09 mm for the proposed method, non‐MoCo, Pairwise‐MI, and pTVreg, respectively; all p < 0.01) and the lowest dictionary matching errors among all methods. The proposed method also achieved the highest scores on the visual quality of mapping (T1: 4.74 ± 0.33 vs 2.91 ± 0.82, 3.58 ± 0.87, and 3.97 ± 1.05, and T2: 4.48 ± 0.56 vs 2.59 ± 0.81, 3.56 ± 0.93, and 4.14 ± 0.80 for the proposed method, non‐MoCo, Pairwise‐MI, and pTVreg, respectively; all p < 0.01). Finally, the proposed method had similar T1 and T2 mean values and SDs relative to the breath‐hold reference in nearly all myocardial segments, whereas all other methods led to significantly different T1 and T2 measures and increases of SDs in multiple segments.ConclusionThe proposed method significantly improves the motion correction accuracy and mapping quality compared with non‐MoCo and alternative image‐based methods.
To develop a model-based motion correction (MoCo) method that does not need an analytical signal model to improve the quality of cardiac multi-parametric mapping. The proposed method constructs a hybrid loss that includes a dictionary-matching loss and a signal low-rankness loss, where the former registers the multi-contrast original images to a set of motion-free synthetic images and the latter forces the deformed images to be spatiotemporally coherent. We compared the proposed method with non-MoCo, a pairwise registration method (Pairwise-MI), and a groupwise registration method (pTVreg) via a free-breathing Multimapping dataset of 15 healthy subjects, both quantitatively and qualitatively. The proposed method achieved the lowest contour tracking errors (epicardium: 2.00 ± 0.39 mm vs 4.93 ± 2.29 mm, 3.50 ± 1.26 mm, and 2.61 ± 1.00 mm, and endocardium: 1.84 ± 0.34 mm vs 4.93 ± 2.40 mm, 3.43 ± 1.27 mm, and 2.55 ± 1.09 mm for the proposed method, non-MoCo, Pairwise-MI, and pTVreg, respectively; all p < 0.01) and the lowest dictionary matching errors among all methods. The proposed method also achieved the highest scores on the visual quality of mapping (T1: 4.74 ± 0.33 vs 2.91 ± 0.82, 3.58 ± 0.87, and 3.97 ± 1.05, and T2: 4.48 ± 0.56 vs 2.59 ± 0.81, 3.56 ± 0.93, and 4.14 ± 0.80 for the proposed method, non-MoCo, Pairwise-MI, and pTVreg, respectively; all p < 0.01). Finally, the proposed method had similar T1 and T2 mean values and SDs relative to the breath-hold reference in nearly all myocardial segments, whereas all other methods led to significantly different T1 and T2 measures and increases of SDs in multiple segments. The proposed method significantly improves the motion correction accuracy and mapping quality compared with non-MoCo and alternative image-based methods.
Author Chen, Haiyang
Emu, Yixin
Gao, Juan
Chen, Zhuo
Aburas, Ahmed
Hu, Chenxi
Author_xml – sequence: 1
  givenname: Haiyang
  orcidid: 0009-0007-9700-5092
  surname: Chen
  fullname: Chen, Haiyang
  organization: Shanghai Jiao Tong University
– sequence: 2
  givenname: Yixin
  orcidid: 0009-0000-9420-9208
  surname: Emu
  fullname: Emu, Yixin
  organization: Shanghai Jiao Tong University
– sequence: 3
  givenname: Juan
  surname: Gao
  fullname: Gao, Juan
  organization: Shanghai Jiao Tong University
– sequence: 4
  givenname: Zhuo
  orcidid: 0009-0002-1299-5175
  surname: Chen
  fullname: Chen, Zhuo
  organization: Shanghai Jiao Tong University
– sequence: 5
  givenname: Ahmed
  surname: Aburas
  fullname: Aburas, Ahmed
  organization: Shanghai Jiao Tong University
– sequence: 6
  givenname: Chenxi
  orcidid: 0000-0003-2551-3075
  surname: Hu
  fullname: Hu, Chenxi
  email: chenxi.hu@sjtu.edu.cn
  organization: Shanghai Jiao Tong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39285623$$D View this record in MEDLINE/PubMed
BookMark eNp1kctuFDEQRS0URCaBBT-ALLGBRSd-9HOJIl5SIqQI1q2yuybj0G03tjuj2fEJSPwhX0JNJrBAYmXr1rkuV90TduSDR8aeS3EmhVDnU5zOtFCdfMRWslKqUFVXHrGVaEpRaNmVx-wkpVshRNc15RN2rDvVVrXSK_bzGnMMaUab3R3yKWQXPLchxr1C13WI3EIcHFg-LWN2v77_mCHCRD5HEsyz8zd86_KGD-7eA3FHerYbKhBtIOHA3QQ3yNPO5w0mlzj4gQMfw5aICP4r9fQpR3A-P2WP1zAmfPZwnrIv795-vvhQXH56__HizWVhtdSywMoqqACwtq2UlWloJClU3QxKVfuiRQtDaVrbGlFLa-rWmGYYEMo1GCP0KXt1eHeO4duCKfeTSxbHETyGJfVakq2rVVMT-vIf9DYs0dPviNK6LVWrS6JePFCLmXDo50hTx13_Z90EvD4AlnaeIq7_IlL0-yh7irK_j5LY8wO7dSPu_g_2V9dXB8dv6sumLA
Cites_doi 10.1016/j.media.2022.102615
10.1186/s12968-023-00973-6
10.4070/kcj.2020.0157
10.1007/978-3-031-43990-2_22
10.1002/mrm.25270
10.1186/s12968-015-0141-1
10.1016/j.media.2018.12.004
10.3389/fcvm.2022.953823
10.1002/mrm.28753
10.1002/mrm.25421
10.1109/42.796284
10.1002/mrm.23153
10.1007/s00259-021-05384-2
10.3348/kjr.2017.18.1.113
10.1002/jmri.27023
10.1002/mrm.24139
10.1002/jmri.29206
10.1007/978-3-031-16446-0_28
10.1109/ISBI.2004.1398686
10.1002/mrm.29143
10.1109/TMI.2019.2897538
10.1002/mrm.25439
10.1002/mrm.20110
10.1016/j.media.2015.12.004
10.1002/mrm.25402
10.1007/s10334-017-0668-2
10.1109/TMI.2016.2610583
10.1186/1532-429X-11-56
10.1109/CVPRW.2016.84
10.1016/j.jcmg.2017.09.010
10.1109/TMI.2014.2337321
10.3389/fcvm.2021.768245
10.1186/1532-429X-14-63
10.1109/ISBI.2013.6556655
10.1109/JPROC.2019.2936998
ContentType Journal Article
Copyright 2024 International Society for Magnetic Resonance in Medicine.
2025 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2024 International Society for Magnetic Resonance in Medicine.
– notice: 2025 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.30291
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Biochemistry Abstracts 1
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 562
ExternalDocumentID 39285623
10_1002_mrm_30291
MRM30291
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: Shanghai Science and Technology Commission
  funderid: 22TS1400200
– fundername: National Natural Science Foundation of China
  funderid: 62001288
– fundername: National Natural Science Foundation of China
  grantid: 62001288
– fundername: Shanghai Science and Technology Commission
  grantid: 22TS1400200
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c3131-e5c2a5aae6c8115b785610267d225e5c2cecad4b8c8b061cb68bb7ddea4fabb03
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Thu Jul 10 17:49:38 EDT 2025
Fri Jul 25 12:18:40 EDT 2025
Wed Feb 19 02:04:23 EST 2025
Tue Jul 01 05:13:02 EDT 2025
Wed Jan 22 17:12:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords multi‐parametric mapping
motion correction
cardiac quantitative MRI
dictionary matching
low‐rank constraint
Language English
License 2024 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3131-e5c2a5aae6c8115b785610267d225e5c2cecad4b8c8b061cb68bb7ddea4fabb03
Notes Haiyang Chen and Yixin Emu contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0007-9700-5092
0009-0002-1299-5175
0000-0003-2551-3075
0009-0000-9420-9208
PMID 39285623
PQID 3133842834
PQPubID 1016391
PageCount 13
ParticipantIDs proquest_miscellaneous_3106196276
proquest_journals_3133842834
pubmed_primary_39285623
crossref_primary_10_1002_mrm_30291
wiley_primary_10_1002_mrm_30291_MRM30291
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2025
2025-02-00
2025-Feb
20250201
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 8
2021; 48
2015; 17
2021; 86
2019; 52
2015; 73
2015; 74
2019; 38
2004
2022; 87
2012; 14
2020; 108
2009; 11
2004; 52
2023; 25
2023
2020; 52
2017; 36
2022
2022; 82
2020; 50
1999; 18
2022; 9
2016
2017; 18
2013
2016; 29
2012; 68
2018; 11
2012; 67
2018; 31
2014; 33
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 9
  start-page: 9
  year: 2022
  article-title: Simultaneous multi‐parametric acquisition and reconstruction techniques in cardiac magnetic resonance imaging: basic concepts and status of clinical development
  publication-title: Front Cardiovasc Med
– volume: 31
  start-page: 115
  year: 2018
  end-page: 129
  article-title: Cardiac magnetic resonance T1 and extracellular volume mapping with motion correction and co‐registration based on fast elastic image registration
  publication-title: Magn Reson Mater Phy
– volume: 14
  start-page: 63
  year: 2012
  article-title: Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method
  publication-title: J Cardiovasc Magn Reson
– volume: 38
  start-page: 1788
  year: 2019
  end-page: 1800
  article-title: VoxelMorph: a learning framework for deformable medical image registration
  publication-title: IEEE Trans Med Imaging
– volume: 11
  start-page: 56
  year: 2009
  article-title: T2 quantification for improved detection of myocardial edema
  publication-title: J Cardiovasc Magn Reson
– volume: 25
  start-page: 63
  year: 2023
  article-title: Free‐breathing simultaneous native myocardial T1, T2 and T1ρ mapping with cartesian acquisition and dictionary matching
  publication-title: J Cardiovasc Magn Reson
– volume: 74
  start-page: 489
  year: 2015
  end-page: 498
  article-title: Accelerated MR parameter mapping with low‐rank and sparsity constraints
  publication-title: Magn Reson Med
– volume: 74
  start-page: 523
  year: 2015
  end-page: 528
  article-title: Fast group matching for MR fingerprinting reconstruction
  publication-title: Magn Reson Med
– volume: 33
  start-page: 2311
  year: 2014
  end-page: 2322
  article-title: SVD compression for magnetic resonance fingerprinting in the time domain
  publication-title: IEEE Trans Med Imaging
– volume: 50
  start-page: 658
  year: 2020
  end-page: 676
  article-title: CMR parametric mapping as a tool for myocardial tissue characterization
  publication-title: Korean Circ J
– volume: 18
  start-page: 113
  year: 2017
  end-page: 131
  article-title: Myocardial T1 and T2 mapping: techniques and clinical applications
  publication-title: Korean J Radiol
– volume: 17
  start-page: 46
  year: 2015
  article-title: Impact of motion correction on reproducibility and spatial variability of quantitative myocardial T2 mapping
  publication-title: J Cardiovasc Magn Reson
– volume: 86
  start-page: 1226
  year: 2021
  end-page: 1240
  article-title: Free‐breathing simultaneous T1, T2, and T2* quantification in the myocardium
  publication-title: Magn Reson Med
– volume: 8
  start-page: 8
  year: 2021
  article-title: MOCOnet: robust motion correction of cardiovascular magnetic resonance T1 mapping using convolutional neural networks
  publication-title: Front Cardiovasc Med
– volume: 11
  start-page: 926
  year: 2018
  end-page: 928
  article-title: Definition of left ventricular segments for cardiac magnetic resonance imaging
  publication-title: JACC Cardiovasc Imaging
– volume: 52
  start-page: 141
  year: 2004
  end-page: 146
  article-title: Modified look‐locker inversion recovery (MOLLI) for high‐resolution T1 mapping of the heart
  publication-title: Magn Reson Med
– volume: 68
  start-page: 1570
  year: 2012
  end-page: 1578
  article-title: Myocardial T2 mapping with respiratory navigator and automatic nonrigid motion correction
  publication-title: Magn Reson Med
– volume: 87
  start-page: 2347
  year: 2022
  end-page: 2362
  article-title: Cartesian dictionary‐based native T1 and T2 mapping of the myocardium
  publication-title: Magn Reson Med
– start-page: 626
  year: 2016
  end-page: 633
– year: 2023
  article-title: Cardiac MR fingerprinting: overview, technical developments, and applications
  publication-title: J Magn Reson Imaging
– start-page: 291
  year: 2022
  end-page: 300
– start-page: 1038
  year: 2013
  end-page: 1041
– volume: 52
  start-page: 1340
  year: 2020
  end-page: 1351
  article-title: Cardiac T * mapping: techniques and clinical applications
  publication-title: J Magn Reson Imaging
– volume: 18
  start-page: 712
  year: 1999
  end-page: 721
  article-title: Nonrigid registration using free‐form deformations: application to breast MR images
  publication-title: IEEE Trans Med Imaging
– volume: 36
  start-page: 385
  year: 2017
  end-page: 395
  article-title: Isotropic Total variation regularization of displacements in parametric image registration
  publication-title: IEEE Trans Med Imaging
– volume: 29
  start-page: 65
  year: 2016
  end-page: 78
  article-title: PCA‐based groupwise image registration for quantitative MRI
  publication-title: Med Image Anal
– year: 2023
– volume: 67
  start-page: 1644
  year: 2012
  end-page: 1655
  article-title: Motion correction for myocardial T1 mapping using image registration with synthetic image estimation
  publication-title: Magn Reson Med
– start-page: 908
  year: 2004
  end-page: 911
– volume: 74
  start-page: 365
  year: 2015
  end-page: 371
  article-title: Simultaneous T1 and T2 quantification of the myocardium using cardiac balanced‐SSFP inversion recovery with interleaved sampling acquisition (CABIRIA)
  publication-title: Magn Reson Med
– volume: 73
  start-page: 1469
  year: 2015
  end-page: 1482
  article-title: Adaptive registration of varying contrast‐weighted images for improved tissue characterization (ARCTIC): application to T1 mapping
  publication-title: Magn Reson Med
– volume: 82
  year: 2022
  article-title: TransMorph: transformer for unsupervised medical image registration
  publication-title: Med Image Anal
– volume: 48
  start-page: 4189
  year: 2021
  end-page: 4200
  article-title: Magnetic resonance fingerprinting: an overview
  publication-title: Eur J Nucl Med Mol Imaging
– volume: 108
  start-page: 69
  year: 2020
  end-page: 85
  article-title: Machine learning for rapid magnetic resonance fingerprinting tissue property quantification
  publication-title: Proc IEEE
– volume: 52
  start-page: 212
  year: 2019
  end-page: 227
  article-title: Robust motion correction for cardiac T1 and ECV mapping using a T1 relaxation model approach
  publication-title: Med Image Anal
– ident: e_1_2_6_37_1
  doi: 10.1016/j.media.2022.102615
– ident: e_1_2_6_27_1
  doi: 10.1186/s12968-023-00973-6
– ident: e_1_2_6_3_1
  doi: 10.4070/kcj.2020.0157
– ident: e_1_2_6_31_1
  doi: 10.1007/978-3-031-43990-2_22
– ident: e_1_2_6_9_1
  doi: 10.1002/mrm.25270
– ident: e_1_2_6_10_1
  doi: 10.1186/s12968-015-0141-1
– ident: e_1_2_6_17_1
  doi: 10.1016/j.media.2018.12.004
– ident: e_1_2_6_7_1
  doi: 10.3389/fcvm.2022.953823
– ident: e_1_2_6_23_1
  doi: 10.1002/mrm.28753
– ident: e_1_2_6_20_1
  doi: 10.1002/mrm.25421
– ident: e_1_2_6_19_1
  doi: 10.1109/42.796284
– ident: e_1_2_6_14_1
  doi: 10.1002/mrm.23153
– ident: e_1_2_6_28_1
  doi: 10.1007/s00259-021-05384-2
– ident: e_1_2_6_2_1
  doi: 10.3348/kjr.2017.18.1.113
– ident: e_1_2_6_6_1
  doi: 10.1002/jmri.27023
– ident: e_1_2_6_8_1
  doi: 10.1002/mrm.24139
– ident: e_1_2_6_29_1
  doi: 10.1002/jmri.29206
– ident: e_1_2_6_30_1
  doi: 10.1007/978-3-031-16446-0_28
– ident: e_1_2_6_21_1
  doi: 10.1109/ISBI.2004.1398686
– ident: e_1_2_6_18_1
  doi: 10.1002/mrm.29143
– ident: e_1_2_6_25_1
– ident: e_1_2_6_36_1
  doi: 10.1109/TMI.2019.2897538
– ident: e_1_2_6_35_1
  doi: 10.1002/mrm.25439
– ident: e_1_2_6_4_1
  doi: 10.1002/mrm.20110
– ident: e_1_2_6_11_1
  doi: 10.1016/j.media.2015.12.004
– ident: e_1_2_6_22_1
  doi: 10.1002/mrm.25402
– ident: e_1_2_6_13_1
  doi: 10.1007/s10334-017-0668-2
– ident: e_1_2_6_24_1
  doi: 10.1109/TMI.2016.2610583
– ident: e_1_2_6_5_1
  doi: 10.1186/1532-429X-11-56
– ident: e_1_2_6_12_1
  doi: 10.1109/CVPRW.2016.84
– ident: e_1_2_6_26_1
  doi: 10.1016/j.jcmg.2017.09.010
– ident: e_1_2_6_34_1
  doi: 10.1109/TMI.2014.2337321
– ident: e_1_2_6_32_1
  doi: 10.3389/fcvm.2021.768245
– ident: e_1_2_6_15_1
  doi: 10.1186/1532-429X-14-63
– ident: e_1_2_6_16_1
  doi: 10.1109/ISBI.2013.6556655
– ident: e_1_2_6_33_1
  doi: 10.1109/JPROC.2019.2936998
SSID ssj0009974
Score 2.465808
Snippet Purpose To develop a model‐based motion correction (MoCo) method that does not need an analytical signal model to improve the quality of cardiac...
To develop a model-based motion correction (MoCo) method that does not need an analytical signal model to improve the quality of cardiac multi-parametric...
PurposeTo develop a model‐based motion correction (MoCo) method that does not need an analytical signal model to improve the quality of cardiac...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 550
SubjectTerms Adult
Algorithms
cardiac quantitative MRI
Dictionaries
dictionary matching
Epicardium
Female
Healthy Volunteers
Heart
Heart - diagnostic imaging
Humans
Image contrast
Image Interpretation, Computer-Assisted - methods
Image Processing, Computer-Assisted - methods
Image quality
low‐rank constraint
Magnetic Resonance Imaging - methods
Male
Mapping
Matching
Methods
Motion
motion correction
multi‐parametric mapping
Reproducibility of Results
Retrospective Studies
Segments
Signal quality
Synthetic data
Tracking errors
Title Retrospective motion correction for cardiac multi‐parametric mapping with dictionary matching‐based image synthesis and a low‐rank constraint
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30291
https://www.ncbi.nlm.nih.gov/pubmed/39285623
https://www.proquest.com/docview/3133842834
https://www.proquest.com/docview/3106196276
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fSxwxEB9EUHxpq9Z2W5VYfOjLnntJdjdLn0QUEc6Ho4IPhSX_lKO9vXK7R2mf-hEEv6GfpDPZ2xMtgvi2JLMkm0wmv01mfgOwrxAmJIansUp9EsvCu1gLbuKi0GgnVaqTPgU4D86z0wt5dpleLsGXLham5YdYHLjRygj2mha4NvXBPWnoeDruiYSHyHXy1SJANLynjiqKloE5l2RnCtmxCiX8YPHmw73oP4D5EK-GDefkNXzrutr6mXzvzRrTs38esTi-8FvewKs5EGWHreasw5KvNmB1ML9q34CV4Btq6024HfpmOulCMlmb94dZSusRgiIY4l5mg6ZZFhwU7_7eEKX4mLJ1YZEmDohrRke-zI3CO9hVLG-CIydK017q2GiMxo3VvysEpfWoZrpyTLMfk18oQbnlsU3iu9WjqnkLFyfHX49O43kuh9iKvujHPrVcp1r7zCoEoSZXBNx4ljs0KFRpvdVOGmWVQYhhTaaMydH2anmljUnEFixXk8q_B6bS3GXaOCGwUuWohbmV3AnpcyGccBF86ma1_NlSdpQtOTMvcaDLMNARbHfzXc5XbV0K-mEnBjoZwd6iGtcbXaLoyk9mJIPdo4xFWQTvWj1ZtIJYUxGejOBzmO2nmy8Hw0F4-PB80Y-wxin5cHAZ34blZjrzO4iIGrMbVP8feJQNZw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRQUuUMor0IJBHLhkm7WdxJG4INRqgaaHVSv1giK_ilawWbTJCtFTfwIS_5Bfwoyz2apFlRC3yA_ZsT3jz_bMNwCvFMKExPA0VqlPYll4F2vBTVwUGvWkSnUyJAfn8jAbHcsPJ-nJGrzpfWE6fojVhRtJRtDXJOB0Ib17wRo6nU8HIuHkun6DInqHA9X4gjyqKDoO5lySpilkzyuU8N1V1cu70V8Q8zJiDVvO_l341He2szT5Mli0ZmDPrvA4_u_fbMKdJRZlb7vFcw_WfL0FN8vla_sWbATzUNvch19j385nvVcm60L_MEuRPYJfBEPoy2xYbJYFG8Xf5z-JVXxKAbswSRMNxGdGt77MTUId7Cumt8GWE0vTdurYZIr6jTU_asSlzaRhunZMs6-z71iCwstjm0R5qyd1-wCO9_eO3o3iZTiH2IqhGMY-tVynWvvMKsShJleE3XiWO9QplGm91U4aZZVBlGFNpozJUf1qeaqNScRDWK9ntX8MTKW5y7RxQmCmynEh5lZyJ6TPhXDCRfCyn9bqW8faUXX8zLzCga7CQEew3U94tRTcphJ0ZicSOhnBi1U2ihy9o-jazxZUBrtHQYuyCB51C2XVCsJNRZAygtdhuq9vvirHZfh48u9Fn8Ot0VF5UB28P_z4FG5zikUcLMi3Yb2dL_wOAqTWPAty8Ack_xGC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VRa24FCh_gRbcigOXbLO2kzjihGhXhXYrtKJSD0iR_4pWdLPVJisEJx4BiTfkSZhxNluVCglxi2xHduyZ8Rd75huAFwphQmJ4GqvUJ7EsvIu14CYuCo12UqU66VOA8_AkOzyV787SsxV41cXCtPwQywM30oxgr0nBL9353hVp6GQ26YmEU-T6LZklikR6f3TFHVUULQVzLsnQFLKjFUr43vLV65vRDYR5HbCGHWdwBz52Y20dTT735o3p2W9_0Dj-58fchY0FEmWvW9G5Byu-2oT14eKufRPWgnOore_Dz5FvZtMuJpO1iX-YpbweISqCIfBlNoiaZcFD8df3H8QpPqF0XVikiQTiE6MzX-bG4R0cKpY3wZMTW9Nm6th4gtaN1V8rRKX1uGa6ckyzi-kXbEHJ5bFPIrzV46p5AKeDgw9vDuNFMofYir7oxz61XKda-8wqRKEmV4TceJY7tChUab3VThpllUGMYU2mjMnR-Gp5ro1JxENYraaVfwxMpbnLtHFCYKXKUQxzK7kT0udCOOEi2O1WtbxsOTvKlp2ZlzjRZZjoCLa69S4XaluXgv7YiYJORrCzrEaFo1sUXfnpnNrg8ChlURbBo1ZOlr0g2FQEKCN4GVb7792Xw9EwPDz596bPYf39_qA8fnty9BRuc0pEHNzHt2C1mc39NqKjxjwLWvAbFnMQOg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Retrospective+motion+correction+for+cardiac+multi%E2%80%90parametric+mapping+with+dictionary+matching%E2%80%90based+image+synthesis+and+a+low%E2%80%90rank+constraint&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Chen%2C+Haiyang&rft.au=Emu%2C+Yixin&rft.au=Gao%2C+Juan&rft.au=Chen%2C+Zhuo&rft.date=2025-02-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=93&rft.issue=2&rft.spage=550&rft.epage=562&rft_id=info:doi/10.1002%2Fmrm.30291&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_30291
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon