Method for 3D fibre reconstruction on a microrobotic platform

Summary Automated handling of a natural fibrous object requires a method for acquiring the three‐dimensional geometry of the object, because its dimensions cannot be known beforehand. This paper presents a method for calculating the three‐dimensional reconstruction of a paper fibre on a microrobotic...

Full description

Saved in:
Bibliographic Details
Published inJournal of microscopy (Oxford) Vol. 263; no. 1; pp. 20 - 33
Main Authors HIRVONEN, J., MYLLYS, M., KALLIO, P.
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.07.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Automated handling of a natural fibrous object requires a method for acquiring the three‐dimensional geometry of the object, because its dimensions cannot be known beforehand. This paper presents a method for calculating the three‐dimensional reconstruction of a paper fibre on a microrobotic platform that contains two microscope cameras. The method is based on detecting curvature changes in the fibre centreline, and using them as the corresponding points between the different views of the images. We test the developed method with four fibre samples and compare the results with the references measured with an X‐ray microtomography device. We rotate the samples through 16 different orientations on the platform and calculate the three‐dimensional reconstruction to test the repeatability of the algorithm and its sensitivity to the orientation of the sample. We also test the noise sensitivity of the algorithm, and record the mismatch rate of the correspondences provided. We use the iterative closest point algorithm to align the measured three‐dimensional reconstructions with the references. The average point‐to‐point distances between the reconstructed fibre centrelines and the references are 20–30 μm, and the mismatch rate is low. Given the manipulation tolerance, this shows that the method is well suited to automated fibre grasping. This has also been demonstrated with actual grasping experiments. Lay Description The motivation for this paper came from mechanical testing of individual paper fibres, but similar problems arise in testing of other types of fibres as well. The fibres should be fixed from their ends to the measurement system, where stress is applied to the fibres. Manual handling demands dexterity and is time‐consuming due to the microscopic size of the fibres. Utilizing test benches composed of microrobotic actuators such as microgrippers in grasping and manipulating the fibres partially overcomes the problem, but it does not remove the need for an experienced operator. The greatest challenge comes from the fact that natural fibres are curly three‐dimensional objects. Automated grasping requires a computer‐vision‐based method to estimate the three‐dimensional profile of the fibre in order to calculate sufficient grasping points for the grippers. This paper presents such a method. We show that the method is able to provide three‐dimensional profiles with a high enough accuracy for grasping by comparing the profiles gained with the references measured with an X‐ray microtomography device. We also prove that the error rate of the method is relatively low. Moreover, we have successfully used the method in automated grasping experiments.
AbstractList Automated handling of a natural fibrous object requires a method for acquiring the three-dimensional geometry of the object, because its dimensions cannot be known beforehand. This paper presents a method for calculating the three-dimensional reconstruction of a paper fibre on a microrobotic platform that contains two microscope cameras. The method is based on detecting curvature changes in the fibre centreline, and using them as the corresponding points between the different views of the images. We test the developed method with four fibre samples and compare the results with the references measured with an X-ray microtomography device. We rotate the samples through 16 different orientations on the platform and calculate the three-dimensional reconstruction to test the repeatability of the algorithm and its sensitivity to the orientation of the sample. We also test the noise sensitivity of the algorithm, and record the mismatch rate of the correspondences provided. We use the iterative closest point algorithm to align the measured three-dimensional reconstructions with the references. The average point-to-point distances between the reconstructed fibre centrelines and the references are 20-30 μm, and the mismatch rate is low. Given the manipulation tolerance, this shows that the method is well suited to automated fibre grasping. This has also been demonstrated with actual grasping experiments.
Summary Automated handling of a natural fibrous object requires a method for acquiring the three‐dimensional geometry of the object, because its dimensions cannot be known beforehand. This paper presents a method for calculating the three‐dimensional reconstruction of a paper fibre on a microrobotic platform that contains two microscope cameras. The method is based on detecting curvature changes in the fibre centreline, and using them as the corresponding points between the different views of the images. We test the developed method with four fibre samples and compare the results with the references measured with an X‐ray microtomography device. We rotate the samples through 16 different orientations on the platform and calculate the three‐dimensional reconstruction to test the repeatability of the algorithm and its sensitivity to the orientation of the sample. We also test the noise sensitivity of the algorithm, and record the mismatch rate of the correspondences provided. We use the iterative closest point algorithm to align the measured three‐dimensional reconstructions with the references. The average point‐to‐point distances between the reconstructed fibre centrelines and the references are 20–30 μm, and the mismatch rate is low. Given the manipulation tolerance, this shows that the method is well suited to automated fibre grasping. This has also been demonstrated with actual grasping experiments. Lay Description The motivation for this paper came from mechanical testing of individual paper fibres, but similar problems arise in testing of other types of fibres as well. The fibres should be fixed from their ends to the measurement system, where stress is applied to the fibres. Manual handling demands dexterity and is time‐consuming due to the microscopic size of the fibres. Utilizing test benches composed of microrobotic actuators such as microgrippers in grasping and manipulating the fibres partially overcomes the problem, but it does not remove the need for an experienced operator. The greatest challenge comes from the fact that natural fibres are curly three‐dimensional objects. Automated grasping requires a computer‐vision‐based method to estimate the three‐dimensional profile of the fibre in order to calculate sufficient grasping points for the grippers. This paper presents such a method. We show that the method is able to provide three‐dimensional profiles with a high enough accuracy for grasping by comparing the profiles gained with the references measured with an X‐ray microtomography device. We also prove that the error rate of the method is relatively low. Moreover, we have successfully used the method in automated grasping experiments.
Summary Automated handling of a natural fibrous object requires a method for acquiring the three-dimensional geometry of the object, because its dimensions cannot be known beforehand. This paper presents a method for calculating the three-dimensional reconstruction of a paper fibre on a microrobotic platform that contains two microscope cameras. The method is based on detecting curvature changes in the fibre centreline, and using them as the corresponding points between the different views of the images. We test the developed method with four fibre samples and compare the results with the references measured with an X-ray microtomography device. We rotate the samples through 16 different orientations on the platform and calculate the three-dimensional reconstruction to test the repeatability of the algorithm and its sensitivity to the orientation of the sample. We also test the noise sensitivity of the algorithm, and record the mismatch rate of the correspondences provided. We use the iterative closest point algorithm to align the measured three-dimensional reconstructions with the references. The average point-to-point distances between the reconstructed fibre centrelines and the references are 20-30 µm, and the mismatch rate is low. Given the manipulation tolerance, this shows that the method is well suited to automated fibre grasping. This has also been demonstrated with actual grasping experiments. Lay Description The motivation for this paper came from mechanical testing of individual paper fibres, but similar problems arise in testing of other types of fibres as well. The fibres should be fixed from their ends to the measurement system, where stress is applied to the fibres. Manual handling demands dexterity and is time-consuming due to the microscopic size of the fibres. Utilizing test benches composed of microrobotic actuators such as microgrippers in grasping and manipulating the fibres partially overcomes the problem, but it does not remove the need for an experienced operator. The greatest challenge comes from the fact that natural fibres are curly three-dimensional objects. Automated grasping requires a computer-vision-based method to estimate the three-dimensional profile of the fibre in order to calculate sufficient grasping points for the grippers. This paper presents such a method. We show that the method is able to provide three-dimensional profiles with a high enough accuracy for grasping by comparing the profiles gained with the references measured with an X-ray microtomography device. We also prove that the error rate of the method is relatively low. Moreover, we have successfully used the method in automated grasping experiments.
Author HIRVONEN, J.
KALLIO, P.
MYLLYS, M.
Author_xml – sequence: 1
  givenname: J.
  surname: HIRVONEN
  fullname: HIRVONEN, J.
  organization: Tampere University of Technology
– sequence: 2
  givenname: M.
  surname: MYLLYS
  fullname: MYLLYS, M.
  organization: University of Jyväskylä
– sequence: 3
  givenname: P.
  surname: KALLIO
  fullname: KALLIO, P.
  organization: Tampere University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26695385$$D View this record in MEDLINE/PubMed
BookMark eNp10E1LwzAYB_AgE_eiB7-AFLzooVtemjQ9eJD5NtnwoueQpClmtM1MWmTf3sxND4IhkMvv-ZPnPwaD1rUGgHMEpyie2bqxU4RJDo_ACBFGU8wRH4ARhBinOMdwCMYhrCGEnHJ4AoaYsYISTkfgZmW6d1cmlfMJuUsqq7xJvNGuDZ3vdWddm8Qrk8Zq77xTrrM62dSyixPNKTiuZB3M2eGdgLeH-9f5U7p8eVzMb5epJojA1GSUKKNLkumyyosCKWZKbajMFZE441jpDJWSQKQRhAXDUlFJmKQFZWWOMzIBV_vcjXcfvQmdaGzQpq5la1wfBMqLPO6Tcxjp5R-6dr1v4-92imFGMMdRXe9VXCoEbyqx8baRfisQFLtORexUfHca7cUhsVeNKX_lT4kRzPbg09Zm-3-SeF4t9pFfEeWAXQ
CODEN JMICAR
Cites_doi 10.2478/v10006-010-0024-4
10.1038/nmeth.2019
10.1016/0031-3203(95)00165-4
10.1007/s12213-014-0078-8
10.1109/MCSE.2007.58
10.1109/TASE.2009.2036246
10.1016/j.patcog.2007.04.016
10.1109/TRO.2012.2200991
10.1109/34.161346
10.1111/j.1365-2818.2008.02092.x
10.1021/ar010110q
10.1371/journal.pone.0057484
10.1109/TMI.2004.837339
10.1177/0278364910376033
10.1109/TASE.2008.917011
10.1109/34.121791
10.1145/62065.62074
10.1007/3-540-45103-X_34
10.1163/156856306777924671
10.1017/CBO9780511811685
10.1016/j.imavis.2007.06.003
10.1109/ICIA.2007.4295780
10.1109/IM.2001.924423
10.1364/AO.45.009092
10.1016/j.rcim.2006.05.010
ContentType Journal Article
Copyright 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society
2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Journal compilation © 2016 Royal Microscopical Society
Copyright_xml – notice: 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society
– notice: 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
– notice: Journal compilation © 2016 Royal Microscopical Society
DBID NPM
AAYXX
CITATION
7U5
8FD
L7M
7X8
DOI 10.1111/jmi.12370
DatabaseName PubMed
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed

Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1365-2818
EndPage 33
ExternalDocumentID 4088176421
10_1111_jmi_12370
26695385
JMI12370
Genre article
Journal Article
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
24P
29L
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEFU
ABEML
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
E3Z
EAD
EAP
EAS
EBB
EBC
EBD
EBO
EBS
EBX
EJD
EMB
EMK
EMOBN
EPT
ESX
EX3
F00
F01
F04
F5P
FA8
FEDTE
G-S
G.N
G8K
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBC
OBS
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
Q~Q
R.K
RIWAO
RJQFR
RNS
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TH9
TN5
TUS
TWZ
UB1
V8K
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIK
WIN
WOHZO
WOW
WQJ
WRC
WVDHM
WXSBR
X7M
XG1
XOL
Y6R
YFH
YUY
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
NPM
AAYXX
CITATION
7U5
8FD
L7M
7X8
ID FETCH-LOGICAL-c3130-e453becd34cdf7991b6edce5a7b3a2482bc41da301c100962ab5a36a5956d7243
IEDL.DBID DR2
ISSN 0022-2720
IngestDate Fri Aug 16 21:35:12 EDT 2024
Thu Oct 10 19:42:03 EDT 2024
Fri Aug 23 01:33:44 EDT 2024
Sat Sep 28 07:58:18 EDT 2024
Sat Aug 24 00:59:53 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Computer vision
3D reconstruction
microrobotics
fibres
manipulation
Language English
License 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3130-e453becd34cdf7991b6edce5a7b3a2482bc41da301c100962ab5a36a5956d7243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26695385
PQID 1796263282
PQPubID 1086390
PageCount 14
ParticipantIDs proquest_miscellaneous_1797538780
proquest_journals_1796263282
crossref_primary_10_1111_jmi_12370
pubmed_primary_26695385
wiley_primary_10_1111_jmi_12370_JMI12370
PublicationCentury 2000
PublicationDate July 2016
2016-07-00
20160701
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: July 2016
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Journal of microscopy (Oxford)
PublicationTitleAlternate J Microsc
PublicationYear 2016
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2002; 16
2011
2010
2002; 35
2008
2007
2006; 3
2008; 5
1992; 14
2004
2003; 2749
2005; 24
2010; 20
1996; 29
1989; 32
2001
2006; 45
2010; 29
2008; 26
2007; 9
2012; 28
2008; 41
2014
2013
2014; 9
2008; 232
2007; 23
2010; 7
2012; 9
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_27_1
Cappelleri D.J. (e_1_2_8_8_1) 2011
Aronsson M. (e_1_2_8_3_1) 2002; 16
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
Mikczinski M. (e_1_2_8_19_1) 2013
e_1_2_8_13_1
e_1_2_8_14_1
Saketi P. (e_1_2_8_26_1) 2010
e_1_2_8_16_1
Saketi P. (e_1_2_8_25_1) 2011
Bradski G. (e_1_2_8_6_1) 2008
Hirvonen J. (e_1_2_8_15_1) 2014
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – start-page: 476
  year: 2007
  end-page: 481
  article-title: Automated microassembly task execution using vision‐based feedback control
– start-page: 925
  year: 2011
  end-page: 930
  article-title: Caging grasps for micromanipulation & microassembly
  publication-title: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
– volume: 9
  start-page: 10
  year: 2007
  end-page: 20
  article-title: Python for scientific computing
  publication-title: Comp. Sci. Eng.
– volume: 41
  start-page: 342
  year: 2008
  end-page: 352
  article-title: Combining minutiae descriptors for fingerprint matching
  publication-title: Pattern Recognit
– volume: 26
  start-page: 315
  year: 2008
  end-page: 324
  article-title: Triangulation for points on lines
  publication-title: Image Vision Comput.
– volume: 29
  start-page: 1297
  year: 1996
  end-page: 1307
  article-title: Determining the 3‐D pose of a flexible object by stereo matching of curvature representations
  publication-title: Pattern Recognit
– start-page: 5854
  year: 2014
  end-page: 5859
  article-title: Design and implementation of an illumination system for microrobotic paper fiber studies
  publication-title: Proc. IEEE/RAS Int. Conf. Robot. Autom.
– volume: 2749
  start-page: 247
  year: 2003
  end-page: 254
  article-title: Estimation of curvature along curves with application to fibres in 3D images of paper
  publication-title: Lect. Notes Comput. Sci.
– volume: 24
  start-page: 549
  year: 2005
  end-page: 553
  article-title: Robust quantification of in vitro angiogenesis through image analysis
  publication-title: IEEE Trans. Med. Imag
– volume: 29
  start-page: 1416
  year: 2010
  end-page: 1434
  article-title: CAD model‐based tracking and 3D visual‐based control for MEMS microassembly
  publication-title: Int. J. Robotics Res.
– start-page: 145
  year: 2001
  end-page: 152
  article-title: Efficient variants of the ICP algorithm
  publication-title: Proc. Int. Conf. 3‐D Digit. Imag. Model.
– volume: 16
  start-page: 218
  year: 2002
  end-page: 221
  article-title: Estimating fibre twist and aspect ratios in 3D voxel volumes
  publication-title: Proc. Int. Conf. Pattern Recognit.
– start-page: 5762
  year: 2010
  end-page: 5767
  article-title: Microrobotic platform for manipulation and flexibility measurement of individual paper fibers
  publication-title: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
– volume: 9
  start-page: 29
  year: 2014
  end-page: 45
  article-title: Robotic software frameworks and software component models in the development of automated handling of individual natural fibers
  publication-title: J. Micro‐Bio Robot.
– start-page: 1
  year: 2011
  end-page: 6
  article-title: Microrobotic platform for making, manipulating and breaking individual paper fiber bonds
  publication-title: Proc. IEEE Int. Symp. Assem. Manuf.
– volume: 232
  start-page: 212
  year: 2008
  end-page: 224
  article-title: New advances in the 3D characterization of mineral coating layers on paper
  publication-title: J. Microsc.
– volume: 35
  start-page: 491
  year: 2002
  end-page: 499
  article-title: Poly(dimethylsiloxane) as a material for fabricating microfluidic devices
  publication-title: Acc. Chem. Res.
– volume: 14
  start-page: 869
  year: 1992
  end-page: 885
  article-title: Thinning methodologies —a comprehensive survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 20
  start-page: 317
  year: 2010
  end-page: 335
  article-title: K3M: a universal algorithm for image skeletonization and a review of thinning techniques
  publication-title: Int. J. Appl. Math. Comput. Sci.
– volume: 28
  start-page: 1090
  year: 2012
  end-page: 1103
  article-title: Automated multiprobe microassembly using vision feedback
  publication-title: IEEE Trans. Robot.
– volume: 3
  start-page: 285
  year: 2006
  end-page: 306
  article-title: Two‐dimensional vision‐based autonomous microparticle manipulation using a nanoprobe
  publication-title: J. Micromechatronics
– volume: 9
  start-page: 676
  year: 2012
  end-page: 682
  article-title: Fiji: an open‐source platform for biological‐image analysis
  publication-title: Nat. Methods
– volume: 5
  start-page: 446
  year: 2008
  end-page: 456
  article-title: Microassembly fabrication of tissue engineering scaffolds with customized design
  publication-title: IEEE Trans. Autom. Sci. Eng.
– year: 2008
– volume: 45
  start-page: 9092
  year: 2006
  end-page: 9104
  article-title: Spectroscopic imaging ellipsometry: real‐time measurement of single, intact wood pulp fibers
  publication-title: Appl. Opt.
– year: 2004
– volume: 14
  start-page: 239
  year: 1992
  end-page: 256
  article-title: A method for registration of 3‐D shapes
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 23
  start-page: 580
  year: 2007
  end-page: 588
  article-title: Assembly and manipulation of micro devices—a state of the art survey
  publication-title: Robot. Comput. Integrated Manuf.
– volume: 32
  start-page: 359
  year: 1989
  end-page: 373
  article-title: Parallel thinning with two‐subiteration algorithms
  publication-title: Commun. ACM
– year: 2013
  article-title: 3‐D worm tracker for freely moving
  publication-title: PLoS ONE 8
– volume: 7
  start-page: 417
  year: 2010
  end-page: 426
  article-title: Automated 3‐D micrograsping tasks performed by vision‐based control
  publication-title: IEEE Trans. Autom. Sci. Eng.
– start-page: 803
  year: 2013
  end-page: 820
  article-title: Assessing transverse fibre properties: compression and artificial hornification by periodic compression
  publication-title: Proc. Adv. Pulp Pap. Res.
– ident: e_1_2_8_24_1
  doi: 10.2478/v10006-010-0024-4
– ident: e_1_2_8_27_1
  doi: 10.1038/nmeth.2019
– ident: e_1_2_8_7_1
  doi: 10.1016/0031-3203(95)00165-4
– start-page: 5854
  year: 2014
  ident: e_1_2_8_15_1
  article-title: Design and implementation of an illumination system for microrobotic paper fiber studies
  publication-title: Proc. IEEE/RAS Int. Conf. Robot. Autom.
  contributor:
    fullname: Hirvonen J.
– ident: e_1_2_8_29_1
  doi: 10.1007/s12213-014-0078-8
– ident: e_1_2_8_21_1
  doi: 10.1109/MCSE.2007.58
– volume-title: Learning OpenCV: Computer Vision with the OpenCV Library
  year: 2008
  ident: e_1_2_8_6_1
  contributor:
    fullname: Bradski G.
– start-page: 1
  year: 2011
  ident: e_1_2_8_25_1
  article-title: Microrobotic platform for making, manipulating and breaking individual paper fiber bonds
  publication-title: Proc. IEEE Int. Symp. Assem. Manuf.
  contributor:
    fullname: Saketi P.
– ident: e_1_2_8_30_1
  doi: 10.1109/TASE.2009.2036246
– ident: e_1_2_8_12_1
  doi: 10.1016/j.patcog.2007.04.016
– ident: e_1_2_8_31_1
  doi: 10.1109/TRO.2012.2200991
– volume: 16
  start-page: 218
  year: 2002
  ident: e_1_2_8_3_1
  article-title: Estimating fibre twist and aspect ratios in 3D voxel volumes
  publication-title: Proc. Int. Conf. Pattern Recognit.
  contributor:
    fullname: Aronsson M.
– ident: e_1_2_8_17_1
  doi: 10.1109/34.161346
– ident: e_1_2_8_10_1
  doi: 10.1111/j.1365-2818.2008.02092.x
– ident: e_1_2_8_18_1
  doi: 10.1021/ar010110q
– ident: e_1_2_8_16_1
  doi: 10.1371/journal.pone.0057484
– ident: e_1_2_8_20_1
  doi: 10.1109/TMI.2004.837339
– ident: e_1_2_8_28_1
  doi: 10.1177/0278364910376033
– start-page: 925
  year: 2011
  ident: e_1_2_8_8_1
  article-title: Caging grasps for micromanipulation & microassembly
  publication-title: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
  contributor:
    fullname: Cappelleri D.J.
– ident: e_1_2_8_33_1
  doi: 10.1109/TASE.2008.917011
– ident: e_1_2_8_5_1
  doi: 10.1109/34.121791
– ident: e_1_2_8_13_1
  doi: 10.1145/62065.62074
– ident: e_1_2_8_11_1
  doi: 10.1007/3-540-45103-X_34
– ident: e_1_2_8_22_1
  doi: 10.1163/156856306777924671
– ident: e_1_2_8_14_1
  doi: 10.1017/CBO9780511811685
– ident: e_1_2_8_4_1
  doi: 10.1016/j.imavis.2007.06.003
– start-page: 5762
  year: 2010
  ident: e_1_2_8_26_1
  article-title: Microrobotic platform for manipulation and flexibility measurement of individual paper fibers
  publication-title: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
  contributor:
    fullname: Saketi P.
– ident: e_1_2_8_2_1
  doi: 10.1109/ICIA.2007.4295780
– start-page: 803
  year: 2013
  ident: e_1_2_8_19_1
  article-title: Assessing transverse fibre properties: compression and artificial hornification by periodic compression
  publication-title: Proc. Adv. Pulp Pap. Res.
  contributor:
    fullname: Mikczinski M.
– ident: e_1_2_8_23_1
  doi: 10.1109/IM.2001.924423
– ident: e_1_2_8_32_1
  doi: 10.1364/AO.45.009092
– ident: e_1_2_8_9_1
  doi: 10.1016/j.rcim.2006.05.010
SSID ssj0008580
Score 2.1942747
Snippet Summary Automated handling of a natural fibrous object requires a method for acquiring the three‐dimensional geometry of the object, because its dimensions...
Automated handling of a natural fibrous object requires a method for acquiring the three-dimensional geometry of the object, because its dimensions cannot be...
Summary Automated handling of a natural fibrous object requires a method for acquiring the three-dimensional geometry of the object, because its dimensions...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 20
SubjectTerms 3D reconstruction
Computer vision
fibres
manipulation
microrobotics
Title Method for 3D fibre reconstruction on a microrobotic platform
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjmi.12370
https://www.ncbi.nlm.nih.gov/pubmed/26695385
https://www.proquest.com/docview/1796263282
https://search.proquest.com/docview/1797538780
Volume 263
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH-MgeDF74_qlCgevHSsTdq0iAdxyhzMgzjYQShJ08LQtcNtB_3rfUk_dIogQg-FpC9pXt7L7zWvvwCchWHKJA3RkDTVJ_MD35Yi5bbvpq6TcC6VMgmy935vyPojb9SAi-pfmIIfov7gpi3D-Gtt4ELOvhr5ZNxGt8t1vO5QrtO5ug-f1FGBF3QqpnC911iyCpksnurJ5bXoB8Bcxqtmwbldh6eqq0WeyXN7MZft-P0bi-M_32UD1kogSq6KmbMJjSTbgpXiaMq3bbgcmKOlCWJaQrskRfEJMdFzzThL8BJkojP6XnOZoxwyfRFzjYJ3YHh783jds8ujFuyY4ipmJ8yjqE1FWaxSjphR-jo91BNcUuGywJUxc5RAbxA7OupxhfQE9YWH4ZXiLqO70MzyLNkHojpcUZSiEEowl_sy6dCABbHjxJ1YpI4Fp9WgR9OCUSOqI5HJODLjYEGrUkdUGtUsQt-huXMwSLTgpC5Gc9B7HCJL8oWpgwFYwAMUsVeosW4FsUiIZZ4F50YZvzcf9Qd35ubg71UPYRXBlF-k8ragicpIjhCwzOWxmZkfobLkLg
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH8MRfTi98d0ahQPXjraJm060IM4xza3HWSDXaQkTQtD94FuB_3rfUnX6hRBhB4KSV_avLzk95LX3wO4qFQSJmkFDUlTfTI_8C0pEm75buI6MedSKRMg2_HrPdbse_0CXGX_wqT8EPmGm7YMM19rA9cb0l-tfDgo47zL0WFfRnOnOnFD9eGTPCrwAjvjCtenjXNeIRPHkz26uBr9gJiLiNUsObUNeMxeNo00eSrPprIcvX_jcfzv12zC-hyLkpt08GxBIR5tw0qanfJtB67bJrs0QVhLaJUkKD8mxoHOSWcJXoIMdVDfy1iOUQ6ZPIupBsK70KvddW_r1jzbghVRXMismHkUFaooi1TCETZKX0eIeoJLKlwWuDJijhI4IUSOdnxcIT1BfeGhh6W4y-geLI3Go_gAiLK5oihFIZpgLvdlbNOABZHjRHYkEqcI51mvh5OUVCPMnZHhIDT9UIRSpo9wblevIU4fmj4H_cQinOXFaBH6mEOM4vHM1EEfLOABithP9Zi3gnCkgmVeES6NNn5vPmy2G-bm8O9VT2G13m23wlajc38Ea4it_DSytwRLqJj4GPHLVJ6YYfoB5S_oRg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED-Govji98d0ahQffOlYmzTpEB9EHdt0Q0TBB6EkTQuia4fOB_3rvaRrdYogQh8KSS9pLnf5XXP9BeCg2UyYok00JEP1yXjAHSUT4XAv8dxYCKW1TZDt8_Yt6975dxU4Kv6Fyfkhyg9uxjKsvzYGPtTJVyMfPNTR7QqM16cZR-RrENH1J3dU4AeNgircbDaOaYVsGk_x6ORi9ANhTgJWu-K0FuC-6GueaPJYfx2pevT-jcbxny-zCPNjJEpO8qmzBJU4XYaZ_GzKtxU47tmzpQmCWkLPSILiY2LD55JyluAlycCk9D1nKkM5ZPgkRwYGr8Jt6_zmtO2Mz1pwIorLmBMzn6I6NWWRTgSCRsVNfqgvhaLSY4GnIuZqie4gck3Y40nlS8qlj_GVFh6jazCVZmm8AUQ3hKYoRSOWYJ7gKm7QgAWR60aNSCZuFfaLQQ-HOaVGWIYig4fQjkMVaoU6wrFVvYToPAx5DkaJVdgri9EezCaHTOPs1dbBCCwQAYpYz9VYtoJgpIllfhUOrTJ-bz7s9jr2ZvPvVXdh9uqsFV52-hdbMIfAiudpvTWYQr3E2wheRmrHTtIPQJTm9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Method+for+3D+fibre+reconstruction+on+a+microrobotic+platform&rft.jtitle=Journal+of+microscopy+%28Oxford%29&rft.au=HIRVONEN%2C+J.&rft.au=MYLLYS%2C+M.&rft.au=KALLIO%2C+P.&rft.date=2016-07-01&rft.issn=0022-2720&rft.eissn=1365-2818&rft.volume=263&rft.issue=1&rft.spage=20&rft.epage=33&rft_id=info:doi/10.1111%2Fjmi.12370&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_jmi_12370
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2720&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2720&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2720&client=summon