Multiparametric exchange protons using Z‐spectrum analysis proton (ZAP) and CEST on phantoms and human abdomen
Purpose This study aims to investigate a multiparametric exchange proton approach using CEST and Z‐spectrum analysis protons (ZAP) in human abdominal organs, focusing on tissue differentiation for a potential early biomarker of abnormality. Prior to human studies, CEST and ZAP effects were studied i...
Saved in:
Published in | Magnetic resonance in medicine Vol. 92; no. 4; pp. 1670 - 1682 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
This study aims to investigate a multiparametric exchange proton approach using CEST and Z‐spectrum analysis protons (ZAP) in human abdominal organs, focusing on tissue differentiation for a potential early biomarker of abnormality. Prior to human studies, CEST and ZAP effects were studied in phantoms containing exchange protons.
Methods
Phantoms composed of iopamidol and iohexol solutions with varying pH levels, along with 12 human subjects, were scanned on a clinical 3T MR scanner. Subsequent ZAP analyses employed a two‐Lorentzian pool model to provide free and restricted apparent T2f,rex$$ {\mathrm{T}}_{2\ \mathrm{f},\mathrm{r}}^{\mathrm{ex}} $$, and their fractions for data acquired across a wide range of offset frequencies (±100 kHz or ± 800 ppm), while a narrower range (±7 ppm or ± 900 Hz) was used for CEST analysis to estimate magnetization transfer ratio asymmetry (MTRAsym) for exchange protons like hydroxyl (—OH), amine (—NH2), and amide (—NH), resonating ˜1, 2, and 3.5 ppm, respectively. Differences in ZAP metrics across various organs were statistically analyzed using one‐way analysis of variance (ANOVA).
Results
The phantom study differentiated contrast agents based on resonance peaks detected from CEST analysis, while ZAP metrics showed sensitivity to pH variations. In human, ZAP metrics revealed significant differences in abdominal organs, with a subgroup study indicating changes in ZAP metrics due to the presence of gallstones.
Conclusion
CEST and ZAP techniques demonstrated promise in specific CEST protons and wide range ZAP protons and identifying tissue‐specific characteristics. The preliminary findings underscore the necessity for more extensive study involving a broader subject pool to potentially establish biomarkers for diseased states. |
---|---|
AbstractList | This study aims to investigate a multiparametric exchange proton approach using CEST and Z-spectrum analysis protons (ZAP) in human abdominal organs, focusing on tissue differentiation for a potential early biomarker of abnormality. Prior to human studies, CEST and ZAP effects were studied in phantoms containing exchange protons.PURPOSEThis study aims to investigate a multiparametric exchange proton approach using CEST and Z-spectrum analysis protons (ZAP) in human abdominal organs, focusing on tissue differentiation for a potential early biomarker of abnormality. Prior to human studies, CEST and ZAP effects were studied in phantoms containing exchange protons.Phantoms composed of iopamidol and iohexol solutions with varying pH levels, along with 12 human subjects, were scanned on a clinical 3T MR scanner. Subsequent ZAP analyses employed a two-Lorentzian pool model to provide free and restricted apparent T 2 f , r ex $$ {\mathrm{T}}_{2\ \mathrm{f},\mathrm{r}}^{\mathrm{ex}} $$ , and their fractions for data acquired across a wide range of offset frequencies (±100 kHz or ± 800 ppm), while a narrower range (±7 ppm or ± 900 Hz) was used for CEST analysis to estimate magnetization transfer ratio asymmetry (MTRAsym) for exchange protons like hydroxyl (-OH), amine (-NH2), and amide (-NH), resonating ˜1, 2, and 3.5 ppm, respectively. Differences in ZAP metrics across various organs were statistically analyzed using one-way analysis of variance (ANOVA).METHODSPhantoms composed of iopamidol and iohexol solutions with varying pH levels, along with 12 human subjects, were scanned on a clinical 3T MR scanner. Subsequent ZAP analyses employed a two-Lorentzian pool model to provide free and restricted apparent T 2 f , r ex $$ {\mathrm{T}}_{2\ \mathrm{f},\mathrm{r}}^{\mathrm{ex}} $$ , and their fractions for data acquired across a wide range of offset frequencies (±100 kHz or ± 800 ppm), while a narrower range (±7 ppm or ± 900 Hz) was used for CEST analysis to estimate magnetization transfer ratio asymmetry (MTRAsym) for exchange protons like hydroxyl (-OH), amine (-NH2), and amide (-NH), resonating ˜1, 2, and 3.5 ppm, respectively. Differences in ZAP metrics across various organs were statistically analyzed using one-way analysis of variance (ANOVA).The phantom study differentiated contrast agents based on resonance peaks detected from CEST analysis, while ZAP metrics showed sensitivity to pH variations. In human, ZAP metrics revealed significant differences in abdominal organs, with a subgroup study indicating changes in ZAP metrics due to the presence of gallstones.RESULTSThe phantom study differentiated contrast agents based on resonance peaks detected from CEST analysis, while ZAP metrics showed sensitivity to pH variations. In human, ZAP metrics revealed significant differences in abdominal organs, with a subgroup study indicating changes in ZAP metrics due to the presence of gallstones.CEST and ZAP techniques demonstrated promise in specific CEST protons and wide range ZAP protons and identifying tissue-specific characteristics. The preliminary findings underscore the necessity for more extensive study involving a broader subject pool to potentially establish biomarkers for diseased states.CONCLUSIONCEST and ZAP techniques demonstrated promise in specific CEST protons and wide range ZAP protons and identifying tissue-specific characteristics. The preliminary findings underscore the necessity for more extensive study involving a broader subject pool to potentially establish biomarkers for diseased states. This study aims to investigate a multiparametric exchange proton approach using CEST and Z-spectrum analysis protons (ZAP) in human abdominal organs, focusing on tissue differentiation for a potential early biomarker of abnormality. Prior to human studies, CEST and ZAP effects were studied in phantoms containing exchange protons. Phantoms composed of iopamidol and iohexol solutions with varying pH levels, along with 12 human subjects, were scanned on a clinical 3T MR scanner. Subsequent ZAP analyses employed a two-Lorentzian pool model to provide free and restricted apparent , and their fractions for data acquired across a wide range of offset frequencies (±100 kHz or ± 800 ppm), while a narrower range (±7 ppm or ± 900 Hz) was used for CEST analysis to estimate magnetization transfer ratio asymmetry (MTR ) for exchange protons like hydroxyl (OH), amine (NH ), and amide (NH), resonating ˜1, 2, and 3.5 ppm, respectively. Differences in ZAP metrics across various organs were statistically analyzed using one-way analysis of variance (ANOVA). The phantom study differentiated contrast agents based on resonance peaks detected from CEST analysis, while ZAP metrics showed sensitivity to pH variations. In human, ZAP metrics revealed significant differences in abdominal organs, with a subgroup study indicating changes in ZAP metrics due to the presence of gallstones. CEST and ZAP techniques demonstrated promise in specific CEST protons and wide range ZAP protons and identifying tissue-specific characteristics. The preliminary findings underscore the necessity for more extensive study involving a broader subject pool to potentially establish biomarkers for diseased states. PurposeThis study aims to investigate a multiparametric exchange proton approach using CEST and Z‐spectrum analysis protons (ZAP) in human abdominal organs, focusing on tissue differentiation for a potential early biomarker of abnormality. Prior to human studies, CEST and ZAP effects were studied in phantoms containing exchange protons.MethodsPhantoms composed of iopamidol and iohexol solutions with varying pH levels, along with 12 human subjects, were scanned on a clinical 3T MR scanner. Subsequent ZAP analyses employed a two‐Lorentzian pool model to provide free and restricted apparent T2f,rex$$ {\mathrm{T}}_{2\ \mathrm{f},\mathrm{r}}^{\mathrm{ex}} $$, and their fractions for data acquired across a wide range of offset frequencies (±100 kHz or ± 800 ppm), while a narrower range (±7 ppm or ± 900 Hz) was used for CEST analysis to estimate magnetization transfer ratio asymmetry (MTRAsym) for exchange protons like hydroxyl (—OH), amine (—NH2), and amide (—NH), resonating ˜1, 2, and 3.5 ppm, respectively. Differences in ZAP metrics across various organs were statistically analyzed using one‐way analysis of variance (ANOVA).ResultsThe phantom study differentiated contrast agents based on resonance peaks detected from CEST analysis, while ZAP metrics showed sensitivity to pH variations. In human, ZAP metrics revealed significant differences in abdominal organs, with a subgroup study indicating changes in ZAP metrics due to the presence of gallstones.ConclusionCEST and ZAP techniques demonstrated promise in specific CEST protons and wide range ZAP protons and identifying tissue‐specific characteristics. The preliminary findings underscore the necessity for more extensive study involving a broader subject pool to potentially establish biomarkers for diseased states. Purpose This study aims to investigate a multiparametric exchange proton approach using CEST and Z‐spectrum analysis protons (ZAP) in human abdominal organs, focusing on tissue differentiation for a potential early biomarker of abnormality. Prior to human studies, CEST and ZAP effects were studied in phantoms containing exchange protons. Methods Phantoms composed of iopamidol and iohexol solutions with varying pH levels, along with 12 human subjects, were scanned on a clinical 3T MR scanner. Subsequent ZAP analyses employed a two‐Lorentzian pool model to provide free and restricted apparent T2f,rex$$ {\mathrm{T}}_{2\ \mathrm{f},\mathrm{r}}^{\mathrm{ex}} $$, and their fractions for data acquired across a wide range of offset frequencies (±100 kHz or ± 800 ppm), while a narrower range (±7 ppm or ± 900 Hz) was used for CEST analysis to estimate magnetization transfer ratio asymmetry (MTRAsym) for exchange protons like hydroxyl (—OH), amine (—NH2), and amide (—NH), resonating ˜1, 2, and 3.5 ppm, respectively. Differences in ZAP metrics across various organs were statistically analyzed using one‐way analysis of variance (ANOVA). Results The phantom study differentiated contrast agents based on resonance peaks detected from CEST analysis, while ZAP metrics showed sensitivity to pH variations. In human, ZAP metrics revealed significant differences in abdominal organs, with a subgroup study indicating changes in ZAP metrics due to the presence of gallstones. Conclusion CEST and ZAP techniques demonstrated promise in specific CEST protons and wide range ZAP protons and identifying tissue‐specific characteristics. The preliminary findings underscore the necessity for more extensive study involving a broader subject pool to potentially establish biomarkers for diseased states. |
Author | Miyazaki, Mitsue Malis, Vadim |
Author_xml | – sequence: 1 givenname: Vadim orcidid: 0000-0002-0426-1457 surname: Malis fullname: Malis, Vadim organization: University of California, San Diego – sequence: 2 givenname: Mitsue orcidid: 0000-0002-5690-694X surname: Miyazaki fullname: Miyazaki, Mitsue email: mimiyazaki@health.ucsd.edu organization: University of California, San Diego |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38703021$$D View this record in MEDLINE/PubMed |
BookMark | eNp10btOwzAUBmALgaAUBl4AWWKBIeX4kjoZUcVNagXisrBEjuNAUOwEOxF04xF4Rp4ElxYGJCZLvz8fH_tso3XbWI3QHoERAaDHxpkRA8JhDQ1ITGlE45SvowEIDhEjKd9C294_A0CaCr6JtlgigAElA9TO-rqrWumk0Z2rFNZv6knaR41b13SN9bj3lX3ED5_vH77VqnO9wdLKeu4rvzL48OHk-iikBZ6c3t7hkLShRtcY_x0-9UZaLPOiMdruoI1S1l7vrtYhuj87vZtcRNOr88vJyTRSjDCI8oQmZZFyxqSQhRrHBVcqTwiVCSWa5LQkOudKCp6UcZzKko3HgskxK3LNwwYbosNl3dDjS699l5nKK13X0uqm9xmDGFJORLhiiA7-0Oemd-GNC5UwEELwhdpfqT43ushaVxnp5tnPXwZwtATKNd47Xf4SAtliTlmYU_Y9p2CPl_a1qvX8f5jNbmbLE18AzpRa |
Cites_doi | 10.1002/mrm.1910250217 10.1006/jmrb.1995.1111 10.1016/j.nicl.2021.102890 10.1002/mrm.20605 10.1007/s11307‐015‐0887‐8 10.1006/jmra.1993.1133 10.1002/lt.500040307 10.1002/mrm.26817 10.1006/jmre.1999.1956 10.1038/nrd3554 10.1002/nbm.3284 10.1002/mrm.22608 10.18632/oncotarget.17404 10.1007/s00259‐022‐05676‐1 10.1371/journal.pone.0119915 10.1002/jmri.25832 10.1002/mrm.22761 10.1002/nbm.4789 10.1002/mrm.27750 10.1097/rli.0000000000000576 10.1002/mrm.1910100113 10.2463/mrms.tn.2016‐0069 10.1002/mrm.1910320108 10.1002/nbm.4906 10.1038/nrc1478 10.1073/pnas.1509488112 10.1148/radiol.2015151161 10.1088/0031‐9155/59/16/4493 10.1097/mpa.0000000000002059 |
ContentType | Journal Article |
Copyright | 2024 International Society for Magnetic Resonance in Medicine. |
Copyright_xml | – notice: 2024 International Society for Magnetic Resonance in Medicine. |
DBID | AAYXX CITATION NPM 8FD FR3 K9. M7Z P64 7X8 |
DOI | 10.1002/mrm.30140 |
DatabaseName | CrossRef PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Biochemistry Abstracts 1 |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 1682 |
ExternalDocumentID | 38703021 10_1002_mrm_30140 MRM30140 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: Canon Medical Systems Corp., JAPAN funderid: 35938 – fundername: Canon Medical Systems Corp., JAPAN grantid: 35938 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 8FD FR3 K9. M7Z P64 7X8 |
ID | FETCH-LOGICAL-c3130-b828fd9433a7adc65d4ccb812a821e1b2f1eb4ca748f559af36673a63dbe4b4c3 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Thu Jul 10 23:52:05 EDT 2025 Fri Jul 25 12:04:07 EDT 2025 Mon Jul 21 06:05:01 EDT 2025 Tue Jul 01 04:27:10 EDT 2025 Wed Jan 22 17:18:10 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | macromolecule exchange protons chemical exchange saturation transfer (CEST) Z‐spectrum analysis protons (ZAP) magnetization transfer (MT) |
Language | English |
License | 2024 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3130-b828fd9433a7adc65d4ccb812a821e1b2f1eb4ca748f559af36673a63dbe4b4c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5690-694X 0000-0002-0426-1457 |
PMID | 38703021 |
PQID | 3083077744 |
PQPubID | 1016391 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_3050941794 proquest_journals_3083077744 pubmed_primary_38703021 crossref_primary_10_1002_mrm_30140 wiley_primary_10_1002_mrm_30140_MRM30140 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2024 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: October 2024 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 8 2023; 36 2022; 51 2019; 54 2015; 10 2004; 4 2011; 10 2016; 18 1993; 103 2022; 49 2018; 47 1992; 8 2019; 82 2015; 28 1989; 10 2017; 17 2015; 112 1995; 108 2014; 59 2022; 35 2011; 65 2005; 54 1992; 25 2000; 143 2022; 33 2016; 279 1998; 4 1994; 32 2018; 79 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 Balaban RS (e_1_2_8_3_1) 1992; 8 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_12_1 e_1_2_8_30_1 |
References_xml | – volume: 8 start-page: 116 year: 1992 end-page: 137 article-title: Magnetization transfer contrast in magnetic resonance imaging publication-title: Magn Reson Q – volume: 4 start-page: 226 year: 1998 end-page: 231 article-title: Division of the left hemiliver in man—segments, sectors, or sections publication-title: Liver Transplant Surg – volume: 36 year: 2023 article-title: CEST‐MRI for body oncologic imaging: are we there yet? publication-title: NMR Biomed – volume: 17 start-page: 86 year: 2017 end-page: 94 article-title: B1 power optimization for chemical exchange saturation transfer imaging: a phantom study using egg white for amide proton transfer imaging applications in the human brain publication-title: Magn Reson Méd Sci – volume: 32 start-page: 52 year: 1994 end-page: 59 article-title: A novel saturation transfer contrast method for 3D time‐of‐flight magnetic resonance angiography: a slice‐selective off‐resonance sinc pulse (SORS) technique publication-title: Magn Reson Med – volume: 49 start-page: 2377 year: 2022 end-page: 2391 article-title: CEST MRI provides amide/amine surrogate biomarkers for treatment‐naïve glioma sub‐typing publication-title: Eur J Nucl Med Mol Imaging – volume: 82 start-page: 633 year: 2019 end-page: 646 article-title: A comparison of static and dynamic ∆B0 mapping methods for correction of CEST MRI in the presence of temporal B0 field variations publication-title: Magn Reson Med – volume: 47 start-page: 1013 year: 2018 end-page: 1021 article-title: Amide proton transfer‐weighted imaging to differentiate malignant from benign pulmonary lesions: comparison with diffusion‐weighted imaging and FDG‐PET/CT publication-title: J Magn Reson Imaging – volume: 8 start-page: 45759 year: 2017 end-page: 45767 article-title: Extracellular pH is a biomarker enabling detection of breast cancer and liver cancer using CEST MRI publication-title: Oncotarget – volume: 59 start-page: 4493 year: 2014 end-page: 4504 article-title: Quantification of iopamidol multi‐site chemical exchange properties for ratiometric chemical exchange saturation transfer (CEST) imaging of pH publication-title: Phys Med Biol – volume: 103 start-page: 82 year: 1993 end-page: 85 article-title: Mapping of the radiofrequency field publication-title: J Magn Reson Ser A – volume: 143 start-page: 79 year: 2000 end-page: 87 article-title: A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST) publication-title: J Magn Reson – volume: 28 start-page: 555 year: 2015 end-page: 565 article-title: Quantitative description of radiofrequency (RF) power‐based ratiometric chemical exchange saturation transfer (CEST) pH imaging publication-title: NMR Biomed – volume: 10 start-page: 135 year: 1989 end-page: 144 article-title: Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo publication-title: Magn Reson Med – volume: 65 start-page: 927 year: 2011 end-page: 948 article-title: Chemical exchange saturation transfer (CEST): what is in a name and what isn't? publication-title: Magn Reson Med – volume: 33 year: 2022 article-title: Fast and equilibrium CEST imaging of brain tumor patients at 3T publication-title: Neuroimage Clin – volume: 108 start-page: 103 year: 1995 end-page: 113 article-title: Modeling magnetization transfer for biological‐like systems using a semi‐solid Pool with a super‐Lorentzian Lineshape and dipolar reservoir publication-title: J Magn Reson Ser B – volume: 279 start-page: 578 year: 2016 end-page: 589 article-title: Chemical exchange saturation transfer MR imaging: preliminary results for differentiation of malignant and benign thoracic lesions publication-title: Radiology – volume: 54 start-page: 565 year: 2019 end-page: 571 article-title: AcidoCEST‐UTE MRI for the assessment of extracellular pH of joint tissues at 3 T publication-title: Invest Radiol – volume: 10 start-page: 767 year: 2011 end-page: 777 article-title: Interfering with pH regulation in tumours as a therapeutic strategy publication-title: Nat Rev Drug Discov – volume: 65 start-page: 202 year: 2011 end-page: 211 article-title: Iopamidol as a responsive MRI‐chemical exchange saturation transfer contrast agent for pH mapping of kidneys: in vivo studies in mice at 7 T publication-title: Magn Reson Med – volume: 10 year: 2015 article-title: Z‐Spectrum analysis provides proton environment data (ZAPPED): a new two‐Pool technique for human gray and white matter publication-title: PLoS One – volume: 25 start-page: 372 year: 1992 end-page: 379 article-title: Magnetization transfer time‐of‐flight magnetic resonance angiography publication-title: Magn Reson Med – volume: 4 start-page: 891 year: 2004 end-page: 899 article-title: Why do cancers have high aerobic glycolysis? publication-title: Nat Rev Cancer – volume: 79 start-page: 1553 year: 2018 end-page: 1558 article-title: A generalized ratiometric chemical exchange saturation transfer (CEST) MRI approach for mapping renal pH using iopamidol publication-title: Magn Reson Med – volume: 112 start-page: 9710 year: 2015 end-page: 9715 article-title: The pH low insertion peptide pHLIP variant 3 as a novel marker of acidic malignant lesions publication-title: Proc Natl Acad Sci U S A – volume: 51 start-page: 463 year: 2022 end-page: 468 article-title: Chemical exchange saturation transfer for pancreatic ductal adenocarcinoma evaluation publication-title: Pancreas – volume: 35 year: 2022 article-title: Theory of chemical exchange saturation transfer MRI in the context of different magnetic fields publication-title: NMR Biomed – volume: 54 start-page: 507 year: 2005 end-page: 512 article-title: T , T relaxation and magnetization transfer in tissue at 3T publication-title: Magn Reson Med – volume: 18 start-page: 274 year: 2016 end-page: 282 article-title: Chemical exchange saturation transfer (CEST) MR technique for liver imaging at 3.0 tesla: an evaluation of different offset number and an after‐meal and over‐night‐fast comparison publication-title: Mol Imaging Biol – ident: e_1_2_8_4_1 doi: 10.1002/mrm.1910250217 – ident: e_1_2_8_24_1 doi: 10.1006/jmrb.1995.1111 – volume: 8 start-page: 116 year: 1992 ident: e_1_2_8_3_1 article-title: Magnetization transfer contrast in magnetic resonance imaging publication-title: Magn Reson Q – ident: e_1_2_8_14_1 doi: 10.1016/j.nicl.2021.102890 – ident: e_1_2_8_31_1 doi: 10.1002/mrm.20605 – ident: e_1_2_8_16_1 doi: 10.1007/s11307‐015‐0887‐8 – ident: e_1_2_8_26_1 doi: 10.1006/jmra.1993.1133 – ident: e_1_2_8_21_1 doi: 10.1002/lt.500040307 – ident: e_1_2_8_28_1 doi: 10.1002/mrm.26817 – ident: e_1_2_8_7_1 doi: 10.1006/jmre.1999.1956 – ident: e_1_2_8_12_1 doi: 10.1038/nrd3554 – ident: e_1_2_8_30_1 doi: 10.1002/nbm.3284 – ident: e_1_2_8_9_1 doi: 10.1002/mrm.22608 – ident: e_1_2_8_19_1 doi: 10.18632/oncotarget.17404 – ident: e_1_2_8_20_1 doi: 10.1007/s00259‐022‐05676‐1 – ident: e_1_2_8_6_1 doi: 10.1371/journal.pone.0119915 – ident: e_1_2_8_18_1 doi: 10.1002/jmri.25832 – ident: e_1_2_8_8_1 doi: 10.1002/mrm.22761 – ident: e_1_2_8_27_1 doi: 10.1002/nbm.4789 – ident: e_1_2_8_22_1 doi: 10.1002/mrm.27750 – ident: e_1_2_8_29_1 doi: 10.1097/rli.0000000000000576 – ident: e_1_2_8_2_1 doi: 10.1002/mrm.1910100113 – ident: e_1_2_8_23_1 doi: 10.2463/mrms.tn.2016‐0069 – ident: e_1_2_8_5_1 doi: 10.1002/mrm.1910320108 – ident: e_1_2_8_13_1 doi: 10.1002/nbm.4906 – ident: e_1_2_8_10_1 doi: 10.1038/nrc1478 – ident: e_1_2_8_11_1 doi: 10.1073/pnas.1509488112 – ident: e_1_2_8_17_1 doi: 10.1148/radiol.2015151161 – ident: e_1_2_8_25_1 doi: 10.1088/0031‐9155/59/16/4493 – ident: e_1_2_8_15_1 doi: 10.1097/mpa.0000000000002059 |
SSID | ssj0009974 |
Score | 2.456426 |
Snippet | Purpose
This study aims to investigate a multiparametric exchange proton approach using CEST and Z‐spectrum analysis protons (ZAP) in human abdominal organs,... This study aims to investigate a multiparametric exchange proton approach using CEST and Z-spectrum analysis protons (ZAP) in human abdominal organs, focusing... PurposeThis study aims to investigate a multiparametric exchange proton approach using CEST and Z‐spectrum analysis protons (ZAP) in human abdominal organs,... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1670 |
SubjectTerms | Abdomen Biomarkers Calculi chemical exchange saturation transfer (CEST) Contrast agents Contrast media Data acquisition Differentiation (biology) Exchanging macromolecule exchange protons magnetization transfer (MT) Organs Protons Spectrum analysis Subgroups Variance analysis Z‐spectrum analysis protons (ZAP) |
Title | Multiparametric exchange protons using Z‐spectrum analysis proton (ZAP) and CEST on phantoms and human abdomen |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30140 https://www.ncbi.nlm.nih.gov/pubmed/38703021 https://www.proquest.com/docview/3083077744 https://www.proquest.com/docview/3050941794 |
Volume | 92 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB5EUHzxPupFFB_0oatt0wufRBQRVsQDRISSpImCdF1cF8Qnf4K_0V_iTNKuqAjiW0lS0mSOzDQz3wBsoLOWxHlgfJWU2ucJ175MjfJNKmKtQ2GyhPKd2yfJ0SU_voqvhmC3yYVx-BCDH24kGVZfk4AL2dv-BA2tHquW9Q9Q_1KsFhlEZ5_QUXnuEJhTTnom5w2q0E64PXjz61n0w8D8aq_aA-dwAm6aT3VxJvet_pNsqZdvKI7_XMskjNeGKNtznDMFQ7ozDaPt-qp9GkZsbKjqzUDXJukSRnhF5bcU088uXZgRyANyLaPg-Vt2_f76ZhM3H_sVEzXYST2GbV7vnW5ha8n2D84vGLZ076h-cdWzjbZUIBOyJECIWbg8PLjYP_LrQg2-ivAM9CW6babMeRSJVJQqiUuulETTQWRhoAMZmkBLrkTKM4MejDARFRsVSVRKzbEjmoPhzkNHLwBDJxkJlwmTckO2jaCrYcnLNI51EBjjwXpDsqLr8DgKh7wcFriLhd1FD5YbYha1SPawJ0N9htYu92Bt0I3CRDckoqMf-jSG8ARJR3kw75hgMEuUkXIMAw82LSl_n75on7Xtw-Lfhy7BWIhLdWGCyzCMpNIraO48yVXL1x9kwPwj |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB_8oNqXarUf21pNxQd92NPdzX5BX0SUa3Wl6AlyIEuSTRTKnofnQemTf4J_Y_-SziS7J1YK0rclybKbzEdmkpnfAGygs5bEeWB8lVTa5wnXvkyN8k0qYq1DYbKE8p2L46R7xr-dx-dT8KXNhXH4EJMDN5IMq69JwOlAevsBNbS-qTvWQZiGWarobR2qkwfwqDx3GMwpJ02T8xZXaCfcnrz6eDd6YmI-tljtlnOwABftz7pIkx-d8a3sqF9_4Tj-72wW4VVji7JdxzyvYUoPlmCuaG7bl-CFDQ9Vo2UY2jxdggmvqQKXYvqnyxhmhPOAjMsofv6S9X_f3dvczZtxzUSDd9KMYZv93e9b2Fqxvf3THsOW4RWVMK5HttFWC2RCVoQJ8QbODvZ7e12_qdXgqwi3QV-i52aqnEeRSEWlkrjiSkm0HkQWBjqQoQm05EqkPDPoxAgTUb1RkUSV1Bw7orcwM7ge6PfA0E9GymXCpNyQeSPodljyKo1jHQTGeLDe0qwcOkiO0oEvhyWuYmlX0YOVlpplI5Uj7MlQpaHByz34POlGeaJLEjHQ12MaQ5CCpKY8eOe4YPKVKCP9GAYebFpa_vvzZXFS2IcPzx-6BvPdXnFUHn09PvwIL0OctosaXIEZJJv-hNbPrVy1TP4HHcEATQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSxxBEC7UEMlFEzVxojGdkIMeZnVmel54EnUxjxXxASLC0M8IMuviuhByyk_wN_pLrOqeWTFBkNyG7h56uuvRVdNVXwF8QWctS8vIhirTJuQZN6HMrQptLlJjYmGLjPKde_vZ3gn_dpqeTsBmmwvj8SHGP9xIMpy-JgEfaLv-ABpaX9cd5x9MwguebRTE0juHD9hRZekhmHNOiqbkLazQRrw-fvXxYfSPhfnYYHUnTncWzttv9YEml53Rjeyo33_BOP7nYl7DTGOJsi3POm9gwvTnYLrX3LXPwUsXHKqG8zBwWboEEl5T_S3FzC-fL8wI5QHZllH0_E92dvfn1mVuXo9qJhq0k2YMWz3bOljDVs22d4-OGbYMLqiAcT10ja5WIBNSEyLEApx0d4-398KmUkOoEjwEQ4l-m9UlTxKRC62yVHOlJNoOoogjE8nYRkZyJXJeWHRhhE2o2qjIEi0Nx47kLUz1r_pmERh6yUi4QticWzJuBN0NS67zNDVRZG0An1uSVQMPyFF56OW4wl2s3C4GsNwSs2pkcog9BSo0NHd5AJ_G3ShNdEUi-uZqRGMIUJCUVADvPBOMZ0kK0o5xFMCqI-XT01e9w557eP_8oR9h-mCnW_34uv99CV7FuGofMrgMU0g18wFNnxu54lj8Hj2E_vY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiparametric+exchange+protons+using+Z%E2%80%90spectrum+analysis+proton+%28ZAP%29+and+CEST+on+phantoms+and+human+abdomen&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Malis%2C+Vadim&rft.au=Miyazaki%2C+Mitsue&rft.date=2024-10-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=92&rft.issue=4&rft.spage=1670&rft.epage=1682&rft_id=info:doi/10.1002%2Fmrm.30140&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_30140 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |