Multiparametric exchange protons using Z‐spectrum analysis proton (ZAP) and CEST on phantoms and human abdomen

Purpose This study aims to investigate a multiparametric exchange proton approach using CEST and Z‐spectrum analysis protons (ZAP) in human abdominal organs, focusing on tissue differentiation for a potential early biomarker of abnormality. Prior to human studies, CEST and ZAP effects were studied i...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 92; no. 4; pp. 1670 - 1682
Main Authors Malis, Vadim, Miyazaki, Mitsue
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose This study aims to investigate a multiparametric exchange proton approach using CEST and Z‐spectrum analysis protons (ZAP) in human abdominal organs, focusing on tissue differentiation for a potential early biomarker of abnormality. Prior to human studies, CEST and ZAP effects were studied in phantoms containing exchange protons. Methods Phantoms composed of iopamidol and iohexol solutions with varying pH levels, along with 12 human subjects, were scanned on a clinical 3T MR scanner. Subsequent ZAP analyses employed a two‐Lorentzian pool model to provide free and restricted apparent T2f,rex$$ {\mathrm{T}}_{2\ \mathrm{f},\mathrm{r}}^{\mathrm{ex}} $$, and their fractions for data acquired across a wide range of offset frequencies (±100 kHz or ± 800 ppm), while a narrower range (±7 ppm or ± 900 Hz) was used for CEST analysis to estimate magnetization transfer ratio asymmetry (MTRAsym) for exchange protons like hydroxyl (—OH), amine (—NH2), and amide (—NH), resonating ˜1, 2, and 3.5 ppm, respectively. Differences in ZAP metrics across various organs were statistically analyzed using one‐way analysis of variance (ANOVA). Results The phantom study differentiated contrast agents based on resonance peaks detected from CEST analysis, while ZAP metrics showed sensitivity to pH variations. In human, ZAP metrics revealed significant differences in abdominal organs, with a subgroup study indicating changes in ZAP metrics due to the presence of gallstones. Conclusion CEST and ZAP techniques demonstrated promise in specific CEST protons and wide range ZAP protons and identifying tissue‐specific characteristics. The preliminary findings underscore the necessity for more extensive study involving a broader subject pool to potentially establish biomarkers for diseased states.
AbstractList This study aims to investigate a multiparametric exchange proton approach using CEST and Z-spectrum analysis protons (ZAP) in human abdominal organs, focusing on tissue differentiation for a potential early biomarker of abnormality. Prior to human studies, CEST and ZAP effects were studied in phantoms containing exchange protons.PURPOSEThis study aims to investigate a multiparametric exchange proton approach using CEST and Z-spectrum analysis protons (ZAP) in human abdominal organs, focusing on tissue differentiation for a potential early biomarker of abnormality. Prior to human studies, CEST and ZAP effects were studied in phantoms containing exchange protons.Phantoms composed of iopamidol and iohexol solutions with varying pH levels, along with 12 human subjects, were scanned on a clinical 3T MR scanner. Subsequent ZAP analyses employed a two-Lorentzian pool model to provide free and restricted apparent T 2 f , r ex $$ {\mathrm{T}}_{2\ \mathrm{f},\mathrm{r}}^{\mathrm{ex}} $$ , and their fractions for data acquired across a wide range of offset frequencies (±100 kHz or ± 800 ppm), while a narrower range (±7 ppm or ± 900 Hz) was used for CEST analysis to estimate magnetization transfer ratio asymmetry (MTRAsym) for exchange protons like hydroxyl (-OH), amine (-NH2), and amide (-NH), resonating ˜1, 2, and 3.5 ppm, respectively. Differences in ZAP metrics across various organs were statistically analyzed using one-way analysis of variance (ANOVA).METHODSPhantoms composed of iopamidol and iohexol solutions with varying pH levels, along with 12 human subjects, were scanned on a clinical 3T MR scanner. Subsequent ZAP analyses employed a two-Lorentzian pool model to provide free and restricted apparent T 2 f , r ex $$ {\mathrm{T}}_{2\ \mathrm{f},\mathrm{r}}^{\mathrm{ex}} $$ , and their fractions for data acquired across a wide range of offset frequencies (±100 kHz or ± 800 ppm), while a narrower range (±7 ppm or ± 900 Hz) was used for CEST analysis to estimate magnetization transfer ratio asymmetry (MTRAsym) for exchange protons like hydroxyl (-OH), amine (-NH2), and amide (-NH), resonating ˜1, 2, and 3.5 ppm, respectively. Differences in ZAP metrics across various organs were statistically analyzed using one-way analysis of variance (ANOVA).The phantom study differentiated contrast agents based on resonance peaks detected from CEST analysis, while ZAP metrics showed sensitivity to pH variations. In human, ZAP metrics revealed significant differences in abdominal organs, with a subgroup study indicating changes in ZAP metrics due to the presence of gallstones.RESULTSThe phantom study differentiated contrast agents based on resonance peaks detected from CEST analysis, while ZAP metrics showed sensitivity to pH variations. In human, ZAP metrics revealed significant differences in abdominal organs, with a subgroup study indicating changes in ZAP metrics due to the presence of gallstones.CEST and ZAP techniques demonstrated promise in specific CEST protons and wide range ZAP protons and identifying tissue-specific characteristics. The preliminary findings underscore the necessity for more extensive study involving a broader subject pool to potentially establish biomarkers for diseased states.CONCLUSIONCEST and ZAP techniques demonstrated promise in specific CEST protons and wide range ZAP protons and identifying tissue-specific characteristics. The preliminary findings underscore the necessity for more extensive study involving a broader subject pool to potentially establish biomarkers for diseased states.
This study aims to investigate a multiparametric exchange proton approach using CEST and Z-spectrum analysis protons (ZAP) in human abdominal organs, focusing on tissue differentiation for a potential early biomarker of abnormality. Prior to human studies, CEST and ZAP effects were studied in phantoms containing exchange protons. Phantoms composed of iopamidol and iohexol solutions with varying pH levels, along with 12 human subjects, were scanned on a clinical 3T MR scanner. Subsequent ZAP analyses employed a two-Lorentzian pool model to provide free and restricted apparent , and their fractions for data acquired across a wide range of offset frequencies (±100 kHz or ± 800 ppm), while a narrower range (±7 ppm or ± 900 Hz) was used for CEST analysis to estimate magnetization transfer ratio asymmetry (MTR ) for exchange protons like hydroxyl (OH), amine (NH ), and amide (NH), resonating ˜1, 2, and 3.5 ppm, respectively. Differences in ZAP metrics across various organs were statistically analyzed using one-way analysis of variance (ANOVA). The phantom study differentiated contrast agents based on resonance peaks detected from CEST analysis, while ZAP metrics showed sensitivity to pH variations. In human, ZAP metrics revealed significant differences in abdominal organs, with a subgroup study indicating changes in ZAP metrics due to the presence of gallstones. CEST and ZAP techniques demonstrated promise in specific CEST protons and wide range ZAP protons and identifying tissue-specific characteristics. The preliminary findings underscore the necessity for more extensive study involving a broader subject pool to potentially establish biomarkers for diseased states.
PurposeThis study aims to investigate a multiparametric exchange proton approach using CEST and Z‐spectrum analysis protons (ZAP) in human abdominal organs, focusing on tissue differentiation for a potential early biomarker of abnormality. Prior to human studies, CEST and ZAP effects were studied in phantoms containing exchange protons.MethodsPhantoms composed of iopamidol and iohexol solutions with varying pH levels, along with 12 human subjects, were scanned on a clinical 3T MR scanner. Subsequent ZAP analyses employed a two‐Lorentzian pool model to provide free and restricted apparent T2f,rex$$ {\mathrm{T}}_{2\ \mathrm{f},\mathrm{r}}^{\mathrm{ex}} $$, and their fractions for data acquired across a wide range of offset frequencies (±100 kHz or ± 800 ppm), while a narrower range (±7 ppm or ± 900 Hz) was used for CEST analysis to estimate magnetization transfer ratio asymmetry (MTRAsym) for exchange protons like hydroxyl (—OH), amine (—NH2), and amide (—NH), resonating ˜1, 2, and 3.5 ppm, respectively. Differences in ZAP metrics across various organs were statistically analyzed using one‐way analysis of variance (ANOVA).ResultsThe phantom study differentiated contrast agents based on resonance peaks detected from CEST analysis, while ZAP metrics showed sensitivity to pH variations. In human, ZAP metrics revealed significant differences in abdominal organs, with a subgroup study indicating changes in ZAP metrics due to the presence of gallstones.ConclusionCEST and ZAP techniques demonstrated promise in specific CEST protons and wide range ZAP protons and identifying tissue‐specific characteristics. The preliminary findings underscore the necessity for more extensive study involving a broader subject pool to potentially establish biomarkers for diseased states.
Purpose This study aims to investigate a multiparametric exchange proton approach using CEST and Z‐spectrum analysis protons (ZAP) in human abdominal organs, focusing on tissue differentiation for a potential early biomarker of abnormality. Prior to human studies, CEST and ZAP effects were studied in phantoms containing exchange protons. Methods Phantoms composed of iopamidol and iohexol solutions with varying pH levels, along with 12 human subjects, were scanned on a clinical 3T MR scanner. Subsequent ZAP analyses employed a two‐Lorentzian pool model to provide free and restricted apparent T2f,rex$$ {\mathrm{T}}_{2\ \mathrm{f},\mathrm{r}}^{\mathrm{ex}} $$, and their fractions for data acquired across a wide range of offset frequencies (±100 kHz or ± 800 ppm), while a narrower range (±7 ppm or ± 900 Hz) was used for CEST analysis to estimate magnetization transfer ratio asymmetry (MTRAsym) for exchange protons like hydroxyl (—OH), amine (—NH2), and amide (—NH), resonating ˜1, 2, and 3.5 ppm, respectively. Differences in ZAP metrics across various organs were statistically analyzed using one‐way analysis of variance (ANOVA). Results The phantom study differentiated contrast agents based on resonance peaks detected from CEST analysis, while ZAP metrics showed sensitivity to pH variations. In human, ZAP metrics revealed significant differences in abdominal organs, with a subgroup study indicating changes in ZAP metrics due to the presence of gallstones. Conclusion CEST and ZAP techniques demonstrated promise in specific CEST protons and wide range ZAP protons and identifying tissue‐specific characteristics. The preliminary findings underscore the necessity for more extensive study involving a broader subject pool to potentially establish biomarkers for diseased states.
Author Miyazaki, Mitsue
Malis, Vadim
Author_xml – sequence: 1
  givenname: Vadim
  orcidid: 0000-0002-0426-1457
  surname: Malis
  fullname: Malis, Vadim
  organization: University of California, San Diego
– sequence: 2
  givenname: Mitsue
  orcidid: 0000-0002-5690-694X
  surname: Miyazaki
  fullname: Miyazaki, Mitsue
  email: mimiyazaki@health.ucsd.edu
  organization: University of California, San Diego
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38703021$$D View this record in MEDLINE/PubMed
BookMark eNp10btOwzAUBmALgaAUBl4AWWKBIeX4kjoZUcVNagXisrBEjuNAUOwEOxF04xF4Rp4ElxYGJCZLvz8fH_tso3XbWI3QHoERAaDHxpkRA8JhDQ1ITGlE45SvowEIDhEjKd9C294_A0CaCr6JtlgigAElA9TO-rqrWumk0Z2rFNZv6knaR41b13SN9bj3lX3ED5_vH77VqnO9wdLKeu4rvzL48OHk-iikBZ6c3t7hkLShRtcY_x0-9UZaLPOiMdruoI1S1l7vrtYhuj87vZtcRNOr88vJyTRSjDCI8oQmZZFyxqSQhRrHBVcqTwiVCSWa5LQkOudKCp6UcZzKko3HgskxK3LNwwYbosNl3dDjS699l5nKK13X0uqm9xmDGFJORLhiiA7-0Oemd-GNC5UwEELwhdpfqT43ushaVxnp5tnPXwZwtATKNd47Xf4SAtliTlmYU_Y9p2CPl_a1qvX8f5jNbmbLE18AzpRa
Cites_doi 10.1002/mrm.1910250217
10.1006/jmrb.1995.1111
10.1016/j.nicl.2021.102890
10.1002/mrm.20605
10.1007/s11307‐015‐0887‐8
10.1006/jmra.1993.1133
10.1002/lt.500040307
10.1002/mrm.26817
10.1006/jmre.1999.1956
10.1038/nrd3554
10.1002/nbm.3284
10.1002/mrm.22608
10.18632/oncotarget.17404
10.1007/s00259‐022‐05676‐1
10.1371/journal.pone.0119915
10.1002/jmri.25832
10.1002/mrm.22761
10.1002/nbm.4789
10.1002/mrm.27750
10.1097/rli.0000000000000576
10.1002/mrm.1910100113
10.2463/mrms.tn.2016‐0069
10.1002/mrm.1910320108
10.1002/nbm.4906
10.1038/nrc1478
10.1073/pnas.1509488112
10.1148/radiol.2015151161
10.1088/0031‐9155/59/16/4493
10.1097/mpa.0000000000002059
ContentType Journal Article
Copyright 2024 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2024 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
NPM
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.30140
DatabaseName CrossRef
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Biochemistry Abstracts 1

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1682
ExternalDocumentID 38703021
10_1002_mrm_30140
MRM30140
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: Canon Medical Systems Corp., JAPAN
  funderid: 35938
– fundername: Canon Medical Systems Corp., JAPAN
  grantid: 35938
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
8FD
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c3130-b828fd9433a7adc65d4ccb812a821e1b2f1eb4ca748f559af36673a63dbe4b4c3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Thu Jul 10 23:52:05 EDT 2025
Fri Jul 25 12:04:07 EDT 2025
Mon Jul 21 06:05:01 EDT 2025
Tue Jul 01 04:27:10 EDT 2025
Wed Jan 22 17:18:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords macromolecule exchange protons
chemical exchange saturation transfer (CEST)
Z‐spectrum analysis protons (ZAP)
magnetization transfer (MT)
Language English
License 2024 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3130-b828fd9433a7adc65d4ccb812a821e1b2f1eb4ca748f559af36673a63dbe4b4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5690-694X
0000-0002-0426-1457
PMID 38703021
PQID 3083077744
PQPubID 1016391
PageCount 13
ParticipantIDs proquest_miscellaneous_3050941794
proquest_journals_3083077744
pubmed_primary_38703021
crossref_primary_10_1002_mrm_30140
wiley_primary_10_1002_mrm_30140_MRM30140
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2024
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 8
2023; 36
2022; 51
2019; 54
2015; 10
2004; 4
2011; 10
2016; 18
1993; 103
2022; 49
2018; 47
1992; 8
2019; 82
2015; 28
1989; 10
2017; 17
2015; 112
1995; 108
2014; 59
2022; 35
2011; 65
2005; 54
1992; 25
2000; 143
2022; 33
2016; 279
1998; 4
1994; 32
2018; 79
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
Balaban RS (e_1_2_8_3_1) 1992; 8
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_30_1
References_xml – volume: 8
  start-page: 116
  year: 1992
  end-page: 137
  article-title: Magnetization transfer contrast in magnetic resonance imaging
  publication-title: Magn Reson Q
– volume: 4
  start-page: 226
  year: 1998
  end-page: 231
  article-title: Division of the left hemiliver in man—segments, sectors, or sections
  publication-title: Liver Transplant Surg
– volume: 36
  year: 2023
  article-title: CEST‐MRI for body oncologic imaging: are we there yet?
  publication-title: NMR Biomed
– volume: 17
  start-page: 86
  year: 2017
  end-page: 94
  article-title: B1 power optimization for chemical exchange saturation transfer imaging: a phantom study using egg white for amide proton transfer imaging applications in the human brain
  publication-title: Magn Reson Méd Sci
– volume: 32
  start-page: 52
  year: 1994
  end-page: 59
  article-title: A novel saturation transfer contrast method for 3D time‐of‐flight magnetic resonance angiography: a slice‐selective off‐resonance sinc pulse (SORS) technique
  publication-title: Magn Reson Med
– volume: 49
  start-page: 2377
  year: 2022
  end-page: 2391
  article-title: CEST MRI provides amide/amine surrogate biomarkers for treatment‐naïve glioma sub‐typing
  publication-title: Eur J Nucl Med Mol Imaging
– volume: 82
  start-page: 633
  year: 2019
  end-page: 646
  article-title: A comparison of static and dynamic ∆B0 mapping methods for correction of CEST MRI in the presence of temporal B0 field variations
  publication-title: Magn Reson Med
– volume: 47
  start-page: 1013
  year: 2018
  end-page: 1021
  article-title: Amide proton transfer‐weighted imaging to differentiate malignant from benign pulmonary lesions: comparison with diffusion‐weighted imaging and FDG‐PET/CT
  publication-title: J Magn Reson Imaging
– volume: 8
  start-page: 45759
  year: 2017
  end-page: 45767
  article-title: Extracellular pH is a biomarker enabling detection of breast cancer and liver cancer using CEST MRI
  publication-title: Oncotarget
– volume: 59
  start-page: 4493
  year: 2014
  end-page: 4504
  article-title: Quantification of iopamidol multi‐site chemical exchange properties for ratiometric chemical exchange saturation transfer (CEST) imaging of pH
  publication-title: Phys Med Biol
– volume: 103
  start-page: 82
  year: 1993
  end-page: 85
  article-title: Mapping of the radiofrequency field
  publication-title: J Magn Reson Ser A
– volume: 143
  start-page: 79
  year: 2000
  end-page: 87
  article-title: A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST)
  publication-title: J Magn Reson
– volume: 28
  start-page: 555
  year: 2015
  end-page: 565
  article-title: Quantitative description of radiofrequency (RF) power‐based ratiometric chemical exchange saturation transfer (CEST) pH imaging
  publication-title: NMR Biomed
– volume: 10
  start-page: 135
  year: 1989
  end-page: 144
  article-title: Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo
  publication-title: Magn Reson Med
– volume: 65
  start-page: 927
  year: 2011
  end-page: 948
  article-title: Chemical exchange saturation transfer (CEST): what is in a name and what isn't?
  publication-title: Magn Reson Med
– volume: 33
  year: 2022
  article-title: Fast and equilibrium CEST imaging of brain tumor patients at 3T
  publication-title: Neuroimage Clin
– volume: 108
  start-page: 103
  year: 1995
  end-page: 113
  article-title: Modeling magnetization transfer for biological‐like systems using a semi‐solid Pool with a super‐Lorentzian Lineshape and dipolar reservoir
  publication-title: J Magn Reson Ser B
– volume: 279
  start-page: 578
  year: 2016
  end-page: 589
  article-title: Chemical exchange saturation transfer MR imaging: preliminary results for differentiation of malignant and benign thoracic lesions
  publication-title: Radiology
– volume: 54
  start-page: 565
  year: 2019
  end-page: 571
  article-title: AcidoCEST‐UTE MRI for the assessment of extracellular pH of joint tissues at 3 T
  publication-title: Invest Radiol
– volume: 10
  start-page: 767
  year: 2011
  end-page: 777
  article-title: Interfering with pH regulation in tumours as a therapeutic strategy
  publication-title: Nat Rev Drug Discov
– volume: 65
  start-page: 202
  year: 2011
  end-page: 211
  article-title: Iopamidol as a responsive MRI‐chemical exchange saturation transfer contrast agent for pH mapping of kidneys: in vivo studies in mice at 7 T
  publication-title: Magn Reson Med
– volume: 10
  year: 2015
  article-title: Z‐Spectrum analysis provides proton environment data (ZAPPED): a new two‐Pool technique for human gray and white matter
  publication-title: PLoS One
– volume: 25
  start-page: 372
  year: 1992
  end-page: 379
  article-title: Magnetization transfer time‐of‐flight magnetic resonance angiography
  publication-title: Magn Reson Med
– volume: 4
  start-page: 891
  year: 2004
  end-page: 899
  article-title: Why do cancers have high aerobic glycolysis?
  publication-title: Nat Rev Cancer
– volume: 79
  start-page: 1553
  year: 2018
  end-page: 1558
  article-title: A generalized ratiometric chemical exchange saturation transfer (CEST) MRI approach for mapping renal pH using iopamidol
  publication-title: Magn Reson Med
– volume: 112
  start-page: 9710
  year: 2015
  end-page: 9715
  article-title: The pH low insertion peptide pHLIP variant 3 as a novel marker of acidic malignant lesions
  publication-title: Proc Natl Acad Sci U S A
– volume: 51
  start-page: 463
  year: 2022
  end-page: 468
  article-title: Chemical exchange saturation transfer for pancreatic ductal adenocarcinoma evaluation
  publication-title: Pancreas
– volume: 35
  year: 2022
  article-title: Theory of chemical exchange saturation transfer MRI in the context of different magnetic fields
  publication-title: NMR Biomed
– volume: 54
  start-page: 507
  year: 2005
  end-page: 512
  article-title: T , T relaxation and magnetization transfer in tissue at 3T
  publication-title: Magn Reson Med
– volume: 18
  start-page: 274
  year: 2016
  end-page: 282
  article-title: Chemical exchange saturation transfer (CEST) MR technique for liver imaging at 3.0 tesla: an evaluation of different offset number and an after‐meal and over‐night‐fast comparison
  publication-title: Mol Imaging Biol
– ident: e_1_2_8_4_1
  doi: 10.1002/mrm.1910250217
– ident: e_1_2_8_24_1
  doi: 10.1006/jmrb.1995.1111
– volume: 8
  start-page: 116
  year: 1992
  ident: e_1_2_8_3_1
  article-title: Magnetization transfer contrast in magnetic resonance imaging
  publication-title: Magn Reson Q
– ident: e_1_2_8_14_1
  doi: 10.1016/j.nicl.2021.102890
– ident: e_1_2_8_31_1
  doi: 10.1002/mrm.20605
– ident: e_1_2_8_16_1
  doi: 10.1007/s11307‐015‐0887‐8
– ident: e_1_2_8_26_1
  doi: 10.1006/jmra.1993.1133
– ident: e_1_2_8_21_1
  doi: 10.1002/lt.500040307
– ident: e_1_2_8_28_1
  doi: 10.1002/mrm.26817
– ident: e_1_2_8_7_1
  doi: 10.1006/jmre.1999.1956
– ident: e_1_2_8_12_1
  doi: 10.1038/nrd3554
– ident: e_1_2_8_30_1
  doi: 10.1002/nbm.3284
– ident: e_1_2_8_9_1
  doi: 10.1002/mrm.22608
– ident: e_1_2_8_19_1
  doi: 10.18632/oncotarget.17404
– ident: e_1_2_8_20_1
  doi: 10.1007/s00259‐022‐05676‐1
– ident: e_1_2_8_6_1
  doi: 10.1371/journal.pone.0119915
– ident: e_1_2_8_18_1
  doi: 10.1002/jmri.25832
– ident: e_1_2_8_8_1
  doi: 10.1002/mrm.22761
– ident: e_1_2_8_27_1
  doi: 10.1002/nbm.4789
– ident: e_1_2_8_22_1
  doi: 10.1002/mrm.27750
– ident: e_1_2_8_29_1
  doi: 10.1097/rli.0000000000000576
– ident: e_1_2_8_2_1
  doi: 10.1002/mrm.1910100113
– ident: e_1_2_8_23_1
  doi: 10.2463/mrms.tn.2016‐0069
– ident: e_1_2_8_5_1
  doi: 10.1002/mrm.1910320108
– ident: e_1_2_8_13_1
  doi: 10.1002/nbm.4906
– ident: e_1_2_8_10_1
  doi: 10.1038/nrc1478
– ident: e_1_2_8_11_1
  doi: 10.1073/pnas.1509488112
– ident: e_1_2_8_17_1
  doi: 10.1148/radiol.2015151161
– ident: e_1_2_8_25_1
  doi: 10.1088/0031‐9155/59/16/4493
– ident: e_1_2_8_15_1
  doi: 10.1097/mpa.0000000000002059
SSID ssj0009974
Score 2.456426
Snippet Purpose This study aims to investigate a multiparametric exchange proton approach using CEST and Z‐spectrum analysis protons (ZAP) in human abdominal organs,...
This study aims to investigate a multiparametric exchange proton approach using CEST and Z-spectrum analysis protons (ZAP) in human abdominal organs, focusing...
PurposeThis study aims to investigate a multiparametric exchange proton approach using CEST and Z‐spectrum analysis protons (ZAP) in human abdominal organs,...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 1670
SubjectTerms Abdomen
Biomarkers
Calculi
chemical exchange saturation transfer (CEST)
Contrast agents
Contrast media
Data acquisition
Differentiation (biology)
Exchanging
macromolecule exchange protons
magnetization transfer (MT)
Organs
Protons
Spectrum analysis
Subgroups
Variance analysis
Z‐spectrum analysis protons (ZAP)
Title Multiparametric exchange protons using Z‐spectrum analysis proton (ZAP) and CEST on phantoms and human abdomen
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30140
https://www.ncbi.nlm.nih.gov/pubmed/38703021
https://www.proquest.com/docview/3083077744
https://www.proquest.com/docview/3050941794
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB5EUHzxPupFFB_0oatt0wufRBQRVsQDRISSpImCdF1cF8Qnf4K_0V_iTNKuqAjiW0lS0mSOzDQz3wBsoLOWxHlgfJWU2ucJ175MjfJNKmKtQ2GyhPKd2yfJ0SU_voqvhmC3yYVx-BCDH24kGVZfk4AL2dv-BA2tHquW9Q9Q_1KsFhlEZ5_QUXnuEJhTTnom5w2q0E64PXjz61n0w8D8aq_aA-dwAm6aT3VxJvet_pNsqZdvKI7_XMskjNeGKNtznDMFQ7ozDaPt-qp9GkZsbKjqzUDXJukSRnhF5bcU088uXZgRyANyLaPg-Vt2_f76ZhM3H_sVEzXYST2GbV7vnW5ha8n2D84vGLZ076h-cdWzjbZUIBOyJECIWbg8PLjYP_LrQg2-ivAM9CW6babMeRSJVJQqiUuulETTQWRhoAMZmkBLrkTKM4MejDARFRsVSVRKzbEjmoPhzkNHLwBDJxkJlwmTckO2jaCrYcnLNI51EBjjwXpDsqLr8DgKh7wcFriLhd1FD5YbYha1SPawJ0N9htYu92Bt0I3CRDckoqMf-jSG8ARJR3kw75hgMEuUkXIMAw82LSl_n75on7Xtw-Lfhy7BWIhLdWGCyzCMpNIraO48yVXL1x9kwPwj
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB_8oNqXarUf21pNxQd92NPdzX5BX0SUa3Wl6AlyIEuSTRTKnofnQemTf4J_Y_-SziS7J1YK0rclybKbzEdmkpnfAGygs5bEeWB8lVTa5wnXvkyN8k0qYq1DYbKE8p2L46R7xr-dx-dT8KXNhXH4EJMDN5IMq69JwOlAevsBNbS-qTvWQZiGWarobR2qkwfwqDx3GMwpJ02T8xZXaCfcnrz6eDd6YmI-tljtlnOwABftz7pIkx-d8a3sqF9_4Tj-72wW4VVji7JdxzyvYUoPlmCuaG7bl-CFDQ9Vo2UY2jxdggmvqQKXYvqnyxhmhPOAjMsofv6S9X_f3dvczZtxzUSDd9KMYZv93e9b2Fqxvf3THsOW4RWVMK5HttFWC2RCVoQJ8QbODvZ7e12_qdXgqwi3QV-i52aqnEeRSEWlkrjiSkm0HkQWBjqQoQm05EqkPDPoxAgTUb1RkUSV1Bw7orcwM7ge6PfA0E9GymXCpNyQeSPodljyKo1jHQTGeLDe0qwcOkiO0oEvhyWuYmlX0YOVlpplI5Uj7MlQpaHByz34POlGeaJLEjHQ12MaQ5CCpKY8eOe4YPKVKCP9GAYebFpa_vvzZXFS2IcPzx-6BvPdXnFUHn09PvwIL0OctosaXIEZJJv-hNbPrVy1TP4HHcEATQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSxxBEC7UEMlFEzVxojGdkIMeZnVmel54EnUxjxXxASLC0M8IMuviuhByyk_wN_pLrOqeWTFBkNyG7h56uuvRVdNVXwF8QWctS8vIhirTJuQZN6HMrQptLlJjYmGLjPKde_vZ3gn_dpqeTsBmmwvj8SHGP9xIMpy-JgEfaLv-ABpaX9cd5x9MwguebRTE0juHD9hRZekhmHNOiqbkLazQRrw-fvXxYfSPhfnYYHUnTncWzttv9YEml53Rjeyo33_BOP7nYl7DTGOJsi3POm9gwvTnYLrX3LXPwUsXHKqG8zBwWboEEl5T_S3FzC-fL8wI5QHZllH0_E92dvfn1mVuXo9qJhq0k2YMWz3bOljDVs22d4-OGbYMLqiAcT10ja5WIBNSEyLEApx0d4-398KmUkOoEjwEQ4l-m9UlTxKRC62yVHOlJNoOoogjE8nYRkZyJXJeWHRhhE2o2qjIEi0Nx47kLUz1r_pmERh6yUi4QticWzJuBN0NS67zNDVRZG0An1uSVQMPyFF56OW4wl2s3C4GsNwSs2pkcog9BSo0NHd5AJ_G3ShNdEUi-uZqRGMIUJCUVADvPBOMZ0kK0o5xFMCqI-XT01e9w557eP_8oR9h-mCnW_34uv99CV7FuGofMrgMU0g18wFNnxu54lj8Hj2E_vY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiparametric+exchange+protons+using+Z%E2%80%90spectrum+analysis+proton+%28ZAP%29+and+CEST+on+phantoms+and+human+abdomen&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Malis%2C+Vadim&rft.au=Miyazaki%2C+Mitsue&rft.date=2024-10-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=92&rft.issue=4&rft.spage=1670&rft.epage=1682&rft_id=info:doi/10.1002%2Fmrm.30140&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_30140
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon