ALKBH5‐mediated m6A demethylation of pri‐miR‐199a‐5p exacerbates myocardial ischemia/reperfusion injury by regulating TRAF3‐mediated pyroptosis
Myocardial ischemia‒reperfusion injury (MI/RI) is closely related to pyroptosis. alkB homolog 5 (ALKBH5) is abnormally expressed in the MI/RI models. However, the detailed molecular mechanism of ALKBH5 in MI/RI has not been elucidated. In this study, rats and H9C2 cells served as experimental subjec...
Saved in:
Published in | Journal of biochemical and molecular toxicology Vol. 38; no. 4; pp. e23710 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Myocardial ischemia‒reperfusion injury (MI/RI) is closely related to pyroptosis. alkB homolog 5 (ALKBH5) is abnormally expressed in the MI/RI models. However, the detailed molecular mechanism of ALKBH5 in MI/RI has not been elucidated. In this study, rats and H9C2 cells served as experimental subjects and received MI/R induction and H/R induction, respectively. The abundance of the targeted molecules was evaluated using RT‐qPCR, Western blotting, immunohistochemistry, immunofluorescence, and enzyme‐linked immunosorbent assay. The heart functions of the rats were evaluated using echocardiography, and heart injury was evaluated. Cell viability and pyroptosis were determined using cell counting Kit‐8 and flow cytometry, respectively. Total m6A modification was measured using a commercial kit, and pri‐miR‐199a‐5p m6A modification was detected by Me‐RNA immunoprecipitation (RIP) assay. The interactions among the molecules were validated using RIP and luciferase experiments. ALKBH5 was abnormally highly expressed in H/R‐induced H9C2 cells and MI/RI rats. ALKBH5 silencing improved injury and inhibited pyroptosis. ALKBH5 reduced pri‐miR‐199a‐5p m6A methylation to block miR‐199a‐5p maturation and inhibit its expression. TNF receptor‐associated Factor 3 (TRAF3) is a downstream gene of miR‐199a‐5p. Furthermore, in H/R‐induced H9C2 cells, the miR‐199a‐5p inhibitor‐mediated promotion of pyroptosis was reversed by ALKBH5 silencing, and the TRAF3 overexpression‐mediated promotion of pyroptosis was offset by miR‐199a‐5p upregulation. ALKBH5 silencing inhibited pri‐miR‐199a‐5p expression and enhanced pri‐miR‐199a‐5p m6A modification to promote miR‐199a‐5p maturation and enhance its expression, thereby suppressing pyroptosis to alleviate MI/RI through decreasing TRAF3 expression.
In this study, alkB homolog 5 (ALKBH5) enhanced the m6A demethylation of pri‐miR‐199a‐5p to block the maturation of miR‐199a‐5p and decrease miR‐199a‐5p expression. In addition, miR‐199a‐5p negatively regulated TNF receptor‐associated Factor 3 (TRAF3) expression through interacting with TRAF3. Furthermore, ALKBH5 silencing resulted in suppression of pyroptosis in myocardial ischemia‒reperfusion injury (MI/RI) through regulating miR‐199a‐5p/TRAF3 axis. |
---|---|
AbstractList | Myocardial ischemia‒reperfusion injury (MI/RI) is closely related to pyroptosis. alkB homolog 5 (ALKBH5) is abnormally expressed in the MI/RI models. However, the detailed molecular mechanism of ALKBH5 in MI/RI has not been elucidated. In this study, rats and H9C2 cells served as experimental subjects and received MI/R induction and H/R induction, respectively. The abundance of the targeted molecules was evaluated using RT‐qPCR, Western blotting, immunohistochemistry, immunofluorescence, and enzyme‐linked immunosorbent assay. The heart functions of the rats were evaluated using echocardiography, and heart injury was evaluated. Cell viability and pyroptosis were determined using cell counting Kit‐8 and flow cytometry, respectively. Total m6A modification was measured using a commercial kit, and pri‐miR‐199a‐5p m6A modification was detected by Me‐RNA immunoprecipitation (RIP) assay. The interactions among the molecules were validated using RIP and luciferase experiments. ALKBH5 was abnormally highly expressed in H/R‐induced H9C2 cells and MI/RI rats. ALKBH5 silencing improved injury and inhibited pyroptosis. ALKBH5 reduced pri‐miR‐199a‐5p m6A methylation to block miR‐199a‐5p maturation and inhibit its expression. TNF receptor‐associated Factor 3 (TRAF3) is a downstream gene of miR‐199a‐5p. Furthermore, in H/R‐induced H9C2 cells, the miR‐199a‐5p inhibitor‐mediated promotion of pyroptosis was reversed by ALKBH5 silencing, and the TRAF3 overexpression‐mediated promotion of pyroptosis was offset by miR‐199a‐5p upregulation. ALKBH5 silencing inhibited pri‐miR‐199a‐5p expression and enhanced pri‐miR‐199a‐5p m6A modification to promote miR‐199a‐5p maturation and enhance its expression, thereby suppressing pyroptosis to alleviate MI/RI through decreasing TRAF3 expression. Myocardial ischemia‒reperfusion injury (MI/RI) is closely related to pyroptosis. alkB homolog 5 (ALKBH5) is abnormally expressed in the MI/RI models. However, the detailed molecular mechanism of ALKBH5 in MI/RI has not been elucidated. In this study, rats and H9C2 cells served as experimental subjects and received MI/R induction and H/R induction, respectively. The abundance of the targeted molecules was evaluated using RT‐qPCR, Western blotting, immunohistochemistry, immunofluorescence, and enzyme‐linked immunosorbent assay. The heart functions of the rats were evaluated using echocardiography, and heart injury was evaluated. Cell viability and pyroptosis were determined using cell counting Kit‐8 and flow cytometry, respectively. Total m6A modification was measured using a commercial kit, and pri‐miR‐199a‐5p m6A modification was detected by Me‐RNA immunoprecipitation (RIP) assay. The interactions among the molecules were validated using RIP and luciferase experiments. ALKBH5 was abnormally highly expressed in H/R‐induced H9C2 cells and MI/RI rats. ALKBH5 silencing improved injury and inhibited pyroptosis. ALKBH5 reduced pri‐miR‐199a‐5p m6A methylation to block miR‐199a‐5p maturation and inhibit its expression. TNF receptor‐associated Factor 3 (TRAF3) is a downstream gene of miR‐199a‐5p. Furthermore, in H/R‐induced H9C2 cells, the miR‐199a‐5p inhibitor‐mediated promotion of pyroptosis was reversed by ALKBH5 silencing, and the TRAF3 overexpression‐mediated promotion of pyroptosis was offset by miR‐199a‐5p upregulation. ALKBH5 silencing inhibited pri‐miR‐199a‐5p expression and enhanced pri‐miR‐199a‐5p m6A modification to promote miR‐199a‐5p maturation and enhance its expression, thereby suppressing pyroptosis to alleviate MI/RI through decreasing TRAF3 expression. In this study, alkB homolog 5 (ALKBH5) enhanced the m6A demethylation of pri‐miR‐199a‐5p to block the maturation of miR‐199a‐5p and decrease miR‐199a‐5p expression. In addition, miR‐199a‐5p negatively regulated TNF receptor‐associated Factor 3 (TRAF3) expression through interacting with TRAF3. Furthermore, ALKBH5 silencing resulted in suppression of pyroptosis in myocardial ischemia‒reperfusion injury (MI/RI) through regulating miR‐199a‐5p/TRAF3 axis. Myocardial ischemia‒reperfusion injury (MI/RI) is closely related to pyroptosis. alkB homolog 5 (ALKBH5) is abnormally expressed in the MI/RI models. However, the detailed molecular mechanism of ALKBH5 in MI/RI has not been elucidated. In this study, rats and H9C2 cells served as experimental subjects and received MI/R induction and H/R induction, respectively. The abundance of the targeted molecules was evaluated using RT-qPCR, Western blotting, immunohistochemistry, immunofluorescence, and enzyme-linked immunosorbent assay. The heart functions of the rats were evaluated using echocardiography, and heart injury was evaluated. Cell viability and pyroptosis were determined using cell counting Kit-8 and flow cytometry, respectively. Total m6A modification was measured using a commercial kit, and pri-miR-199a-5p m6A modification was detected by Me-RNA immunoprecipitation (RIP) assay. The interactions among the molecules were validated using RIP and luciferase experiments. ALKBH5 was abnormally highly expressed in H/R-induced H9C2 cells and MI/RI rats. ALKBH5 silencing improved injury and inhibited pyroptosis. ALKBH5 reduced pri-miR-199a-5p m6A methylation to block miR-199a-5p maturation and inhibit its expression. TNF receptor-associated Factor 3 (TRAF3) is a downstream gene of miR-199a-5p. Furthermore, in H/R-induced H9C2 cells, the miR-199a-5p inhibitor-mediated promotion of pyroptosis was reversed by ALKBH5 silencing, and the TRAF3 overexpression-mediated promotion of pyroptosis was offset by miR-199a-5p upregulation. ALKBH5 silencing inhibited pri-miR-199a-5p expression and enhanced pri-miR-199a-5p m6A modification to promote miR-199a-5p maturation and enhance its expression, thereby suppressing pyroptosis to alleviate MI/RI through decreasing TRAF3 expression.Myocardial ischemia‒reperfusion injury (MI/RI) is closely related to pyroptosis. alkB homolog 5 (ALKBH5) is abnormally expressed in the MI/RI models. However, the detailed molecular mechanism of ALKBH5 in MI/RI has not been elucidated. In this study, rats and H9C2 cells served as experimental subjects and received MI/R induction and H/R induction, respectively. The abundance of the targeted molecules was evaluated using RT-qPCR, Western blotting, immunohistochemistry, immunofluorescence, and enzyme-linked immunosorbent assay. The heart functions of the rats were evaluated using echocardiography, and heart injury was evaluated. Cell viability and pyroptosis were determined using cell counting Kit-8 and flow cytometry, respectively. Total m6A modification was measured using a commercial kit, and pri-miR-199a-5p m6A modification was detected by Me-RNA immunoprecipitation (RIP) assay. The interactions among the molecules were validated using RIP and luciferase experiments. ALKBH5 was abnormally highly expressed in H/R-induced H9C2 cells and MI/RI rats. ALKBH5 silencing improved injury and inhibited pyroptosis. ALKBH5 reduced pri-miR-199a-5p m6A methylation to block miR-199a-5p maturation and inhibit its expression. TNF receptor-associated Factor 3 (TRAF3) is a downstream gene of miR-199a-5p. Furthermore, in H/R-induced H9C2 cells, the miR-199a-5p inhibitor-mediated promotion of pyroptosis was reversed by ALKBH5 silencing, and the TRAF3 overexpression-mediated promotion of pyroptosis was offset by miR-199a-5p upregulation. ALKBH5 silencing inhibited pri-miR-199a-5p expression and enhanced pri-miR-199a-5p m6A modification to promote miR-199a-5p maturation and enhance its expression, thereby suppressing pyroptosis to alleviate MI/RI through decreasing TRAF3 expression. |
Author | Tang, Mi Li, Jiarong Wang, Zhirong Tan, Huayi |
Author_xml | – sequence: 1 givenname: Jiarong surname: Li fullname: Li, Jiarong organization: Central South University – sequence: 2 givenname: Zhirong surname: Wang fullname: Wang, Zhirong organization: Central South University – sequence: 3 givenname: Huayi surname: Tan fullname: Tan, Huayi organization: Central South University – sequence: 4 givenname: Mi orcidid: 0009-0006-6548-8694 surname: Tang fullname: Tang, Mi email: tangmi1129@csu.edu.cn organization: Central South University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38605440$$D View this record in MEDLINE/PubMed |
BookMark | eNp10c1u1DAQAGALFdEfOPACyBIXOGx3HP_Fx21FKbASUrWcI8eZtFklcbATQW48AldejyfB6RaEkLh4fPhmPJ45JUe975GQ5wzOGUC23pfjecY1g0fkhIExKxCKHd3f5UopDcfkNMY9AEij5RNyzHMFUgg4IT822w8X1_Lnt-8dVo0dsaKd2tAKOxzv5taOje-pr-kQmsU0N-lkxtgU5EDxq3UYypQWaTd7Z0Oq0dImujvsGrsOOGCop7gUafr9FGZazjTg7bRU7m_p7mZzxf9-fJiDH0Yfm_iUPK5tG_HZQzwjn67e7C6vV9uPb99dbrYrxxmHlXYqqxQXlckd05VzhqGSQhttcw060xmykjsnrasNiFrKWri8VMKVmao58DPy6lB3CP7zhHEsutQ_tq3t0U-xSCQXmTJGJPryH7r3U-hTd4sykPMcFvXiQU1l-leRRtfZMBe_h57A6wNwwccYsP5DGBTLQou00OJ-ocmuD_ZL0-L8f1i8v9gdMn4BJDumQg |
Cites_doi | 10.1016/j.mvr.2023.104565 10.1080/13880209.2023.2210187 10.1016/j.neuroscience.2023.07.012 10.1016/j.bbrc.2018.10.058 10.1172/JCI62874 10.1016/j.molcel.2023.01.006 10.1186/s12935-020-01450-1 10.1161/CIRCRESAHA.120.318629 10.1038/s41392-021-00507-5 10.1080/0886022X.2023.2220418 10.1016/j.wneu.2019.07.203 10.1038/nature14281 10.1016/j.jaci.2017.08.034 10.3390/cells11203271 10.1186/s12943-019-1036-9 10.1007/s12033-021-00423-7 10.1038/s41598-018-24932-9 10.1038/nri2998 10.1038/s41392-020-00450-x 10.1016/j.intimp.2023.110219 10.1186/s13045-019-0773-y 10.1038/s41423-022-00905-x 10.1186/s13075-023-03035-5 10.1016/j.biopha.2020.110419 10.1016/j.actbio.2021.11.041 10.1016/j.phrs.2021.105743 10.1007/s10571-018-0597-2 10.1007/s11010-022-04586-y 10.1002/kjm2.12605 10.1371/journal.pone.0118438 10.1016/j.intimp.2022.108740 10.1016/j.apsb.2022.08.007 10.1016/j.cca.2020.06.044 10.18632/aging.202143 10.1126/science.aau1646 10.1038/nrm.2016.132 10.1016/j.jbc.2021.101400 10.1016/j.isci.2023.106215 10.1016/j.ijcard.2022.08.042 10.3390/cancers15194811 10.1186/s10020-022-00531-3 10.1155/2023/1293200 10.1007/s10719-022-10081-9 10.1002/hep.28885 10.1161/JAHA.123.031353 10.1038/s41467-023-36747-y 10.1097/FJC.0000000000000867 10.1177/2040622320916024 10.1016/j.bioactmat.2021.06.006 10.1080/21655979.2021.1995994 10.1038/nature03120 10.1007/s12265-023-10383-9 10.1080/10799893.2020.1828915 10.3390/biom12111625 10.7717/peerj.15269 10.1016/j.phrs.2021.105447 10.1002/jcp.26848 10.1096/fj.202200596RRRRRR 10.1016/j.envpol.2023.122723 10.1016/j.reth.2022.08.007 10.1186/s11658-022-00329-5 10.1016/j.brainres.2023.148560 |
ContentType | Journal Article |
Copyright | 2024 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2024 Wiley Periodicals LLC. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7U7 8FD C1K FR3 K9. P64 7X8 |
DOI | 10.1002/jbt.23710 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Biotechnology Research Abstracts MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology |
EISSN | 1099-0461 |
EndPage | n/a |
ExternalDocumentID | 38605440 10_1002_jbt_23710 JBT23710 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Hunan Province, China funderid: 2022JJ30840 – fundername: Fundamental Research Funds for the Central Universities of Central South University funderid: 56021702 – fundername: Natural Science Foundation of Hunan Province, China grantid: 2022JJ30840 – fundername: Fundamental Research Funds for the Central Universities of Central South University grantid: 56021702 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABOCM ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ SV3 UB1 V2E W8V W99 WBFHL WBKPD WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION CGR CUY CVF ECM EIF NPM 1OB 7QO 7U7 8FD C1K FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c3130-7c62d634d98c17dcc91e654797a8707272e1b3cc5acf904f55f4c8b64cb26f303 |
IEDL.DBID | DR2 |
ISSN | 1095-6670 1099-0461 |
IngestDate | Thu Jul 10 22:28:00 EDT 2025 Wed Aug 13 07:59:59 EDT 2025 Mon Jul 21 06:04:26 EDT 2025 Tue Jul 01 01:17:02 EDT 2025 Sun Jul 06 04:45:25 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | pyroptosis ALKBH5 MI/RI TRAF3 pri‐miR‐199a‐5p |
Language | English |
License | 2024 Wiley Periodicals LLC. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3130-7c62d634d98c17dcc91e654797a8707272e1b3cc5acf904f55f4c8b64cb26f303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0006-6548-8694 |
PMID | 38605440 |
PQID | 3039083804 |
PQPubID | 1006378 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_3038426994 proquest_journals_3039083804 pubmed_primary_38605440 crossref_primary_10_1002_jbt_23710 wiley_primary_10_1002_jbt_23710_JBT23710 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2024 2024-04-00 2024-Apr 20240401 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Journal of biochemical and molecular toxicology |
PublicationTitleAlternate | J Biochem Mol Toxicol |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 361 2020; 20 2023; 37 2019; 12 2023; 2023 2021; 129 2013; 123 2023; 149 2019; 19 2011; 11 2019; 18 2020; 129 2020; 12 2022; 64 2022; 21 2020; 11 2021; 165 2022; 27 2023; 83 2022; 28 2018; 8 2023; 1820 2023; 25 2023; 26 2023; 339 2021; 41 2018; 38 2022; 38 2022; 39 2022; 367 2018; 141 2021; 6 2023; 13 2023; 14 2023; 11 2023; 120 2023; 15 2023; 16 2017; 65 2015; 10 2018; 506 2023; 526 2024; 13 2020; 76 2023; 61 1976; 53 2022; 140 2021; 12 2023; 45 2004; 432 2022; 7 2018; 234 2022; 12 2015; 519 2021; 170 2023; 478 2017; 18 2020; 510 2022; 11 2021; 297 2022; 108 2019; 131 2022; 19 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 Mundth E. D. (e_1_2_10_3_1) 1976; 53 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_38_1 Liu D. W. (e_1_2_10_59_1) 2019; 19 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 Chen R. (e_1_2_10_17_1) 2024; 13 e_1_2_10_60_1 e_1_2_10_62_1 e_1_2_10_64_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – volume: 129 start-page: 383 issue: 3 year: 2021 publication-title: Circ. Res. – volume: 506 start-page: 298 issue: 1 year: 2018 publication-title: Biochem. Biophys. Res. Commun. – volume: 20 start-page: 347 year: 2020 publication-title: Cancer Cell. Int. – volume: 45 issue: 1 year: 2023 publication-title: Ren. Fail. – volume: 510 start-page: 62 year: 2020 publication-title: Clin. Chim. Acta – volume: 61 start-page: 839 issue: 1 year: 2023 publication-title: Pharm. Biol. – volume: 13 start-page: 29 issue: 1 year: 2023 publication-title: Acta Pharm. Sin. B – volume: 108 year: 2022 publication-title: Int. Immunopharmacol. – volume: 27 start-page: 26 issue: 1 year: 2022 publication-title: Cell. Mol. Biol. Lett. – volume: 7 start-page: 47 year: 2022 publication-title: Bioactive Materials – volume: 478 start-page: 1293 issue: 6 year: 2023 publication-title: Mol. Cell. Biochem. – volume: 41 start-page: 494 issue: 5 year: 2021 publication-title: J. Recept. Signal Transduct. – volume: 12 start-page: 1625 issue: 11 year: 2022 publication-title: Biomolecules – volume: 12 issue: 23 year: 2020 publication-title: Aging – volume: 12 start-page: 91 issue: 1 year: 2019 publication-title: J. Hematol. Oncol. – volume: 11 year: 2023 publication-title: PeerJ – volume: 14 start-page: 1161 issue: 1 year: 2023 publication-title: Nat. Commun. – volume: 120 year: 2023 publication-title: Int. Immunopharmacol. – volume: 1820 year: 2023 publication-title: Brain Res. – volume: 25 start-page: 53 issue: 1 year: 2023 publication-title: Arthritis Res. Ther. – volume: 11 start-page: 3271 issue: 20 year: 2022 publication-title: Cells – volume: 297 issue: 6 year: 2021 publication-title: J. Biol. Chem. – volume: 64 start-page: 482 issue: 5 year: 2022 publication-title: Mol. Biotechnol. – volume: 18 start-page: 110 issue: 1 year: 2019 publication-title: Mol. Cancer – volume: 13 issue: 1 year: 2024 publication-title: J. Am. Heart Assoc. – volume: 367 start-page: 11 year: 2022 publication-title: Int. J. Cardiol. – volume: 76 start-page: 305 issue: 3 year: 2020 publication-title: J. Cardiovasc. Pharmacol. – volume: 131 year: 2019 publication-title: World Neurosurgery – volume: 6 start-page: 128 issue: 1 year: 2021 publication-title: Signal Transduct. Target Ther. – volume: 15 start-page: 4811 issue: 19 year: 2023 publication-title: Cancers – volume: 2023 start-page: 1 year: 2023 publication-title: Anal. Cell Pathol. – volume: 8 start-page: 6699 issue: 1 year: 2018 publication-title: Sci. Rep. – volume: 19 start-page: 5335 issue: 6 year: 2019 publication-title: Mol. Med. Rep. – volume: 65 start-page: 529 issue: 2 year: 2017 publication-title: Hepatology – volume: 37 issue: 9 year: 2023 publication-title: FASEB. J. – volume: 123 start-page: 92 issue: 1 year: 2013 publication-title: J. Clin. Invest. – volume: 26 issue: 3 year: 2023 publication-title: iScience – volume: 129 year: 2020 publication-title: Biomed. Pharmacother. – volume: 170 year: 2021 publication-title: Pharmacol. Res. – volume: 53 start-page: 176 issue: 3 Suppl year: 1976 publication-title: Circulation – volume: 19 start-page: 971 issue: 9 year: 2022 publication-title: Cell. Mol. Immunol. – volume: 339 year: 2023 publication-title: Environ. Pollut. – volume: 38 start-page: 1093 issue: 11 year: 2022 publication-title: Kaohsiung J. Med. Sci. – volume: 165 year: 2021 publication-title: Pharmacol. Res. – volume: 140 start-page: 481 year: 2022 publication-title: Acta Biomater. – volume: 18 start-page: 31 issue: 1 year: 2017 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 11 year: 2020 publication-title: Ther. Adv. Chronic Dis. – volume: 432 start-page: 235 issue: 7014 year: 2004 publication-title: Nature – volume: 149 year: 2023 publication-title: Microvasc. Res. – volume: 21 start-page: 380 year: 2022 publication-title: Regener. Ther. – volume: 526 start-page: 305 year: 2023 publication-title: Neuroscience – volume: 16 start-page: 1064 issue: 5 year: 2023 publication-title: J. Cardiovas. Translat. Res. – volume: 39 start-page: 747 issue: 6 year: 2022 publication-title: Glycoconj. J. – volume: 28 start-page: 119 issue: 1 year: 2022 publication-title: Mol. Med. – volume: 12 issue: 2 year: 2021 publication-title: Bioengineered – volume: 361 start-page: 1346 issue: 6409 year: 2018 publication-title: Science – volume: 141 start-page: 1202 issue: 4 year: 2018 publication-title: J. Allergy Clin. Immunol. – volume: 519 start-page: 482 issue: 7544 year: 2015 publication-title: Nature – volume: 83 start-page: 428 issue: 3 year: 2023 publication-title: Mol. Cell – volume: 38 start-page: 1293 issue: 6 year: 2018 publication-title: Cell. Mol. Neurobiol. – volume: 11 start-page: 457 issue: 7 year: 2011 publication-title: Nat. Rev. Immunol. – volume: 10 issue: 2 year: 2015 publication-title: PLoS One – volume: 234 start-page: 214 issue: 1 year: 2018 publication-title: J. Cell. Physiol. – volume: 6 start-page: 74 issue: 1 year: 2021 publication-title: Signal Transduct. Target Ther. – ident: e_1_2_10_4_1 doi: 10.1016/j.mvr.2023.104565 – ident: e_1_2_10_34_1 doi: 10.1080/13880209.2023.2210187 – ident: e_1_2_10_48_1 doi: 10.1016/j.neuroscience.2023.07.012 – ident: e_1_2_10_63_1 doi: 10.1016/j.bbrc.2018.10.058 – ident: e_1_2_10_5_1 doi: 10.1172/JCI62874 – ident: e_1_2_10_11_1 doi: 10.1016/j.molcel.2023.01.006 – ident: e_1_2_10_41_1 doi: 10.1186/s12935-020-01450-1 – ident: e_1_2_10_40_1 doi: 10.1161/CIRCRESAHA.120.318629 – ident: e_1_2_10_6_1 doi: 10.1038/s41392-021-00507-5 – ident: e_1_2_10_33_1 doi: 10.1080/0886022X.2023.2220418 – ident: e_1_2_10_26_1 doi: 10.1016/j.wneu.2019.07.203 – ident: e_1_2_10_28_1 doi: 10.1038/nature14281 – ident: e_1_2_10_20_1 doi: 10.1016/j.jaci.2017.08.034 – ident: e_1_2_10_10_1 doi: 10.3390/cells11203271 – ident: e_1_2_10_38_1 doi: 10.1186/s12943-019-1036-9 – ident: e_1_2_10_61_1 doi: 10.1007/s12033-021-00423-7 – ident: e_1_2_10_57_1 doi: 10.1038/s41598-018-24932-9 – ident: e_1_2_10_62_1 doi: 10.1038/nri2998 – ident: e_1_2_10_12_1 doi: 10.1038/s41392-020-00450-x – ident: e_1_2_10_23_1 doi: 10.1016/j.intimp.2023.110219 – ident: e_1_2_10_25_1 doi: 10.1186/s13045-019-0773-y – ident: e_1_2_10_9_1 doi: 10.1038/s41423-022-00905-x – ident: e_1_2_10_29_1 doi: 10.1186/s13075-023-03035-5 – ident: e_1_2_10_50_1 doi: 10.1016/j.biopha.2020.110419 – ident: e_1_2_10_19_1 doi: 10.1016/j.actbio.2021.11.041 – ident: e_1_2_10_35_1 doi: 10.1016/j.phrs.2021.105743 – volume: 19 start-page: 5335 issue: 6 year: 2019 ident: e_1_2_10_59_1 publication-title: Mol. Med. Rep. – volume: 53 start-page: 176 issue: 3 year: 1976 ident: e_1_2_10_3_1 publication-title: Circulation – ident: e_1_2_10_56_1 doi: 10.1007/s10571-018-0597-2 – ident: e_1_2_10_21_1 doi: 10.1007/s11010-022-04586-y – ident: e_1_2_10_58_1 doi: 10.1002/kjm2.12605 – ident: e_1_2_10_46_1 doi: 10.1371/journal.pone.0118438 – ident: e_1_2_10_64_1 doi: 10.1016/j.intimp.2022.108740 – ident: e_1_2_10_36_1 doi: 10.1016/j.apsb.2022.08.007 – ident: e_1_2_10_8_1 doi: 10.1016/j.cca.2020.06.044 – ident: e_1_2_10_44_1 doi: 10.18632/aging.202143 – ident: e_1_2_10_13_1 doi: 10.1126/science.aau1646 – ident: e_1_2_10_14_1 doi: 10.1038/nrm.2016.132 – ident: e_1_2_10_24_1 doi: 10.1016/j.jbc.2021.101400 – ident: e_1_2_10_16_1 doi: 10.1016/j.isci.2023.106215 – ident: e_1_2_10_15_1 doi: 10.1016/j.ijcard.2022.08.042 – ident: e_1_2_10_27_1 doi: 10.3390/cancers15194811 – ident: e_1_2_10_22_1 doi: 10.1186/s10020-022-00531-3 – ident: e_1_2_10_52_1 doi: 10.1155/2023/1293200 – ident: e_1_2_10_60_1 doi: 10.1007/s10719-022-10081-9 – ident: e_1_2_10_47_1 doi: 10.1002/hep.28885 – volume: 13 issue: 1 year: 2024 ident: e_1_2_10_17_1 publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.123.031353 – ident: e_1_2_10_18_1 doi: 10.1038/s41467-023-36747-y – ident: e_1_2_10_65_1 doi: 10.1097/FJC.0000000000000867 – ident: e_1_2_10_43_1 doi: 10.1177/2040622320916024 – ident: e_1_2_10_2_1 doi: 10.1016/j.bioactmat.2021.06.006 – ident: e_1_2_10_32_1 doi: 10.1080/21655979.2021.1995994 – ident: e_1_2_10_49_1 doi: 10.1038/nature03120 – ident: e_1_2_10_53_1 doi: 10.1007/s12265-023-10383-9 – ident: e_1_2_10_31_1 doi: 10.1080/10799893.2020.1828915 – ident: e_1_2_10_45_1 doi: 10.3390/biom12111625 – ident: e_1_2_10_42_1 doi: 10.7717/peerj.15269 – ident: e_1_2_10_7_1 doi: 10.1016/j.phrs.2021.105447 – ident: e_1_2_10_39_1 doi: 10.1002/jcp.26848 – ident: e_1_2_10_51_1 doi: 10.1096/fj.202200596RRRRRR – ident: e_1_2_10_55_1 doi: 10.1016/j.envpol.2023.122723 – ident: e_1_2_10_30_1 doi: 10.1016/j.reth.2022.08.007 – ident: e_1_2_10_37_1 doi: 10.1186/s11658-022-00329-5 – ident: e_1_2_10_54_1 doi: 10.1016/j.brainres.2023.148560 |
SSID | ssj0005975 |
Score | 2.383954 |
Snippet | Myocardial ischemia‒reperfusion injury (MI/RI) is closely related to pyroptosis. alkB homolog 5 (ALKBH5) is abnormally expressed in the MI/RI models. However,... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e23710 |
SubjectTerms | Adenine AlkB Homolog 5, RNA Demethylase - genetics AlkB Homolog 5, RNA Demethylase - metabolism ALKBH5 Animals Cell viability Chromosome 5 Demethylation Echocardiography Flow cytometry Heart function Immunofluorescence Immunohistochemistry Immunoprecipitation Injury prevention Ischemia Maturation MI/RI MicroRNAs - metabolism Molecular modelling Myocardial ischemia Myocardial Reperfusion Injury - genetics Myocardial Reperfusion Injury - metabolism N6-methyladenosine pri‐miR‐199a‐5p Pyroptosis Rats Reperfusion TNF Receptor-Associated Factor 3 - genetics TNF Receptor-Associated Factor 3 - metabolism TRAF3 Tumor necrosis factor receptors Western blotting |
Title | ALKBH5‐mediated m6A demethylation of pri‐miR‐199a‐5p exacerbates myocardial ischemia/reperfusion injury by regulating TRAF3‐mediated pyroptosis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbt.23710 https://www.ncbi.nlm.nih.gov/pubmed/38605440 https://www.proquest.com/docview/3039083804 https://www.proquest.com/docview/3038426994 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSkhIiEJ5dEtBBnHgku3Gjp1YnLaI1ao8Dqut1ANS5FeqFDaJslmJcOIncOXv8UsY27tbCkJCXJIomdiJx-P5bM8DoefEqtQKU0SUSJigaKUjYamMmGE2NVIkTDp_53fv-fQsOT1n5zvo5cYXJsSH2C64Ocnw47UTcKmWx1dBQy9VNyQ09e5VzlbLAaLZVegoAMrM73QKFnGejjZRhUbkePvmdV30B8C8jle9wpnsoQ-bTw12Jh-Hq04N9Zffojj-57_cQbfXQBSPQ8-5i3ZstY9uhNSU_T66FdbzcHBTuoe-j9--OZmyH1-_eV8TwKl4wcfYWJeCug8GdbgucNOWjqacwTEWQsKJNdh-lhr453AtXvSgPl23_IRLmFrbRemCVDW2LVZu5Q6X1SXwGaset_bCJxerLvB8Np7QXytv-rZuunpZLu-js8nr-atptE7rEGkKGjNKNSeG08SITMep0VrE1qVAFqmEwcNtDNtYUa2Z1IUYJQVjRaIzxaEjEV6Ayn2Adqu6sgcIEwo3uTUwtYbyQLUaEmueSmVtYURCB-jZhsF5E6J35CFOM8mhzXPf5gN0tGF9vhbgZQ7VCECn2SgZoKfbxyB6bj9FVrZeeZrMeQILoHkYusy2FprBPDFJoPAXnvF_rz4_PZn7i8N_J32EbhIAV8GC6Ajtdu3KPgZw1KknXgp-AuVlEFE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELemIQQS4s9gUBhgEA-8pGvs2IklXjpEVbZuD1Un7QVFju1MGTSJ0lQiPPEReOXr8Uk4223HQEiIlyRKHF_i8_l-Z_vuEHpFTBYbofOAEgkGispUIAyVAdPMxFqKiEnr73x8wsen0eEZO9tCb9a-MD4-xGbCzUqGG6-tgNsJ6f3LqKEXWdsnNLb-VddsRm9nUE0vg0cBVGZurVOwgPN4sI4rNCD7m1evaqM_IOZVxOpUzugO-rD-WL_T5GN_2WZ99eW3OI7_-zd30e0VFsVD33nuoS1T7qDrPjtlt4Nu-Sk97D2V7qPvw8nRwZj9-PrNuZsAVMVzPsTa2CzUnd9Th6sc101hyxRTOIZCSDixGpvPUgELLbTF8w40qO2Zn3AB1rWZFzZOVW2afGkn73BRXgCrcdbhxpy7_GLlOZ5NhyP6K_G6a6q6rRbF4gE6Hb2bvR0Hq8wOgaKgNINYcaI5jbRIVBhrpURobBZkEUsYP-zasAkzqhSTKheDKGcsj1SScehLhOegdXfRdlmV5hHChMJNbjRY11AfaFdNQsVjmRmTaxHRHnq55nBa-wAeqQ_VTFJo89S1eQ_trXmfrmR4kQIZAQA1GUQ99GLzGKTPLqnI0lRLVyaxzsACyjz0fWZDhSZgKkYRVP7acf7v5NPDg5m7ePzvRZ-jG-PZ8SSdvD85eoJuEsBafkPRHtpum6V5ClipzZ45kfgJxlEUbA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIhAS4lEoLBQwiAOXbPOwnVictpTV0pYKrbZSD0iRYztVCptE2axEOPETuPL3-CWM7c2WgpAQlyRKHE_imfF8fswMQi9CncWaq9yLQgEDFJlJj-tIeFRRHSvBCRXG3_ndMZuckINTerqBXvW-MC4-xHrCzWiG7a-Ngtcq370IGnqetcMwio171RXC_MSI9P70InYUIGVqlzo59RiL_T6skB_url-9bIz-QJiXAau1OONb6EP_rW6jycfhss2G8stvYRz_82duo5srJIpHTnTuoA1dbqGrLjdlt4VuuAk97PyU7qLvo6PDvQn98fWbdTYBoIrnbISVNjmoO7ejDlc5rpvClCmmcAw4F3CiNdafhQQGGmCL5x3YTyOXn3ABY2s9L0yUqlo3-dJM3eGiPAdG46zDjT6z2cXKMzybjsbRr8TrrqnqtloUi3voZPxm9nrirfI6eDICk-nFkoWKRUTxRAaxkpIH2uRA5rGA3sOsDOsgi6SkQubcJzmlOZFJxkCSQpaDzd1Gm2VV6gcIhxHcZFrB2BrqA9uqwkCyWGRa54qTaICe9wxOaxe-I3WBmsMU2jy1bT5AOz3r05UGL1IgwwGeJj4ZoGfrx6B7ZkFFlLpa2jKJcQXmUOa-E5k1lSiBgSIhUPlLy_i_k08P9mb24uG_F32Krr3fH6dHb48PH6HrIQAtt5toB222zVI_BqDUZk-sQvwEp7sTJA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ALKBH5-mediated+m6A+demethylation+of+pri-miR-199a-5p+exacerbates+myocardial+ischemia%2Freperfusion+injury+by+regulating+TRAF3-mediated+pyroptosis&rft.jtitle=Journal+of+biochemical+and+molecular+toxicology&rft.au=Li%2C+Jiarong&rft.au=Wang%2C+Zhirong&rft.au=Tan%2C+Huayi&rft.au=Tang%2C+Mi&rft.date=2024-04-01&rft.eissn=1099-0461&rft.volume=38&rft.issue=4&rft.spage=e23710&rft_id=info:doi/10.1002%2Fjbt.23710&rft_id=info%3Apmid%2F38605440&rft.externalDocID=38605440 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1095-6670&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1095-6670&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1095-6670&client=summon |