Local bi-planar gradient array design using conformal mapping and simulated annealing
Many magnetic resonance imaging applications require high spatial and temporal resolution. The improved gradient performance required to achieve high spatial and temporal resolution may be achieved by using local gradient coils such as planar gradient inserts. The planar gradient set provides higher...
Saved in:
Published in | Concepts in magnetic resonance. Part B, Magnetic resonance engineering Vol. 35B; no. 1; pp. 23 - 31 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.02.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many magnetic resonance imaging applications require high spatial and temporal resolution. The improved gradient performance required to achieve high spatial and temporal resolution may be achieved by using local gradient coils such as planar gradient inserts. The planar gradient set provides higher gradient performance because it is placed inside of the imaging bore of the magnet (within the body gradients) in close proximity to the imaging region. Although the wire patterns for planar gradients can be designed using two dimensional stream functions and simulated annealing, optimization of the two dimensional stream functions can be much more computationally intensive and time consuming than optimizing the one dimensional stream functions required for cylindrical gradients. To address this problem, we have developed a simple and rapid method for the design of planar gradient inserts to produce a high strength local gradient field and a reasonably uniform imaging region. By using conformal mapping, the two dimensional problem can be simplified to a faster and more easily calculated one dimensional problem. The mapping transforms the magnetic field and wire patterns in the cylindrical system into a magnetic field and wire patterns in the bi‐planar geometry providing a tool for bi‐planar gradient coil design using a one dimensional stream function. © 2009 Wiley Periodicals, Inc. Concepts Magn Reson Part B (Magn Reson Engineering) 35B: 23–31, 2009 |
---|---|
AbstractList | Many magnetic resonance imaging applications require high spatial and temporal resolution. The improved gradient performance required to achieve high spatial and temporal resolution may be achieved by using local gradient coils such as planar gradient inserts. The planar gradient set provides higher gradient performance because it is placed inside of the imaging bore of the magnet (within the body gradients) in close proximity to the imaging region. Although the wire patterns for planar gradients can be designed using two dimensional stream functions and simulated annealing, optimization of the two dimensional stream functions can be much more computationally intensive and time consuming than optimizing the one dimensional stream functions required for cylindrical gradients. To address this problem, we have developed a simple and rapid method for the design of planar gradient inserts to produce a high strength local gradient field and a reasonably uniform imaging region. By using conformal mapping, the two dimensional problem can be simplified to a faster and more easily calculated one dimensional problem. The mapping transforms the magnetic field and wire patterns in the cylindrical system into a magnetic field and wire patterns in the bi‐planar geometry providing a tool for bi‐planar gradient coil design using a one dimensional stream function. © 2009 Wiley Periodicals, Inc. Concepts Magn Reson Part B (Magn Reson Engineering) 35B: 23–31, 2009 Abstract Many magnetic resonance imaging applications require high spatial and temporal resolution. The improved gradient performance required to achieve high spatial and temporal resolution may be achieved by using local gradient coils such as planar gradient inserts. The planar gradient set provides higher gradient performance because it is placed inside of the imaging bore of the magnet (within the body gradients) in close proximity to the imaging region. Although the wire patterns for planar gradients can be designed using two dimensional stream functions and simulated annealing, optimization of the two dimensional stream functions can be much more computationally intensive and time consuming than optimizing the one dimensional stream functions required for cylindrical gradients. To address this problem, we have developed a simple and rapid method for the design of planar gradient inserts to produce a high strength local gradient field and a reasonably uniform imaging region. By using conformal mapping, the two dimensional problem can be simplified to a faster and more easily calculated one dimensional problem. The mapping transforms the magnetic field and wire patterns in the cylindrical system into a magnetic field and wire patterns in the bi‐planar geometry providing a tool for bi‐planar gradient coil design using a one dimensional stream function. © 2009 Wiley Periodicals, Inc. Concepts Magn Reson Part B (Magn Reson Engineering) 35B: 23–31, 2009 |
Author | Goodrich, K. Craig Moon, Sung M. Parker, Dennis L. Hadley, J. Rock |
Author_xml | – sequence: 1 givenname: Sung M. surname: Moon fullname: Moon, Sung M. organization: Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, UT – sequence: 2 givenname: K. Craig surname: Goodrich fullname: Goodrich, K. Craig organization: Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, UT – sequence: 3 givenname: J. Rock surname: Hadley fullname: Hadley, J. Rock organization: Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, UT – sequence: 4 givenname: Dennis L. surname: Parker fullname: Parker, Dennis L. email: parker@ucair.med.utah.edu organization: Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, UT |
BookMark | eNp9kMFOwzAQRC1UJNrCiR_IHaXYsRMnRxSgRbQgUBHcrHVsV4bEiexW0L8npdAjp90dvVmNZoQGrnUaoXOCJwTj5LJq_EROEkwoPkJDkqZJnGL2NjjslJygUQjvPZwXGR6il3lbQR1JG3c1OPDRyoOy2q0j8B62kdLBrly0Cdatoqp1pvVNzzfQdTsFnIqCbTY1rLXqL6eh7vVTdGygDvrsd47R8vZmWc7i-eP0rryaxxXtI8Y0VYarBHOeZ8owLjnmuWKaVJzkQDPKcAYFpyaREqhkWuXaMMlYwQvGOR2ji_3byrcheG1E520DfisIFrtCRF-IkOKnkJ4me_rT1nr7HyrKxfOfJ957bFjrr4MH_IfIOOWpeH2Yiqyk1_dP6UKk9BsPYnSn |
CitedBy_id | crossref_primary_10_1007_s00723_018_1094_y crossref_primary_10_1109_TMAG_2009_2037753 crossref_primary_10_1002_mrm_22639 crossref_primary_10_7498_aps_63_238301 |
Cites_doi | 10.1007/BF01705279 10.1006/jmre.1999.1832 10.1002/cmr.b.20003 10.1016/0730-725X(93)90209-V 10.1006/jmra.1994.1058 10.1002/(SICI)1522-2586(199905)9:5<725::AID-JMRI16>3.0.CO;2-L 10.1016/S0730-725X(99)00012-0 10.1006/jmrb.1996.0133 10.1063/1.1142245 10.1063/1.344953 10.1002/mrm.21063 10.1002/mrm.1910400323 10.1002/mrm.1910380525 10.1063/1.3057859 10.1006/jmra.1993.1178 10.1002/mrm.1910210107 10.1002/mrm.10508 10.1016/S0730-725X(96)00272-X 10.1063/1.1699114 10.1016/S0730-725X(96)00371-2 10.1002/1522-2594(200103)45:3<505::AID-MRM1066>3.0.CO;2-H 10.1002/mrm.1910390214 |
ContentType | Journal Article |
Copyright | Copyright © 2009 Wiley Periodicals, Inc. |
Copyright_xml | – notice: Copyright © 2009 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION |
DOI | 10.1002/cmr.b.20130 |
DatabaseName | Istex CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1552-504X |
EndPage | 31 |
ExternalDocumentID | 10_1002_cmr_b_20130 CMR20130 ark_67375_WNG_6C3DKQ5M_5 |
Genre | article |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 31~ 33P 4.4 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52W 52X 53G 5GY 5VS 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAJEY AAONW AAVGM AAZKR ABCQN ABEML ABIJN ACBWZ ACCFJ ACGFS ACIWK ACMXC ACSCC ACXME ACXQS ADAWD ADBBV ADEOM ADIZJ ADZOD AEEZP AEIMD AEQDE AEUQT AFBPY AFFNX AFPWT AFVGU AFZJQ AIWBW AJAOE AJBDE ALMA_UNASSIGNED_HOLDINGS AMBMR ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BRXPI BSCLL BY8 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 EBS EJD F00 F01 F04 F5P FEDTE G-S GNP GODZA GROUPED_DOAJ H.X HBH HF~ HHZ HVGLF HZ~ IAO ICD IX1 J0M KQQ LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 MK4 MSFUL MSMAN MSSTM N04 N05 NF~ O66 O9- OK1 OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 RHX ROL RWI RYL SUPJJ TEORI UB1 W8V W99 WBKPD WHWMO WIH WIJ WJL WOHZO WQJ WRC WVDHM WXI XG1 XHW XV2 ZCG ZZTAW ~WT 24P AAYXX CITATION ITC |
ID | FETCH-LOGICAL-c3130-35df7d207786df47b7078d4e1c718a363406a973f2bba3b4ed8ef4b449794773 |
IEDL.DBID | DR2 |
ISSN | 1552-5031 |
IngestDate | Thu Sep 26 18:32:23 EDT 2024 Sat Aug 24 00:57:36 EDT 2024 Wed Jan 17 05:02:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3130-35df7d207786df47b7078d4e1c718a363406a973f2bba3b4ed8ef4b449794773 |
Notes | ArticleID:CMR20130 istex:CEC86FDE3FE1EB82BE12BC919BD3DE0468BF2436 ark:/67375/WNG-6C3DKQ5M-5 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1002_cmr_b_20130 wiley_primary_10_1002_cmr_b_20130_CMR20130 istex_primary_ark_67375_WNG_6C3DKQ5M_5 |
PublicationCentury | 2000 |
PublicationDate | 2009-02 February 2009 2009-02-00 |
PublicationDateYYYYMMDD | 2009-02-01 |
PublicationDate_xml | – month: 02 year: 2009 text: 2009-02 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Concepts in magnetic resonance. Part B, Magnetic resonance engineering |
PublicationTitleAlternate | Concepts Magn. Reson |
PublicationYear | 2009 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Martens MA,Petropoulos LS,Brown RW,Andrews JH. 1991. Insertable biplanar gradient coils for magnetic resonance imaging. Rev Sci Instrum 62: 2639-2645. Turner R. 1993. Gradient coil design: a review of methods. Magn Reson Imaging 11: 903-920. Du YP,Parker DL. 1997. Studies on the performance of circular and elliptical z-gradient coils using a simulated annealing algorithm. Magn Reson Imaging 15: 255-262. Du YP,Parker DL. 1998. Optimal design of gradient coils in MR imaging: optimizing coil performance versus minimizing cost functions. Magn Reson Med 40: 500-503. Fisher BJ,Dillon N,Carpenter TA,Hall LD. 1997. Design of a biplanar gradient coil using a genetic algorithm. Magn Reson Imaging 15: 369-376. Chronik BA,Rutt BK. 1998. Constrained length minimum inductance gradient coil design. Magn Reson Med 39: 270-278. Yoda K. 1990. Analytical design of self-shielded planar coils. J Appl Phys 67: 4349-4353. Peters AM,Bowtell RW. 1994. Biplanar gradient coil design by simulated annealing. MAGMA 2: 387-389. Metropolis N,Rosenbluth AW,Rosenbluth MN,Teller AH. 1953. Equations of state calculation by fast computing machines. J Chem Phys 21: 1087-1092. Crozier S,Doddrell DM. 1993. Gradient-coil design by simulated annealing. J Magn Reson A 103: 354-357. Williams GB,Fisher BJ,Huang CL-H,Carpenter TA,Hall LD. 1999. Design of biplanar gradient coils for magnetic resonance imaging of the torso and limbs. Magn Reson Imaging 17: 739-754. Parker DL,Hadley JR. 2006. Multiple-region gradient arrays for extended field of view, increased performance, and reduced nerve stimulation in magnetic resonance imaging. Magn Reson Med 56: 1251-1260. Tomasi D. 2001. Stream function optimization for gradient coil design. Magn Reson Med 45: 505-512. Caparelli EC,Tomasi D,Panepucci H. 1999. Shielded biplanar gradient coil design. J Magn Reson Imaging 9: 725-731. Jackson JD. 1962. Classical Electrodynamics. New York: Wiley. Buszko ML,Kempka MF,Szczesniak E,Andrew ER. 1996. Optimization of transverse gradient coils with coaxial return paths by simulated annealing. J Magn Reson B 112: 207-213. Lemdiasov R,Ludwig R,Brevard M,Ferris C. 2004. Design and implementation of a uniplanar gradient field coil for magnetic resonance imaging. Concepts Magn Reson B 20B: 17-29. Tomasi D,Caparelli EC. 1999. Fast optimization of a biplanargradietn coil set. J Magn Reson 140: 325-339. Lee SY,Park BS,Yi JH,Yi W. 1997. Planar gradient coil design by scaling the spatial frequencies of minimum-inductance current density. Magn Reson Med 38: 858-861. Wong EC,Jesmanowicz A,Hyde JS. 1991. Coil optimization for MRI by conjugate gradient descent. Magn Reson Med 21: 39-48. Zhang B,Yen YF,Chronik BA,McKinnon BC,Schaefer DJ,Rutt BK. 2003. Peripheral nerve stimulation properties of head and body gradient coils of various sizes. Magn Reson Med 50: 50-58. Crozier S,Forbes LK,Doddrell DM. 1994. The design of transverse gradient coils of restricted length by simulated annealing. J Magn Reson A 107: 126-128. Grover FW. 1962. Inductance Calculations. New York: Dover publications. 1998; 39 1990; 67 2006; 56 1991; 21 1999; 17 1993; 11 1997; 15 1991; 62 1999; 140 1997; 38 1962 2004; 20B 1993; 103 2003; 50 2001; 45 1998; 40 1994; 107 1994; 2 1996; 112 1953; 21 1999; 9 e_1_2_1_6_2 e_1_2_1_7_2 e_1_2_1_4_2 Grover FW (e_1_2_1_24_2) 1962 e_1_2_1_5_2 e_1_2_1_2_2 e_1_2_1_11_2 e_1_2_1_22_2 e_1_2_1_3_2 e_1_2_1_12_2 e_1_2_1_23_2 e_1_2_1_20_2 e_1_2_1_10_2 e_1_2_1_21_2 e_1_2_1_15_2 e_1_2_1_16_2 e_1_2_1_13_2 e_1_2_1_14_2 e_1_2_1_25_2 e_1_2_1_19_2 e_1_2_1_8_2 e_1_2_1_17_2 e_1_2_1_9_2 e_1_2_1_18_2 |
References_xml | – volume: 112 start-page: 207 year: 1996 end-page: 213 article-title: Optimization of transverse gradient coils with coaxial return paths by simulated annealing publication-title: J Magn Reson B – volume: 56 start-page: 1251 year: 2006 end-page: 1260 article-title: Multiple‐region gradient arrays for extended field of view, increased performance, and reduced nerve stimulation in magnetic resonance imaging publication-title: Magn Reson Med – start-page: 1168 – volume: 15 start-page: 369 year: 1997 end-page: 376 article-title: Design of a biplanar gradient coil using a genetic algorithm publication-title: Magn Reson Imaging – volume: 40 start-page: 500 year: 1998 end-page: 503 article-title: Optimal design of gradient coils in MR imaging: optimizing coil performance versus minimizing cost functions publication-title: Magn Reson Med – volume: 9 start-page: 725 year: 1999 end-page: 731 article-title: Shielded biplanar gradient coil design publication-title: J Magn Reson Imaging – year: 1962 – volume: 17 start-page: 739 year: 1999 end-page: 754 article-title: Design of biplanar gradient coils for magnetic resonance imaging of the torso and limbs publication-title: Magn Reson Imaging – volume: 15 start-page: 255 year: 1997 end-page: 262 article-title: Studies on the performance of circular and elliptical ‐gradient coils using a simulated annealing algorithm publication-title: Magn Reson Imaging – volume: 11 start-page: 903 year: 1993 end-page: 920 article-title: Gradient coil design: a review of methods publication-title: Magn Reson Imaging – volume: 2 start-page: 387 year: 1994 end-page: 389 article-title: Biplanar gradient coil design by simulated annealing publication-title: MAGMA – volume: 62 start-page: 2639 year: 1991 end-page: 2645 article-title: Insertable biplanar gradient coils for magnetic resonance imaging publication-title: Rev Sci Instrum – volume: 45 start-page: 505 year: 2001 end-page: 512 article-title: Stream function optimization for gradient coil design publication-title: Magn Reson Med – volume: 39 start-page: 270 year: 1998 end-page: 278 article-title: Constrained length minimum inductance gradient coil design publication-title: Magn Reson Med – volume: 20B start-page: 17 year: 2004 end-page: 29 article-title: Design and implementation of a uniplanar gradient field coil for magnetic resonance imaging publication-title: Concepts Magn Reson B – volume: 140 start-page: 325 year: 1999 end-page: 339 article-title: Fast optimization of a biplanargradietn coil set publication-title: J Magn Reson – volume: 21 start-page: 39 year: 1991 end-page: 48 article-title: Coil optimization for MRI by conjugate gradient descent publication-title: Magn Reson Med – volume: 21 start-page: 1087 year: 1953 end-page: 1092 article-title: Equations of state calculation by fast computing machines publication-title: J Chem Phys – volume: 50 start-page: 50 year: 2003 end-page: 58 article-title: Peripheral nerve stimulation properties of head and body gradient coils of various sizes publication-title: Magn Reson Med – volume: 38 start-page: 858 year: 1997 end-page: 861 article-title: Planar gradient coil design by scaling the spatial frequencies of minimum‐inductance current density publication-title: Magn Reson Med – volume: 67 start-page: 4349 year: 1990 end-page: 4353 article-title: Analytical design of self‐shielded planar coils publication-title: J Appl Phys – volume: 103 start-page: 354 year: 1993 end-page: 357 article-title: Gradient‐coil design by simulated annealing publication-title: J Magn Reson A – volume: 107 start-page: 126 year: 1994 end-page: 128 article-title: The design of transverse gradient coils of restricted length by simulated annealing publication-title: J Magn Reson A – ident: e_1_2_1_14_2 doi: 10.1007/BF01705279 – ident: e_1_2_1_15_2 doi: 10.1006/jmre.1999.1832 – ident: e_1_2_1_4_2 doi: 10.1002/cmr.b.20003 – ident: e_1_2_1_5_2 doi: 10.1016/0730-725X(93)90209-V – ident: e_1_2_1_13_2 doi: 10.1006/jmra.1994.1058 – ident: e_1_2_1_25_2 – ident: e_1_2_1_10_2 doi: 10.1002/(SICI)1522-2586(199905)9:5<725::AID-JMRI16>3.0.CO;2-L – ident: e_1_2_1_3_2 doi: 10.1016/S0730-725X(99)00012-0 – ident: e_1_2_1_22_2 doi: 10.1006/jmrb.1996.0133 – ident: e_1_2_1_8_2 doi: 10.1063/1.1142245 – ident: e_1_2_1_7_2 doi: 10.1063/1.344953 – ident: e_1_2_1_23_2 doi: 10.1002/mrm.21063 – ident: e_1_2_1_18_2 doi: 10.1002/mrm.1910400323 – ident: e_1_2_1_9_2 doi: 10.1002/mrm.1910380525 – ident: e_1_2_1_21_2 doi: 10.1063/1.3057859 – ident: e_1_2_1_12_2 doi: 10.1006/jmra.1993.1178 – ident: e_1_2_1_17_2 doi: 10.1002/mrm.1910210107 – ident: e_1_2_1_2_2 doi: 10.1002/mrm.10508 – ident: e_1_2_1_16_2 doi: 10.1016/S0730-725X(96)00272-X – ident: e_1_2_1_11_2 doi: 10.1063/1.1699114 – ident: e_1_2_1_19_2 doi: 10.1016/S0730-725X(96)00371-2 – ident: e_1_2_1_6_2 doi: 10.1002/1522-2594(200103)45:3<505::AID-MRM1066>3.0.CO;2-H – ident: e_1_2_1_20_2 doi: 10.1002/mrm.1910390214 – volume-title: Inductance Calculations year: 1962 ident: e_1_2_1_24_2 contributor: fullname: Grover FW |
SSID | ssj0028960 |
Score | 1.8224267 |
Snippet | Many magnetic resonance imaging applications require high spatial and temporal resolution. The improved gradient performance required to achieve high spatial... Abstract Many magnetic resonance imaging applications require high spatial and temporal resolution. The improved gradient performance required to achieve high... |
SourceID | crossref wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 23 |
SubjectTerms | bi-planar conformal mapping gradient coil gradient insert simulated annealing |
Title | Local bi-planar gradient array design using conformal mapping and simulated annealing |
URI | https://api.istex.fr/ark:/67375/WNG-6C3DKQ5M-5/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcmr.b.20130 |
Volume | 35B |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVQERIXdkTZ5APigJRudrYjKpQKaCUQiN4sO3aqqm2oklYCTnwC38iXMOOUQjkgwS2LEyXjZd7Yb54JOYoh9NcBj2D0g9iEVw13wkhWHeMHSgG8cJnBFd1W22ve88uO25lyczAXJteHmE24Yc-w4zV2cKmy8pdoaDRMSwq5WQwjdpTSQ0h0OxOPgkgizxF2XQi3oO1Os_PgTvnbs3P-aBFN-zSPU62jaazmu6lmVp8Q-SX90mSsStHLD_XGf__DGlmZQlB6mreZdbJgkg2yZKmgUbZJHq7RvVHVe399Gw1kIlPaTS0xbExlmspnqi3rgyJlvkshnra4d0CHErUeulQmmma9Ie4LZjScJYBF4foWuWuc39WbznT7BSdi8EEOc3Xs61oFFeZ0zH2FwkCam2oE_kwyjwEWkKHP4ppSkiludGBirjgPoY_7PtsmheQxMTuExlJ7NV0JJM5Ax8aXntIBQE_NQ8B_YbVIjj7rQIxykQ2RyynXBJhIKGFNVCTHtn5mZWTaR16a74qH9oXw6uzs6sZtCbdITqzVf3uZqLdu7cHuXwrvkeV8OQn5LPukME4n5gBQyVgd2sb3AcEk3NY |
link.rule.ids | 315,786,790,1382,27955,27956,46327,46751 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUQCMGFHVFWHxAHpBRa21mOqCyFLhKoCG6WHTtVBQ1VWiTgxCfwjXwJM05blgMS3LI4kTP22G_Gzy-E7CYQ-puQxzD6QWzCS5Z7UaxKng1CrQFeCGZxRbfR9KvX_OJW3A4TbrgXJteHGCfc0DPceI0Ojgnpg0_V0LibFTWSsxiE7FPg8AId8_hqLB8FsUS-S1gICLig9w7358Gdgy8Pf5uRptC4T9-RqptqTueJHFUyZ5jcFR8Huhi__NBv_P9XLJC5IQqlR3m3WSQTNl0i044NGveXyU0dZziqO--vb717laqMtjPHDRtQlWXqmRpH_KDImm9TCKkd9L2nXYVyD22qUkP7nS7-GswaOEsBjsL1FdI6PWlVqt7wDwxezKBCHhMmCUz5EEXmTMIDjdpAhttSDFOaYj4DOKCigCVlrRXT3JrQJlxzHoGbBwFbJZPpQ2rXCE2U8cvmMFSYhE5soHxtQkCfhkcAAaNSgeyOGkH2cp0NmSsqlyWYSGrpTFQge66BxmVUdofUtEDIm-aZ9CvsuHYpGlIUyL4z-28vk5XGlTtY_0vhHTJTbTXqsn7erG2Q2Xx1Cektm2RykD3aLQApA73teuIHohfg9g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUQCMSFHVFWHyoOSCk0drYjaillaQVVEdwsO3aqChqqtEjAiU_gG_kSZpxSlgMS3LI4UTJe5o395pmQYgKhvw55DKMfxCa8bLgTxbLsmCBUCuCFxwyu6Daafv2Kn954NyNuDubC5PoQ4wk37Bl2vMYO3tfJ_qdoaNzLSgq5WQwi9inuMxdjr2prrB4FoUSeJOx5EG9B4x2l58Gd_S8Pf3NIU2jbx-9A1Xqa2ny-nerAChQiweS29DBUpfj5h3zjv39igcyNMCg9zBvNIpkw6RKZtlzQeLBMrs_Rv1HVfXt57d_JVGa0k1lm2JDKLJNPVFvaB0XOfIdCQG2B7x3tSRR76FCZajro9nBjMKPhLAUwCtdXSLt21K7UndH-C07M4IMc5ukk0O4BSszphAcKlYE0N-UYHJpkPgMwIKOAJa5SkiludGgSrjiPoJMHAVslk-l9atYITaT2XX0QSpyCTkwgfaVDwJ6aRwAAo3KBFD_qQPRzlQ2R6ym7AkwklLAmKpBdWz_jMjK7RWJa4Inr5rHwK6x6duk1hFcge9bqv71MVBote7D-l8I7ZOaiWhPnJ82zDTKbLy0ht2WTTA6zB7MFCGWotm07fAcd79-l |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+bi-planar+gradient+array+design+using+conformal+mapping+and+simulated+annealing&rft.jtitle=Concepts+in+magnetic+resonance.+Part+B%2C+Magnetic+resonance+engineering&rft.au=Moon%2C+Sung+M.&rft.au=Goodrich%2C+K.+Craig&rft.au=Hadley%2C+J.+Rock&rft.au=Parker%2C+Dennis+L.&rft.date=2009-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1552-5031&rft.eissn=1552-504X&rft.volume=35B&rft.issue=1&rft.spage=23&rft.epage=31&rft_id=info:doi/10.1002%2Fcmr.b.20130&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_6C3DKQ5M_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-5031&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-5031&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-5031&client=summon |