Local bi-planar gradient array design using conformal mapping and simulated annealing

Many magnetic resonance imaging applications require high spatial and temporal resolution. The improved gradient performance required to achieve high spatial and temporal resolution may be achieved by using local gradient coils such as planar gradient inserts. The planar gradient set provides higher...

Full description

Saved in:
Bibliographic Details
Published inConcepts in magnetic resonance. Part B, Magnetic resonance engineering Vol. 35B; no. 1; pp. 23 - 31
Main Authors Moon, Sung M., Goodrich, K. Craig, Hadley, J. Rock, Parker, Dennis L.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.02.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many magnetic resonance imaging applications require high spatial and temporal resolution. The improved gradient performance required to achieve high spatial and temporal resolution may be achieved by using local gradient coils such as planar gradient inserts. The planar gradient set provides higher gradient performance because it is placed inside of the imaging bore of the magnet (within the body gradients) in close proximity to the imaging region. Although the wire patterns for planar gradients can be designed using two dimensional stream functions and simulated annealing, optimization of the two dimensional stream functions can be much more computationally intensive and time consuming than optimizing the one dimensional stream functions required for cylindrical gradients. To address this problem, we have developed a simple and rapid method for the design of planar gradient inserts to produce a high strength local gradient field and a reasonably uniform imaging region. By using conformal mapping, the two dimensional problem can be simplified to a faster and more easily calculated one dimensional problem. The mapping transforms the magnetic field and wire patterns in the cylindrical system into a magnetic field and wire patterns in the bi‐planar geometry providing a tool for bi‐planar gradient coil design using a one dimensional stream function. © 2009 Wiley Periodicals, Inc. Concepts Magn Reson Part B (Magn Reson Engineering) 35B: 23–31, 2009
AbstractList Many magnetic resonance imaging applications require high spatial and temporal resolution. The improved gradient performance required to achieve high spatial and temporal resolution may be achieved by using local gradient coils such as planar gradient inserts. The planar gradient set provides higher gradient performance because it is placed inside of the imaging bore of the magnet (within the body gradients) in close proximity to the imaging region. Although the wire patterns for planar gradients can be designed using two dimensional stream functions and simulated annealing, optimization of the two dimensional stream functions can be much more computationally intensive and time consuming than optimizing the one dimensional stream functions required for cylindrical gradients. To address this problem, we have developed a simple and rapid method for the design of planar gradient inserts to produce a high strength local gradient field and a reasonably uniform imaging region. By using conformal mapping, the two dimensional problem can be simplified to a faster and more easily calculated one dimensional problem. The mapping transforms the magnetic field and wire patterns in the cylindrical system into a magnetic field and wire patterns in the bi‐planar geometry providing a tool for bi‐planar gradient coil design using a one dimensional stream function. © 2009 Wiley Periodicals, Inc. Concepts Magn Reson Part B (Magn Reson Engineering) 35B: 23–31, 2009
Abstract Many magnetic resonance imaging applications require high spatial and temporal resolution. The improved gradient performance required to achieve high spatial and temporal resolution may be achieved by using local gradient coils such as planar gradient inserts. The planar gradient set provides higher gradient performance because it is placed inside of the imaging bore of the magnet (within the body gradients) in close proximity to the imaging region. Although the wire patterns for planar gradients can be designed using two dimensional stream functions and simulated annealing, optimization of the two dimensional stream functions can be much more computationally intensive and time consuming than optimizing the one dimensional stream functions required for cylindrical gradients. To address this problem, we have developed a simple and rapid method for the design of planar gradient inserts to produce a high strength local gradient field and a reasonably uniform imaging region. By using conformal mapping, the two dimensional problem can be simplified to a faster and more easily calculated one dimensional problem. The mapping transforms the magnetic field and wire patterns in the cylindrical system into a magnetic field and wire patterns in the bi‐planar geometry providing a tool for bi‐planar gradient coil design using a one dimensional stream function. © 2009 Wiley Periodicals, Inc. Concepts Magn Reson Part B (Magn Reson Engineering) 35B: 23–31, 2009
Author Goodrich, K. Craig
Moon, Sung M.
Parker, Dennis L.
Hadley, J. Rock
Author_xml – sequence: 1
  givenname: Sung M.
  surname: Moon
  fullname: Moon, Sung M.
  organization: Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, UT
– sequence: 2
  givenname: K. Craig
  surname: Goodrich
  fullname: Goodrich, K. Craig
  organization: Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, UT
– sequence: 3
  givenname: J. Rock
  surname: Hadley
  fullname: Hadley, J. Rock
  organization: Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, UT
– sequence: 4
  givenname: Dennis L.
  surname: Parker
  fullname: Parker, Dennis L.
  email: parker@ucair.med.utah.edu
  organization: Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, UT
BookMark eNp9kMFOwzAQRC1UJNrCiR_IHaXYsRMnRxSgRbQgUBHcrHVsV4bEiexW0L8npdAjp90dvVmNZoQGrnUaoXOCJwTj5LJq_EROEkwoPkJDkqZJnGL2NjjslJygUQjvPZwXGR6il3lbQR1JG3c1OPDRyoOy2q0j8B62kdLBrly0Cdatoqp1pvVNzzfQdTsFnIqCbTY1rLXqL6eh7vVTdGygDvrsd47R8vZmWc7i-eP0rryaxxXtI8Y0VYarBHOeZ8owLjnmuWKaVJzkQDPKcAYFpyaREqhkWuXaMMlYwQvGOR2ji_3byrcheG1E520DfisIFrtCRF-IkOKnkJ4me_rT1nr7HyrKxfOfJ957bFjrr4MH_IfIOOWpeH2Yiqyk1_dP6UKk9BsPYnSn
CitedBy_id crossref_primary_10_1007_s00723_018_1094_y
crossref_primary_10_1109_TMAG_2009_2037753
crossref_primary_10_1002_mrm_22639
crossref_primary_10_7498_aps_63_238301
Cites_doi 10.1007/BF01705279
10.1006/jmre.1999.1832
10.1002/cmr.b.20003
10.1016/0730-725X(93)90209-V
10.1006/jmra.1994.1058
10.1002/(SICI)1522-2586(199905)9:5<725::AID-JMRI16>3.0.CO;2-L
10.1016/S0730-725X(99)00012-0
10.1006/jmrb.1996.0133
10.1063/1.1142245
10.1063/1.344953
10.1002/mrm.21063
10.1002/mrm.1910400323
10.1002/mrm.1910380525
10.1063/1.3057859
10.1006/jmra.1993.1178
10.1002/mrm.1910210107
10.1002/mrm.10508
10.1016/S0730-725X(96)00272-X
10.1063/1.1699114
10.1016/S0730-725X(96)00371-2
10.1002/1522-2594(200103)45:3<505::AID-MRM1066>3.0.CO;2-H
10.1002/mrm.1910390214
ContentType Journal Article
Copyright Copyright © 2009 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2009 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/cmr.b.20130
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1552-504X
EndPage 31
ExternalDocumentID 10_1002_cmr_b_20130
CMR20130
ark_67375_WNG_6C3DKQ5M_5
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
4.4
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52W
52X
53G
5GY
5VS
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAJEY
AAONW
AAVGM
AAZKR
ABCQN
ABEML
ABIJN
ACBWZ
ACCFJ
ACGFS
ACIWK
ACMXC
ACSCC
ACXME
ACXQS
ADAWD
ADBBV
ADEOM
ADIZJ
ADZOD
AEEZP
AEIMD
AEQDE
AEUQT
AFBPY
AFFNX
AFPWT
AFVGU
AFZJQ
AIWBW
AJAOE
AJBDE
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BRXPI
BSCLL
BY8
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
GNP
GODZA
GROUPED_DOAJ
H.X
HBH
HF~
HHZ
HVGLF
HZ~
IAO
ICD
IX1
J0M
KQQ
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
MK4
MSFUL
MSMAN
MSSTM
N04
N05
NF~
O66
O9-
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
RHX
ROL
RWI
RYL
SUPJJ
TEORI
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WJL
WOHZO
WQJ
WRC
WVDHM
WXI
XG1
XHW
XV2
ZCG
ZZTAW
~WT
24P
AAYXX
CITATION
ITC
ID FETCH-LOGICAL-c3130-35df7d207786df47b7078d4e1c718a363406a973f2bba3b4ed8ef4b449794773
IEDL.DBID DR2
ISSN 1552-5031
IngestDate Thu Sep 26 18:32:23 EDT 2024
Sat Aug 24 00:57:36 EDT 2024
Wed Jan 17 05:02:02 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3130-35df7d207786df47b7078d4e1c718a363406a973f2bba3b4ed8ef4b449794773
Notes ArticleID:CMR20130
istex:CEC86FDE3FE1EB82BE12BC919BD3DE0468BF2436
ark:/67375/WNG-6C3DKQ5M-5
PageCount 9
ParticipantIDs crossref_primary_10_1002_cmr_b_20130
wiley_primary_10_1002_cmr_b_20130_CMR20130
istex_primary_ark_67375_WNG_6C3DKQ5M_5
PublicationCentury 2000
PublicationDate 2009-02
February 2009
2009-02-00
PublicationDateYYYYMMDD 2009-02-01
PublicationDate_xml – month: 02
  year: 2009
  text: 2009-02
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Concepts in magnetic resonance. Part B, Magnetic resonance engineering
PublicationTitleAlternate Concepts Magn. Reson
PublicationYear 2009
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Martens MA,Petropoulos LS,Brown RW,Andrews JH. 1991. Insertable biplanar gradient coils for magnetic resonance imaging. Rev Sci Instrum 62: 2639-2645.
Turner R. 1993. Gradient coil design: a review of methods. Magn Reson Imaging 11: 903-920.
Du YP,Parker DL. 1997. Studies on the performance of circular and elliptical z-gradient coils using a simulated annealing algorithm. Magn Reson Imaging 15: 255-262.
Du YP,Parker DL. 1998. Optimal design of gradient coils in MR imaging: optimizing coil performance versus minimizing cost functions. Magn Reson Med 40: 500-503.
Fisher BJ,Dillon N,Carpenter TA,Hall LD. 1997. Design of a biplanar gradient coil using a genetic algorithm. Magn Reson Imaging 15: 369-376.
Chronik BA,Rutt BK. 1998. Constrained length minimum inductance gradient coil design. Magn Reson Med 39: 270-278.
Yoda K. 1990. Analytical design of self-shielded planar coils. J Appl Phys 67: 4349-4353.
Peters AM,Bowtell RW. 1994. Biplanar gradient coil design by simulated annealing. MAGMA 2: 387-389.
Metropolis N,Rosenbluth AW,Rosenbluth MN,Teller AH. 1953. Equations of state calculation by fast computing machines. J Chem Phys 21: 1087-1092.
Crozier S,Doddrell DM. 1993. Gradient-coil design by simulated annealing. J Magn Reson A 103: 354-357.
Williams GB,Fisher BJ,Huang CL-H,Carpenter TA,Hall LD. 1999. Design of biplanar gradient coils for magnetic resonance imaging of the torso and limbs. Magn Reson Imaging 17: 739-754.
Parker DL,Hadley JR. 2006. Multiple-region gradient arrays for extended field of view, increased performance, and reduced nerve stimulation in magnetic resonance imaging. Magn Reson Med 56: 1251-1260.
Tomasi D. 2001. Stream function optimization for gradient coil design. Magn Reson Med 45: 505-512.
Caparelli EC,Tomasi D,Panepucci H. 1999. Shielded biplanar gradient coil design. J Magn Reson Imaging 9: 725-731.
Jackson JD. 1962. Classical Electrodynamics. New York: Wiley.
Buszko ML,Kempka MF,Szczesniak E,Andrew ER. 1996. Optimization of transverse gradient coils with coaxial return paths by simulated annealing. J Magn Reson B 112: 207-213.
Lemdiasov R,Ludwig R,Brevard M,Ferris C. 2004. Design and implementation of a uniplanar gradient field coil for magnetic resonance imaging. Concepts Magn Reson B 20B: 17-29.
Tomasi D,Caparelli EC. 1999. Fast optimization of a biplanargradietn coil set. J Magn Reson 140: 325-339.
Lee SY,Park BS,Yi JH,Yi W. 1997. Planar gradient coil design by scaling the spatial frequencies of minimum-inductance current density. Magn Reson Med 38: 858-861.
Wong EC,Jesmanowicz A,Hyde JS. 1991. Coil optimization for MRI by conjugate gradient descent. Magn Reson Med 21: 39-48.
Zhang B,Yen YF,Chronik BA,McKinnon BC,Schaefer DJ,Rutt BK. 2003. Peripheral nerve stimulation properties of head and body gradient coils of various sizes. Magn Reson Med 50: 50-58.
Crozier S,Forbes LK,Doddrell DM. 1994. The design of transverse gradient coils of restricted length by simulated annealing. J Magn Reson A 107: 126-128.
Grover FW. 1962. Inductance Calculations. New York: Dover publications.
1998; 39
1990; 67
2006; 56
1991; 21
1999; 17
1993; 11
1997; 15
1991; 62
1999; 140
1997; 38
1962
2004; 20B
1993; 103
2003; 50
2001; 45
1998; 40
1994; 107
1994; 2
1996; 112
1953; 21
1999; 9
e_1_2_1_6_2
e_1_2_1_7_2
e_1_2_1_4_2
Grover FW (e_1_2_1_24_2) 1962
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_11_2
e_1_2_1_22_2
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_23_2
e_1_2_1_20_2
e_1_2_1_10_2
e_1_2_1_21_2
e_1_2_1_15_2
e_1_2_1_16_2
e_1_2_1_13_2
e_1_2_1_14_2
e_1_2_1_25_2
e_1_2_1_19_2
e_1_2_1_8_2
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
References_xml – volume: 112
  start-page: 207
  year: 1996
  end-page: 213
  article-title: Optimization of transverse gradient coils with coaxial return paths by simulated annealing
  publication-title: J Magn Reson B
– volume: 56
  start-page: 1251
  year: 2006
  end-page: 1260
  article-title: Multiple‐region gradient arrays for extended field of view, increased performance, and reduced nerve stimulation in magnetic resonance imaging
  publication-title: Magn Reson Med
– start-page: 1168
– volume: 15
  start-page: 369
  year: 1997
  end-page: 376
  article-title: Design of a biplanar gradient coil using a genetic algorithm
  publication-title: Magn Reson Imaging
– volume: 40
  start-page: 500
  year: 1998
  end-page: 503
  article-title: Optimal design of gradient coils in MR imaging: optimizing coil performance versus minimizing cost functions
  publication-title: Magn Reson Med
– volume: 9
  start-page: 725
  year: 1999
  end-page: 731
  article-title: Shielded biplanar gradient coil design
  publication-title: J Magn Reson Imaging
– year: 1962
– volume: 17
  start-page: 739
  year: 1999
  end-page: 754
  article-title: Design of biplanar gradient coils for magnetic resonance imaging of the torso and limbs
  publication-title: Magn Reson Imaging
– volume: 15
  start-page: 255
  year: 1997
  end-page: 262
  article-title: Studies on the performance of circular and elliptical ‐gradient coils using a simulated annealing algorithm
  publication-title: Magn Reson Imaging
– volume: 11
  start-page: 903
  year: 1993
  end-page: 920
  article-title: Gradient coil design: a review of methods
  publication-title: Magn Reson Imaging
– volume: 2
  start-page: 387
  year: 1994
  end-page: 389
  article-title: Biplanar gradient coil design by simulated annealing
  publication-title: MAGMA
– volume: 62
  start-page: 2639
  year: 1991
  end-page: 2645
  article-title: Insertable biplanar gradient coils for magnetic resonance imaging
  publication-title: Rev Sci Instrum
– volume: 45
  start-page: 505
  year: 2001
  end-page: 512
  article-title: Stream function optimization for gradient coil design
  publication-title: Magn Reson Med
– volume: 39
  start-page: 270
  year: 1998
  end-page: 278
  article-title: Constrained length minimum inductance gradient coil design
  publication-title: Magn Reson Med
– volume: 20B
  start-page: 17
  year: 2004
  end-page: 29
  article-title: Design and implementation of a uniplanar gradient field coil for magnetic resonance imaging
  publication-title: Concepts Magn Reson B
– volume: 140
  start-page: 325
  year: 1999
  end-page: 339
  article-title: Fast optimization of a biplanargradietn coil set
  publication-title: J Magn Reson
– volume: 21
  start-page: 39
  year: 1991
  end-page: 48
  article-title: Coil optimization for MRI by conjugate gradient descent
  publication-title: Magn Reson Med
– volume: 21
  start-page: 1087
  year: 1953
  end-page: 1092
  article-title: Equations of state calculation by fast computing machines
  publication-title: J Chem Phys
– volume: 50
  start-page: 50
  year: 2003
  end-page: 58
  article-title: Peripheral nerve stimulation properties of head and body gradient coils of various sizes
  publication-title: Magn Reson Med
– volume: 38
  start-page: 858
  year: 1997
  end-page: 861
  article-title: Planar gradient coil design by scaling the spatial frequencies of minimum‐inductance current density
  publication-title: Magn Reson Med
– volume: 67
  start-page: 4349
  year: 1990
  end-page: 4353
  article-title: Analytical design of self‐shielded planar coils
  publication-title: J Appl Phys
– volume: 103
  start-page: 354
  year: 1993
  end-page: 357
  article-title: Gradient‐coil design by simulated annealing
  publication-title: J Magn Reson A
– volume: 107
  start-page: 126
  year: 1994
  end-page: 128
  article-title: The design of transverse gradient coils of restricted length by simulated annealing
  publication-title: J Magn Reson A
– ident: e_1_2_1_14_2
  doi: 10.1007/BF01705279
– ident: e_1_2_1_15_2
  doi: 10.1006/jmre.1999.1832
– ident: e_1_2_1_4_2
  doi: 10.1002/cmr.b.20003
– ident: e_1_2_1_5_2
  doi: 10.1016/0730-725X(93)90209-V
– ident: e_1_2_1_13_2
  doi: 10.1006/jmra.1994.1058
– ident: e_1_2_1_25_2
– ident: e_1_2_1_10_2
  doi: 10.1002/(SICI)1522-2586(199905)9:5<725::AID-JMRI16>3.0.CO;2-L
– ident: e_1_2_1_3_2
  doi: 10.1016/S0730-725X(99)00012-0
– ident: e_1_2_1_22_2
  doi: 10.1006/jmrb.1996.0133
– ident: e_1_2_1_8_2
  doi: 10.1063/1.1142245
– ident: e_1_2_1_7_2
  doi: 10.1063/1.344953
– ident: e_1_2_1_23_2
  doi: 10.1002/mrm.21063
– ident: e_1_2_1_18_2
  doi: 10.1002/mrm.1910400323
– ident: e_1_2_1_9_2
  doi: 10.1002/mrm.1910380525
– ident: e_1_2_1_21_2
  doi: 10.1063/1.3057859
– ident: e_1_2_1_12_2
  doi: 10.1006/jmra.1993.1178
– ident: e_1_2_1_17_2
  doi: 10.1002/mrm.1910210107
– ident: e_1_2_1_2_2
  doi: 10.1002/mrm.10508
– ident: e_1_2_1_16_2
  doi: 10.1016/S0730-725X(96)00272-X
– ident: e_1_2_1_11_2
  doi: 10.1063/1.1699114
– ident: e_1_2_1_19_2
  doi: 10.1016/S0730-725X(96)00371-2
– ident: e_1_2_1_6_2
  doi: 10.1002/1522-2594(200103)45:3<505::AID-MRM1066>3.0.CO;2-H
– ident: e_1_2_1_20_2
  doi: 10.1002/mrm.1910390214
– volume-title: Inductance Calculations
  year: 1962
  ident: e_1_2_1_24_2
  contributor:
    fullname: Grover FW
SSID ssj0028960
Score 1.8224267
Snippet Many magnetic resonance imaging applications require high spatial and temporal resolution. The improved gradient performance required to achieve high spatial...
Abstract Many magnetic resonance imaging applications require high spatial and temporal resolution. The improved gradient performance required to achieve high...
SourceID crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 23
SubjectTerms bi-planar
conformal mapping
gradient coil
gradient insert
simulated annealing
Title Local bi-planar gradient array design using conformal mapping and simulated annealing
URI https://api.istex.fr/ark:/67375/WNG-6C3DKQ5M-5/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcmr.b.20130
Volume 35B
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVQERIXdkTZ5APigJRudrYjKpQKaCUQiN4sO3aqqm2oklYCTnwC38iXMOOUQjkgwS2LEyXjZd7Yb54JOYoh9NcBj2D0g9iEVw13wkhWHeMHSgG8cJnBFd1W22ve88uO25lyczAXJteHmE24Yc-w4zV2cKmy8pdoaDRMSwq5WQwjdpTSQ0h0OxOPgkgizxF2XQi3oO1Os_PgTvnbs3P-aBFN-zSPU62jaazmu6lmVp8Q-SX90mSsStHLD_XGf__DGlmZQlB6mreZdbJgkg2yZKmgUbZJHq7RvVHVe399Gw1kIlPaTS0xbExlmspnqi3rgyJlvkshnra4d0CHErUeulQmmma9Ie4LZjScJYBF4foWuWuc39WbznT7BSdi8EEOc3Xs61oFFeZ0zH2FwkCam2oE_kwyjwEWkKHP4ppSkiludGBirjgPoY_7PtsmheQxMTuExlJ7NV0JJM5Ax8aXntIBQE_NQ8B_YbVIjj7rQIxykQ2RyynXBJhIKGFNVCTHtn5mZWTaR16a74qH9oXw6uzs6sZtCbdITqzVf3uZqLdu7cHuXwrvkeV8OQn5LPukME4n5gBQyVgd2sb3AcEk3NY
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUQCMGFHVFWHxAHpBRa21mOqCyFLhKoCG6WHTtVBQ1VWiTgxCfwjXwJM05blgMS3LI4kTP22G_Gzy-E7CYQ-puQxzD6QWzCS5Z7UaxKng1CrQFeCGZxRbfR9KvX_OJW3A4TbrgXJteHGCfc0DPceI0Ojgnpg0_V0LibFTWSsxiE7FPg8AId8_hqLB8FsUS-S1gICLig9w7358Gdgy8Pf5uRptC4T9-RqptqTueJHFUyZ5jcFR8Huhi__NBv_P9XLJC5IQqlR3m3WSQTNl0i044NGveXyU0dZziqO--vb717laqMtjPHDRtQlWXqmRpH_KDImm9TCKkd9L2nXYVyD22qUkP7nS7-GswaOEsBjsL1FdI6PWlVqt7wDwxezKBCHhMmCUz5EEXmTMIDjdpAhttSDFOaYj4DOKCigCVlrRXT3JrQJlxzHoGbBwFbJZPpQ2rXCE2U8cvmMFSYhE5soHxtQkCfhkcAAaNSgeyOGkH2cp0NmSsqlyWYSGrpTFQge66BxmVUdofUtEDIm-aZ9CvsuHYpGlIUyL4z-28vk5XGlTtY_0vhHTJTbTXqsn7erG2Q2Xx1Cektm2RykD3aLQApA73teuIHohfg9g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUQCMSFHVFWHyoOSCk0drYjaillaQVVEdwsO3aqChqqtEjAiU_gG_kSZpxSlgMS3LI4UTJe5o395pmQYgKhvw55DKMfxCa8bLgTxbLsmCBUCuCFxwyu6Daafv2Kn954NyNuDubC5PoQ4wk37Bl2vMYO3tfJ_qdoaNzLSgq5WQwi9inuMxdjr2prrB4FoUSeJOx5EG9B4x2l58Gd_S8Pf3NIU2jbx-9A1Xqa2ny-nerAChQiweS29DBUpfj5h3zjv39igcyNMCg9zBvNIpkw6RKZtlzQeLBMrs_Rv1HVfXt57d_JVGa0k1lm2JDKLJNPVFvaB0XOfIdCQG2B7x3tSRR76FCZajro9nBjMKPhLAUwCtdXSLt21K7UndH-C07M4IMc5ukk0O4BSszphAcKlYE0N-UYHJpkPgMwIKOAJa5SkiludGgSrjiPoJMHAVslk-l9atYITaT2XX0QSpyCTkwgfaVDwJ6aRwAAo3KBFD_qQPRzlQ2R6ym7AkwklLAmKpBdWz_jMjK7RWJa4Inr5rHwK6x6duk1hFcge9bqv71MVBote7D-l8I7ZOaiWhPnJ82zDTKbLy0ht2WTTA6zB7MFCGWotm07fAcd79-l
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+bi-planar+gradient+array+design+using+conformal+mapping+and+simulated+annealing&rft.jtitle=Concepts+in+magnetic+resonance.+Part+B%2C+Magnetic+resonance+engineering&rft.au=Moon%2C+Sung+M.&rft.au=Goodrich%2C+K.+Craig&rft.au=Hadley%2C+J.+Rock&rft.au=Parker%2C+Dennis+L.&rft.date=2009-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1552-5031&rft.eissn=1552-504X&rft.volume=35B&rft.issue=1&rft.spage=23&rft.epage=31&rft_id=info:doi/10.1002%2Fcmr.b.20130&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_6C3DKQ5M_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-5031&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-5031&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-5031&client=summon