Adaptive sparse principal component analysis for enhanced process monitoring and fault isolation

Principal component analysis (PCA) has been widely applied for process monitoring and fault isolation. However, PCA lacks physical interpretation of principal components (PCs) since each PC is a linear combination of all variables, which makes the fault detection difficult. Moreover, since the PCA m...

Full description

Saved in:
Bibliographic Details
Published inChemometrics and intelligent laboratory systems Vol. 146; pp. 426 - 436
Main Authors Liu, Kangling, Fei, Zhengshun, Yue, Boxuan, Liang, Jun, Lin, Hai
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.08.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Principal component analysis (PCA) has been widely applied for process monitoring and fault isolation. However, PCA lacks physical interpretation of principal components (PCs) since each PC is a linear combination of all variables, which makes the fault detection difficult. Moreover, since the PCA model is time invariant while all real world processes are time varying and subject to disturbances. This mismatch may cause a false alarm or missed detection. Due to these motivations, we propose an adaptive sparse PCA (ASPCA) for enhanced process monitoring and fault isolation. which obtains sparse loadings by imposing a sparsity constraint on PCA. ASPCA with sparse loadings improves the interpretation and then facilitates the isolation of faulty variables. Meanwhile, ASPCA enhances model adaptability by updating the loadings with the sparsity constraint modified with changes in operating conditions. Next, a process monitoring and fault isolation strategy is presented based on ASPCA. Qusi-T2 and squared prediction error monitoring statistics are defined in the PC and residual subspaces, respectively. Nonzero variables in dominant PCs with most contributions to the fault are preferentially reconstructed. Case studies of TE process and waveform system demonstrate that the ASPCA method performs better in process monitoring and fault isolation compared to the PCA method. •The interpretation and the adaptability of model are both improved by introducing sparse and adaptive techniques on PCA.•The capability of identifying faulty variables is enhanced compared to conventional PCA.•The model is automatically updated based on the process data.
AbstractList Principal component analysis (PCA) has been widely applied for process monitoring and fault isolation. However, PCA lacks physical interpretation of principal components (PCs) since each PC is a linear combination of all variables, which makes the fault detection difficult. Moreover, since the PCA model is time invariant while all real world processes are time varying and subject to disturbances. This mismatch may cause a false alarm or missed detection. Due to these motivations, we propose an adaptive sparse PCA (ASPCA) for enhanced process monitoring and fault isolation. which obtains sparse loadings by imposing a sparsity constraint on PCA. ASPCA with sparse loadings improves the interpretation and then facilitates the isolation of faulty variables. Meanwhile, ASPCA enhances model adaptability by updating the loadings with the sparsity constraint modified with changes in operating conditions. Next, a process monitoring and fault isolation strategy is presented based on ASPCA. Qusi-T2 and squared prediction error monitoring statistics are defined in the PC and residual subspaces, respectively. Nonzero variables in dominant PCs with most contributions to the fault are preferentially reconstructed. Case studies of TE process and waveform system demonstrate that the ASPCA method performs better in process monitoring and fault isolation compared to the PCA method. •The interpretation and the adaptability of model are both improved by introducing sparse and adaptive techniques on PCA.•The capability of identifying faulty variables is enhanced compared to conventional PCA.•The model is automatically updated based on the process data.
Author Lin, Hai
Liu, Kangling
Fei, Zhengshun
Yue, Boxuan
Liang, Jun
Author_xml – sequence: 1
  givenname: Kangling
  surname: Liu
  fullname: Liu, Kangling
  organization: State Key Lab of Industrial Control Technology, Institute of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
– sequence: 2
  givenname: Zhengshun
  surname: Fei
  fullname: Fei, Zhengshun
  organization: School of Automation and Electrical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, PR China
– sequence: 3
  givenname: Boxuan
  surname: Yue
  fullname: Yue, Boxuan
  organization: State Key Lab of Industrial Control Technology, Institute of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
– sequence: 4
  givenname: Jun
  orcidid: 0000-0003-1115-0824
  surname: Liang
  fullname: Liang, Jun
  email: jliang@iipc.zju.edu.cn
  organization: State Key Lab of Industrial Control Technology, Institute of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
– sequence: 5
  givenname: Hai
  surname: Lin
  fullname: Lin, Hai
  organization: Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
BookMark eNqFkMtKAzEUhoNUsK2-guQFZkxmMjMNuLAUbyC40XU8PcnYlGkyJFHo25ta3bhxdTjwf-fyzcjEeWcIueSs5Iy3V9sSN2bnB1iXFeNNydqScXFCpnzR1UVd1XJCpjkoi07U8ozMYtyyQy_4lLwtNYzJfhoaRwjR0DFYh3aEgaLfjXmTSxQcDPtoI-19oMZtwKHROenRxEh33tnkM_aeg5r28DEkamM-KFnvzslpD0M0Fz91Tl7vbl9WD8XT8_3javlUYM2rVPQNhxYb0XQoxcKYSnMQWja6lxqqToLuOskRZWsWzRraBV8L0SNC3yAyweo5uT7OxeBjDKZXaNP3BSmAHRRn6mBLbdWvLXWwpVirsq2Mt3_wLGIHYf8_eHMETX7u05qgIlpzEGSDwaS0t_-N-AJevI5I
CitedBy_id crossref_primary_10_1002_qre_2128
crossref_primary_10_1109_JIOT_2020_3039324
crossref_primary_10_1109_TIM_2023_3298636
crossref_primary_10_1080_08982112_2018_1461905
crossref_primary_10_1016_j_engappai_2017_06_013
crossref_primary_10_1016_j_ifacol_2016_07_259
crossref_primary_10_1016_j_chemolab_2015_12_017
crossref_primary_10_1016_j_jprocont_2020_06_011
crossref_primary_10_1016_j_psep_2022_05_073
crossref_primary_10_1080_24699322_2017_1389391
crossref_primary_10_1016_j_chemolab_2018_04_012
crossref_primary_10_1016_j_compchemeng_2021_107281
crossref_primary_10_1016_j_jprocont_2019_09_004
crossref_primary_10_1016_j_measurement_2015_09_007
crossref_primary_10_1016_j_arabjc_2020_10_020
crossref_primary_10_1016_j_ces_2021_116890
crossref_primary_10_1021_acs_iecr_0c01749
crossref_primary_10_1109_TII_2018_2868364
crossref_primary_10_1016_j_jtice_2021_04_029
crossref_primary_10_1016_j_jprocont_2017_03_005
crossref_primary_10_1002_cjce_24026
Cites_doi 10.1016/0169-7439(87)80084-9
10.1016/0098-1354(94)00057-U
10.1016/S0967-0661(03)00083-2
10.1198/106186006X113430
10.1016/j.chemolab.2014.10.002
10.1016/0169-7439(93)E0075-F
10.1198/1061860032148
10.1111/j.1467-9868.2005.00503.x
10.1021/ie301096x
10.1016/j.jprocont.2013.10.013
10.1002/aic.10325
10.1021/ie302069q
10.1016/S0098-1354(97)00262-7
10.1002/cem.667
10.1016/S0967-0661(99)00191-4
10.1021/ie050391w
10.1002/aic.690440712
10.1016/j.automatica.2009.02.027
10.1016/j.arcontrol.2009.08.001
10.1016/S0959-1524(97)80001-7
10.1016/j.jprocont.2013.09.019
10.1007/s00500-012-0910-9
10.1016/0098-1354(93)80018-I
10.1021/ie401834e
10.1021/ie301945s
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.chemolab.2015.06.014
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3239
EndPage 436
ExternalDocumentID 10_1016_j_chemolab_2015_06_014
S0169743915001628
GroupedDBID ---
--K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABAOU
ABFRF
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCH
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSW
SSZ
T5K
UNMZH
YK3
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
SCB
SEW
SSH
WUQ
XPP
ID FETCH-LOGICAL-c312t-f51a6c5457c948ee2d1a4d95df9da279ad7791cc96e85ba681b44fccaf5cc0403
IEDL.DBID .~1
ISSN 0169-7439
IngestDate Tue Jul 01 03:17:08 EDT 2025
Thu Apr 24 23:07:46 EDT 2025
Fri Feb 23 02:33:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Process monitoring
Fault isolation
Sparse
Adaptive
Principal component analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-f51a6c5457c948ee2d1a4d95df9da279ad7791cc96e85ba681b44fccaf5cc0403
ORCID 0000-0003-1115-0824
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_chemolab_2015_06_014
crossref_primary_10_1016_j_chemolab_2015_06_014
elsevier_sciencedirect_doi_10_1016_j_chemolab_2015_06_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-08-15
PublicationDateYYYYMMDD 2015-08-15
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-15
  day: 15
PublicationDecade 2010
PublicationTitle Chemometrics and intelligent laboratory systems
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Sun, Fan (bb0015) 2015; 140
Dayal, MacGregor (bb0085) 1997; 7
Sedgwick (bb0105) 2012; 345
Breiman, Friedman, Stone, Olshen (bb0135) 1984
Zhao, Sun (bb0070) 2013; 23
Lyman, Georgakis (bb0130) 1995; 19
Chen, Kruger, Leung (bb0115) 2004; 12
Zou, Hastie (bb0060) 2005; 67
Zou, Hastie, Tibshirani (bb0050) 2006; 15
Wold (bb0080) 1994; 23
Ge, Song, Gao (bb0005) 2013; 52
Downs, Vogel (bb0125) 1993; 17
Chen, Wynne, Goulding, Sandoz (bb0110) 2000; 8
Alcala, Qin (bb0120) 2009; 45
Wang, Fan, Yao (bb0025) 2014; 53
Alaei, Salahshoor, Alaei (bb0100) 2013; 17
Qin, Valle, Piovoso (bb0035) 2001; 15
Bakshi (bb0040) 1998; 44
Hong, Zhang, Morris (bb0045) 2014; 24
Qin (bb0090) 1998; 22
Yao, Gao (bb0010) 2009; 33
Choi, Martin, Morris, Lee (bb0095) 2006; 45
He, Qin, Wang (bb0065) 2005; 51
Zhao, Sun, Gao (bb0075) 2012; 51
Jolliffe, Trendafilov, Uddin (bb0055) 2003; 12
Wold, Esbensen, Geladi (bb0020) 1987; 2
Ge, Song (bb0030) 2013; 52
Qin (10.1016/j.chemolab.2015.06.014_bb0035) 2001; 15
Zhang (10.1016/j.chemolab.2015.06.014_bb0015) 2015; 140
Zou (10.1016/j.chemolab.2015.06.014_bb0050) 2006; 15
He (10.1016/j.chemolab.2015.06.014_bb0065) 2005; 51
Alaei (10.1016/j.chemolab.2015.06.014_bb0100) 2013; 17
Qin (10.1016/j.chemolab.2015.06.014_bb0090) 1998; 22
Ge (10.1016/j.chemolab.2015.06.014_bb0005) 2013; 52
Hong (10.1016/j.chemolab.2015.06.014_bb0045) 2014; 24
Chen (10.1016/j.chemolab.2015.06.014_bb0110) 2000; 8
Zou (10.1016/j.chemolab.2015.06.014_bb0060) 2005; 67
Sedgwick (10.1016/j.chemolab.2015.06.014_bb0105) 2012; 345
Zhao (10.1016/j.chemolab.2015.06.014_bb0075) 2012; 51
Choi (10.1016/j.chemolab.2015.06.014_bb0095) 2006; 45
Chen (10.1016/j.chemolab.2015.06.014_bb0115) 2004; 12
Breiman (10.1016/j.chemolab.2015.06.014_bb0135) 1984
Wold (10.1016/j.chemolab.2015.06.014_bb0020) 1987; 2
Yao (10.1016/j.chemolab.2015.06.014_bb0010) 2009; 33
Downs (10.1016/j.chemolab.2015.06.014_bb0125) 1993; 17
Zhao (10.1016/j.chemolab.2015.06.014_bb0070) 2013; 23
Wold (10.1016/j.chemolab.2015.06.014_bb0080) 1994; 23
Dayal (10.1016/j.chemolab.2015.06.014_bb0085) 1997; 7
Bakshi (10.1016/j.chemolab.2015.06.014_bb0040) 1998; 44
Jolliffe (10.1016/j.chemolab.2015.06.014_bb0055) 2003; 12
Alcala (10.1016/j.chemolab.2015.06.014_bb0120) 2009; 45
Wang (10.1016/j.chemolab.2015.06.014_bb0025) 2014; 53
Ge (10.1016/j.chemolab.2015.06.014_bb0030) 2013; 52
Lyman (10.1016/j.chemolab.2015.06.014_bb0130) 1995; 19
References_xml – volume: 140
  start-page: 49
  year: 2015
  end-page: 60
  ident: bb0015
  article-title: Fault diagnosis of nonlinear process based on KCPLS reconstruction
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 52
  start-page: 3543
  year: 2013
  end-page: 3562
  ident: bb0005
  article-title: Review of recent research on data-based process monitoring
  publication-title: Ind. Eng. Chem. Res.
– volume: 15
  start-page: 715
  year: 2001
  end-page: 742
  ident: bb0035
  article-title: On unifying multiblock analysis with application to decentralized process monitoring
  publication-title: J. Chemometr.
– volume: 24
  start-page: 13
  year: 2014
  end-page: 26
  ident: bb0045
  article-title: Progressive multi-block modelling for enhanced fault isolation in batch processes
  publication-title: J. Process Control
– volume: 2
  start-page: 37
  year: 1987
  end-page: 52
  ident: bb0020
  article-title: Principal component analysis
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 17
  start-page: 345
  year: 2013
  end-page: 362
  ident: bb0100
  article-title: A new integrated on-line fuzzy clustering and segmentation methodology with adaptive PCA approach for process monitoring and fault detection and diagnosis
  publication-title: Soft. Comput.
– volume: 45
  start-page: 1593
  year: 2009
  end-page: 1600
  ident: bb0120
  article-title: Reconstruction-based contribution for process monitoring
  publication-title: Automatica
– volume: 19
  start-page: 321
  year: 1995
  end-page: 331
  ident: bb0130
  article-title: Plant-wide control of the Tennessee Eastman problem
  publication-title: Comput. Chem. Eng.
– volume: 44
  start-page: 1596
  year: 1998
  end-page: 1610
  ident: bb0040
  article-title: Multiscale PCA with application to multivariate statistical process monitoring
  publication-title: AIChE J.
– volume: 45
  start-page: 3108
  year: 2006
  end-page: 3118
  ident: bb0095
  article-title: Adaptive multivariate statistical process control for monitoring time-varying processes
  publication-title: Ind. Eng. Chem. Res.
– volume: 8
  start-page: 531
  year: 2000
  end-page: 543
  ident: bb0110
  article-title: The application of principal component analysis and kernel density estimation to enhance process monitoring
  publication-title: Control. Eng. Pract.
– volume: 51
  start-page: 555
  year: 2005
  end-page: 571
  ident: bb0065
  article-title: A new fault diagnosis method using fault directions in fisher discriminant analysis
  publication-title: Aiche J.
– volume: 12
  start-page: 531
  year: 2003
  end-page: 547
  ident: bb0055
  article-title: A modified principal component technique based on the LASSO
  publication-title: J. Comput. Graph. Stat.
– volume: 17
  year: 1993
  ident: bb0125
  article-title: A plant-wide industrial process control problem
  publication-title: Comput. Chem. Eng.
– volume: 33
  start-page: 172
  year: 2009
  end-page: 183
  ident: bb0010
  article-title: A survey on multistage/multiphase statistical modeling methods for batch processes
  publication-title: Annu. Rev. Control
– volume: 7
  start-page: 169
  year: 1997
  end-page: 179
  ident: bb0085
  article-title: Recursive exponentially weighted PLS and its applications to adaptive control and prediction
  publication-title: J. Process Control
– volume: 22
  start-page: 503
  year: 1998
  end-page: 514
  ident: bb0090
  article-title: Recursive PLS algorithms for adaptive data modeling
  publication-title: Comput. Chem. Eng.
– volume: 23
  start-page: 149
  year: 1994
  end-page: 161
  ident: bb0080
  article-title: Exponentially weighted moving principal components-analysis and projections to latent structures
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 52
  start-page: 1947
  year: 2013
  end-page: 1957
  ident: bb0030
  article-title: Distributed PCA model for plant-wide process monitoring
  publication-title: Ind. Eng. Chem. Res.
– volume: 23
  start-page: 1515
  year: 2013
  end-page: 1527
  ident: bb0070
  article-title: Comprehensive subspace decomposition and isolation of principal reconstruction directions for online fault diagnosis
  publication-title: J. Process Control
– volume: 15
  start-page: 265
  year: 2006
  end-page: 286
  ident: bb0050
  article-title: Sparse principal component analysis
  publication-title: J. Comput. Graph. Stat.
– volume: 53
  start-page: 4328
  year: 2014
  end-page: 4338
  ident: bb0025
  article-title: Online monitoring of multivariate processes using higher-order cumulants analysis
  publication-title: Ind. Eng. Chem. Res.
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: bb0060
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– volume: 12
  start-page: 267
  year: 2004
  end-page: 274
  ident: bb0115
  article-title: Regularised kernel density estimation for clustered process data
  publication-title: Control. Eng. Pract.
– volume: 345
  year: 2012
  ident: bb0105
  article-title: Pearson’s correlation coefficient
  publication-title: BMJ Br. Med. J.
– year: 1984
  ident: bb0135
  article-title: Classification and Regression Trees
– volume: 51
  start-page: 11207
  year: 2012
  end-page: 11217
  ident: bb0075
  article-title: A multiple-time-region (MTR)-based fault subspace decomposition and reconstruction modeling strategy for online fault diagnosis
  publication-title: Ind. Eng. Chem. Res.
– volume: 2
  start-page: 37
  year: 1987
  ident: 10.1016/j.chemolab.2015.06.014_bb0020
  article-title: Principal component analysis
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/0169-7439(87)80084-9
– volume: 19
  start-page: 321
  year: 1995
  ident: 10.1016/j.chemolab.2015.06.014_bb0130
  article-title: Plant-wide control of the Tennessee Eastman problem
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(94)00057-U
– volume: 12
  start-page: 267
  year: 2004
  ident: 10.1016/j.chemolab.2015.06.014_bb0115
  article-title: Regularised kernel density estimation for clustered process data
  publication-title: Control. Eng. Pract.
  doi: 10.1016/S0967-0661(03)00083-2
– volume: 15
  start-page: 265
  year: 2006
  ident: 10.1016/j.chemolab.2015.06.014_bb0050
  article-title: Sparse principal component analysis
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/106186006X113430
– volume: 140
  start-page: 49
  year: 2015
  ident: 10.1016/j.chemolab.2015.06.014_bb0015
  article-title: Fault diagnosis of nonlinear process based on KCPLS reconstruction
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2014.10.002
– volume: 23
  start-page: 149
  year: 1994
  ident: 10.1016/j.chemolab.2015.06.014_bb0080
  article-title: Exponentially weighted moving principal components-analysis and projections to latent structures
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/0169-7439(93)E0075-F
– volume: 12
  start-page: 531
  year: 2003
  ident: 10.1016/j.chemolab.2015.06.014_bb0055
  article-title: A modified principal component technique based on the LASSO
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/1061860032148
– volume: 67
  start-page: 301
  year: 2005
  ident: 10.1016/j.chemolab.2015.06.014_bb0060
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 51
  start-page: 11207
  year: 2012
  ident: 10.1016/j.chemolab.2015.06.014_bb0075
  article-title: A multiple-time-region (MTR)-based fault subspace decomposition and reconstruction modeling strategy for online fault diagnosis
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie301096x
– volume: 24
  start-page: 13
  year: 2014
  ident: 10.1016/j.chemolab.2015.06.014_bb0045
  article-title: Progressive multi-block modelling for enhanced fault isolation in batch processes
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2013.10.013
– volume: 51
  start-page: 555
  year: 2005
  ident: 10.1016/j.chemolab.2015.06.014_bb0065
  article-title: A new fault diagnosis method using fault directions in fisher discriminant analysis
  publication-title: Aiche J.
  doi: 10.1002/aic.10325
– volume: 52
  start-page: 3543
  year: 2013
  ident: 10.1016/j.chemolab.2015.06.014_bb0005
  article-title: Review of recent research on data-based process monitoring
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie302069q
– volume: 22
  start-page: 503
  year: 1998
  ident: 10.1016/j.chemolab.2015.06.014_bb0090
  article-title: Recursive PLS algorithms for adaptive data modeling
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(97)00262-7
– volume: 15
  start-page: 715
  year: 2001
  ident: 10.1016/j.chemolab.2015.06.014_bb0035
  article-title: On unifying multiblock analysis with application to decentralized process monitoring
  publication-title: J. Chemometr.
  doi: 10.1002/cem.667
– volume: 8
  start-page: 531
  year: 2000
  ident: 10.1016/j.chemolab.2015.06.014_bb0110
  article-title: The application of principal component analysis and kernel density estimation to enhance process monitoring
  publication-title: Control. Eng. Pract.
  doi: 10.1016/S0967-0661(99)00191-4
– volume: 45
  start-page: 3108
  year: 2006
  ident: 10.1016/j.chemolab.2015.06.014_bb0095
  article-title: Adaptive multivariate statistical process control for monitoring time-varying processes
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie050391w
– volume: 44
  start-page: 1596
  year: 1998
  ident: 10.1016/j.chemolab.2015.06.014_bb0040
  article-title: Multiscale PCA with application to multivariate statistical process monitoring
  publication-title: AIChE J.
  doi: 10.1002/aic.690440712
– volume: 345
  year: 2012
  ident: 10.1016/j.chemolab.2015.06.014_bb0105
  article-title: Pearson’s correlation coefficient
  publication-title: BMJ Br. Med. J.
– volume: 45
  start-page: 1593
  year: 2009
  ident: 10.1016/j.chemolab.2015.06.014_bb0120
  article-title: Reconstruction-based contribution for process monitoring
  publication-title: Automatica
  doi: 10.1016/j.automatica.2009.02.027
– volume: 33
  start-page: 172
  year: 2009
  ident: 10.1016/j.chemolab.2015.06.014_bb0010
  article-title: A survey on multistage/multiphase statistical modeling methods for batch processes
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2009.08.001
– volume: 7
  start-page: 169
  year: 1997
  ident: 10.1016/j.chemolab.2015.06.014_bb0085
  article-title: Recursive exponentially weighted PLS and its applications to adaptive control and prediction
  publication-title: J. Process Control
  doi: 10.1016/S0959-1524(97)80001-7
– volume: 23
  start-page: 1515
  year: 2013
  ident: 10.1016/j.chemolab.2015.06.014_bb0070
  article-title: Comprehensive subspace decomposition and isolation of principal reconstruction directions for online fault diagnosis
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2013.09.019
– volume: 17
  start-page: 345
  year: 2013
  ident: 10.1016/j.chemolab.2015.06.014_bb0100
  article-title: A new integrated on-line fuzzy clustering and segmentation methodology with adaptive PCA approach for process monitoring and fault detection and diagnosis
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-012-0910-9
– volume: 17
  year: 1993
  ident: 10.1016/j.chemolab.2015.06.014_bb0125
  article-title: A plant-wide industrial process control problem
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(93)80018-I
– volume: 53
  start-page: 4328
  year: 2014
  ident: 10.1016/j.chemolab.2015.06.014_bb0025
  article-title: Online monitoring of multivariate processes using higher-order cumulants analysis
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie401834e
– volume: 52
  start-page: 1947
  year: 2013
  ident: 10.1016/j.chemolab.2015.06.014_bb0030
  article-title: Distributed PCA model for plant-wide process monitoring
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie301945s
– year: 1984
  ident: 10.1016/j.chemolab.2015.06.014_bb0135
SSID ssj0016941
Score 2.2715404
Snippet Principal component analysis (PCA) has been widely applied for process monitoring and fault isolation. However, PCA lacks physical interpretation of principal...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 426
SubjectTerms Adaptive
Fault isolation
Principal component analysis
Process monitoring
Sparse
Title Adaptive sparse principal component analysis for enhanced process monitoring and fault isolation
URI https://dx.doi.org/10.1016/j.chemolab.2015.06.014
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwELYQHdql6lOlD-ShayBO7CQeESqircrSIrGljh8qCGhEYe1v710eiEqVGLolkU-y7s7ffXbuzoTcO5apwApsdGsS2KAI35ORlF5ogE34ic4yiYXCL6NoOOZPEzFpkH5dC4NplRX2l5heoHX1pVtps5tPp91X7COCdBooDTwGWPDLeYxe3vnepnkwLNQs-3tLD0fvVAnPOqCXBewgM0zxEkUfT8b_DlA7QWdwQo4rtkh75YROScMuz8hhv76k7Zy894zKEbEoIMPqy9K8PDwHIUwW_1xCTKGqajxCgaBSu_wofvrTvCwRoItiVePxHgw01KnNfE2n4JKFzS7IePDw1h961aUJng5ZsPacYCrSwItiLXlibWCY4kYK46RRQSyViWPJtJaRTUSmIqCtnDuwoxNaw4oOL0lzCbO7IlQ450sTQ0A3GddhJp1vYwcQkGA1b-i3iKg1leqqozhebDFP69SxWVprOEUNp5hDx3iLdLdyedlTY6-ErA2R_vKOFIB_j-z1P2RvyBG-4RkyE7ekuV5t7B2QkHXWLrysTQ56j8_D0Q9ha97C
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDLAgnqI8PbCmjRM7iUdUURVouwBSt-D4IVrREJWy8tu5y6MCCakDW5T4JOvO_u6zcw9Crh3LVGAFFro1CRxQhO_JSEovNMAm_ERnmcRE4dE4Gjzz-4mYbJBekwuDYZU19leYXqJ1_aZba7NbTKfdR6wjgnQaKA08Bskm2eKwfbGNQedrFefBMFOzKvAtPRz-I0141gHFzOEImWGMlygLeTL-t4f64XX6e2S3pov0pprRPtmw-QHZ7jVd2g7Jy41RBUIWBWhYfFhaVLfnIITR4u85OBWq6sojFBgqtflr-defFlWOAJ2X2xrv92CgoU59vi3pFNZkabQj8ty_feoNvLprgqdDFiw9J5iKNBCjWEueWBsYpriRwjhpVBBLZeJYMq1lZBORqQh4K-cODOmE1rClw2PSymF2J4QK53xpYvDoJuM6zKTzbewAAxJM5w39NhGNplJdlxTHzhZvaRM7NksbDaeo4RSD6Bhvk-5KrqiKaqyVkI0h0l_LIwXkXyN7-g_ZK7I9eBoN0-Hd-OGM7OAXvFBm4py0lotPewGMZJldlivuG5ES4FA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+sparse+principal+component+analysis+for+enhanced+process+monitoring+and+fault+isolation&rft.jtitle=Chemometrics+and+intelligent+laboratory+systems&rft.au=Liu%2C+Kangling&rft.au=Fei%2C+Zhengshun&rft.au=Yue%2C+Boxuan&rft.au=Liang%2C+Jun&rft.date=2015-08-15&rft.pub=Elsevier+B.V&rft.issn=0169-7439&rft.eissn=1873-3239&rft.volume=146&rft.spage=426&rft.epage=436&rft_id=info:doi/10.1016%2Fj.chemolab.2015.06.014&rft.externalDocID=S0169743915001628
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-7439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-7439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-7439&client=summon