Adaptive sparse principal component analysis for enhanced process monitoring and fault isolation
Principal component analysis (PCA) has been widely applied for process monitoring and fault isolation. However, PCA lacks physical interpretation of principal components (PCs) since each PC is a linear combination of all variables, which makes the fault detection difficult. Moreover, since the PCA m...
Saved in:
Published in | Chemometrics and intelligent laboratory systems Vol. 146; pp. 426 - 436 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.08.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Principal component analysis (PCA) has been widely applied for process monitoring and fault isolation. However, PCA lacks physical interpretation of principal components (PCs) since each PC is a linear combination of all variables, which makes the fault detection difficult. Moreover, since the PCA model is time invariant while all real world processes are time varying and subject to disturbances. This mismatch may cause a false alarm or missed detection. Due to these motivations, we propose an adaptive sparse PCA (ASPCA) for enhanced process monitoring and fault isolation. which obtains sparse loadings by imposing a sparsity constraint on PCA. ASPCA with sparse loadings improves the interpretation and then facilitates the isolation of faulty variables. Meanwhile, ASPCA enhances model adaptability by updating the loadings with the sparsity constraint modified with changes in operating conditions. Next, a process monitoring and fault isolation strategy is presented based on ASPCA. Qusi-T2 and squared prediction error monitoring statistics are defined in the PC and residual subspaces, respectively. Nonzero variables in dominant PCs with most contributions to the fault are preferentially reconstructed. Case studies of TE process and waveform system demonstrate that the ASPCA method performs better in process monitoring and fault isolation compared to the PCA method.
•The interpretation and the adaptability of model are both improved by introducing sparse and adaptive techniques on PCA.•The capability of identifying faulty variables is enhanced compared to conventional PCA.•The model is automatically updated based on the process data. |
---|---|
AbstractList | Principal component analysis (PCA) has been widely applied for process monitoring and fault isolation. However, PCA lacks physical interpretation of principal components (PCs) since each PC is a linear combination of all variables, which makes the fault detection difficult. Moreover, since the PCA model is time invariant while all real world processes are time varying and subject to disturbances. This mismatch may cause a false alarm or missed detection. Due to these motivations, we propose an adaptive sparse PCA (ASPCA) for enhanced process monitoring and fault isolation. which obtains sparse loadings by imposing a sparsity constraint on PCA. ASPCA with sparse loadings improves the interpretation and then facilitates the isolation of faulty variables. Meanwhile, ASPCA enhances model adaptability by updating the loadings with the sparsity constraint modified with changes in operating conditions. Next, a process monitoring and fault isolation strategy is presented based on ASPCA. Qusi-T2 and squared prediction error monitoring statistics are defined in the PC and residual subspaces, respectively. Nonzero variables in dominant PCs with most contributions to the fault are preferentially reconstructed. Case studies of TE process and waveform system demonstrate that the ASPCA method performs better in process monitoring and fault isolation compared to the PCA method.
•The interpretation and the adaptability of model are both improved by introducing sparse and adaptive techniques on PCA.•The capability of identifying faulty variables is enhanced compared to conventional PCA.•The model is automatically updated based on the process data. |
Author | Lin, Hai Liu, Kangling Fei, Zhengshun Yue, Boxuan Liang, Jun |
Author_xml | – sequence: 1 givenname: Kangling surname: Liu fullname: Liu, Kangling organization: State Key Lab of Industrial Control Technology, Institute of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China – sequence: 2 givenname: Zhengshun surname: Fei fullname: Fei, Zhengshun organization: School of Automation and Electrical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, PR China – sequence: 3 givenname: Boxuan surname: Yue fullname: Yue, Boxuan organization: State Key Lab of Industrial Control Technology, Institute of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China – sequence: 4 givenname: Jun orcidid: 0000-0003-1115-0824 surname: Liang fullname: Liang, Jun email: jliang@iipc.zju.edu.cn organization: State Key Lab of Industrial Control Technology, Institute of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China – sequence: 5 givenname: Hai surname: Lin fullname: Lin, Hai organization: Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA |
BookMark | eNqFkMtKAzEUhoNUsK2-guQFZkxmMjMNuLAUbyC40XU8PcnYlGkyJFHo25ta3bhxdTjwf-fyzcjEeWcIueSs5Iy3V9sSN2bnB1iXFeNNydqScXFCpnzR1UVd1XJCpjkoi07U8ozMYtyyQy_4lLwtNYzJfhoaRwjR0DFYh3aEgaLfjXmTSxQcDPtoI-19oMZtwKHROenRxEh33tnkM_aeg5r28DEkamM-KFnvzslpD0M0Fz91Tl7vbl9WD8XT8_3javlUYM2rVPQNhxYb0XQoxcKYSnMQWja6lxqqToLuOskRZWsWzRraBV8L0SNC3yAyweo5uT7OxeBjDKZXaNP3BSmAHRRn6mBLbdWvLXWwpVirsq2Mt3_wLGIHYf8_eHMETX7u05qgIlpzEGSDwaS0t_-N-AJevI5I |
CitedBy_id | crossref_primary_10_1002_qre_2128 crossref_primary_10_1109_JIOT_2020_3039324 crossref_primary_10_1109_TIM_2023_3298636 crossref_primary_10_1080_08982112_2018_1461905 crossref_primary_10_1016_j_engappai_2017_06_013 crossref_primary_10_1016_j_ifacol_2016_07_259 crossref_primary_10_1016_j_chemolab_2015_12_017 crossref_primary_10_1016_j_jprocont_2020_06_011 crossref_primary_10_1016_j_psep_2022_05_073 crossref_primary_10_1080_24699322_2017_1389391 crossref_primary_10_1016_j_chemolab_2018_04_012 crossref_primary_10_1016_j_compchemeng_2021_107281 crossref_primary_10_1016_j_jprocont_2019_09_004 crossref_primary_10_1016_j_measurement_2015_09_007 crossref_primary_10_1016_j_arabjc_2020_10_020 crossref_primary_10_1016_j_ces_2021_116890 crossref_primary_10_1021_acs_iecr_0c01749 crossref_primary_10_1109_TII_2018_2868364 crossref_primary_10_1016_j_jtice_2021_04_029 crossref_primary_10_1016_j_jprocont_2017_03_005 crossref_primary_10_1002_cjce_24026 |
Cites_doi | 10.1016/0169-7439(87)80084-9 10.1016/0098-1354(94)00057-U 10.1016/S0967-0661(03)00083-2 10.1198/106186006X113430 10.1016/j.chemolab.2014.10.002 10.1016/0169-7439(93)E0075-F 10.1198/1061860032148 10.1111/j.1467-9868.2005.00503.x 10.1021/ie301096x 10.1016/j.jprocont.2013.10.013 10.1002/aic.10325 10.1021/ie302069q 10.1016/S0098-1354(97)00262-7 10.1002/cem.667 10.1016/S0967-0661(99)00191-4 10.1021/ie050391w 10.1002/aic.690440712 10.1016/j.automatica.2009.02.027 10.1016/j.arcontrol.2009.08.001 10.1016/S0959-1524(97)80001-7 10.1016/j.jprocont.2013.09.019 10.1007/s00500-012-0910-9 10.1016/0098-1354(93)80018-I 10.1021/ie401834e 10.1021/ie301945s |
ContentType | Journal Article |
Copyright | 2015 Elsevier B.V. |
Copyright_xml | – notice: 2015 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.chemolab.2015.06.014 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3239 |
EndPage | 436 |
ExternalDocumentID | 10_1016_j_chemolab_2015_06_014 S0169743915001628 |
GroupedDBID | --- --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABAOU ABFRF ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADECG ADEZE ADGUI AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCH SDF SDG SDP SES SPC SPCBC SSK SSW SSZ T5K UNMZH YK3 ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB HMU HVGLF HZ~ R2- SCB SEW SSH WUQ XPP |
ID | FETCH-LOGICAL-c312t-f51a6c5457c948ee2d1a4d95df9da279ad7791cc96e85ba681b44fccaf5cc0403 |
IEDL.DBID | .~1 |
ISSN | 0169-7439 |
IngestDate | Tue Jul 01 03:17:08 EDT 2025 Thu Apr 24 23:07:46 EDT 2025 Fri Feb 23 02:33:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Process monitoring Fault isolation Sparse Adaptive Principal component analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-f51a6c5457c948ee2d1a4d95df9da279ad7791cc96e85ba681b44fccaf5cc0403 |
ORCID | 0000-0003-1115-0824 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1016_j_chemolab_2015_06_014 crossref_primary_10_1016_j_chemolab_2015_06_014 elsevier_sciencedirect_doi_10_1016_j_chemolab_2015_06_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-08-15 |
PublicationDateYYYYMMDD | 2015-08-15 |
PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Chemometrics and intelligent laboratory systems |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhang, Sun, Fan (bb0015) 2015; 140 Dayal, MacGregor (bb0085) 1997; 7 Sedgwick (bb0105) 2012; 345 Breiman, Friedman, Stone, Olshen (bb0135) 1984 Zhao, Sun (bb0070) 2013; 23 Lyman, Georgakis (bb0130) 1995; 19 Chen, Kruger, Leung (bb0115) 2004; 12 Zou, Hastie (bb0060) 2005; 67 Zou, Hastie, Tibshirani (bb0050) 2006; 15 Wold (bb0080) 1994; 23 Ge, Song, Gao (bb0005) 2013; 52 Downs, Vogel (bb0125) 1993; 17 Chen, Wynne, Goulding, Sandoz (bb0110) 2000; 8 Alcala, Qin (bb0120) 2009; 45 Wang, Fan, Yao (bb0025) 2014; 53 Alaei, Salahshoor, Alaei (bb0100) 2013; 17 Qin, Valle, Piovoso (bb0035) 2001; 15 Bakshi (bb0040) 1998; 44 Hong, Zhang, Morris (bb0045) 2014; 24 Qin (bb0090) 1998; 22 Yao, Gao (bb0010) 2009; 33 Choi, Martin, Morris, Lee (bb0095) 2006; 45 He, Qin, Wang (bb0065) 2005; 51 Zhao, Sun, Gao (bb0075) 2012; 51 Jolliffe, Trendafilov, Uddin (bb0055) 2003; 12 Wold, Esbensen, Geladi (bb0020) 1987; 2 Ge, Song (bb0030) 2013; 52 Qin (10.1016/j.chemolab.2015.06.014_bb0035) 2001; 15 Zhang (10.1016/j.chemolab.2015.06.014_bb0015) 2015; 140 Zou (10.1016/j.chemolab.2015.06.014_bb0050) 2006; 15 He (10.1016/j.chemolab.2015.06.014_bb0065) 2005; 51 Alaei (10.1016/j.chemolab.2015.06.014_bb0100) 2013; 17 Qin (10.1016/j.chemolab.2015.06.014_bb0090) 1998; 22 Ge (10.1016/j.chemolab.2015.06.014_bb0005) 2013; 52 Hong (10.1016/j.chemolab.2015.06.014_bb0045) 2014; 24 Chen (10.1016/j.chemolab.2015.06.014_bb0110) 2000; 8 Zou (10.1016/j.chemolab.2015.06.014_bb0060) 2005; 67 Sedgwick (10.1016/j.chemolab.2015.06.014_bb0105) 2012; 345 Zhao (10.1016/j.chemolab.2015.06.014_bb0075) 2012; 51 Choi (10.1016/j.chemolab.2015.06.014_bb0095) 2006; 45 Chen (10.1016/j.chemolab.2015.06.014_bb0115) 2004; 12 Breiman (10.1016/j.chemolab.2015.06.014_bb0135) 1984 Wold (10.1016/j.chemolab.2015.06.014_bb0020) 1987; 2 Yao (10.1016/j.chemolab.2015.06.014_bb0010) 2009; 33 Downs (10.1016/j.chemolab.2015.06.014_bb0125) 1993; 17 Zhao (10.1016/j.chemolab.2015.06.014_bb0070) 2013; 23 Wold (10.1016/j.chemolab.2015.06.014_bb0080) 1994; 23 Dayal (10.1016/j.chemolab.2015.06.014_bb0085) 1997; 7 Bakshi (10.1016/j.chemolab.2015.06.014_bb0040) 1998; 44 Jolliffe (10.1016/j.chemolab.2015.06.014_bb0055) 2003; 12 Alcala (10.1016/j.chemolab.2015.06.014_bb0120) 2009; 45 Wang (10.1016/j.chemolab.2015.06.014_bb0025) 2014; 53 Ge (10.1016/j.chemolab.2015.06.014_bb0030) 2013; 52 Lyman (10.1016/j.chemolab.2015.06.014_bb0130) 1995; 19 |
References_xml | – volume: 140 start-page: 49 year: 2015 end-page: 60 ident: bb0015 article-title: Fault diagnosis of nonlinear process based on KCPLS reconstruction publication-title: Chemom. Intell. Lab. Syst. – volume: 52 start-page: 3543 year: 2013 end-page: 3562 ident: bb0005 article-title: Review of recent research on data-based process monitoring publication-title: Ind. Eng. Chem. Res. – volume: 15 start-page: 715 year: 2001 end-page: 742 ident: bb0035 article-title: On unifying multiblock analysis with application to decentralized process monitoring publication-title: J. Chemometr. – volume: 24 start-page: 13 year: 2014 end-page: 26 ident: bb0045 article-title: Progressive multi-block modelling for enhanced fault isolation in batch processes publication-title: J. Process Control – volume: 2 start-page: 37 year: 1987 end-page: 52 ident: bb0020 article-title: Principal component analysis publication-title: Chemom. Intell. Lab. Syst. – volume: 17 start-page: 345 year: 2013 end-page: 362 ident: bb0100 article-title: A new integrated on-line fuzzy clustering and segmentation methodology with adaptive PCA approach for process monitoring and fault detection and diagnosis publication-title: Soft. Comput. – volume: 45 start-page: 1593 year: 2009 end-page: 1600 ident: bb0120 article-title: Reconstruction-based contribution for process monitoring publication-title: Automatica – volume: 19 start-page: 321 year: 1995 end-page: 331 ident: bb0130 article-title: Plant-wide control of the Tennessee Eastman problem publication-title: Comput. Chem. Eng. – volume: 44 start-page: 1596 year: 1998 end-page: 1610 ident: bb0040 article-title: Multiscale PCA with application to multivariate statistical process monitoring publication-title: AIChE J. – volume: 45 start-page: 3108 year: 2006 end-page: 3118 ident: bb0095 article-title: Adaptive multivariate statistical process control for monitoring time-varying processes publication-title: Ind. Eng. Chem. Res. – volume: 8 start-page: 531 year: 2000 end-page: 543 ident: bb0110 article-title: The application of principal component analysis and kernel density estimation to enhance process monitoring publication-title: Control. Eng. Pract. – volume: 51 start-page: 555 year: 2005 end-page: 571 ident: bb0065 article-title: A new fault diagnosis method using fault directions in fisher discriminant analysis publication-title: Aiche J. – volume: 12 start-page: 531 year: 2003 end-page: 547 ident: bb0055 article-title: A modified principal component technique based on the LASSO publication-title: J. Comput. Graph. Stat. – volume: 17 year: 1993 ident: bb0125 article-title: A plant-wide industrial process control problem publication-title: Comput. Chem. Eng. – volume: 33 start-page: 172 year: 2009 end-page: 183 ident: bb0010 article-title: A survey on multistage/multiphase statistical modeling methods for batch processes publication-title: Annu. Rev. Control – volume: 7 start-page: 169 year: 1997 end-page: 179 ident: bb0085 article-title: Recursive exponentially weighted PLS and its applications to adaptive control and prediction publication-title: J. Process Control – volume: 22 start-page: 503 year: 1998 end-page: 514 ident: bb0090 article-title: Recursive PLS algorithms for adaptive data modeling publication-title: Comput. Chem. Eng. – volume: 23 start-page: 149 year: 1994 end-page: 161 ident: bb0080 article-title: Exponentially weighted moving principal components-analysis and projections to latent structures publication-title: Chemom. Intell. Lab. Syst. – volume: 52 start-page: 1947 year: 2013 end-page: 1957 ident: bb0030 article-title: Distributed PCA model for plant-wide process monitoring publication-title: Ind. Eng. Chem. Res. – volume: 23 start-page: 1515 year: 2013 end-page: 1527 ident: bb0070 article-title: Comprehensive subspace decomposition and isolation of principal reconstruction directions for online fault diagnosis publication-title: J. Process Control – volume: 15 start-page: 265 year: 2006 end-page: 286 ident: bb0050 article-title: Sparse principal component analysis publication-title: J. Comput. Graph. Stat. – volume: 53 start-page: 4328 year: 2014 end-page: 4338 ident: bb0025 article-title: Online monitoring of multivariate processes using higher-order cumulants analysis publication-title: Ind. Eng. Chem. Res. – volume: 67 start-page: 301 year: 2005 end-page: 320 ident: bb0060 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – volume: 12 start-page: 267 year: 2004 end-page: 274 ident: bb0115 article-title: Regularised kernel density estimation for clustered process data publication-title: Control. Eng. Pract. – volume: 345 year: 2012 ident: bb0105 article-title: Pearson’s correlation coefficient publication-title: BMJ Br. Med. J. – year: 1984 ident: bb0135 article-title: Classification and Regression Trees – volume: 51 start-page: 11207 year: 2012 end-page: 11217 ident: bb0075 article-title: A multiple-time-region (MTR)-based fault subspace decomposition and reconstruction modeling strategy for online fault diagnosis publication-title: Ind. Eng. Chem. Res. – volume: 2 start-page: 37 year: 1987 ident: 10.1016/j.chemolab.2015.06.014_bb0020 article-title: Principal component analysis publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/0169-7439(87)80084-9 – volume: 19 start-page: 321 year: 1995 ident: 10.1016/j.chemolab.2015.06.014_bb0130 article-title: Plant-wide control of the Tennessee Eastman problem publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(94)00057-U – volume: 12 start-page: 267 year: 2004 ident: 10.1016/j.chemolab.2015.06.014_bb0115 article-title: Regularised kernel density estimation for clustered process data publication-title: Control. Eng. Pract. doi: 10.1016/S0967-0661(03)00083-2 – volume: 15 start-page: 265 year: 2006 ident: 10.1016/j.chemolab.2015.06.014_bb0050 article-title: Sparse principal component analysis publication-title: J. Comput. Graph. Stat. doi: 10.1198/106186006X113430 – volume: 140 start-page: 49 year: 2015 ident: 10.1016/j.chemolab.2015.06.014_bb0015 article-title: Fault diagnosis of nonlinear process based on KCPLS reconstruction publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2014.10.002 – volume: 23 start-page: 149 year: 1994 ident: 10.1016/j.chemolab.2015.06.014_bb0080 article-title: Exponentially weighted moving principal components-analysis and projections to latent structures publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/0169-7439(93)E0075-F – volume: 12 start-page: 531 year: 2003 ident: 10.1016/j.chemolab.2015.06.014_bb0055 article-title: A modified principal component technique based on the LASSO publication-title: J. Comput. Graph. Stat. doi: 10.1198/1061860032148 – volume: 67 start-page: 301 year: 2005 ident: 10.1016/j.chemolab.2015.06.014_bb0060 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.1467-9868.2005.00503.x – volume: 51 start-page: 11207 year: 2012 ident: 10.1016/j.chemolab.2015.06.014_bb0075 article-title: A multiple-time-region (MTR)-based fault subspace decomposition and reconstruction modeling strategy for online fault diagnosis publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie301096x – volume: 24 start-page: 13 year: 2014 ident: 10.1016/j.chemolab.2015.06.014_bb0045 article-title: Progressive multi-block modelling for enhanced fault isolation in batch processes publication-title: J. Process Control doi: 10.1016/j.jprocont.2013.10.013 – volume: 51 start-page: 555 year: 2005 ident: 10.1016/j.chemolab.2015.06.014_bb0065 article-title: A new fault diagnosis method using fault directions in fisher discriminant analysis publication-title: Aiche J. doi: 10.1002/aic.10325 – volume: 52 start-page: 3543 year: 2013 ident: 10.1016/j.chemolab.2015.06.014_bb0005 article-title: Review of recent research on data-based process monitoring publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie302069q – volume: 22 start-page: 503 year: 1998 ident: 10.1016/j.chemolab.2015.06.014_bb0090 article-title: Recursive PLS algorithms for adaptive data modeling publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(97)00262-7 – volume: 15 start-page: 715 year: 2001 ident: 10.1016/j.chemolab.2015.06.014_bb0035 article-title: On unifying multiblock analysis with application to decentralized process monitoring publication-title: J. Chemometr. doi: 10.1002/cem.667 – volume: 8 start-page: 531 year: 2000 ident: 10.1016/j.chemolab.2015.06.014_bb0110 article-title: The application of principal component analysis and kernel density estimation to enhance process monitoring publication-title: Control. Eng. Pract. doi: 10.1016/S0967-0661(99)00191-4 – volume: 45 start-page: 3108 year: 2006 ident: 10.1016/j.chemolab.2015.06.014_bb0095 article-title: Adaptive multivariate statistical process control for monitoring time-varying processes publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie050391w – volume: 44 start-page: 1596 year: 1998 ident: 10.1016/j.chemolab.2015.06.014_bb0040 article-title: Multiscale PCA with application to multivariate statistical process monitoring publication-title: AIChE J. doi: 10.1002/aic.690440712 – volume: 345 year: 2012 ident: 10.1016/j.chemolab.2015.06.014_bb0105 article-title: Pearson’s correlation coefficient publication-title: BMJ Br. Med. J. – volume: 45 start-page: 1593 year: 2009 ident: 10.1016/j.chemolab.2015.06.014_bb0120 article-title: Reconstruction-based contribution for process monitoring publication-title: Automatica doi: 10.1016/j.automatica.2009.02.027 – volume: 33 start-page: 172 year: 2009 ident: 10.1016/j.chemolab.2015.06.014_bb0010 article-title: A survey on multistage/multiphase statistical modeling methods for batch processes publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2009.08.001 – volume: 7 start-page: 169 year: 1997 ident: 10.1016/j.chemolab.2015.06.014_bb0085 article-title: Recursive exponentially weighted PLS and its applications to adaptive control and prediction publication-title: J. Process Control doi: 10.1016/S0959-1524(97)80001-7 – volume: 23 start-page: 1515 year: 2013 ident: 10.1016/j.chemolab.2015.06.014_bb0070 article-title: Comprehensive subspace decomposition and isolation of principal reconstruction directions for online fault diagnosis publication-title: J. Process Control doi: 10.1016/j.jprocont.2013.09.019 – volume: 17 start-page: 345 year: 2013 ident: 10.1016/j.chemolab.2015.06.014_bb0100 article-title: A new integrated on-line fuzzy clustering and segmentation methodology with adaptive PCA approach for process monitoring and fault detection and diagnosis publication-title: Soft. Comput. doi: 10.1007/s00500-012-0910-9 – volume: 17 year: 1993 ident: 10.1016/j.chemolab.2015.06.014_bb0125 article-title: A plant-wide industrial process control problem publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(93)80018-I – volume: 53 start-page: 4328 year: 2014 ident: 10.1016/j.chemolab.2015.06.014_bb0025 article-title: Online monitoring of multivariate processes using higher-order cumulants analysis publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie401834e – volume: 52 start-page: 1947 year: 2013 ident: 10.1016/j.chemolab.2015.06.014_bb0030 article-title: Distributed PCA model for plant-wide process monitoring publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie301945s – year: 1984 ident: 10.1016/j.chemolab.2015.06.014_bb0135 |
SSID | ssj0016941 |
Score | 2.2715404 |
Snippet | Principal component analysis (PCA) has been widely applied for process monitoring and fault isolation. However, PCA lacks physical interpretation of principal... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 426 |
SubjectTerms | Adaptive Fault isolation Principal component analysis Process monitoring Sparse |
Title | Adaptive sparse principal component analysis for enhanced process monitoring and fault isolation |
URI | https://dx.doi.org/10.1016/j.chemolab.2015.06.014 |
Volume | 146 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwELYQHdql6lOlD-ShayBO7CQeESqircrSIrGljh8qCGhEYe1v710eiEqVGLolkU-y7s7ffXbuzoTcO5apwApsdGsS2KAI35ORlF5ogE34ic4yiYXCL6NoOOZPEzFpkH5dC4NplRX2l5heoHX1pVtps5tPp91X7COCdBooDTwGWPDLeYxe3vnepnkwLNQs-3tLD0fvVAnPOqCXBewgM0zxEkUfT8b_DlA7QWdwQo4rtkh75YROScMuz8hhv76k7Zy894zKEbEoIMPqy9K8PDwHIUwW_1xCTKGqajxCgaBSu_wofvrTvCwRoItiVePxHgw01KnNfE2n4JKFzS7IePDw1h961aUJng5ZsPacYCrSwItiLXlibWCY4kYK46RRQSyViWPJtJaRTUSmIqCtnDuwoxNaw4oOL0lzCbO7IlQ450sTQ0A3GddhJp1vYwcQkGA1b-i3iKg1leqqozhebDFP69SxWVprOEUNp5hDx3iLdLdyedlTY6-ErA2R_vKOFIB_j-z1P2RvyBG-4RkyE7ekuV5t7B2QkHXWLrysTQ56j8_D0Q9ha97C |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDLAgnqI8PbCmjRM7iUdUURVouwBSt-D4IVrREJWy8tu5y6MCCakDW5T4JOvO_u6zcw9Crh3LVGAFFro1CRxQhO_JSEovNMAm_ERnmcRE4dE4Gjzz-4mYbJBekwuDYZU19leYXqJ1_aZba7NbTKfdR6wjgnQaKA08Bskm2eKwfbGNQedrFefBMFOzKvAtPRz-I0141gHFzOEImWGMlygLeTL-t4f64XX6e2S3pov0pprRPtmw-QHZ7jVd2g7Jy41RBUIWBWhYfFhaVLfnIITR4u85OBWq6sojFBgqtflr-defFlWOAJ2X2xrv92CgoU59vi3pFNZkabQj8ty_feoNvLprgqdDFiw9J5iKNBCjWEueWBsYpriRwjhpVBBLZeJYMq1lZBORqQh4K-cODOmE1rClw2PSymF2J4QK53xpYvDoJuM6zKTzbewAAxJM5w39NhGNplJdlxTHzhZvaRM7NksbDaeo4RSD6Bhvk-5KrqiKaqyVkI0h0l_LIwXkXyN7-g_ZK7I9eBoN0-Hd-OGM7OAXvFBm4py0lotPewGMZJldlivuG5ES4FA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+sparse+principal+component+analysis+for+enhanced+process+monitoring+and+fault+isolation&rft.jtitle=Chemometrics+and+intelligent+laboratory+systems&rft.au=Liu%2C+Kangling&rft.au=Fei%2C+Zhengshun&rft.au=Yue%2C+Boxuan&rft.au=Liang%2C+Jun&rft.date=2015-08-15&rft.pub=Elsevier+B.V&rft.issn=0169-7439&rft.eissn=1873-3239&rft.volume=146&rft.spage=426&rft.epage=436&rft_id=info:doi/10.1016%2Fj.chemolab.2015.06.014&rft.externalDocID=S0169743915001628 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-7439&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-7439&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-7439&client=summon |