Decoding knee angle trajectory from electroencephalogram signal using NARX neural network and a new channel selection algorithm

Objectives: The aim of this research was to reveal the electroencephalogram (EEG) signal changes to obtain the knee angle change trajectory during a movement. Approach: Initially, a number of recorded EEG channels were selected using a new proposed EEG channel selection method. The signals were reco...

Full description

Saved in:
Bibliographic Details
Published inBiomedical physics & engineering express Vol. 5; no. 2; pp. 25024 - 25035
Main Authors Shakibaee, Faeze, Mottaghi, Elham, Kobravi, Hamid Reza, Ghoshuni, Majid
Format Journal Article
LanguageEnglish
Published IOP Publishing 22.01.2019
Subjects
Online AccessGet full text
ISSN2057-1976
2057-1976
DOI10.1088/2057-1976/aafd48

Cover

Abstract Objectives: The aim of this research was to reveal the electroencephalogram (EEG) signal changes to obtain the knee angle change trajectory during a movement. Approach: Initially, a number of recorded EEG channels were selected using a new proposed EEG channel selection method. The signals were recorded from 10 healthy subjects in two states of movement imagination and implementation. Then, a NARX (Nonlinear Autoregressive Exogenous) neural network estimated the motion pattern of knee angle using the selected channels of EEG data. Main results: The results indicated that movement information extracted from the selected channels in mu rhythm was more accurate. Significance: This research suggests an approach to design the desired motion trajectory of the knee joint using the information emerging from the motor control process.
AbstractList Objectives: The aim of this research was to reveal the electroencephalogram (EEG) signal changes to obtain the knee angle change trajectory during a movement. Approach: Initially, a number of recorded EEG channels were selected using a new proposed EEG channel selection method. The signals were recorded from 10 healthy subjects in two states of movement imagination and implementation. Then, a NARX (Nonlinear Autoregressive Exogenous) neural network estimated the motion pattern of knee angle using the selected channels of EEG data. Main results: The results indicated that movement information extracted from the selected channels in mu rhythm was more accurate. Significance: This research suggests an approach to design the desired motion trajectory of the knee joint using the information emerging from the motor control process.
Author Mottaghi, Elham
Kobravi, Hamid Reza
Shakibaee, Faeze
Ghoshuni, Majid
Author_xml – sequence: 1
  givenname: Faeze
  surname: Shakibaee
  fullname: Shakibaee, Faeze
  organization: Islamic Azad University Research Center of Biomedical Engineering, Mahshad Branch, Mashhad, Iran
– sequence: 2
  givenname: Elham
  surname: Mottaghi
  fullname: Mottaghi, Elham
  organization: Islamic Azad University Research Center of Biomedical Engineering, Mahshad Branch, Mashhad, Iran
– sequence: 3
  givenname: Hamid Reza
  orcidid: 0000-0002-7365-5214
  surname: Kobravi
  fullname: Kobravi, Hamid Reza
  email: hkobravi@mshdiau.ac.ir
  organization: Islamic Azad University Research Center of Biomedical Engineering, Mahshad Branch, Mashhad, Iran
– sequence: 4
  givenname: Majid
  surname: Ghoshuni
  fullname: Ghoshuni, Majid
  organization: Islamic Azad University Research Center of Biomedical Engineering, Mahshad Branch, Mashhad, Iran
BookMark eNp9kMtLAzEQh4NUUKt3j7l5sTqb7iN7lPoEURAFb2GanWy3bpMl2VJ78l9314qIqKd5MN-P4dtjA-ssMXYYwUkEUp4KSLJRlGfpKaIpYrnFdr9Wg2_9DjsIYQ4AUSrSNE922ds5aVdUtuQvloijLWvircc56db5NTfeLTjV3eQdWU3NDGtXelzwUJUWa74MPXx39vDMLS19t7HUrpx_6bIKjt204nqG1lLNw0dQ5SzHunS-ameLfbZtsA508FmH7Ony4nFyPbq9v7qZnN2O9DgS7YhyKBIEgTpLIAeTSJB6DCbOZBphhFBkcWrktJBaZkIbAIynaZ4JKKaEJhkPGWxytXcheDKq8dUC_VpFoHqHqpekeklq47BD0h-Irlrs3-_8VPV_4NEGrFyj5m7pO09BTRt6VYkSCkQCIlZNYbrL418u_wx-B9p6lvc
CODEN NJOPFM
CitedBy_id crossref_primary_10_1016_j_compbiomed_2024_109608
crossref_primary_10_1088_1741_2552_ad9cc1
crossref_primary_10_1109_TNSRE_2023_3275172
crossref_primary_10_1109_JBHI_2024_3468899
crossref_primary_10_1007_s40430_019_2068_1
crossref_primary_10_1109_TIM_2022_3224991
crossref_primary_10_3389_fnins_2023_1086472
Cites_doi 10.1002/hbm.22653
10.1088/0031-9155/57/4/843
10.1088/1741-2560/12/6/066019
10.1016/j.neuroimage.2006.06.066
10.1007/s40846-018-0379-9
10.1002/cne.902470303
10.3389/fnins.2018.00130
10.1016/j.bspc.2016.04.002
10.1109/TNSRE.2014.2375879
10.1007/978-1-4757-3464-5
10.1023/A:1023437823106
10.1177/155005941104200105
10.1152/jn.00104.2011
10.1016/j.jneumeth.2012.08.020
10.1016/S0167-2789(01)00386-4
10.1016/j.neuroimage.2008.02.032
10.1371/journal.pone.0098019
10.1093/brain/107.2.385
10.1371/journal.pone.0085192
10.1109/TBME.2016.2541084
ContentType Journal Article
Copyright 2019 IOP Publishing Ltd
Copyright_xml – notice: 2019 IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/2057-1976/aafd48
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Decoding knee angle trajectory from electroencephalogram signal using NARX neural network and a new channel selection algorithm
EISSN 2057-1976
ExternalDocumentID 10_1088_2057_1976_aafd48
bpexaafd48
GroupedDBID 53G
AAGCD
AAJIO
AATNI
ABHWH
ABVAM
ACGFS
ACHIP
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
CJUJL
CRLBU
EBS
EJD
IJHAN
IOP
IZVLO
KOT
N5L
PJBAE
RIN
ROL
RPA
AAYXX
ABJNI
ADEQX
CITATION
ID FETCH-LOGICAL-c312t-e90d5a02ac75090f5808c30f47861a1a0d746f8bd8c872cf00a4b69720dbeaf53
IEDL.DBID IOP
ISSN 2057-1976
IngestDate Tue Jul 01 03:24:20 EDT 2025
Thu Apr 24 23:11:36 EDT 2025
Wed Aug 21 03:33:23 EDT 2024
Thu Jan 07 13:52:05 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-e90d5a02ac75090f5808c30f47861a1a0d746f8bd8c872cf00a4b69720dbeaf53
Notes BPEX-101236.R1
ORCID 0000-0002-7365-5214
PageCount 12
ParticipantIDs crossref_citationtrail_10_1088_2057_1976_aafd48
crossref_primary_10_1088_2057_1976_aafd48
iop_journals_10_1088_2057_1976_aafd48
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-22
PublicationDateYYYYMMDD 2019-01-22
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-22
  day: 22
PublicationDecade 2010
PublicationTitle Biomedical physics & engineering express
PublicationTitleAbbrev BPEX
PublicationTitleAlternate Biomed. Phys. Eng. Express
PublicationYear 2019
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 24
26
27
28
29
Schmidt R A (23) 1999
beda A S Ú (12) 2014
Shumway-Cook A (22)
Nathan K C (3) 2012
Bease C F D (9) 1989
10
Hilborn R C (15)
11
Robinson N (5) 2015; 12
13
14
17
Campos D (18) 2017; 1
19
Liu J (25) 2012; 57
He Y (1) 2018; 15
2
4
6
Shuqing Z (16) 2014; 31
7
8
20
21
References_xml – ident: 10
  doi: 10.1002/hbm.22653
– volume: 57
  start-page: 843
  issn: 0031-9155
  year: 2012
  ident: 25
  publication-title: Physics in Medicine & Biology
  doi: 10.1088/0031-9155/57/4/843
– volume: 12
  start-page: 12
  issn: 1741-2552
  year: 2015
  ident: 5
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/6/066019
– year: 2014
  ident: 12
  publication-title: Presented At The Ieee International Conference On Systems
– ident: 13
  doi: 10.1016/j.neuroimage.2006.06.066
– volume: 1
  start-page: 7
  year: 2017
  ident: 18
  publication-title: Turkish Journal of Forecasting
– ident: 27
  doi: 10.1007/s40846-018-0379-9
– ident: 28
  doi: 10.1002/cne.902470303
– ident: 20
  doi: 10.3389/fnins.2018.00130
– ident: 24
  doi: 10.1016/j.bspc.2016.04.002
– ident: 2
  doi: 10.1109/TNSRE.2014.2375879
– ident: 14
  doi: 10.1007/978-1-4757-3464-5
– ident: 22
  publication-title: Motor Control
– ident: 21
  doi: 10.1023/A:1023437823106
– ident: 8
  doi: 10.1177/155005941104200105
– year: 1999
  ident: 23
  publication-title: Motor Control and Learning: A Behavioral Emphasis
– ident: 6
  doi: 10.1152/jn.00104.2011
– year: 1989
  ident: 9
  publication-title: Electroencephalogram Activity During Visual External, Visual Internal and Kinesthetic Imagery of a Motor Performance
– ident: 15
  publication-title: Chaos And Nonlinear Dynamics
– volume: 31
  start-page: 7
  year: 2014
  ident: 16
  publication-title: J. Electron.
– ident: 17
  doi: 10.1016/j.jneumeth.2012.08.020
– ident: 7
  doi: 10.1016/S0167-2789(01)00386-4
– ident: 19
  doi: 10.1016/j.neuroimage.2008.02.032
– ident: 26
  doi: 10.1371/journal.pone.0098019
– ident: 29
  doi: 10.1093/brain/107.2.385
– volume: 15
  issn: 1741-2552
  year: 2018
  ident: 1
  publication-title: J. Neural Eng.
– ident: 11
  doi: 10.1371/journal.pone.0085192
– ident: 4
  doi: 10.1109/TBME.2016.2541084
– year: 2012
  ident: 3
  publication-title: Master of Science, Electrical and Computer Engineering
SSID ssj0001626695
Score 2.1062799
Snippet Objectives: The aim of this research was to reveal the electroencephalogram (EEG) signal changes to obtain the knee angle change trajectory during a movement....
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 25024
SubjectTerms electroencephalogram
fuzzy synchronization likelihood
knee angle
NARX neural network
Title Decoding knee angle trajectory from electroencephalogram signal using NARX neural network and a new channel selection algorithm
URI https://iopscience.iop.org/article/10.1088/2057-1976/aafd48
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELb6uHCBooIoUOQDPXDw1nHsxCtOVaEqlVoQotIekKxxbG-h22y0TcXjwl_vTJIWiqoKcUui8cSacTLf2PNg7GWqgM6vlAi5BKGV18JnKRPK5BoKG6skKRv58KjYP9YHEzNZYq-vc2HmzfDrH-FlXyi4F-EQEGfRXTelyNCMbgOkoO0yW6XGlbS8373_8HuDBaF6MTbD0eRtA2-YomV83R-WZe8B-3w1pz6g5HR00fpR9fOvco3_Oek1dn9AnHynJ33IlmK9zn69QbeTzBY_rWPkUE9nkbcL-Npt4v_glHXChxY59MbmBLri1mecAj6QHcXLT_nRzscJp5KY-KTuA8qRV-CAd984JRXXccbPO0a4ADjMpvPFl_bk7BE73nv7aXdfDL0YRJVnqhVxLINBtUJFEEMmY6Wtcpl0aYsMMpCh1EWyPtjKlgo1LEH7YlwqGXyEZPLHbKWe1_EJ4zom9GKMiujaaDMG61OhggwIXhQUOWyw7Su1uGooVE79MmauOzC31pEwHQnT9cLcYK-uRzR9kY47aLdQR274Us_voOM36HwTvzvjlCPQqLRrQnr6j6yesXsIsygsTSj1nK20i4u4iVCm9S-6JXsJ8IXwRw
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQw0KJFQlx4qCDK0wd66MG7jmMn3mPVsmoLbCtEpb2ZcWxvodtstE0F9MKvM05caBGqkLgl0XhszTieGc-LkNehgui_EszlHJgUVjKbhYwJlUsotK8Cj9nI7yfF7pHcn6pp6nPa5cIsmnT0D_CxLxTckzAFxGk011XJMhSjQ4DgpB42LqyQ2wqP4hjTtXdw-PuSBdX1YqSSe_Jvg6-JoxWc8op0Gd8nny7X1QeVnAzOWzuoLv4o2fgfC39A7iXNk2714A_JLV-vkR87aH5G8UVPau8p1LO5p-0SvnSX-d9pzD6hqVVOnLU5hq7I9SmNgR-ILsbNz-hk68OUxtKY-KXuA8sRl6OAb19pTC6u_ZyedYhwI1CYzxbLz-3x6SNyNH7zcXuXpZ4MrMoz0TI_4k4he6GKqgYPSnNd5TzIUhcZZMBdKYugrdOVLgVymoO0xagU3FkPQeWPyWq9qP0TQqUPaM0o4dHEkWoE2oZCOO5QiRFQ5LBOhpesMVUqWB77ZsxN5zjX2kSCmkhQ0xN0nWz-GtH0xTpugN1APpn0x57dAEevwdnGfzPKCBOVRyEN8vDpP6J6Re4c7ozNu73J22fkLmpeMVKNCfGcrLbLc_8CtZvWvux28E8TRfWr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decoding+knee+angle+trajectory+from+electroencephalogram+signal+using+NARX+neural+network+and+a+new+channel+selection+algorithm&rft.jtitle=Biomedical+physics+%26+engineering+express&rft.au=Shakibaee%2C+Faeze&rft.au=Mottaghi%2C+Elham&rft.au=Kobravi%2C+Hamid+Reza&rft.au=Ghoshuni%2C+Majid&rft.date=2019-01-22&rft.pub=IOP+Publishing&rft.eissn=2057-1976&rft.volume=5&rft.issue=2&rft_id=info:doi/10.1088%2F2057-1976%2Faafd48&rft.externalDocID=bpexaafd48
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2057-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2057-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2057-1976&client=summon