Highly coke resistant Ni–Co/KCC-1 catalysts for dry reforming of methane
Nanofibrous KCC-1 supported Ni–Co bimetallic catalysts were investigated for dry reforming of methane for syngas generation. Monometallic catalysts such as Ni/KCC-1 and Co/KCC-1, and a series of bimetallic Ni–Co/KCC-1 catalysts were prepared by impregnation and co-impregnation method, respectively....
Saved in:
Published in | International journal of hydrogen energy Vol. 48; no. 31; pp. 11727 - 11745 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
12.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanofibrous KCC-1 supported Ni–Co bimetallic catalysts were investigated for dry reforming of methane for syngas generation. Monometallic catalysts such as Ni/KCC-1 and Co/KCC-1, and a series of bimetallic Ni–Co/KCC-1 catalysts were prepared by impregnation and co-impregnation method, respectively. All the catalysts were characterized by XRD, FT-IR, HR-SEM, FE-SEM, XPS, FT-Raman, BET, UV–Visible DRS and AAS techniques. Monometallic nickel supported catalyst contains NiO as an active phase, whereas bimetallic nickel catalysts contain Ni2O3, and NiCo2O4 on the surface. In the case of cobalt loaded catalysts, spinel Co3O4 is the dominant active species, apart from NiCo2O4. The addition of cobalt in Ni/KCC-1 has a pronounced effect on the crystallite size, surface area and active species. The hydrogen pretreatment of the catalyst produces bimetallic Ni–Co alloy on the surface. The catalytic activities of the bimetallic catalysts towards dry reforming of methane are better than monometallic catalysts. Mesoporous silica-based KCC-1 offers easy accessibility to the entire surface moieties due to its fibrous nature and the presence of channels, instead of pores. The 2.5%Ni-7.5%Co/KCC-1 showed the maximum CH4 and CO2 conversion along with a remarkably low H2/CO ratio. The life-time test confirms the high thermal stability of the catalysts at 700 °C for 8 h, with less deactivation due to coke formation. The spent catalysts were characterized by XRD, TGA, FT-Raman, and FE-SEM to understand the structural and chemical changes during the reaction. The insignificant D band and G band of graphitic carbon in FT-Raman spectra for the highly active 2.5%Ni-7.5%Co/KCC-1 and 5%Ni–5%Co/KCC-1 catalysts along with TGA results containing 12% weight loss confirms the minimum coke deposition, formation of amorphous carbon and highest coke resistance. The fibrous support restricts the sintering and aggregation of nickel particles as well the deposition of coke. The addition of amphoteric cobalt increases the activity and stability of the catalysts. Ni–Co/KCC-1 with high coke resistance seems to be a promising catalyst for dry reforming of methane.
[Display omitted]
•Ni–Co/KCC-1 was synthesized by sol–gel-hydrothermal and co-precipitation method.•Cobalt addition in Ni/KCC-1 catalyst suppressed the aggregation of Ni particles.•Bimetallic Ni–Co/KCC-1 catalysts are more coke resistant than monometallic KCC-1.•2.5%Ni-7.5%Co/KCC-1 showed the highest CH4 and CO2 conversion, and a low H2/CO ratio.•Bimetallic catalysts improved the catalytic performance by reducing coke deposition. |
---|---|
AbstractList | Nanofibrous KCC-1 supported Ni–Co bimetallic catalysts were investigated for dry reforming of methane for syngas generation. Monometallic catalysts such as Ni/KCC-1 and Co/KCC-1, and a series of bimetallic Ni–Co/KCC-1 catalysts were prepared by impregnation and co-impregnation method, respectively. All the catalysts were characterized by XRD, FT-IR, HR-SEM, FE-SEM, XPS, FT-Raman, BET, UV–Visible DRS and AAS techniques. Monometallic nickel supported catalyst contains NiO as an active phase, whereas bimetallic nickel catalysts contain Ni2O3, and NiCo2O4 on the surface. In the case of cobalt loaded catalysts, spinel Co3O4 is the dominant active species, apart from NiCo2O4. The addition of cobalt in Ni/KCC-1 has a pronounced effect on the crystallite size, surface area and active species. The hydrogen pretreatment of the catalyst produces bimetallic Ni–Co alloy on the surface. The catalytic activities of the bimetallic catalysts towards dry reforming of methane are better than monometallic catalysts. Mesoporous silica-based KCC-1 offers easy accessibility to the entire surface moieties due to its fibrous nature and the presence of channels, instead of pores. The 2.5%Ni-7.5%Co/KCC-1 showed the maximum CH4 and CO2 conversion along with a remarkably low H2/CO ratio. The life-time test confirms the high thermal stability of the catalysts at 700 °C for 8 h, with less deactivation due to coke formation. The spent catalysts were characterized by XRD, TGA, FT-Raman, and FE-SEM to understand the structural and chemical changes during the reaction. The insignificant D band and G band of graphitic carbon in FT-Raman spectra for the highly active 2.5%Ni-7.5%Co/KCC-1 and 5%Ni–5%Co/KCC-1 catalysts along with TGA results containing 12% weight loss confirms the minimum coke deposition, formation of amorphous carbon and highest coke resistance. The fibrous support restricts the sintering and aggregation of nickel particles as well the deposition of coke. The addition of amphoteric cobalt increases the activity and stability of the catalysts. Ni–Co/KCC-1 with high coke resistance seems to be a promising catalyst for dry reforming of methane.
[Display omitted]
•Ni–Co/KCC-1 was synthesized by sol–gel-hydrothermal and co-precipitation method.•Cobalt addition in Ni/KCC-1 catalyst suppressed the aggregation of Ni particles.•Bimetallic Ni–Co/KCC-1 catalysts are more coke resistant than monometallic KCC-1.•2.5%Ni-7.5%Co/KCC-1 showed the highest CH4 and CO2 conversion, and a low H2/CO ratio.•Bimetallic catalysts improved the catalytic performance by reducing coke deposition. |
Author | Palanichamy, Kuppusamy Sasirekha, Natarajan Ganesh, Srinivasan Umasankar, Samidurai |
Author_xml | – sequence: 1 givenname: Kuppusamy surname: Palanichamy fullname: Palanichamy, Kuppusamy organization: Catalysis Laboratory, Centre of Advanced Study in Crystallography & Biophysics, University of Madras, Chennai 600 025, Tamil Nadu, India – sequence: 2 givenname: Samidurai surname: Umasankar fullname: Umasankar, Samidurai organization: Department of Chemistry, Anna University, Chennai 600 025, Tamil Nadu, India – sequence: 3 givenname: Srinivasan surname: Ganesh fullname: Ganesh, Srinivasan organization: Catalysis Laboratory, Centre of Advanced Study in Crystallography & Biophysics, University of Madras, Chennai 600 025, Tamil Nadu, India – sequence: 4 givenname: Natarajan orcidid: 0000-0001-5032-7587 surname: Sasirekha fullname: Sasirekha, Natarajan email: nrsasirekha@gmail.com organization: Catalysis Laboratory, Centre of Advanced Study in Crystallography & Biophysics, University of Madras, Chennai 600 025, Tamil Nadu, India |
BookMark | eNqFkEFOwzAQRS1UJErhCsgXSOpJUruRWIAioEAFG1hbrjNuHdIY2RZSdtyBG3ISUhU2bLqav5j3NfNOyahzHRJyASwFBnzapLbZ9DV2mGYsy1LIUib4ERnDXJRJXszFiIxZzlmSQ1mekNMQGsZAsKIck4eFXW_anmr3htRjsCGqLtIn-_35VbnpY1UlQLWKqu1DDNQ4T2vfD5tD2tpuTZ2hW4wb1eEZOTaqDXj-Oyfk9fbmpVoky-e7--p6megcspigUAUrVjU3hS7MamYEE6CwrFWRlRq4gBkDMCVT3LAV52hAz4UAzbIcS53nE8L3vdq7EIZL5Lu3W-V7CUzujMhG_hmROyMSMjkYGcDLf6C2UUXruuiVbQ_jV3sch-c-LHoZtMVOY2096ihrZw9V_ADQZIRw |
CitedBy_id | crossref_primary_10_1016_j_ccst_2024_100200 crossref_primary_10_1016_j_ccst_2024_100244 crossref_primary_10_1016_j_ijhydene_2024_05_058 crossref_primary_10_3390_nano13192641 crossref_primary_10_3390_catal14030176 crossref_primary_10_3390_catal14010063 crossref_primary_10_1016_j_ijhydene_2023_07_143 crossref_primary_10_1016_j_ijhydene_2024_09_150 crossref_primary_10_1016_j_fuel_2024_132619 crossref_primary_10_1002_anie_202405252 crossref_primary_10_1016_j_ijhydene_2024_01_240 crossref_primary_10_1016_j_fuel_2024_134193 crossref_primary_10_1088_2053_1591_ad4f54 crossref_primary_10_1016_j_psep_2024_04_132 crossref_primary_10_1016_j_ceja_2024_100655 crossref_primary_10_1016_j_fuel_2025_134495 crossref_primary_10_1016_j_apcata_2024_119759 crossref_primary_10_1016_j_enconman_2024_118568 crossref_primary_10_1021_acsaem_4c00867 crossref_primary_10_1016_j_ijhydene_2024_09_062 crossref_primary_10_1002_ange_202405252 crossref_primary_10_3390_atmos14091323 crossref_primary_10_1016_j_ijhydene_2023_06_152 crossref_primary_10_1016_j_cscee_2024_101078 crossref_primary_10_3390_catal13111420 crossref_primary_10_1016_j_mtcomm_2024_108940 crossref_primary_10_1016_j_joei_2024_101523 crossref_primary_10_1016_j_matpr_2023_08_155 crossref_primary_10_3390_cryst15020100 crossref_primary_10_1016_j_micromeso_2025_113511 |
Cites_doi | 10.1007/s10008-016-3278-4 10.1016/j.ijhydene.2019.01.027 10.1021/acsomega.1c00295 10.1021/acscatal.8b02277 10.1002/cctc.201902142 10.1016/j.apcata.2015.04.006 10.1016/j.jngse.2016.06.004 10.1016/j.joei.2021.04.005 10.1016/j.apcata.2006.10.029 10.1016/j.ijhydene.2017.03.146 10.1016/j.ijhydene.2013.05.097 10.1016/j.jcat.2017.10.009 10.1016/j.cattod.2015.09.027 10.1016/j.ijhydene.2022.05.211 10.1016/j.cattod.2017.12.027 10.1016/j.matlet.2015.09.123 10.1016/j.ijhydene.2022.07.002 10.1016/j.micromeso.2020.110616 10.1016/j.ijhydene.2012.08.056 10.1016/j.apsusc.2019.143933 10.1021/acscatal.6b02360 10.1016/j.ijhydene.2015.05.147 10.1016/j.ijhydene.2015.11.044 10.1021/cs300179q 10.1016/j.ijhydene.2010.04.075 10.1021/jp030783l 10.1039/C6GC02012G 10.1039/D0CY00939C 10.1016/j.ijhydene.2019.07.200 10.1038/s41598-022-05993-3 10.1016/j.cattod.2011.02.057 10.1016/j.ijhydene.2020.01.086 10.1016/j.ijhydene.2020.01.144 10.1088/0022-3727/22/8/026 10.1016/j.matchemphys.2003.09.003 10.1039/C7TA04452F 10.1016/j.ijhydene.2019.09.207 10.1016/j.ijhydene.2021.01.049 10.1016/j.apcatb.2010.01.016 10.1016/j.jechem.2019.03.028 10.1016/j.apcata.2015.07.040 10.1016/j.apcatb.2016.09.071 10.1016/j.jtice.2019.01.025 10.1002/cctc.201402921 10.1039/C6RA20450C 10.1038/s41598-020-70930-1 10.1038/srep24888 10.1016/j.ijhydene.2020.04.261 10.1016/0169-4332(88)90089-X 10.3389/fchem.2021.694976 10.1016/j.ijhydene.2015.09.150 10.1002/cctc.201300958 10.1016/j.ijhydene.2019.05.034 10.1021/acscatal.8b02821 10.1016/j.cej.2021.133364 10.1149/2.0261804jes 10.3390/catal10010112 10.1016/j.ijhydene.2021.07.056 10.1016/j.ijhydene.2019.06.085 10.1016/j.ijhydene.2022.03.147 10.1016/j.jcou.2019.12.018 10.1002/cctc.201701376 10.1016/j.ijhydene.2022.05.297 10.1039/C7NR09625A 10.1016/j.apcatb.2015.04.039 10.1021/acs.langmuir.6b00675 10.1016/j.ijhydene.2019.10.118 10.1016/j.jcat.2004.02.032 10.1016/j.apcatb.2016.07.015 10.1016/S0169-4332(00)00378-0 10.1016/j.cattod.2018.11.064 10.1006/jssc.2000.8749 10.1016/j.ijhydene.2021.05.073 10.1021/acscatal.8b05162 10.1016/j.ijhydene.2019.04.126 10.1016/j.apcata.2009.09.026 10.1016/j.cattod.2019.06.018 10.1016/j.apsusc.2019.04.093 10.1088/1757-899X/808/1/012006 |
ContentType | Journal Article |
Copyright | 2022 Hydrogen Energy Publications LLC |
Copyright_xml | – notice: 2022 Hydrogen Energy Publications LLC |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijhydene.2022.12.076 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3487 |
EndPage | 11745 |
ExternalDocumentID | 10_1016_j_ijhydene_2022_12_076 S0360319922057937 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SES SEW SPC SPCBC SSK SSM SSR SSZ T5K TN5 XPP ZMT ~G- 29J AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF R2- RIG SAC SCB SSH T9H WUQ |
ID | FETCH-LOGICAL-c312t-e7a404bd6f4c4fb5f7071ae9da429c16715011f90a6f0b66ef1c8771c023e9c33 |
IEDL.DBID | .~1 |
ISSN | 0360-3199 |
IngestDate | Thu Apr 24 23:12:11 EDT 2025 Tue Jul 01 03:10:58 EDT 2025 Fri Feb 23 02:38:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Keywords | Dry reforming Mesoporous Coke deposition Bimetallic Ni–Co KCC-1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-e7a404bd6f4c4fb5f7071ae9da429c16715011f90a6f0b66ef1c8771c023e9c33 |
ORCID | 0000-0001-5032-7587 |
PageCount | 19 |
ParticipantIDs | crossref_primary_10_1016_j_ijhydene_2022_12_076 crossref_citationtrail_10_1016_j_ijhydene_2022_12_076 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2022_12_076 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-12 |
PublicationDateYYYYMMDD | 2023-04-12 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-12 day: 12 |
PublicationDecade | 2020 |
PublicationTitle | International journal of hydrogen energy |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Oboudatian, Safaei-Ghomi (bib53) 2022; 12 Zhang, Zhao, Chen, Liu, Liu, Yu (bib57) 2020; 499 Wittich, Krämer, Bottke, Schunk (bib6) 2020; 12 Aguiar, Cazula, Saragiotto Colpini, Borba, Alves da Silva, Noronha (bib4) 2019; 44 Roussière, Schulz, Schelkle, Wasserschaff, Milanov, Schwab (bib10) 2014; 6 Wei, Iglesia (bib12) 2004; 108 Gholizadeh, Izadbakhsh, Huang, Zi-Feng (bib31) 2021; 310 Araiza, Arcos, Gómez-Cortés, Díaz (bib42) 2021; 360 Zhang, Wang, Wei, Hao, Mu, Cao (bib85) 2016; 162 San-José-Alonso, Juan-Juan, Illán-Gómez, Román-Martínez (bib74) 2009; 371 Li, Yuan, Li, Li, Wang, Tomishige (bib25) 2021; 46 Tang, Huang, Ran, Guo, Niu, Qiu (bib9) 2022; 47 Aramouni, Zeaiter, Kwapinski, Leahy, Ahmad (bib38) 2020; 45 Farooqi, Yusuf, Mohd Zabidi, Saidur, Sanaullah, Farooqi (bib3) 2021; 46 Lustemberg, Ramírez, Liu, Gutiérrez, Grinter, Carrasco (bib8) 2016; 6 Siang, Jalil, Hambali, Abdulrasheedand, Azami (bib37) 2020; 808 Gautam, Dhiman, Polshettiwar, Bhanage (bib51) 2016; 18 Chen, Cai, Yu, Li, Chen, Jia (bib86) 2019; 484 Ocsachoque, Pompeo, Gonzalez (bib41) 2011; 172 Bach, de Camargo, de Souza, Cardozo-Filho, Alves (bib19) 2020; 45 Singha, Shukla, Sandupatla, Deo, Bal (bib43) 2017; 5 Álvarez Moreno, Ramirez-Reina, Ivanova, Roger, Centeno, Odriozola (bib44) 2021; 9 Fihri, Bouhrara, Patil, Cha, Saih, Polshettiwar (bib48) 2012; 2 Quek, Liu, Cheo, Wang, Chen, Yang (bib76) 2010; 95 Lou, Steib, Zhang, Tiefenbacher, Horváth, Jentys (bib24) 2017; 356 da Fonseca, Rabelo-Neto, Simões, Mattos, Noronha (bib23) 2020; 45 Abdulrasheed, Jalil, Hamid, Siang, Fatah, Izan (bib60) 2020; 45 Omoregbe, Danh, Nguyen-Huy, Setiabudi, Abidin, Truong (bib78) 2017; 42 Wang, Zhang, Li, Chen (bib1) 2019; 39 Polshettiwar, Basset (bib33) 2011 Guan, Shao, Wen, Chen, Gong, Yang (bib54) 2003; 82 Boukha, Kacimi, Pereira, Faria, Figueiredo, Ziyad (bib59) 2007; 317 Chang, Lu, Lee, Gupta, Hardwick, Hu (bib63) 2021; 6 Kim, Pugmire, Battaglia, Langell (bib68) 2000; 165 Zhang, Li (bib21) 2015; 176–177 Febriyanti, Suendo, Mukti, Prasetyo, Arifin, Akbar (bib35) 2016; 32 Xu, Zhou, Li, Wang, Ma (bib84) 2010; 35 Marco, Gancedo, Gracia, Gautier, Ríos, Berry (bib65) 2000; 153 Zhang, Yang, Zhang, Xu, Shang, Yin (bib71) 2015; 40 Moradi, Khezeli, Hemmati (bib77) 2016; 33 Bayal, Singh, Singh, Polshettiwar (bib34) 2016; 6 Arciga-Duran, Meas, Pérez-Bueno, Ballesteros, Trejo (bib67) 2018; 165 Giehr, Maier, Schunk, Deutschmann (bib16) 2018; 10 Sadek, Chalupka, Mierczynski, Maniukiewicz, Rynkowski, Gurgul (bib52) 2020; 10 Fu, Yu, Jiang, Zhang, Zhan, Li (bib82) 2018 Zuo, Liu, Wang, Liu, Huang, Huang (bib18) 2018; 8 Estephane, Aouad, Hany, El Khoury, Gennequin, El Zakhem (bib81) 2015; 40 Titus, Roussière, Wasserschaff, Schunk, Milanov, Schwab (bib17) 2016; 270 Chong, Cheng, Bahari, Teh, Abidin, Setiabudi (bib32) 2021; 46 Nejat, Jalalinezhad, Hormozi, Bahrami (bib72) 2019; 97 Németh, Schay, Srankó, Károlyi, Sáfrán, Sajó (bib87) 2015; 504 Al-Fatesh, Kumar, Fakeeha, Kasim, Khatri, Ibrahim (bib14) 2020; 10 Al-fatesh, Kumar, Kasim, Ibrahim, Fakeeha, Abasaeed (bib27) 2022 Manukyan, Avetisyan, Shuck, Rouvimov, Kharatyan, Mukasyan (bib79) 2015 Al-Fatesh, Abu-Dahrieh, Atia, Armbruster, Ibrahim, Khan (bib2) 2019; 44 Wang, Yu, Shen, Chu, Qian (bib5) 2013; 38 Umeshbabu, Rajeshkhanna, Justin, Rao (bib56) 2016; 20 Das, Sengupta, Bag, Shah, Bordoloi (bib40) 2018; 10 Tyuliev, Angelov (bib62) 1988; 32 Kharatyan, Chatilyan, Manukyan (bib80) 2019 Pinilla, de Llobet, Moliner, Suelves (bib83) 2017; 200 Kweon, Kim, Shin, Park, Min (bib30) 2022; 431 Chong, Setiabudi, Jalil (bib49) 2020; 45 Liu, Zhang, Rui, Li, Lin, Betancourt (bib46) 2019; 9 Arora, Prasad (bib15) 2016; 6 Wu, Yang, Miao, Liu, Xie, Lee (bib70) 2019; 9 Yang, Liu, Li, Wu, He (bib28) 2016; 41 Abdulrasheed, Jalil, Hamid, Siang, Abdullah (bib36) 2020; 37 Duan, Pan, Yang, Wan, Lin, Li (bib45) 2022 Wei, Iglesia (bib13) 2004; 224 Sharifianjazi, Esmaeilkhanian, Bazli, Eskandarinezhad, Khaksar, Shafiee (bib7) 2021 Choudhury, Saied, Sullivan, Abbot (bib66) 1989; 22 Li, Anjum, Zhu, Saih, Laveille, D'Souza (bib73) 2015; 7 Fatah, Jalil, Triwahyono, Yusof, Mamat, Izan (bib47) 2020; 45 Taherian, Khataee, Orooji (bib29) 2021; 97 Ekeoma, Yusuf, Johari, Abdullah (bib26) 2022 Guerrero-Caballero, Kane, Haidar, Jalowiecki-Duhamel, Löfberg (bib50) 2019; 333 Lim, Cho, Yang, Engelhard, Kim (bib64) 2015; 505 Cichy, Pańczyk, Słowik, Zawadzki, Borowiecki (bib39) 2022; 47 Damyanova, Pawelec, Arishtirova, Fierro (bib58) 2012; 37 Björkman (bib88) 1969; 31 Dou, Tang, Nie, Andolina, Zhang, House (bib55) 2018; 311 Shen, Reule, Semagina (bib75) 2019; 44 Mohan, Shambhawi, Lapkin, Mushrif (bib11) 2020; 10 Li, Li, Tian, Zeng, Zhao, Gong (bib22) 2017; 202 Morales Anzures, Salinas Hernández, Mondragón Galicia, Gutiérrez Martínez, Tzompantzi Morales, Romero Romo (bib20) 2021; 46 Estephane (10.1016/j.ijhydene.2022.12.076_bib81) 2015; 40 Liu (10.1016/j.ijhydene.2022.12.076_bib46) 2019; 9 Cichy (10.1016/j.ijhydene.2022.12.076_bib39) 2022; 47 Wittich (10.1016/j.ijhydene.2022.12.076_bib6) 2020; 12 Fihri (10.1016/j.ijhydene.2022.12.076_bib48) 2012; 2 Aramouni (10.1016/j.ijhydene.2022.12.076_bib38) 2020; 45 Zhang (10.1016/j.ijhydene.2022.12.076_bib71) 2015; 40 Wei (10.1016/j.ijhydene.2022.12.076_bib13) 2004; 224 Araiza (10.1016/j.ijhydene.2022.12.076_bib42) 2021; 360 Farooqi (10.1016/j.ijhydene.2022.12.076_bib3) 2021; 46 Tang (10.1016/j.ijhydene.2022.12.076_bib9) 2022; 47 Morales Anzures (10.1016/j.ijhydene.2022.12.076_bib20) 2021; 46 Omoregbe (10.1016/j.ijhydene.2022.12.076_bib78) 2017; 42 Mohan (10.1016/j.ijhydene.2022.12.076_bib11) 2020; 10 Bayal (10.1016/j.ijhydene.2022.12.076_bib34) 2016; 6 Dou (10.1016/j.ijhydene.2022.12.076_bib55) 2018; 311 Chang (10.1016/j.ijhydene.2022.12.076_bib63) 2021; 6 Fu (10.1016/j.ijhydene.2022.12.076_bib82) 2018 Álvarez Moreno (10.1016/j.ijhydene.2022.12.076_bib44) 2021; 9 Björkman (10.1016/j.ijhydene.2022.12.076_bib88) 1969; 31 Al-Fatesh (10.1016/j.ijhydene.2022.12.076_bib14) 2020; 10 Wang (10.1016/j.ijhydene.2022.12.076_bib1) 2019; 39 Lustemberg (10.1016/j.ijhydene.2022.12.076_bib8) 2016; 6 Chong (10.1016/j.ijhydene.2022.12.076_bib32) 2021; 46 Chong (10.1016/j.ijhydene.2022.12.076_bib49) 2020; 45 Moradi (10.1016/j.ijhydene.2022.12.076_bib77) 2016; 33 Manukyan (10.1016/j.ijhydene.2022.12.076_bib79) 2015 Zhang (10.1016/j.ijhydene.2022.12.076_bib57) 2020; 499 Titus (10.1016/j.ijhydene.2022.12.076_bib17) 2016; 270 Abdulrasheed (10.1016/j.ijhydene.2022.12.076_bib60) 2020; 45 Guan (10.1016/j.ijhydene.2022.12.076_bib54) 2003; 82 San-José-Alonso (10.1016/j.ijhydene.2022.12.076_bib74) 2009; 371 Guerrero-Caballero (10.1016/j.ijhydene.2022.12.076_bib50) 2019; 333 Umeshbabu (10.1016/j.ijhydene.2022.12.076_bib56) 2016; 20 Tyuliev (10.1016/j.ijhydene.2022.12.076_bib62) 1988; 32 Boukha (10.1016/j.ijhydene.2022.12.076_bib59) 2007; 317 Marco (10.1016/j.ijhydene.2022.12.076_bib65) 2000; 153 Abdulrasheed (10.1016/j.ijhydene.2022.12.076_bib36) 2020; 37 Oboudatian (10.1016/j.ijhydene.2022.12.076_bib53) 2022; 12 Chen (10.1016/j.ijhydene.2022.12.076_bib86) 2019; 484 Gholizadeh (10.1016/j.ijhydene.2022.12.076_bib31) 2021; 310 Arciga-Duran (10.1016/j.ijhydene.2022.12.076_bib67) 2018; 165 Li (10.1016/j.ijhydene.2022.12.076_bib73) 2015; 7 Polshettiwar (10.1016/j.ijhydene.2022.12.076_bib33) 2011 Zuo (10.1016/j.ijhydene.2022.12.076_bib18) 2018; 8 Li (10.1016/j.ijhydene.2022.12.076_bib25) 2021; 46 Pinilla (10.1016/j.ijhydene.2022.12.076_bib83) 2017; 200 Das (10.1016/j.ijhydene.2022.12.076_bib40) 2018; 10 Roussière (10.1016/j.ijhydene.2022.12.076_bib10) 2014; 6 Arora (10.1016/j.ijhydene.2022.12.076_bib15) 2016; 6 Bach (10.1016/j.ijhydene.2022.12.076_bib19) 2020; 45 Németh (10.1016/j.ijhydene.2022.12.076_bib87) 2015; 504 Li (10.1016/j.ijhydene.2022.12.076_bib22) 2017; 202 Zhang (10.1016/j.ijhydene.2022.12.076_bib85) 2016; 162 Gautam (10.1016/j.ijhydene.2022.12.076_bib51) 2016; 18 Sharifianjazi (10.1016/j.ijhydene.2022.12.076_bib7) 2021 Choudhury (10.1016/j.ijhydene.2022.12.076_bib66) 1989; 22 Aguiar (10.1016/j.ijhydene.2022.12.076_bib4) 2019; 44 Febriyanti (10.1016/j.ijhydene.2022.12.076_bib35) 2016; 32 Kharatyan (10.1016/j.ijhydene.2022.12.076_bib80) 2019 Al-fatesh (10.1016/j.ijhydene.2022.12.076_bib27) 2022 Giehr (10.1016/j.ijhydene.2022.12.076_bib16) 2018; 10 Lim (10.1016/j.ijhydene.2022.12.076_bib64) 2015; 505 Quek (10.1016/j.ijhydene.2022.12.076_bib76) 2010; 95 Lou (10.1016/j.ijhydene.2022.12.076_bib24) 2017; 356 Wang (10.1016/j.ijhydene.2022.12.076_bib5) 2013; 38 da Fonseca (10.1016/j.ijhydene.2022.12.076_bib23) 2020; 45 Kim (10.1016/j.ijhydene.2022.12.076_bib68) 2000; 165 Siang (10.1016/j.ijhydene.2022.12.076_bib37) 2020; 808 Ekeoma (10.1016/j.ijhydene.2022.12.076_bib26) 2022 Singha (10.1016/j.ijhydene.2022.12.076_bib43) 2017; 5 Damyanova (10.1016/j.ijhydene.2022.12.076_bib58) 2012; 37 Nejat (10.1016/j.ijhydene.2022.12.076_bib72) 2019; 97 Al-Fatesh (10.1016/j.ijhydene.2022.12.076_bib2) 2019; 44 Taherian (10.1016/j.ijhydene.2022.12.076_bib29) 2021; 97 Shen (10.1016/j.ijhydene.2022.12.076_bib75) 2019; 44 Zhang (10.1016/j.ijhydene.2022.12.076_bib21) 2015; 176–177 Wu (10.1016/j.ijhydene.2022.12.076_bib70) 2019; 9 Xu (10.1016/j.ijhydene.2022.12.076_bib84) 2010; 35 Ocsachoque (10.1016/j.ijhydene.2022.12.076_bib41) 2011; 172 Yang (10.1016/j.ijhydene.2022.12.076_bib28) 2016; 41 Wei (10.1016/j.ijhydene.2022.12.076_bib12) 2004; 108 Kweon (10.1016/j.ijhydene.2022.12.076_bib30) 2022; 431 Sadek (10.1016/j.ijhydene.2022.12.076_bib52) 2020; 10 Duan (10.1016/j.ijhydene.2022.12.076_bib45) 2022 Fatah (10.1016/j.ijhydene.2022.12.076_bib47) 2020; 45 |
References_xml | – volume: 484 start-page: 479 year: 2019 end-page: 488 ident: bib86 article-title: Photothermocatalytic performance of ACo 2 O 4 type spinel with light-enhanced mobilizable active oxygen species for toluene oxidation publication-title: Appl Surf Sci – volume: 45 start-page: 9522 year: 2020 end-page: 9534 ident: bib47 article-title: Favored hydrogenation of linear carbon monoxide over cobalt loaded on fibrous silica KCC-1 publication-title: Int J Hydrogen Energy – volume: 82 start-page: 1002 year: 2003 end-page: 1006 ident: bib54 article-title: A novel method for preparing Co3O4 nanofibers by using electrospun PVA/cobalt acetate composite fibers as precursor publication-title: Mater Chem Phys – year: 2019 ident: bib80 article-title: Kinetics and mechanism of nickel oxide reduction by methane kinetics and mechanism of nickel oxide reduction by methane – volume: 8 start-page: 9821 year: 2018 end-page: 9835 ident: bib18 article-title: Dry reforming of methane on single-site Ni/MgO catalysts: importance of site confinement publication-title: ACS Catal – volume: 32 start-page: 5802 year: 2016 end-page: 5811 ident: bib35 article-title: Further insight into the definite morphology and formation mechanism of mesoporous silica KCC-1 publication-title: Langmuir – volume: 37 start-page: 230 year: 2020 end-page: 239 ident: bib36 article-title: Dry reforming of CH4 over stabilized Ni-La@KCC-1 catalyst: effects of la promoter and optimization studies using RSM publication-title: J CO2 Util – volume: 311 start-page: 48 year: 2018 end-page: 55 ident: bib55 article-title: Complete oxidation of methane on Co3O4/CeO2 nanocomposite: a synergic effect publication-title: Catal Today – volume: 6 start-page: 8184 year: 2016 end-page: 8191 ident: bib8 article-title: Room-temperature activation of methane and dry Re-forming with CO2 on Ni-CeO2(111) surfaces: effect of Ce3+ sites and metal-support interactions on C-H bond cleavage publication-title: ACS Catal – volume: 10 start-page: 6628 year: 2020 end-page: 6643 ident: bib11 article-title: Investigating methane dry reforming on Ni and B promoted Ni surfaces: DFT assisted microkinetic analysis and addressing the coking problem publication-title: Catal Sci Technol – volume: 20 start-page: 2725 year: 2016 end-page: 2736 ident: bib56 article-title: NiCo2O4/rGO hybrid nanostructures for efficient electrocatalytic oxygen evolution publication-title: J Solid State Electrochem – volume: 371 start-page: 54 year: 2009 end-page: 59 ident: bib74 article-title: Ni, Co and bimetallic Ni-Co catalysts for the dry reforming of methane publication-title: Appl Catal Gen – volume: 37 start-page: 15966 year: 2012 end-page: 15975 ident: bib58 article-title: Ni-based catalysts for reforming of methane with CO2 publication-title: Int J Hydrogen Energy – year: 2021 ident: bib7 article-title: A review on recent advances in dry reforming of methane over Ni- and Co-based nanocatalysts publication-title: Int J Hydrogen Energy – volume: 310 year: 2021 ident: bib31 article-title: Catalytic performance of cubic ordered mesoporous alumina supported nickel catalysts in dry reforming of methane publication-title: Microporous Mesoporous Mater – volume: 9 start-page: 1 year: 2021 end-page: 10 ident: bib44 article-title: Bimetallic Ni–Ru and Ni–Re catalysts for dry reforming of methane: understanding the synergies of the selected promoters publication-title: Front Chem – volume: 40 start-page: 16115 year: 2015 end-page: 16126 ident: bib71 article-title: Ni-Co catalyst derived from layered double hydroxides for dry reforming of methane publication-title: Int J Hydrogen Energy – volume: 333 start-page: 251 year: 2019 end-page: 258 ident: bib50 article-title: Ni, Co, Fe supported on Ceria and Zr doped Ceria as oxygen carriers for chemical looping dry reforming of methane publication-title: Catal Today – volume: 18 start-page: 5890 year: 2016 end-page: 5899 ident: bib51 article-title: KCC-1 supported palladium nanoparticles as an efficient and sustainable nanocatalyst for carbonylative Suzuki-Miyaura cross-coupling publication-title: Green Chem – volume: 504 start-page: 608 year: 2015 end-page: 620 ident: bib87 article-title: Impregnated Ni/ZrO2 and Pt/ZrO2 catalysts in dry reforming of methane: activity tests in excess methane and mechanistic studies with labeled 13CO2 publication-title: Appl Catal Gen – volume: 12 start-page: 2130 year: 2020 end-page: 2147 ident: bib6 article-title: Catalytic dry reforming of methane: insights from model systems publication-title: ChemCatChem – volume: 46 start-page: 26224 year: 2021 end-page: 26233 ident: bib20 article-title: Synthetic gas production by dry reforming of methane over Ni/Al2O3–ZrO2 catalysts: high H2/CO ratio publication-title: Int J Hydrogen Energy – volume: 202 start-page: 683 year: 2017 end-page: 694 ident: bib22 article-title: Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles publication-title: Appl Catal B Environ – year: 2022 ident: bib45 article-title: Nickel‒cobalt bimetallic catalysts prepared from hydrotalcite-like compounds for dry reforming of methane publication-title: Int J Hydrogen Energy – volume: 6 start-page: 9692 year: 2021 end-page: 9699 ident: bib63 article-title: The effect of degrees of inversion on the electronic structure of spinel NiCo2O4: a density functional theory study publication-title: ACS Omega – volume: 44 start-page: 32003 year: 2019 end-page: 32018 ident: bib4 article-title: Si-MCM-41 obtained from different sources of silica and its application as support for nickel catalysts used in dry reforming of methane publication-title: Int J Hydrogen Energy – volume: 39 start-page: 198 year: 2019 end-page: 207 ident: bib1 article-title: Coke-resistant Au–Ni/MgAl2O4 catalyst for direct methanation of syngas publication-title: J Energy Chem – start-page: 1 year: 2018 end-page: 10 ident: bib82 article-title: NiCo alloy nanoparticles decorated on N-doped carbon nanofibers as highly active and durable oxygen publication-title: Electrocatalyst – volume: 95 start-page: 374 year: 2010 end-page: 382 ident: bib76 article-title: Nickel-grafted TUD-1 mesoporous catalysts for carbon dioxide reforming of methane publication-title: Appl Catal B Environ – volume: 360 start-page: 46 year: 2021 end-page: 54 ident: bib42 article-title: Dry reforming of methane over Pt-Ni/CeO2 catalysts: effect of the metal composition on the stability publication-title: Catal Today – volume: 356 start-page: 147 year: 2017 end-page: 156 ident: bib24 article-title: Design of stable Ni/ZrO2 catalysts for dry reforming of methane publication-title: J Catal – volume: 46 start-page: 31024 year: 2021 end-page: 31040 ident: bib3 article-title: A comprehensive review on improving the production of rich-hydrogen via combined steam and CO2 reforming of methane over Ni-based catalysts publication-title: Int J Hydrogen Energy – volume: 40 start-page: 9201 year: 2015 end-page: 9208 ident: bib81 article-title: CO2 reforming of methane over Ni-Co/ZSM5 catalysts. Aging and carbon deposition study publication-title: Int J Hydrogen Energy – volume: 97 start-page: 100 year: 2021 end-page: 108 ident: bib29 article-title: Nickel-based nanocatalysts promoted over MgO-modified SBA-16 for dry reforming of methane for syngas production: impact of support and promoters publication-title: J Energy Inst – volume: 46 start-page: 24687 year: 2021 end-page: 24708 ident: bib32 article-title: Development of nanosilica-based catalyst for syngas production via CO2 reforming of CH4: a review publication-title: Int J Hydrogen Energy – volume: 97 start-page: 216 year: 2019 end-page: 226 ident: bib72 article-title: Hydrogen production from steam reforming of ethanol over Ni-Co bimetallic catalysts and MCM-41 as support publication-title: J Taiwan Inst Chem Eng – volume: 165 start-page: H3178 year: 2018 end-page: H3186 ident: bib67 article-title: Electrochemical synthesis of Co 3 O 4-x films for their application as oxygen evolution reaction electrocatalysts: role of oxygen vacancies publication-title: J Electrochem Soc – year: 2015 ident: bib79 article-title: Nickel oxide reduction by hydrogen : kinetics and structural transformations nickel oxide reduction by hydrogen : kinetics and structural transformations laboratory of kinetics of SHS processes , institute of chemical physics NAS of Armenia , department o – volume: 2 start-page: 1425 year: 2012 end-page: 1431 ident: bib48 article-title: Fibrous nano-silica supported ruthenium (KCC-1/Ru): a sustainable catalyst for the hydrogenolysis of alkanes with good catalytic activity and lifetime publication-title: ACS Catal – volume: 6 start-page: 108668 year: 2016 end-page: 108688 ident: bib15 article-title: An overview on dry reforming of methane: strategies to reduce carbonaceous deactivation of catalysts publication-title: RSC Adv – volume: 505 start-page: 62 year: 2015 end-page: 69 ident: bib64 article-title: Effect of Co/Ni ratios in cobalt nickel mixed oxide catalysts on methane combustion publication-title: Appl Catal Gen – volume: 270 start-page: 68 year: 2016 end-page: 75 ident: bib17 article-title: Dry reforming of methane with carbon dioxide over NiO-MgO-ZrO2 publication-title: Catal Today – volume: 108 start-page: 7253 year: 2004 end-page: 7262 ident: bib12 article-title: Reaction pathways and site requirements for the activation and chemical conversion of methane on Ru-based catalysts publication-title: J Phys Chem B – volume: 47 start-page: 16528 year: 2022 end-page: 16543 ident: bib39 article-title: Ni–Re alloy catalysts on Al2O3 for methane dry reforming publication-title: Int J Hydrogen Energy – volume: 6 start-page: 1447 year: 2014 end-page: 1452 ident: bib10 article-title: Structure-activity relationships of nickel-hexaaluminates in reforming reactions Part II: activity and stability of nanostructured nickel- hexaaluminate-based catalysts in the dry reforming of methane publication-title: ChemCatChem – volume: 176–177 start-page: 513 year: 2015 end-page: 521 ident: bib21 article-title: Coke-resistant Ni at SiO2 catalyst for dry reforming of methane publication-title: Appl Catal B Environ – volume: 9 start-page: 2693 year: 2019 end-page: 2700 ident: bib70 article-title: Lattice strained Ni-Co alloy as a high-performance catalyst for catalytic dry reforming of methane publication-title: ACS Catal – volume: 162 start-page: 67 year: 2016 end-page: 70 ident: bib85 article-title: Hydrothermal synthesis of hierarchical mesoporous NiO nanourchins and their supercapacitor application publication-title: Mater Lett – volume: 45 start-page: 5252 year: 2020 end-page: 5263 ident: bib19 article-title: Dry reforming of methane over Ni/MgO–Al2O3 catalysts: thermodynamic equilibrium analysis and experimental application publication-title: Int J Hydrogen Energy – volume: 6 start-page: 1 year: 2016 end-page: 11 ident: bib34 article-title: Size and fiber density controlled synthesis of fibrous nanosilica spheres (KCC-1) publication-title: Sci Rep – volume: 10 start-page: 1 year: 2020 end-page: 10 ident: bib14 article-title: Promotional effect of magnesium oxide for a stable nickel-based catalyst in dry reforming of methane publication-title: Sci Rep – volume: 172 start-page: 226 year: 2011 end-page: 231 ident: bib41 article-title: Rh-Ni/CeO2-Al2O3 catalysts for methane dry reforming publication-title: Catal Today – volume: 44 start-page: 21546 year: 2019 end-page: 21558 ident: bib2 article-title: Effect of pre-treatment and calcination temperature on Al2O3-ZrO2 supported Ni-Co catalysts for dry reforming of methane publication-title: Int J Hydrogen Energy – volume: 45 start-page: 18549 year: 2020 end-page: 18561 ident: bib60 article-title: Dry reforming of methane to hydrogen-rich syngas over robust fibrous KCC-1 stabilized nickel catalyst with high activity and coke resistance publication-title: Int J Hydrogen Energy – volume: 5 start-page: 15688 year: 2017 end-page: 15699 ident: bib43 article-title: Synthesis and catalytic activity of a Pd doped Ni-MgO catalyst for dry reforming of methane publication-title: J Mater Chem – volume: 22 start-page: 1185 year: 1989 end-page: 1195 ident: bib66 article-title: Reduction of oxides of iron, cobalt, titanium and niobium by low-energy ion bombardment publication-title: J Phys D Appl Phys – volume: 317 start-page: 299 year: 2007 end-page: 309 ident: bib59 article-title: Methane dry reforming on Ni loaded hydroxyapatite and fluoroapatite publication-title: Appl Catal Gen – volume: 224 start-page: 370 year: 2004 end-page: 383 ident: bib13 article-title: Isotopic and kinetic assessment of the mechanism of reactions of CH 4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts publication-title: J Catal – volume: 10 start-page: 751 year: 2018 end-page: 757 ident: bib16 article-title: Thermodynamic considerations on the oxidation state of Co/γ-Al2O3 and Ni/γ-Al2O3 catalysts under dry and steam reforming conditions publication-title: ChemCatChem – volume: 10 year: 2020 ident: bib52 article-title: The catalytic performance of Ni-Co/Beta zeolite catalysts in Fischer-Tropsch synthesis publication-title: Catalysts – volume: 7 start-page: 427 year: 2015 end-page: 433 ident: bib73 article-title: Synergetic effects leading to coke-resistant NiCo bimetallic catalysts for dry reforming of methane publication-title: ChemCatChem – volume: 42 start-page: 11283 year: 2017 end-page: 11294 ident: bib78 article-title: Syngas production from methane dry reforming over Ni/SBA-15 catalyst: effect of operating parameters publication-title: Int J Hydrogen Energy – volume: 165 start-page: 70 year: 2000 end-page: 84 ident: bib68 article-title: Analysis of the NiCo2O4 spinel surface with Auger and X-ray photoelectron spectroscopy publication-title: Appl Surf Sci – volume: 33 start-page: 657 year: 2016 end-page: 665 ident: bib77 article-title: Syngas production with dry reforming of methane over Ni/ZSM-5 catalysts publication-title: J Nat Gas Sci Eng – volume: 45 start-page: 5182 year: 2020 end-page: 5191 ident: bib23 article-title: Pt supported on doped CeO2/Al2O3 as catalyst for dry reforming of methane publication-title: Int J Hydrogen Energy – volume: 12 start-page: 1 year: 2022 end-page: 15 ident: bib53 article-title: Silica nanospheres KCC-1 as a good catalyst for the preparation of 2-amino-4H-chromenes by ultrasonic irradiation publication-title: Sci Rep – volume: 35 start-page: 13013 year: 2010 end-page: 13020 ident: bib84 article-title: Biogas reforming for hydrogen production over a Ni-Co bimetallic catalyst: effect of operating conditions publication-title: Int J Hydrogen Energy – volume: 32 start-page: 381 year: 1988 end-page: 391 ident: bib62 article-title: The nature of excess oxygen in Co3O4+ε publication-title: Appl Surf Sci – year: 2022 ident: bib27 article-title: E ff ect of cerium promoters on an MCM-41-supported nickel catalyst in dry reforming of methane – volume: 153 start-page: 74 year: 2000 end-page: 81 ident: bib65 article-title: Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: an XRD, XANES, EXAFS, and XPS study publication-title: J Solid State Chem – volume: 200 start-page: 255 year: 2017 end-page: 264 ident: bib83 article-title: Ni-Co bimetallic catalysts for the simultaneous production of carbon nanofibres and syngas through biogas decomposition publication-title: Appl Catal B Environ – volume: 38 start-page: 9718 year: 2013 end-page: 9731 ident: bib5 article-title: Synthesis, characterization and catalytic performance of MgO-coated Ni/SBA-15 catalysts for methane dry reforming to syngas and hydrogen publication-title: Int J Hydrogen Energy – volume: 9 start-page: 3349 year: 2019 end-page: 3359 ident: bib46 article-title: Highly active ceria-supported Ru catalyst for the dry reforming of methane: in situ identification of Ruδ+-Ce3+ interactions for enhanced conversion publication-title: ACS Catal – year: 2022 ident: bib26 article-title: Mesoporous silica supported Ni-based catalysts for methane dry reforming: a review of recent studies publication-title: Int J Hydrogen Energy – volume: 46 start-page: 31608 year: 2021 end-page: 31622 ident: bib25 article-title: Lanthanide oxide modified nickel supported on mesoporous silica catalysts for dry reforming of methane publication-title: Int J Hydrogen Energy – volume: 10 start-page: 6409 year: 2018 end-page: 6425 ident: bib40 article-title: Facile synthesis of highly disperse Ni-Co nanoparticles over mesoporous silica for enhanced methane dry reforming publication-title: Nanoscale – volume: 431 year: 2022 ident: bib30 article-title: Nickel silicate beta zeolite prepared by interzeolite transformation: a highly active and stable catalyst for dry reforming of methane publication-title: Chem Eng J – volume: 499 year: 2020 ident: bib57 article-title: Fabrication of the pod-like KCC-1/TiO2 superhydrophobic surface on AZ31 Mg alloy with stability and photocatalytic property publication-title: Appl Surf Sci – volume: 41 start-page: 1513 year: 2016 end-page: 1523 ident: bib28 article-title: CO2 reforming of methane to syngas over highly-stable Ni/SBA-15 catalysts prepared by P123-assisted method publication-title: Int J Hydrogen Energy – volume: 808 year: 2020 ident: bib37 article-title: Dendritic mesoporous Ni/KCC-1 for partial oxidation of methane to syngas publication-title: IOP Conf Ser Mater Sci Eng – start-page: 1 year: 2011 ident: bib33 article-title: (12) patent application publication (10) pub. No.: US 2011/0253643 A1 – volume: 45 start-page: 18533 year: 2020 end-page: 18548 ident: bib49 article-title: Dendritic fibrous SBA-15 supported nickel (Ni/DFSBA-15): a sustainable catalyst for hydrogen production publication-title: Int J Hydrogen Energy – volume: 44 start-page: 4616 year: 2019 end-page: 4629 ident: bib75 article-title: Ni/MgAl2O4 catalyst for low-temperature oxidative dry methane reforming with CO2 publication-title: Int J Hydrogen Energy – volume: 31 start-page: 632 year: 1969 end-page: 645 ident: bib88 article-title: Thermische klärschlammbehandlung publication-title: Schweiz Z Hydrol – volume: 45 start-page: 17153 year: 2020 end-page: 17163 ident: bib38 article-title: Eclectic trimetallic Ni–Co–Ru catalyst for the dry reforming of methane publication-title: Int J Hydrogen Energy – volume: 47 start-page: 30391 year: 2022 end-page: 30403 ident: bib9 article-title: Density functional theory studies on direct and oxygen assisted activation of C–H bond for dry reforming of methane over Rh–Ni catalyst publication-title: Int J Hydrogen Energy – volume: 20 start-page: 2725 year: 2016 ident: 10.1016/j.ijhydene.2022.12.076_bib56 article-title: NiCo2O4/rGO hybrid nanostructures for efficient electrocatalytic oxygen evolution publication-title: J Solid State Electrochem doi: 10.1007/s10008-016-3278-4 – volume: 44 start-page: 4616 year: 2019 ident: 10.1016/j.ijhydene.2022.12.076_bib75 article-title: Ni/MgAl2O4 catalyst for low-temperature oxidative dry methane reforming with CO2 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.01.027 – volume: 6 start-page: 9692 year: 2021 ident: 10.1016/j.ijhydene.2022.12.076_bib63 article-title: The effect of degrees of inversion on the electronic structure of spinel NiCo2O4: a density functional theory study publication-title: ACS Omega doi: 10.1021/acsomega.1c00295 – volume: 8 start-page: 9821 year: 2018 ident: 10.1016/j.ijhydene.2022.12.076_bib18 article-title: Dry reforming of methane on single-site Ni/MgO catalysts: importance of site confinement publication-title: ACS Catal doi: 10.1021/acscatal.8b02277 – volume: 12 start-page: 2130 year: 2020 ident: 10.1016/j.ijhydene.2022.12.076_bib6 article-title: Catalytic dry reforming of methane: insights from model systems publication-title: ChemCatChem doi: 10.1002/cctc.201902142 – volume: 504 start-page: 608 year: 2015 ident: 10.1016/j.ijhydene.2022.12.076_bib87 article-title: Impregnated Ni/ZrO2 and Pt/ZrO2 catalysts in dry reforming of methane: activity tests in excess methane and mechanistic studies with labeled 13CO2 publication-title: Appl Catal Gen doi: 10.1016/j.apcata.2015.04.006 – volume: 33 start-page: 657 year: 2016 ident: 10.1016/j.ijhydene.2022.12.076_bib77 article-title: Syngas production with dry reforming of methane over Ni/ZSM-5 catalysts publication-title: J Nat Gas Sci Eng doi: 10.1016/j.jngse.2016.06.004 – volume: 97 start-page: 100 year: 2021 ident: 10.1016/j.ijhydene.2022.12.076_bib29 article-title: Nickel-based nanocatalysts promoted over MgO-modified SBA-16 for dry reforming of methane for syngas production: impact of support and promoters publication-title: J Energy Inst doi: 10.1016/j.joei.2021.04.005 – volume: 317 start-page: 299 year: 2007 ident: 10.1016/j.ijhydene.2022.12.076_bib59 article-title: Methane dry reforming on Ni loaded hydroxyapatite and fluoroapatite publication-title: Appl Catal Gen doi: 10.1016/j.apcata.2006.10.029 – volume: 42 start-page: 11283 year: 2017 ident: 10.1016/j.ijhydene.2022.12.076_bib78 article-title: Syngas production from methane dry reforming over Ni/SBA-15 catalyst: effect of operating parameters publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2017.03.146 – volume: 38 start-page: 9718 year: 2013 ident: 10.1016/j.ijhydene.2022.12.076_bib5 article-title: Synthesis, characterization and catalytic performance of MgO-coated Ni/SBA-15 catalysts for methane dry reforming to syngas and hydrogen publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.05.097 – volume: 356 start-page: 147 year: 2017 ident: 10.1016/j.ijhydene.2022.12.076_bib24 article-title: Design of stable Ni/ZrO2 catalysts for dry reforming of methane publication-title: J Catal doi: 10.1016/j.jcat.2017.10.009 – year: 2019 ident: 10.1016/j.ijhydene.2022.12.076_bib80 – volume: 270 start-page: 68 year: 2016 ident: 10.1016/j.ijhydene.2022.12.076_bib17 article-title: Dry reforming of methane with carbon dioxide over NiO-MgO-ZrO2 publication-title: Catal Today doi: 10.1016/j.cattod.2015.09.027 – year: 2022 ident: 10.1016/j.ijhydene.2022.12.076_bib45 article-title: Nickel‒cobalt bimetallic catalysts prepared from hydrotalcite-like compounds for dry reforming of methane publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2022.05.211 – volume: 311 start-page: 48 year: 2018 ident: 10.1016/j.ijhydene.2022.12.076_bib55 article-title: Complete oxidation of methane on Co3O4/CeO2 nanocomposite: a synergic effect publication-title: Catal Today doi: 10.1016/j.cattod.2017.12.027 – volume: 162 start-page: 67 year: 2016 ident: 10.1016/j.ijhydene.2022.12.076_bib85 article-title: Hydrothermal synthesis of hierarchical mesoporous NiO nanourchins and their supercapacitor application publication-title: Mater Lett doi: 10.1016/j.matlet.2015.09.123 – volume: 47 start-page: 30391 year: 2022 ident: 10.1016/j.ijhydene.2022.12.076_bib9 article-title: Density functional theory studies on direct and oxygen assisted activation of C–H bond for dry reforming of methane over Rh–Ni catalyst publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2022.07.002 – volume: 310 year: 2021 ident: 10.1016/j.ijhydene.2022.12.076_bib31 article-title: Catalytic performance of cubic ordered mesoporous alumina supported nickel catalysts in dry reforming of methane publication-title: Microporous Mesoporous Mater doi: 10.1016/j.micromeso.2020.110616 – volume: 37 start-page: 15966 year: 2012 ident: 10.1016/j.ijhydene.2022.12.076_bib58 article-title: Ni-based catalysts for reforming of methane with CO2 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.08.056 – volume: 499 year: 2020 ident: 10.1016/j.ijhydene.2022.12.076_bib57 article-title: Fabrication of the pod-like KCC-1/TiO2 superhydrophobic surface on AZ31 Mg alloy with stability and photocatalytic property publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2019.143933 – volume: 6 start-page: 8184 year: 2016 ident: 10.1016/j.ijhydene.2022.12.076_bib8 article-title: Room-temperature activation of methane and dry Re-forming with CO2 on Ni-CeO2(111) surfaces: effect of Ce3+ sites and metal-support interactions on C-H bond cleavage publication-title: ACS Catal doi: 10.1021/acscatal.6b02360 – volume: 40 start-page: 9201 year: 2015 ident: 10.1016/j.ijhydene.2022.12.076_bib81 article-title: CO2 reforming of methane over Ni-Co/ZSM5 catalysts. Aging and carbon deposition study publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2015.05.147 – volume: 41 start-page: 1513 year: 2016 ident: 10.1016/j.ijhydene.2022.12.076_bib28 article-title: CO2 reforming of methane to syngas over highly-stable Ni/SBA-15 catalysts prepared by P123-assisted method publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2015.11.044 – volume: 2 start-page: 1425 year: 2012 ident: 10.1016/j.ijhydene.2022.12.076_bib48 article-title: Fibrous nano-silica supported ruthenium (KCC-1/Ru): a sustainable catalyst for the hydrogenolysis of alkanes with good catalytic activity and lifetime publication-title: ACS Catal doi: 10.1021/cs300179q – year: 2015 ident: 10.1016/j.ijhydene.2022.12.076_bib79 – volume: 35 start-page: 13013 year: 2010 ident: 10.1016/j.ijhydene.2022.12.076_bib84 article-title: Biogas reforming for hydrogen production over a Ni-Co bimetallic catalyst: effect of operating conditions publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2010.04.075 – volume: 108 start-page: 7253 year: 2004 ident: 10.1016/j.ijhydene.2022.12.076_bib12 article-title: Reaction pathways and site requirements for the activation and chemical conversion of methane on Ru-based catalysts publication-title: J Phys Chem B doi: 10.1021/jp030783l – volume: 18 start-page: 5890 year: 2016 ident: 10.1016/j.ijhydene.2022.12.076_bib51 article-title: KCC-1 supported palladium nanoparticles as an efficient and sustainable nanocatalyst for carbonylative Suzuki-Miyaura cross-coupling publication-title: Green Chem doi: 10.1039/C6GC02012G – volume: 10 start-page: 6628 year: 2020 ident: 10.1016/j.ijhydene.2022.12.076_bib11 article-title: Investigating methane dry reforming on Ni and B promoted Ni surfaces: DFT assisted microkinetic analysis and addressing the coking problem publication-title: Catal Sci Technol doi: 10.1039/D0CY00939C – volume: 45 start-page: 5252 year: 2020 ident: 10.1016/j.ijhydene.2022.12.076_bib19 article-title: Dry reforming of methane over Ni/MgO–Al2O3 catalysts: thermodynamic equilibrium analysis and experimental application publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.07.200 – volume: 12 start-page: 1 year: 2022 ident: 10.1016/j.ijhydene.2022.12.076_bib53 article-title: Silica nanospheres KCC-1 as a good catalyst for the preparation of 2-amino-4H-chromenes by ultrasonic irradiation publication-title: Sci Rep doi: 10.1038/s41598-022-05993-3 – volume: 172 start-page: 226 year: 2011 ident: 10.1016/j.ijhydene.2022.12.076_bib41 article-title: Rh-Ni/CeO2-Al2O3 catalysts for methane dry reforming publication-title: Catal Today doi: 10.1016/j.cattod.2011.02.057 – volume: 46 start-page: 24687 year: 2021 ident: 10.1016/j.ijhydene.2022.12.076_bib32 article-title: Development of nanosilica-based catalyst for syngas production via CO2 reforming of CH4: a review publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.01.086 – volume: 45 start-page: 9522 year: 2020 ident: 10.1016/j.ijhydene.2022.12.076_bib47 article-title: Favored hydrogenation of linear carbon monoxide over cobalt loaded on fibrous silica KCC-1 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.01.144 – volume: 22 start-page: 1185 year: 1989 ident: 10.1016/j.ijhydene.2022.12.076_bib66 article-title: Reduction of oxides of iron, cobalt, titanium and niobium by low-energy ion bombardment publication-title: J Phys D Appl Phys doi: 10.1088/0022-3727/22/8/026 – volume: 82 start-page: 1002 year: 2003 ident: 10.1016/j.ijhydene.2022.12.076_bib54 article-title: A novel method for preparing Co3O4 nanofibers by using electrospun PVA/cobalt acetate composite fibers as precursor publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2003.09.003 – volume: 5 start-page: 15688 year: 2017 ident: 10.1016/j.ijhydene.2022.12.076_bib43 article-title: Synthesis and catalytic activity of a Pd doped Ni-MgO catalyst for dry reforming of methane publication-title: J Mater Chem doi: 10.1039/C7TA04452F – volume: 45 start-page: 5182 year: 2020 ident: 10.1016/j.ijhydene.2022.12.076_bib23 article-title: Pt supported on doped CeO2/Al2O3 as catalyst for dry reforming of methane publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.09.207 – volume: 46 start-page: 31024 year: 2021 ident: 10.1016/j.ijhydene.2022.12.076_bib3 article-title: A comprehensive review on improving the production of rich-hydrogen via combined steam and CO2 reforming of methane over Ni-based catalysts publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.01.049 – volume: 95 start-page: 374 year: 2010 ident: 10.1016/j.ijhydene.2022.12.076_bib76 article-title: Nickel-grafted TUD-1 mesoporous catalysts for carbon dioxide reforming of methane publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2010.01.016 – volume: 31 start-page: 632 year: 1969 ident: 10.1016/j.ijhydene.2022.12.076_bib88 article-title: Thermische klärschlammbehandlung publication-title: Schweiz Z Hydrol – volume: 39 start-page: 198 year: 2019 ident: 10.1016/j.ijhydene.2022.12.076_bib1 article-title: Coke-resistant Au–Ni/MgAl2O4 catalyst for direct methanation of syngas publication-title: J Energy Chem doi: 10.1016/j.jechem.2019.03.028 – volume: 505 start-page: 62 year: 2015 ident: 10.1016/j.ijhydene.2022.12.076_bib64 article-title: Effect of Co/Ni ratios in cobalt nickel mixed oxide catalysts on methane combustion publication-title: Appl Catal Gen doi: 10.1016/j.apcata.2015.07.040 – volume: 202 start-page: 683 year: 2017 ident: 10.1016/j.ijhydene.2022.12.076_bib22 article-title: Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2016.09.071 – volume: 97 start-page: 216 year: 2019 ident: 10.1016/j.ijhydene.2022.12.076_bib72 article-title: Hydrogen production from steam reforming of ethanol over Ni-Co bimetallic catalysts and MCM-41 as support publication-title: J Taiwan Inst Chem Eng doi: 10.1016/j.jtice.2019.01.025 – volume: 7 start-page: 427 year: 2015 ident: 10.1016/j.ijhydene.2022.12.076_bib73 article-title: Synergetic effects leading to coke-resistant NiCo bimetallic catalysts for dry reforming of methane publication-title: ChemCatChem doi: 10.1002/cctc.201402921 – volume: 6 start-page: 108668 year: 2016 ident: 10.1016/j.ijhydene.2022.12.076_bib15 article-title: An overview on dry reforming of methane: strategies to reduce carbonaceous deactivation of catalysts publication-title: RSC Adv doi: 10.1039/C6RA20450C – volume: 10 start-page: 1 year: 2020 ident: 10.1016/j.ijhydene.2022.12.076_bib14 article-title: Promotional effect of magnesium oxide for a stable nickel-based catalyst in dry reforming of methane publication-title: Sci Rep doi: 10.1038/s41598-020-70930-1 – volume: 6 start-page: 1 year: 2016 ident: 10.1016/j.ijhydene.2022.12.076_bib34 article-title: Size and fiber density controlled synthesis of fibrous nanosilica spheres (KCC-1) publication-title: Sci Rep doi: 10.1038/srep24888 – volume: 45 start-page: 17153 year: 2020 ident: 10.1016/j.ijhydene.2022.12.076_bib38 article-title: Eclectic trimetallic Ni–Co–Ru catalyst for the dry reforming of methane publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.04.261 – volume: 32 start-page: 381 year: 1988 ident: 10.1016/j.ijhydene.2022.12.076_bib62 article-title: The nature of excess oxygen in Co3O4+ε publication-title: Appl Surf Sci doi: 10.1016/0169-4332(88)90089-X – volume: 9 start-page: 1 year: 2021 ident: 10.1016/j.ijhydene.2022.12.076_bib44 article-title: Bimetallic Ni–Ru and Ni–Re catalysts for dry reforming of methane: understanding the synergies of the selected promoters publication-title: Front Chem doi: 10.3389/fchem.2021.694976 – start-page: 1 year: 2011 ident: 10.1016/j.ijhydene.2022.12.076_bib33 – volume: 40 start-page: 16115 year: 2015 ident: 10.1016/j.ijhydene.2022.12.076_bib71 article-title: Ni-Co catalyst derived from layered double hydroxides for dry reforming of methane publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2015.09.150 – volume: 6 start-page: 1447 year: 2014 ident: 10.1016/j.ijhydene.2022.12.076_bib10 article-title: Structure-activity relationships of nickel-hexaaluminates in reforming reactions Part II: activity and stability of nanostructured nickel- hexaaluminate-based catalysts in the dry reforming of methane publication-title: ChemCatChem doi: 10.1002/cctc.201300958 – volume: 45 start-page: 18533 year: 2020 ident: 10.1016/j.ijhydene.2022.12.076_bib49 article-title: Dendritic fibrous SBA-15 supported nickel (Ni/DFSBA-15): a sustainable catalyst for hydrogen production publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.05.034 – volume: 9 start-page: 2693 year: 2019 ident: 10.1016/j.ijhydene.2022.12.076_bib70 article-title: Lattice strained Ni-Co alloy as a high-performance catalyst for catalytic dry reforming of methane publication-title: ACS Catal doi: 10.1021/acscatal.8b02821 – volume: 431 year: 2022 ident: 10.1016/j.ijhydene.2022.12.076_bib30 article-title: Nickel silicate beta zeolite prepared by interzeolite transformation: a highly active and stable catalyst for dry reforming of methane publication-title: Chem Eng J doi: 10.1016/j.cej.2021.133364 – volume: 165 start-page: H3178 year: 2018 ident: 10.1016/j.ijhydene.2022.12.076_bib67 article-title: Electrochemical synthesis of Co 3 O 4-x films for their application as oxygen evolution reaction electrocatalysts: role of oxygen vacancies publication-title: J Electrochem Soc doi: 10.1149/2.0261804jes – volume: 10 year: 2020 ident: 10.1016/j.ijhydene.2022.12.076_bib52 article-title: The catalytic performance of Ni-Co/Beta zeolite catalysts in Fischer-Tropsch synthesis publication-title: Catalysts doi: 10.3390/catal10010112 – volume: 46 start-page: 31608 year: 2021 ident: 10.1016/j.ijhydene.2022.12.076_bib25 article-title: Lanthanide oxide modified nickel supported on mesoporous silica catalysts for dry reforming of methane publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.07.056 – volume: 44 start-page: 21546 year: 2019 ident: 10.1016/j.ijhydene.2022.12.076_bib2 article-title: Effect of pre-treatment and calcination temperature on Al2O3-ZrO2 supported Ni-Co catalysts for dry reforming of methane publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.06.085 – volume: 47 start-page: 16528 year: 2022 ident: 10.1016/j.ijhydene.2022.12.076_bib39 article-title: Ni–Re alloy catalysts on Al2O3 for methane dry reforming publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2022.03.147 – volume: 37 start-page: 230 year: 2020 ident: 10.1016/j.ijhydene.2022.12.076_bib36 article-title: Dry reforming of CH4 over stabilized Ni-La@KCC-1 catalyst: effects of la promoter and optimization studies using RSM publication-title: J CO2 Util doi: 10.1016/j.jcou.2019.12.018 – volume: 10 start-page: 751 year: 2018 ident: 10.1016/j.ijhydene.2022.12.076_bib16 article-title: Thermodynamic considerations on the oxidation state of Co/γ-Al2O3 and Ni/γ-Al2O3 catalysts under dry and steam reforming conditions publication-title: ChemCatChem doi: 10.1002/cctc.201701376 – year: 2022 ident: 10.1016/j.ijhydene.2022.12.076_bib26 article-title: Mesoporous silica supported Ni-based catalysts for methane dry reforming: a review of recent studies publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2022.05.297 – volume: 10 start-page: 6409 year: 2018 ident: 10.1016/j.ijhydene.2022.12.076_bib40 article-title: Facile synthesis of highly disperse Ni-Co nanoparticles over mesoporous silica for enhanced methane dry reforming publication-title: Nanoscale doi: 10.1039/C7NR09625A – volume: 176–177 start-page: 513 year: 2015 ident: 10.1016/j.ijhydene.2022.12.076_bib21 article-title: Coke-resistant Ni at SiO2 catalyst for dry reforming of methane publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2015.04.039 – volume: 32 start-page: 5802 year: 2016 ident: 10.1016/j.ijhydene.2022.12.076_bib35 article-title: Further insight into the definite morphology and formation mechanism of mesoporous silica KCC-1 publication-title: Langmuir doi: 10.1021/acs.langmuir.6b00675 – volume: 44 start-page: 32003 year: 2019 ident: 10.1016/j.ijhydene.2022.12.076_bib4 article-title: Si-MCM-41 obtained from different sources of silica and its application as support for nickel catalysts used in dry reforming of methane publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.10.118 – volume: 224 start-page: 370 year: 2004 ident: 10.1016/j.ijhydene.2022.12.076_bib13 article-title: Isotopic and kinetic assessment of the mechanism of reactions of CH 4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts publication-title: J Catal doi: 10.1016/j.jcat.2004.02.032 – volume: 200 start-page: 255 year: 2017 ident: 10.1016/j.ijhydene.2022.12.076_bib83 article-title: Ni-Co bimetallic catalysts for the simultaneous production of carbon nanofibres and syngas through biogas decomposition publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2016.07.015 – volume: 165 start-page: 70 year: 2000 ident: 10.1016/j.ijhydene.2022.12.076_bib68 article-title: Analysis of the NiCo2O4 spinel surface with Auger and X-ray photoelectron spectroscopy publication-title: Appl Surf Sci doi: 10.1016/S0169-4332(00)00378-0 – start-page: 1 year: 2018 ident: 10.1016/j.ijhydene.2022.12.076_bib82 article-title: NiCo alloy nanoparticles decorated on N-doped carbon nanofibers as highly active and durable oxygen publication-title: Electrocatalyst – volume: 333 start-page: 251 year: 2019 ident: 10.1016/j.ijhydene.2022.12.076_bib50 article-title: Ni, Co, Fe supported on Ceria and Zr doped Ceria as oxygen carriers for chemical looping dry reforming of methane publication-title: Catal Today doi: 10.1016/j.cattod.2018.11.064 – volume: 153 start-page: 74 year: 2000 ident: 10.1016/j.ijhydene.2022.12.076_bib65 article-title: Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: an XRD, XANES, EXAFS, and XPS study publication-title: J Solid State Chem doi: 10.1006/jssc.2000.8749 – volume: 46 start-page: 26224 year: 2021 ident: 10.1016/j.ijhydene.2022.12.076_bib20 article-title: Synthetic gas production by dry reforming of methane over Ni/Al2O3–ZrO2 catalysts: high H2/CO ratio publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.05.073 – volume: 9 start-page: 3349 year: 2019 ident: 10.1016/j.ijhydene.2022.12.076_bib46 article-title: Highly active ceria-supported Ru catalyst for the dry reforming of methane: in situ identification of Ruδ+-Ce3+ interactions for enhanced conversion publication-title: ACS Catal doi: 10.1021/acscatal.8b05162 – volume: 45 start-page: 18549 year: 2020 ident: 10.1016/j.ijhydene.2022.12.076_bib60 article-title: Dry reforming of methane to hydrogen-rich syngas over robust fibrous KCC-1 stabilized nickel catalyst with high activity and coke resistance publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.04.126 – volume: 371 start-page: 54 year: 2009 ident: 10.1016/j.ijhydene.2022.12.076_bib74 article-title: Ni, Co and bimetallic Ni-Co catalysts for the dry reforming of methane publication-title: Appl Catal Gen doi: 10.1016/j.apcata.2009.09.026 – volume: 360 start-page: 46 year: 2021 ident: 10.1016/j.ijhydene.2022.12.076_bib42 article-title: Dry reforming of methane over Pt-Ni/CeO2 catalysts: effect of the metal composition on the stability publication-title: Catal Today doi: 10.1016/j.cattod.2019.06.018 – year: 2022 ident: 10.1016/j.ijhydene.2022.12.076_bib27 – volume: 484 start-page: 479 year: 2019 ident: 10.1016/j.ijhydene.2022.12.076_bib86 article-title: Photothermocatalytic performance of ACo 2 O 4 type spinel with light-enhanced mobilizable active oxygen species for toluene oxidation publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2019.04.093 – volume: 808 year: 2020 ident: 10.1016/j.ijhydene.2022.12.076_bib37 article-title: Dendritic mesoporous Ni/KCC-1 for partial oxidation of methane to syngas publication-title: IOP Conf Ser Mater Sci Eng doi: 10.1088/1757-899X/808/1/012006 – year: 2021 ident: 10.1016/j.ijhydene.2022.12.076_bib7 article-title: A review on recent advances in dry reforming of methane over Ni- and Co-based nanocatalysts publication-title: Int J Hydrogen Energy |
SSID | ssj0017049 |
Score | 2.5481343 |
Snippet | Nanofibrous KCC-1 supported Ni–Co bimetallic catalysts were investigated for dry reforming of methane for syngas generation. Monometallic catalysts such as... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 11727 |
SubjectTerms | Bimetallic Coke deposition Dry reforming KCC-1 Mesoporous Ni–Co |
Title | Highly coke resistant Ni–Co/KCC-1 catalysts for dry reforming of methane |
URI | https://dx.doi.org/10.1016/j.ijhydene.2022.12.076 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na8JAEF3EXtpD6Se1H7KHXte4MWbNUULFKvXSCt7CZrNLYyURTQ-5lP6H_sP-ks7ERCwUPPQadkJ4Ozvzssy8IeQ-gj3WWigmeccwx4QRk47HWRh5qgdkTotinM_TxB1OndGsO6sRv-qFwbLKMvZvYnoRrcsnVommtYxj6xliL7bgeNgqiipv2MHuCPTy1se2zIOLkgLDYoard7qE5614_prD8Ua5TNsurgVRe-SvBLWTdAYn5Lhki7S_-aBTUtPJGTna0RA8JyOs1FjkVKVvmsK_M_LBJKOT-Pvzy0-tse8zTotLmnydrSlwVBqtcliJbBXeQFNDcYy0TPQFmQ4eXvwhKwckMNXhdsa0kE7bCSPXOApg7hoBhEFqL5KQZRR3BbA9zo3Xlq5ph66rDYcNEFxBotae6nQuST1JE31FqHF7nMsw5NIAR9FK9lxHeraQwHCwH6hBuhUqgSrVw3GIxSKoysTmQYVmgGgG3A4AzQaxtnbLjX7GXguvAj345QkBBPk9ttf_sL0hhzhKnhU6jreknq3e9R0QjixsFh7VJAf9x_Fw8gMhvNcX |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwED5RGNoOVZ8qfXro6gaHkJARRUW8l4LEZjmOrUJRQJAObP0P_Yf9JT2HBFGpEkPXyBdZn527z87ddwBPEa6xUp6kglU1dXQYUeH4jIaRL-tI5pSXtvPpD9zWyOmMa-MCBHktjEmrzHz_xqen3jp7YmVoWovJxHpF32tKcHxTKmpU3g6gZNSpakUoNdrd1mD7M8HLWDCOp8Zgp1B4-jyZvq3xCzeKmbad3gwa-ZG_YtRO3GmewklGGEljM6czKKj4HI53ZAQvoGOSNWZrIufviuDx2VDCOCGDyffnVzC3ukFAGUnvadarZEWQppJoucaRhrDiG8hcE9NJWsTqEkbNl2HQolmPBCqrzE6o8oRTccLI1Y5EpGvaQ84glB8JDDSSuR4SPsa0XxGuroSuqzTDNfCYxFitfFmtXkExnsfqGoh264yJMGRCI01RUtRdR_i2J5DkmJKgMtRyVLjMBMRNH4sZzzPFpjxHkxs0ObM5olkGa2u32Eho7LXwc9D5r83A0c_vsb35h-0jHLaG_R7vtQfdWzgyneVpKut4B8Vk-aHukX8k4UO2v34Ai1PZyA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+coke+resistant+Ni%E2%80%93Co%2FKCC-1+catalysts+for+dry+reforming+of+methane&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Palanichamy%2C+Kuppusamy&rft.au=Umasankar%2C+Samidurai&rft.au=Ganesh%2C+Srinivasan&rft.au=Sasirekha%2C+Natarajan&rft.date=2023-04-12&rft.issn=0360-3199&rft.volume=48&rft.issue=31&rft.spage=11727&rft.epage=11745&rft_id=info:doi/10.1016%2Fj.ijhydene.2022.12.076&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijhydene_2022_12_076 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |