Highly coke resistant Ni–Co/KCC-1 catalysts for dry reforming of methane

Nanofibrous KCC-1 supported Ni–Co bimetallic catalysts were investigated for dry reforming of methane for syngas generation. Monometallic catalysts such as Ni/KCC-1 and Co/KCC-1, and a series of bimetallic Ni–Co/KCC-1 catalysts were prepared by impregnation and co-impregnation method, respectively....

Full description

Saved in:
Bibliographic Details
Published inInternational journal of hydrogen energy Vol. 48; no. 31; pp. 11727 - 11745
Main Authors Palanichamy, Kuppusamy, Umasankar, Samidurai, Ganesh, Srinivasan, Sasirekha, Natarajan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 12.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanofibrous KCC-1 supported Ni–Co bimetallic catalysts were investigated for dry reforming of methane for syngas generation. Monometallic catalysts such as Ni/KCC-1 and Co/KCC-1, and a series of bimetallic Ni–Co/KCC-1 catalysts were prepared by impregnation and co-impregnation method, respectively. All the catalysts were characterized by XRD, FT-IR, HR-SEM, FE-SEM, XPS, FT-Raman, BET, UV–Visible DRS and AAS techniques. Monometallic nickel supported catalyst contains NiO as an active phase, whereas bimetallic nickel catalysts contain Ni2O3, and NiCo2O4 on the surface. In the case of cobalt loaded catalysts, spinel Co3O4 is the dominant active species, apart from NiCo2O4. The addition of cobalt in Ni/KCC-1 has a pronounced effect on the crystallite size, surface area and active species. The hydrogen pretreatment of the catalyst produces bimetallic Ni–Co alloy on the surface. The catalytic activities of the bimetallic catalysts towards dry reforming of methane are better than monometallic catalysts. Mesoporous silica-based KCC-1 offers easy accessibility to the entire surface moieties due to its fibrous nature and the presence of channels, instead of pores. The 2.5%Ni-7.5%Co/KCC-1 showed the maximum CH4 and CO2 conversion along with a remarkably low H2/CO ratio. The life-time test confirms the high thermal stability of the catalysts at 700 °C for 8 h, with less deactivation due to coke formation. The spent catalysts were characterized by XRD, TGA, FT-Raman, and FE-SEM to understand the structural and chemical changes during the reaction. The insignificant D band and G band of graphitic carbon in FT-Raman spectra for the highly active 2.5%Ni-7.5%Co/KCC-1 and 5%Ni–5%Co/KCC-1 catalysts along with TGA results containing 12% weight loss confirms the minimum coke deposition, formation of amorphous carbon and highest coke resistance. The fibrous support restricts the sintering and aggregation of nickel particles as well the deposition of coke. The addition of amphoteric cobalt increases the activity and stability of the catalysts. Ni–Co/KCC-1 with high coke resistance seems to be a promising catalyst for dry reforming of methane. [Display omitted] •Ni–Co/KCC-1 was synthesized by sol–gel-hydrothermal and co-precipitation method.•Cobalt addition in Ni/KCC-1 catalyst suppressed the aggregation of Ni particles.•Bimetallic Ni–Co/KCC-1 catalysts are more coke resistant than monometallic KCC-1.•2.5%Ni-7.5%Co/KCC-1 showed the highest CH4 and CO2 conversion, and a low H2/CO ratio.•Bimetallic catalysts improved the catalytic performance by reducing coke deposition.
AbstractList Nanofibrous KCC-1 supported Ni–Co bimetallic catalysts were investigated for dry reforming of methane for syngas generation. Monometallic catalysts such as Ni/KCC-1 and Co/KCC-1, and a series of bimetallic Ni–Co/KCC-1 catalysts were prepared by impregnation and co-impregnation method, respectively. All the catalysts were characterized by XRD, FT-IR, HR-SEM, FE-SEM, XPS, FT-Raman, BET, UV–Visible DRS and AAS techniques. Monometallic nickel supported catalyst contains NiO as an active phase, whereas bimetallic nickel catalysts contain Ni2O3, and NiCo2O4 on the surface. In the case of cobalt loaded catalysts, spinel Co3O4 is the dominant active species, apart from NiCo2O4. The addition of cobalt in Ni/KCC-1 has a pronounced effect on the crystallite size, surface area and active species. The hydrogen pretreatment of the catalyst produces bimetallic Ni–Co alloy on the surface. The catalytic activities of the bimetallic catalysts towards dry reforming of methane are better than monometallic catalysts. Mesoporous silica-based KCC-1 offers easy accessibility to the entire surface moieties due to its fibrous nature and the presence of channels, instead of pores. The 2.5%Ni-7.5%Co/KCC-1 showed the maximum CH4 and CO2 conversion along with a remarkably low H2/CO ratio. The life-time test confirms the high thermal stability of the catalysts at 700 °C for 8 h, with less deactivation due to coke formation. The spent catalysts were characterized by XRD, TGA, FT-Raman, and FE-SEM to understand the structural and chemical changes during the reaction. The insignificant D band and G band of graphitic carbon in FT-Raman spectra for the highly active 2.5%Ni-7.5%Co/KCC-1 and 5%Ni–5%Co/KCC-1 catalysts along with TGA results containing 12% weight loss confirms the minimum coke deposition, formation of amorphous carbon and highest coke resistance. The fibrous support restricts the sintering and aggregation of nickel particles as well the deposition of coke. The addition of amphoteric cobalt increases the activity and stability of the catalysts. Ni–Co/KCC-1 with high coke resistance seems to be a promising catalyst for dry reforming of methane. [Display omitted] •Ni–Co/KCC-1 was synthesized by sol–gel-hydrothermal and co-precipitation method.•Cobalt addition in Ni/KCC-1 catalyst suppressed the aggregation of Ni particles.•Bimetallic Ni–Co/KCC-1 catalysts are more coke resistant than monometallic KCC-1.•2.5%Ni-7.5%Co/KCC-1 showed the highest CH4 and CO2 conversion, and a low H2/CO ratio.•Bimetallic catalysts improved the catalytic performance by reducing coke deposition.
Author Palanichamy, Kuppusamy
Sasirekha, Natarajan
Ganesh, Srinivasan
Umasankar, Samidurai
Author_xml – sequence: 1
  givenname: Kuppusamy
  surname: Palanichamy
  fullname: Palanichamy, Kuppusamy
  organization: Catalysis Laboratory, Centre of Advanced Study in Crystallography & Biophysics, University of Madras, Chennai 600 025, Tamil Nadu, India
– sequence: 2
  givenname: Samidurai
  surname: Umasankar
  fullname: Umasankar, Samidurai
  organization: Department of Chemistry, Anna University, Chennai 600 025, Tamil Nadu, India
– sequence: 3
  givenname: Srinivasan
  surname: Ganesh
  fullname: Ganesh, Srinivasan
  organization: Catalysis Laboratory, Centre of Advanced Study in Crystallography & Biophysics, University of Madras, Chennai 600 025, Tamil Nadu, India
– sequence: 4
  givenname: Natarajan
  orcidid: 0000-0001-5032-7587
  surname: Sasirekha
  fullname: Sasirekha, Natarajan
  email: nrsasirekha@gmail.com
  organization: Catalysis Laboratory, Centre of Advanced Study in Crystallography & Biophysics, University of Madras, Chennai 600 025, Tamil Nadu, India
BookMark eNqFkEFOwzAQRS1UJErhCsgXSOpJUruRWIAioEAFG1hbrjNuHdIY2RZSdtyBG3ISUhU2bLqav5j3NfNOyahzHRJyASwFBnzapLbZ9DV2mGYsy1LIUib4ERnDXJRJXszFiIxZzlmSQ1mekNMQGsZAsKIck4eFXW_anmr3htRjsCGqLtIn-_35VbnpY1UlQLWKqu1DDNQ4T2vfD5tD2tpuTZ2hW4wb1eEZOTaqDXj-Oyfk9fbmpVoky-e7--p6megcspigUAUrVjU3hS7MamYEE6CwrFWRlRq4gBkDMCVT3LAV52hAz4UAzbIcS53nE8L3vdq7EIZL5Lu3W-V7CUzujMhG_hmROyMSMjkYGcDLf6C2UUXruuiVbQ_jV3sch-c-LHoZtMVOY2096ihrZw9V_ADQZIRw
CitedBy_id crossref_primary_10_1016_j_ccst_2024_100200
crossref_primary_10_1016_j_ccst_2024_100244
crossref_primary_10_1016_j_ijhydene_2024_05_058
crossref_primary_10_3390_nano13192641
crossref_primary_10_3390_catal14030176
crossref_primary_10_3390_catal14010063
crossref_primary_10_1016_j_ijhydene_2023_07_143
crossref_primary_10_1016_j_ijhydene_2024_09_150
crossref_primary_10_1016_j_fuel_2024_132619
crossref_primary_10_1002_anie_202405252
crossref_primary_10_1016_j_ijhydene_2024_01_240
crossref_primary_10_1016_j_fuel_2024_134193
crossref_primary_10_1088_2053_1591_ad4f54
crossref_primary_10_1016_j_psep_2024_04_132
crossref_primary_10_1016_j_ceja_2024_100655
crossref_primary_10_1016_j_fuel_2025_134495
crossref_primary_10_1016_j_apcata_2024_119759
crossref_primary_10_1016_j_enconman_2024_118568
crossref_primary_10_1021_acsaem_4c00867
crossref_primary_10_1016_j_ijhydene_2024_09_062
crossref_primary_10_1002_ange_202405252
crossref_primary_10_3390_atmos14091323
crossref_primary_10_1016_j_ijhydene_2023_06_152
crossref_primary_10_1016_j_cscee_2024_101078
crossref_primary_10_3390_catal13111420
crossref_primary_10_1016_j_mtcomm_2024_108940
crossref_primary_10_1016_j_joei_2024_101523
crossref_primary_10_1016_j_matpr_2023_08_155
crossref_primary_10_3390_cryst15020100
crossref_primary_10_1016_j_micromeso_2025_113511
Cites_doi 10.1007/s10008-016-3278-4
10.1016/j.ijhydene.2019.01.027
10.1021/acsomega.1c00295
10.1021/acscatal.8b02277
10.1002/cctc.201902142
10.1016/j.apcata.2015.04.006
10.1016/j.jngse.2016.06.004
10.1016/j.joei.2021.04.005
10.1016/j.apcata.2006.10.029
10.1016/j.ijhydene.2017.03.146
10.1016/j.ijhydene.2013.05.097
10.1016/j.jcat.2017.10.009
10.1016/j.cattod.2015.09.027
10.1016/j.ijhydene.2022.05.211
10.1016/j.cattod.2017.12.027
10.1016/j.matlet.2015.09.123
10.1016/j.ijhydene.2022.07.002
10.1016/j.micromeso.2020.110616
10.1016/j.ijhydene.2012.08.056
10.1016/j.apsusc.2019.143933
10.1021/acscatal.6b02360
10.1016/j.ijhydene.2015.05.147
10.1016/j.ijhydene.2015.11.044
10.1021/cs300179q
10.1016/j.ijhydene.2010.04.075
10.1021/jp030783l
10.1039/C6GC02012G
10.1039/D0CY00939C
10.1016/j.ijhydene.2019.07.200
10.1038/s41598-022-05993-3
10.1016/j.cattod.2011.02.057
10.1016/j.ijhydene.2020.01.086
10.1016/j.ijhydene.2020.01.144
10.1088/0022-3727/22/8/026
10.1016/j.matchemphys.2003.09.003
10.1039/C7TA04452F
10.1016/j.ijhydene.2019.09.207
10.1016/j.ijhydene.2021.01.049
10.1016/j.apcatb.2010.01.016
10.1016/j.jechem.2019.03.028
10.1016/j.apcata.2015.07.040
10.1016/j.apcatb.2016.09.071
10.1016/j.jtice.2019.01.025
10.1002/cctc.201402921
10.1039/C6RA20450C
10.1038/s41598-020-70930-1
10.1038/srep24888
10.1016/j.ijhydene.2020.04.261
10.1016/0169-4332(88)90089-X
10.3389/fchem.2021.694976
10.1016/j.ijhydene.2015.09.150
10.1002/cctc.201300958
10.1016/j.ijhydene.2019.05.034
10.1021/acscatal.8b02821
10.1016/j.cej.2021.133364
10.1149/2.0261804jes
10.3390/catal10010112
10.1016/j.ijhydene.2021.07.056
10.1016/j.ijhydene.2019.06.085
10.1016/j.ijhydene.2022.03.147
10.1016/j.jcou.2019.12.018
10.1002/cctc.201701376
10.1016/j.ijhydene.2022.05.297
10.1039/C7NR09625A
10.1016/j.apcatb.2015.04.039
10.1021/acs.langmuir.6b00675
10.1016/j.ijhydene.2019.10.118
10.1016/j.jcat.2004.02.032
10.1016/j.apcatb.2016.07.015
10.1016/S0169-4332(00)00378-0
10.1016/j.cattod.2018.11.064
10.1006/jssc.2000.8749
10.1016/j.ijhydene.2021.05.073
10.1021/acscatal.8b05162
10.1016/j.ijhydene.2019.04.126
10.1016/j.apcata.2009.09.026
10.1016/j.cattod.2019.06.018
10.1016/j.apsusc.2019.04.093
10.1088/1757-899X/808/1/012006
ContentType Journal Article
Copyright 2022 Hydrogen Energy Publications LLC
Copyright_xml – notice: 2022 Hydrogen Energy Publications LLC
DBID AAYXX
CITATION
DOI 10.1016/j.ijhydene.2022.12.076
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3487
EndPage 11745
ExternalDocumentID 10_1016_j_ijhydene_2022_12_076
S0360319922057937
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
TN5
XPP
ZMT
~G-
29J
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
R2-
RIG
SAC
SCB
SSH
T9H
WUQ
ID FETCH-LOGICAL-c312t-e7a404bd6f4c4fb5f7071ae9da429c16715011f90a6f0b66ef1c8771c023e9c33
IEDL.DBID .~1
ISSN 0360-3199
IngestDate Thu Apr 24 23:12:11 EDT 2025
Tue Jul 01 03:10:58 EDT 2025
Fri Feb 23 02:38:04 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 31
Keywords Dry reforming
Mesoporous
Coke deposition
Bimetallic
Ni–Co
KCC-1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-e7a404bd6f4c4fb5f7071ae9da429c16715011f90a6f0b66ef1c8771c023e9c33
ORCID 0000-0001-5032-7587
PageCount 19
ParticipantIDs crossref_primary_10_1016_j_ijhydene_2022_12_076
crossref_citationtrail_10_1016_j_ijhydene_2022_12_076
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2022_12_076
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-12
PublicationDateYYYYMMDD 2023-04-12
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-12
  day: 12
PublicationDecade 2020
PublicationTitle International journal of hydrogen energy
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Oboudatian, Safaei-Ghomi (bib53) 2022; 12
Zhang, Zhao, Chen, Liu, Liu, Yu (bib57) 2020; 499
Wittich, Krämer, Bottke, Schunk (bib6) 2020; 12
Aguiar, Cazula, Saragiotto Colpini, Borba, Alves da Silva, Noronha (bib4) 2019; 44
Roussière, Schulz, Schelkle, Wasserschaff, Milanov, Schwab (bib10) 2014; 6
Wei, Iglesia (bib12) 2004; 108
Gholizadeh, Izadbakhsh, Huang, Zi-Feng (bib31) 2021; 310
Araiza, Arcos, Gómez-Cortés, Díaz (bib42) 2021; 360
Zhang, Wang, Wei, Hao, Mu, Cao (bib85) 2016; 162
San-José-Alonso, Juan-Juan, Illán-Gómez, Román-Martínez (bib74) 2009; 371
Li, Yuan, Li, Li, Wang, Tomishige (bib25) 2021; 46
Tang, Huang, Ran, Guo, Niu, Qiu (bib9) 2022; 47
Aramouni, Zeaiter, Kwapinski, Leahy, Ahmad (bib38) 2020; 45
Farooqi, Yusuf, Mohd Zabidi, Saidur, Sanaullah, Farooqi (bib3) 2021; 46
Lustemberg, Ramírez, Liu, Gutiérrez, Grinter, Carrasco (bib8) 2016; 6
Siang, Jalil, Hambali, Abdulrasheedand, Azami (bib37) 2020; 808
Gautam, Dhiman, Polshettiwar, Bhanage (bib51) 2016; 18
Chen, Cai, Yu, Li, Chen, Jia (bib86) 2019; 484
Ocsachoque, Pompeo, Gonzalez (bib41) 2011; 172
Bach, de Camargo, de Souza, Cardozo-Filho, Alves (bib19) 2020; 45
Singha, Shukla, Sandupatla, Deo, Bal (bib43) 2017; 5
Álvarez Moreno, Ramirez-Reina, Ivanova, Roger, Centeno, Odriozola (bib44) 2021; 9
Fihri, Bouhrara, Patil, Cha, Saih, Polshettiwar (bib48) 2012; 2
Quek, Liu, Cheo, Wang, Chen, Yang (bib76) 2010; 95
Lou, Steib, Zhang, Tiefenbacher, Horváth, Jentys (bib24) 2017; 356
da Fonseca, Rabelo-Neto, Simões, Mattos, Noronha (bib23) 2020; 45
Abdulrasheed, Jalil, Hamid, Siang, Fatah, Izan (bib60) 2020; 45
Omoregbe, Danh, Nguyen-Huy, Setiabudi, Abidin, Truong (bib78) 2017; 42
Wang, Zhang, Li, Chen (bib1) 2019; 39
Polshettiwar, Basset (bib33) 2011
Guan, Shao, Wen, Chen, Gong, Yang (bib54) 2003; 82
Boukha, Kacimi, Pereira, Faria, Figueiredo, Ziyad (bib59) 2007; 317
Chang, Lu, Lee, Gupta, Hardwick, Hu (bib63) 2021; 6
Kim, Pugmire, Battaglia, Langell (bib68) 2000; 165
Zhang, Li (bib21) 2015; 176–177
Febriyanti, Suendo, Mukti, Prasetyo, Arifin, Akbar (bib35) 2016; 32
Xu, Zhou, Li, Wang, Ma (bib84) 2010; 35
Marco, Gancedo, Gracia, Gautier, Ríos, Berry (bib65) 2000; 153
Zhang, Yang, Zhang, Xu, Shang, Yin (bib71) 2015; 40
Moradi, Khezeli, Hemmati (bib77) 2016; 33
Bayal, Singh, Singh, Polshettiwar (bib34) 2016; 6
Arciga-Duran, Meas, Pérez-Bueno, Ballesteros, Trejo (bib67) 2018; 165
Giehr, Maier, Schunk, Deutschmann (bib16) 2018; 10
Sadek, Chalupka, Mierczynski, Maniukiewicz, Rynkowski, Gurgul (bib52) 2020; 10
Fu, Yu, Jiang, Zhang, Zhan, Li (bib82) 2018
Zuo, Liu, Wang, Liu, Huang, Huang (bib18) 2018; 8
Estephane, Aouad, Hany, El Khoury, Gennequin, El Zakhem (bib81) 2015; 40
Titus, Roussière, Wasserschaff, Schunk, Milanov, Schwab (bib17) 2016; 270
Chong, Cheng, Bahari, Teh, Abidin, Setiabudi (bib32) 2021; 46
Nejat, Jalalinezhad, Hormozi, Bahrami (bib72) 2019; 97
Németh, Schay, Srankó, Károlyi, Sáfrán, Sajó (bib87) 2015; 504
Al-Fatesh, Kumar, Fakeeha, Kasim, Khatri, Ibrahim (bib14) 2020; 10
Al-fatesh, Kumar, Kasim, Ibrahim, Fakeeha, Abasaeed (bib27) 2022
Manukyan, Avetisyan, Shuck, Rouvimov, Kharatyan, Mukasyan (bib79) 2015
Al-Fatesh, Abu-Dahrieh, Atia, Armbruster, Ibrahim, Khan (bib2) 2019; 44
Wang, Yu, Shen, Chu, Qian (bib5) 2013; 38
Umeshbabu, Rajeshkhanna, Justin, Rao (bib56) 2016; 20
Das, Sengupta, Bag, Shah, Bordoloi (bib40) 2018; 10
Tyuliev, Angelov (bib62) 1988; 32
Kharatyan, Chatilyan, Manukyan (bib80) 2019
Pinilla, de Llobet, Moliner, Suelves (bib83) 2017; 200
Kweon, Kim, Shin, Park, Min (bib30) 2022; 431
Chong, Setiabudi, Jalil (bib49) 2020; 45
Liu, Zhang, Rui, Li, Lin, Betancourt (bib46) 2019; 9
Arora, Prasad (bib15) 2016; 6
Wu, Yang, Miao, Liu, Xie, Lee (bib70) 2019; 9
Yang, Liu, Li, Wu, He (bib28) 2016; 41
Abdulrasheed, Jalil, Hamid, Siang, Abdullah (bib36) 2020; 37
Duan, Pan, Yang, Wan, Lin, Li (bib45) 2022
Wei, Iglesia (bib13) 2004; 224
Sharifianjazi, Esmaeilkhanian, Bazli, Eskandarinezhad, Khaksar, Shafiee (bib7) 2021
Choudhury, Saied, Sullivan, Abbot (bib66) 1989; 22
Li, Anjum, Zhu, Saih, Laveille, D'Souza (bib73) 2015; 7
Fatah, Jalil, Triwahyono, Yusof, Mamat, Izan (bib47) 2020; 45
Taherian, Khataee, Orooji (bib29) 2021; 97
Ekeoma, Yusuf, Johari, Abdullah (bib26) 2022
Guerrero-Caballero, Kane, Haidar, Jalowiecki-Duhamel, Löfberg (bib50) 2019; 333
Lim, Cho, Yang, Engelhard, Kim (bib64) 2015; 505
Cichy, Pańczyk, Słowik, Zawadzki, Borowiecki (bib39) 2022; 47
Damyanova, Pawelec, Arishtirova, Fierro (bib58) 2012; 37
Björkman (bib88) 1969; 31
Dou, Tang, Nie, Andolina, Zhang, House (bib55) 2018; 311
Shen, Reule, Semagina (bib75) 2019; 44
Mohan, Shambhawi, Lapkin, Mushrif (bib11) 2020; 10
Li, Li, Tian, Zeng, Zhao, Gong (bib22) 2017; 202
Morales Anzures, Salinas Hernández, Mondragón Galicia, Gutiérrez Martínez, Tzompantzi Morales, Romero Romo (bib20) 2021; 46
Estephane (10.1016/j.ijhydene.2022.12.076_bib81) 2015; 40
Liu (10.1016/j.ijhydene.2022.12.076_bib46) 2019; 9
Cichy (10.1016/j.ijhydene.2022.12.076_bib39) 2022; 47
Wittich (10.1016/j.ijhydene.2022.12.076_bib6) 2020; 12
Fihri (10.1016/j.ijhydene.2022.12.076_bib48) 2012; 2
Aramouni (10.1016/j.ijhydene.2022.12.076_bib38) 2020; 45
Zhang (10.1016/j.ijhydene.2022.12.076_bib71) 2015; 40
Wei (10.1016/j.ijhydene.2022.12.076_bib13) 2004; 224
Araiza (10.1016/j.ijhydene.2022.12.076_bib42) 2021; 360
Farooqi (10.1016/j.ijhydene.2022.12.076_bib3) 2021; 46
Tang (10.1016/j.ijhydene.2022.12.076_bib9) 2022; 47
Morales Anzures (10.1016/j.ijhydene.2022.12.076_bib20) 2021; 46
Omoregbe (10.1016/j.ijhydene.2022.12.076_bib78) 2017; 42
Mohan (10.1016/j.ijhydene.2022.12.076_bib11) 2020; 10
Bayal (10.1016/j.ijhydene.2022.12.076_bib34) 2016; 6
Dou (10.1016/j.ijhydene.2022.12.076_bib55) 2018; 311
Chang (10.1016/j.ijhydene.2022.12.076_bib63) 2021; 6
Fu (10.1016/j.ijhydene.2022.12.076_bib82) 2018
Álvarez Moreno (10.1016/j.ijhydene.2022.12.076_bib44) 2021; 9
Björkman (10.1016/j.ijhydene.2022.12.076_bib88) 1969; 31
Al-Fatesh (10.1016/j.ijhydene.2022.12.076_bib14) 2020; 10
Wang (10.1016/j.ijhydene.2022.12.076_bib1) 2019; 39
Lustemberg (10.1016/j.ijhydene.2022.12.076_bib8) 2016; 6
Chong (10.1016/j.ijhydene.2022.12.076_bib32) 2021; 46
Chong (10.1016/j.ijhydene.2022.12.076_bib49) 2020; 45
Moradi (10.1016/j.ijhydene.2022.12.076_bib77) 2016; 33
Manukyan (10.1016/j.ijhydene.2022.12.076_bib79) 2015
Zhang (10.1016/j.ijhydene.2022.12.076_bib57) 2020; 499
Titus (10.1016/j.ijhydene.2022.12.076_bib17) 2016; 270
Abdulrasheed (10.1016/j.ijhydene.2022.12.076_bib60) 2020; 45
Guan (10.1016/j.ijhydene.2022.12.076_bib54) 2003; 82
San-José-Alonso (10.1016/j.ijhydene.2022.12.076_bib74) 2009; 371
Guerrero-Caballero (10.1016/j.ijhydene.2022.12.076_bib50) 2019; 333
Umeshbabu (10.1016/j.ijhydene.2022.12.076_bib56) 2016; 20
Tyuliev (10.1016/j.ijhydene.2022.12.076_bib62) 1988; 32
Boukha (10.1016/j.ijhydene.2022.12.076_bib59) 2007; 317
Marco (10.1016/j.ijhydene.2022.12.076_bib65) 2000; 153
Abdulrasheed (10.1016/j.ijhydene.2022.12.076_bib36) 2020; 37
Oboudatian (10.1016/j.ijhydene.2022.12.076_bib53) 2022; 12
Chen (10.1016/j.ijhydene.2022.12.076_bib86) 2019; 484
Gholizadeh (10.1016/j.ijhydene.2022.12.076_bib31) 2021; 310
Arciga-Duran (10.1016/j.ijhydene.2022.12.076_bib67) 2018; 165
Li (10.1016/j.ijhydene.2022.12.076_bib73) 2015; 7
Polshettiwar (10.1016/j.ijhydene.2022.12.076_bib33) 2011
Zuo (10.1016/j.ijhydene.2022.12.076_bib18) 2018; 8
Li (10.1016/j.ijhydene.2022.12.076_bib25) 2021; 46
Pinilla (10.1016/j.ijhydene.2022.12.076_bib83) 2017; 200
Das (10.1016/j.ijhydene.2022.12.076_bib40) 2018; 10
Roussière (10.1016/j.ijhydene.2022.12.076_bib10) 2014; 6
Arora (10.1016/j.ijhydene.2022.12.076_bib15) 2016; 6
Bach (10.1016/j.ijhydene.2022.12.076_bib19) 2020; 45
Németh (10.1016/j.ijhydene.2022.12.076_bib87) 2015; 504
Li (10.1016/j.ijhydene.2022.12.076_bib22) 2017; 202
Zhang (10.1016/j.ijhydene.2022.12.076_bib85) 2016; 162
Gautam (10.1016/j.ijhydene.2022.12.076_bib51) 2016; 18
Sharifianjazi (10.1016/j.ijhydene.2022.12.076_bib7) 2021
Choudhury (10.1016/j.ijhydene.2022.12.076_bib66) 1989; 22
Aguiar (10.1016/j.ijhydene.2022.12.076_bib4) 2019; 44
Febriyanti (10.1016/j.ijhydene.2022.12.076_bib35) 2016; 32
Kharatyan (10.1016/j.ijhydene.2022.12.076_bib80) 2019
Al-fatesh (10.1016/j.ijhydene.2022.12.076_bib27) 2022
Giehr (10.1016/j.ijhydene.2022.12.076_bib16) 2018; 10
Lim (10.1016/j.ijhydene.2022.12.076_bib64) 2015; 505
Quek (10.1016/j.ijhydene.2022.12.076_bib76) 2010; 95
Lou (10.1016/j.ijhydene.2022.12.076_bib24) 2017; 356
Wang (10.1016/j.ijhydene.2022.12.076_bib5) 2013; 38
da Fonseca (10.1016/j.ijhydene.2022.12.076_bib23) 2020; 45
Kim (10.1016/j.ijhydene.2022.12.076_bib68) 2000; 165
Siang (10.1016/j.ijhydene.2022.12.076_bib37) 2020; 808
Ekeoma (10.1016/j.ijhydene.2022.12.076_bib26) 2022
Singha (10.1016/j.ijhydene.2022.12.076_bib43) 2017; 5
Damyanova (10.1016/j.ijhydene.2022.12.076_bib58) 2012; 37
Nejat (10.1016/j.ijhydene.2022.12.076_bib72) 2019; 97
Al-Fatesh (10.1016/j.ijhydene.2022.12.076_bib2) 2019; 44
Taherian (10.1016/j.ijhydene.2022.12.076_bib29) 2021; 97
Shen (10.1016/j.ijhydene.2022.12.076_bib75) 2019; 44
Zhang (10.1016/j.ijhydene.2022.12.076_bib21) 2015; 176–177
Wu (10.1016/j.ijhydene.2022.12.076_bib70) 2019; 9
Xu (10.1016/j.ijhydene.2022.12.076_bib84) 2010; 35
Ocsachoque (10.1016/j.ijhydene.2022.12.076_bib41) 2011; 172
Yang (10.1016/j.ijhydene.2022.12.076_bib28) 2016; 41
Wei (10.1016/j.ijhydene.2022.12.076_bib12) 2004; 108
Kweon (10.1016/j.ijhydene.2022.12.076_bib30) 2022; 431
Sadek (10.1016/j.ijhydene.2022.12.076_bib52) 2020; 10
Duan (10.1016/j.ijhydene.2022.12.076_bib45) 2022
Fatah (10.1016/j.ijhydene.2022.12.076_bib47) 2020; 45
References_xml – volume: 484
  start-page: 479
  year: 2019
  end-page: 488
  ident: bib86
  article-title: Photothermocatalytic performance of ACo 2 O 4 type spinel with light-enhanced mobilizable active oxygen species for toluene oxidation
  publication-title: Appl Surf Sci
– volume: 45
  start-page: 9522
  year: 2020
  end-page: 9534
  ident: bib47
  article-title: Favored hydrogenation of linear carbon monoxide over cobalt loaded on fibrous silica KCC-1
  publication-title: Int J Hydrogen Energy
– volume: 82
  start-page: 1002
  year: 2003
  end-page: 1006
  ident: bib54
  article-title: A novel method for preparing Co3O4 nanofibers by using electrospun PVA/cobalt acetate composite fibers as precursor
  publication-title: Mater Chem Phys
– year: 2019
  ident: bib80
  article-title: Kinetics and mechanism of nickel oxide reduction by methane kinetics and mechanism of nickel oxide reduction by methane
– volume: 8
  start-page: 9821
  year: 2018
  end-page: 9835
  ident: bib18
  article-title: Dry reforming of methane on single-site Ni/MgO catalysts: importance of site confinement
  publication-title: ACS Catal
– volume: 32
  start-page: 5802
  year: 2016
  end-page: 5811
  ident: bib35
  article-title: Further insight into the definite morphology and formation mechanism of mesoporous silica KCC-1
  publication-title: Langmuir
– volume: 37
  start-page: 230
  year: 2020
  end-page: 239
  ident: bib36
  article-title: Dry reforming of CH4 over stabilized Ni-La@KCC-1 catalyst: effects of la promoter and optimization studies using RSM
  publication-title: J CO2 Util
– volume: 311
  start-page: 48
  year: 2018
  end-page: 55
  ident: bib55
  article-title: Complete oxidation of methane on Co3O4/CeO2 nanocomposite: a synergic effect
  publication-title: Catal Today
– volume: 6
  start-page: 8184
  year: 2016
  end-page: 8191
  ident: bib8
  article-title: Room-temperature activation of methane and dry Re-forming with CO2 on Ni-CeO2(111) surfaces: effect of Ce3+ sites and metal-support interactions on C-H bond cleavage
  publication-title: ACS Catal
– volume: 10
  start-page: 6628
  year: 2020
  end-page: 6643
  ident: bib11
  article-title: Investigating methane dry reforming on Ni and B promoted Ni surfaces: DFT assisted microkinetic analysis and addressing the coking problem
  publication-title: Catal Sci Technol
– volume: 20
  start-page: 2725
  year: 2016
  end-page: 2736
  ident: bib56
  article-title: NiCo2O4/rGO hybrid nanostructures for efficient electrocatalytic oxygen evolution
  publication-title: J Solid State Electrochem
– volume: 371
  start-page: 54
  year: 2009
  end-page: 59
  ident: bib74
  article-title: Ni, Co and bimetallic Ni-Co catalysts for the dry reforming of methane
  publication-title: Appl Catal Gen
– volume: 37
  start-page: 15966
  year: 2012
  end-page: 15975
  ident: bib58
  article-title: Ni-based catalysts for reforming of methane with CO2
  publication-title: Int J Hydrogen Energy
– year: 2021
  ident: bib7
  article-title: A review on recent advances in dry reforming of methane over Ni- and Co-based nanocatalysts
  publication-title: Int J Hydrogen Energy
– volume: 310
  year: 2021
  ident: bib31
  article-title: Catalytic performance of cubic ordered mesoporous alumina supported nickel catalysts in dry reforming of methane
  publication-title: Microporous Mesoporous Mater
– volume: 9
  start-page: 1
  year: 2021
  end-page: 10
  ident: bib44
  article-title: Bimetallic Ni–Ru and Ni–Re catalysts for dry reforming of methane: understanding the synergies of the selected promoters
  publication-title: Front Chem
– volume: 40
  start-page: 16115
  year: 2015
  end-page: 16126
  ident: bib71
  article-title: Ni-Co catalyst derived from layered double hydroxides for dry reforming of methane
  publication-title: Int J Hydrogen Energy
– volume: 333
  start-page: 251
  year: 2019
  end-page: 258
  ident: bib50
  article-title: Ni, Co, Fe supported on Ceria and Zr doped Ceria as oxygen carriers for chemical looping dry reforming of methane
  publication-title: Catal Today
– volume: 18
  start-page: 5890
  year: 2016
  end-page: 5899
  ident: bib51
  article-title: KCC-1 supported palladium nanoparticles as an efficient and sustainable nanocatalyst for carbonylative Suzuki-Miyaura cross-coupling
  publication-title: Green Chem
– volume: 504
  start-page: 608
  year: 2015
  end-page: 620
  ident: bib87
  article-title: Impregnated Ni/ZrO2 and Pt/ZrO2 catalysts in dry reforming of methane: activity tests in excess methane and mechanistic studies with labeled 13CO2
  publication-title: Appl Catal Gen
– volume: 12
  start-page: 2130
  year: 2020
  end-page: 2147
  ident: bib6
  article-title: Catalytic dry reforming of methane: insights from model systems
  publication-title: ChemCatChem
– volume: 46
  start-page: 26224
  year: 2021
  end-page: 26233
  ident: bib20
  article-title: Synthetic gas production by dry reforming of methane over Ni/Al2O3–ZrO2 catalysts: high H2/CO ratio
  publication-title: Int J Hydrogen Energy
– volume: 202
  start-page: 683
  year: 2017
  end-page: 694
  ident: bib22
  article-title: Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles
  publication-title: Appl Catal B Environ
– year: 2022
  ident: bib45
  article-title: Nickel‒cobalt bimetallic catalysts prepared from hydrotalcite-like compounds for dry reforming of methane
  publication-title: Int J Hydrogen Energy
– volume: 6
  start-page: 9692
  year: 2021
  end-page: 9699
  ident: bib63
  article-title: The effect of degrees of inversion on the electronic structure of spinel NiCo2O4: a density functional theory study
  publication-title: ACS Omega
– volume: 44
  start-page: 32003
  year: 2019
  end-page: 32018
  ident: bib4
  article-title: Si-MCM-41 obtained from different sources of silica and its application as support for nickel catalysts used in dry reforming of methane
  publication-title: Int J Hydrogen Energy
– volume: 39
  start-page: 198
  year: 2019
  end-page: 207
  ident: bib1
  article-title: Coke-resistant Au–Ni/MgAl2O4 catalyst for direct methanation of syngas
  publication-title: J Energy Chem
– start-page: 1
  year: 2018
  end-page: 10
  ident: bib82
  article-title: NiCo alloy nanoparticles decorated on N-doped carbon nanofibers as highly active and durable oxygen
  publication-title: Electrocatalyst
– volume: 95
  start-page: 374
  year: 2010
  end-page: 382
  ident: bib76
  article-title: Nickel-grafted TUD-1 mesoporous catalysts for carbon dioxide reforming of methane
  publication-title: Appl Catal B Environ
– volume: 360
  start-page: 46
  year: 2021
  end-page: 54
  ident: bib42
  article-title: Dry reforming of methane over Pt-Ni/CeO2 catalysts: effect of the metal composition on the stability
  publication-title: Catal Today
– volume: 356
  start-page: 147
  year: 2017
  end-page: 156
  ident: bib24
  article-title: Design of stable Ni/ZrO2 catalysts for dry reforming of methane
  publication-title: J Catal
– volume: 46
  start-page: 31024
  year: 2021
  end-page: 31040
  ident: bib3
  article-title: A comprehensive review on improving the production of rich-hydrogen via combined steam and CO2 reforming of methane over Ni-based catalysts
  publication-title: Int J Hydrogen Energy
– volume: 40
  start-page: 9201
  year: 2015
  end-page: 9208
  ident: bib81
  article-title: CO2 reforming of methane over Ni-Co/ZSM5 catalysts. Aging and carbon deposition study
  publication-title: Int J Hydrogen Energy
– volume: 97
  start-page: 100
  year: 2021
  end-page: 108
  ident: bib29
  article-title: Nickel-based nanocatalysts promoted over MgO-modified SBA-16 for dry reforming of methane for syngas production: impact of support and promoters
  publication-title: J Energy Inst
– volume: 46
  start-page: 24687
  year: 2021
  end-page: 24708
  ident: bib32
  article-title: Development of nanosilica-based catalyst for syngas production via CO2 reforming of CH4: a review
  publication-title: Int J Hydrogen Energy
– volume: 97
  start-page: 216
  year: 2019
  end-page: 226
  ident: bib72
  article-title: Hydrogen production from steam reforming of ethanol over Ni-Co bimetallic catalysts and MCM-41 as support
  publication-title: J Taiwan Inst Chem Eng
– volume: 165
  start-page: H3178
  year: 2018
  end-page: H3186
  ident: bib67
  article-title: Electrochemical synthesis of Co 3 O 4-x films for their application as oxygen evolution reaction electrocatalysts: role of oxygen vacancies
  publication-title: J Electrochem Soc
– year: 2015
  ident: bib79
  article-title: Nickel oxide reduction by hydrogen : kinetics and structural transformations nickel oxide reduction by hydrogen : kinetics and structural transformations laboratory of kinetics of SHS processes , institute of chemical physics NAS of Armenia , department o
– volume: 2
  start-page: 1425
  year: 2012
  end-page: 1431
  ident: bib48
  article-title: Fibrous nano-silica supported ruthenium (KCC-1/Ru): a sustainable catalyst for the hydrogenolysis of alkanes with good catalytic activity and lifetime
  publication-title: ACS Catal
– volume: 6
  start-page: 108668
  year: 2016
  end-page: 108688
  ident: bib15
  article-title: An overview on dry reforming of methane: strategies to reduce carbonaceous deactivation of catalysts
  publication-title: RSC Adv
– volume: 505
  start-page: 62
  year: 2015
  end-page: 69
  ident: bib64
  article-title: Effect of Co/Ni ratios in cobalt nickel mixed oxide catalysts on methane combustion
  publication-title: Appl Catal Gen
– volume: 270
  start-page: 68
  year: 2016
  end-page: 75
  ident: bib17
  article-title: Dry reforming of methane with carbon dioxide over NiO-MgO-ZrO2
  publication-title: Catal Today
– volume: 108
  start-page: 7253
  year: 2004
  end-page: 7262
  ident: bib12
  article-title: Reaction pathways and site requirements for the activation and chemical conversion of methane on Ru-based catalysts
  publication-title: J Phys Chem B
– volume: 47
  start-page: 16528
  year: 2022
  end-page: 16543
  ident: bib39
  article-title: Ni–Re alloy catalysts on Al2O3 for methane dry reforming
  publication-title: Int J Hydrogen Energy
– volume: 6
  start-page: 1447
  year: 2014
  end-page: 1452
  ident: bib10
  article-title: Structure-activity relationships of nickel-hexaaluminates in reforming reactions Part II: activity and stability of nanostructured nickel- hexaaluminate-based catalysts in the dry reforming of methane
  publication-title: ChemCatChem
– volume: 176–177
  start-page: 513
  year: 2015
  end-page: 521
  ident: bib21
  article-title: Coke-resistant Ni at SiO2 catalyst for dry reforming of methane
  publication-title: Appl Catal B Environ
– volume: 9
  start-page: 2693
  year: 2019
  end-page: 2700
  ident: bib70
  article-title: Lattice strained Ni-Co alloy as a high-performance catalyst for catalytic dry reforming of methane
  publication-title: ACS Catal
– volume: 162
  start-page: 67
  year: 2016
  end-page: 70
  ident: bib85
  article-title: Hydrothermal synthesis of hierarchical mesoporous NiO nanourchins and their supercapacitor application
  publication-title: Mater Lett
– volume: 45
  start-page: 5252
  year: 2020
  end-page: 5263
  ident: bib19
  article-title: Dry reforming of methane over Ni/MgO–Al2O3 catalysts: thermodynamic equilibrium analysis and experimental application
  publication-title: Int J Hydrogen Energy
– volume: 6
  start-page: 1
  year: 2016
  end-page: 11
  ident: bib34
  article-title: Size and fiber density controlled synthesis of fibrous nanosilica spheres (KCC-1)
  publication-title: Sci Rep
– volume: 10
  start-page: 1
  year: 2020
  end-page: 10
  ident: bib14
  article-title: Promotional effect of magnesium oxide for a stable nickel-based catalyst in dry reforming of methane
  publication-title: Sci Rep
– volume: 172
  start-page: 226
  year: 2011
  end-page: 231
  ident: bib41
  article-title: Rh-Ni/CeO2-Al2O3 catalysts for methane dry reforming
  publication-title: Catal Today
– volume: 44
  start-page: 21546
  year: 2019
  end-page: 21558
  ident: bib2
  article-title: Effect of pre-treatment and calcination temperature on Al2O3-ZrO2 supported Ni-Co catalysts for dry reforming of methane
  publication-title: Int J Hydrogen Energy
– volume: 45
  start-page: 18549
  year: 2020
  end-page: 18561
  ident: bib60
  article-title: Dry reforming of methane to hydrogen-rich syngas over robust fibrous KCC-1 stabilized nickel catalyst with high activity and coke resistance
  publication-title: Int J Hydrogen Energy
– volume: 5
  start-page: 15688
  year: 2017
  end-page: 15699
  ident: bib43
  article-title: Synthesis and catalytic activity of a Pd doped Ni-MgO catalyst for dry reforming of methane
  publication-title: J Mater Chem
– volume: 22
  start-page: 1185
  year: 1989
  end-page: 1195
  ident: bib66
  article-title: Reduction of oxides of iron, cobalt, titanium and niobium by low-energy ion bombardment
  publication-title: J Phys D Appl Phys
– volume: 317
  start-page: 299
  year: 2007
  end-page: 309
  ident: bib59
  article-title: Methane dry reforming on Ni loaded hydroxyapatite and fluoroapatite
  publication-title: Appl Catal Gen
– volume: 224
  start-page: 370
  year: 2004
  end-page: 383
  ident: bib13
  article-title: Isotopic and kinetic assessment of the mechanism of reactions of CH 4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts
  publication-title: J Catal
– volume: 10
  start-page: 751
  year: 2018
  end-page: 757
  ident: bib16
  article-title: Thermodynamic considerations on the oxidation state of Co/γ-Al2O3 and Ni/γ-Al2O3 catalysts under dry and steam reforming conditions
  publication-title: ChemCatChem
– volume: 10
  year: 2020
  ident: bib52
  article-title: The catalytic performance of Ni-Co/Beta zeolite catalysts in Fischer-Tropsch synthesis
  publication-title: Catalysts
– volume: 7
  start-page: 427
  year: 2015
  end-page: 433
  ident: bib73
  article-title: Synergetic effects leading to coke-resistant NiCo bimetallic catalysts for dry reforming of methane
  publication-title: ChemCatChem
– volume: 42
  start-page: 11283
  year: 2017
  end-page: 11294
  ident: bib78
  article-title: Syngas production from methane dry reforming over Ni/SBA-15 catalyst: effect of operating parameters
  publication-title: Int J Hydrogen Energy
– volume: 165
  start-page: 70
  year: 2000
  end-page: 84
  ident: bib68
  article-title: Analysis of the NiCo2O4 spinel surface with Auger and X-ray photoelectron spectroscopy
  publication-title: Appl Surf Sci
– volume: 33
  start-page: 657
  year: 2016
  end-page: 665
  ident: bib77
  article-title: Syngas production with dry reforming of methane over Ni/ZSM-5 catalysts
  publication-title: J Nat Gas Sci Eng
– volume: 45
  start-page: 5182
  year: 2020
  end-page: 5191
  ident: bib23
  article-title: Pt supported on doped CeO2/Al2O3 as catalyst for dry reforming of methane
  publication-title: Int J Hydrogen Energy
– volume: 12
  start-page: 1
  year: 2022
  end-page: 15
  ident: bib53
  article-title: Silica nanospheres KCC-1 as a good catalyst for the preparation of 2-amino-4H-chromenes by ultrasonic irradiation
  publication-title: Sci Rep
– volume: 35
  start-page: 13013
  year: 2010
  end-page: 13020
  ident: bib84
  article-title: Biogas reforming for hydrogen production over a Ni-Co bimetallic catalyst: effect of operating conditions
  publication-title: Int J Hydrogen Energy
– volume: 32
  start-page: 381
  year: 1988
  end-page: 391
  ident: bib62
  article-title: The nature of excess oxygen in Co3O4+ε
  publication-title: Appl Surf Sci
– year: 2022
  ident: bib27
  article-title: E ff ect of cerium promoters on an MCM-41-supported nickel catalyst in dry reforming of methane
– volume: 153
  start-page: 74
  year: 2000
  end-page: 81
  ident: bib65
  article-title: Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: an XRD, XANES, EXAFS, and XPS study
  publication-title: J Solid State Chem
– volume: 200
  start-page: 255
  year: 2017
  end-page: 264
  ident: bib83
  article-title: Ni-Co bimetallic catalysts for the simultaneous production of carbon nanofibres and syngas through biogas decomposition
  publication-title: Appl Catal B Environ
– volume: 38
  start-page: 9718
  year: 2013
  end-page: 9731
  ident: bib5
  article-title: Synthesis, characterization and catalytic performance of MgO-coated Ni/SBA-15 catalysts for methane dry reforming to syngas and hydrogen
  publication-title: Int J Hydrogen Energy
– volume: 9
  start-page: 3349
  year: 2019
  end-page: 3359
  ident: bib46
  article-title: Highly active ceria-supported Ru catalyst for the dry reforming of methane: in situ identification of Ruδ+-Ce3+ interactions for enhanced conversion
  publication-title: ACS Catal
– year: 2022
  ident: bib26
  article-title: Mesoporous silica supported Ni-based catalysts for methane dry reforming: a review of recent studies
  publication-title: Int J Hydrogen Energy
– volume: 46
  start-page: 31608
  year: 2021
  end-page: 31622
  ident: bib25
  article-title: Lanthanide oxide modified nickel supported on mesoporous silica catalysts for dry reforming of methane
  publication-title: Int J Hydrogen Energy
– volume: 10
  start-page: 6409
  year: 2018
  end-page: 6425
  ident: bib40
  article-title: Facile synthesis of highly disperse Ni-Co nanoparticles over mesoporous silica for enhanced methane dry reforming
  publication-title: Nanoscale
– volume: 431
  year: 2022
  ident: bib30
  article-title: Nickel silicate beta zeolite prepared by interzeolite transformation: a highly active and stable catalyst for dry reforming of methane
  publication-title: Chem Eng J
– volume: 499
  year: 2020
  ident: bib57
  article-title: Fabrication of the pod-like KCC-1/TiO2 superhydrophobic surface on AZ31 Mg alloy with stability and photocatalytic property
  publication-title: Appl Surf Sci
– volume: 41
  start-page: 1513
  year: 2016
  end-page: 1523
  ident: bib28
  article-title: CO2 reforming of methane to syngas over highly-stable Ni/SBA-15 catalysts prepared by P123-assisted method
  publication-title: Int J Hydrogen Energy
– volume: 808
  year: 2020
  ident: bib37
  article-title: Dendritic mesoporous Ni/KCC-1 for partial oxidation of methane to syngas
  publication-title: IOP Conf Ser Mater Sci Eng
– start-page: 1
  year: 2011
  ident: bib33
  article-title: (12) patent application publication (10) pub. No.: US 2011/0253643 A1
– volume: 45
  start-page: 18533
  year: 2020
  end-page: 18548
  ident: bib49
  article-title: Dendritic fibrous SBA-15 supported nickel (Ni/DFSBA-15): a sustainable catalyst for hydrogen production
  publication-title: Int J Hydrogen Energy
– volume: 44
  start-page: 4616
  year: 2019
  end-page: 4629
  ident: bib75
  article-title: Ni/MgAl2O4 catalyst for low-temperature oxidative dry methane reforming with CO2
  publication-title: Int J Hydrogen Energy
– volume: 31
  start-page: 632
  year: 1969
  end-page: 645
  ident: bib88
  article-title: Thermische klärschlammbehandlung
  publication-title: Schweiz Z Hydrol
– volume: 45
  start-page: 17153
  year: 2020
  end-page: 17163
  ident: bib38
  article-title: Eclectic trimetallic Ni–Co–Ru catalyst for the dry reforming of methane
  publication-title: Int J Hydrogen Energy
– volume: 47
  start-page: 30391
  year: 2022
  end-page: 30403
  ident: bib9
  article-title: Density functional theory studies on direct and oxygen assisted activation of C–H bond for dry reforming of methane over Rh–Ni catalyst
  publication-title: Int J Hydrogen Energy
– volume: 20
  start-page: 2725
  year: 2016
  ident: 10.1016/j.ijhydene.2022.12.076_bib56
  article-title: NiCo2O4/rGO hybrid nanostructures for efficient electrocatalytic oxygen evolution
  publication-title: J Solid State Electrochem
  doi: 10.1007/s10008-016-3278-4
– volume: 44
  start-page: 4616
  year: 2019
  ident: 10.1016/j.ijhydene.2022.12.076_bib75
  article-title: Ni/MgAl2O4 catalyst for low-temperature oxidative dry methane reforming with CO2
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.01.027
– volume: 6
  start-page: 9692
  year: 2021
  ident: 10.1016/j.ijhydene.2022.12.076_bib63
  article-title: The effect of degrees of inversion on the electronic structure of spinel NiCo2O4: a density functional theory study
  publication-title: ACS Omega
  doi: 10.1021/acsomega.1c00295
– volume: 8
  start-page: 9821
  year: 2018
  ident: 10.1016/j.ijhydene.2022.12.076_bib18
  article-title: Dry reforming of methane on single-site Ni/MgO catalysts: importance of site confinement
  publication-title: ACS Catal
  doi: 10.1021/acscatal.8b02277
– volume: 12
  start-page: 2130
  year: 2020
  ident: 10.1016/j.ijhydene.2022.12.076_bib6
  article-title: Catalytic dry reforming of methane: insights from model systems
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201902142
– volume: 504
  start-page: 608
  year: 2015
  ident: 10.1016/j.ijhydene.2022.12.076_bib87
  article-title: Impregnated Ni/ZrO2 and Pt/ZrO2 catalysts in dry reforming of methane: activity tests in excess methane and mechanistic studies with labeled 13CO2
  publication-title: Appl Catal Gen
  doi: 10.1016/j.apcata.2015.04.006
– volume: 33
  start-page: 657
  year: 2016
  ident: 10.1016/j.ijhydene.2022.12.076_bib77
  article-title: Syngas production with dry reforming of methane over Ni/ZSM-5 catalysts
  publication-title: J Nat Gas Sci Eng
  doi: 10.1016/j.jngse.2016.06.004
– volume: 97
  start-page: 100
  year: 2021
  ident: 10.1016/j.ijhydene.2022.12.076_bib29
  article-title: Nickel-based nanocatalysts promoted over MgO-modified SBA-16 for dry reforming of methane for syngas production: impact of support and promoters
  publication-title: J Energy Inst
  doi: 10.1016/j.joei.2021.04.005
– volume: 317
  start-page: 299
  year: 2007
  ident: 10.1016/j.ijhydene.2022.12.076_bib59
  article-title: Methane dry reforming on Ni loaded hydroxyapatite and fluoroapatite
  publication-title: Appl Catal Gen
  doi: 10.1016/j.apcata.2006.10.029
– volume: 42
  start-page: 11283
  year: 2017
  ident: 10.1016/j.ijhydene.2022.12.076_bib78
  article-title: Syngas production from methane dry reforming over Ni/SBA-15 catalyst: effect of operating parameters
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.03.146
– volume: 38
  start-page: 9718
  year: 2013
  ident: 10.1016/j.ijhydene.2022.12.076_bib5
  article-title: Synthesis, characterization and catalytic performance of MgO-coated Ni/SBA-15 catalysts for methane dry reforming to syngas and hydrogen
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.05.097
– volume: 356
  start-page: 147
  year: 2017
  ident: 10.1016/j.ijhydene.2022.12.076_bib24
  article-title: Design of stable Ni/ZrO2 catalysts for dry reforming of methane
  publication-title: J Catal
  doi: 10.1016/j.jcat.2017.10.009
– year: 2019
  ident: 10.1016/j.ijhydene.2022.12.076_bib80
– volume: 270
  start-page: 68
  year: 2016
  ident: 10.1016/j.ijhydene.2022.12.076_bib17
  article-title: Dry reforming of methane with carbon dioxide over NiO-MgO-ZrO2
  publication-title: Catal Today
  doi: 10.1016/j.cattod.2015.09.027
– year: 2022
  ident: 10.1016/j.ijhydene.2022.12.076_bib45
  article-title: Nickel‒cobalt bimetallic catalysts prepared from hydrotalcite-like compounds for dry reforming of methane
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.05.211
– volume: 311
  start-page: 48
  year: 2018
  ident: 10.1016/j.ijhydene.2022.12.076_bib55
  article-title: Complete oxidation of methane on Co3O4/CeO2 nanocomposite: a synergic effect
  publication-title: Catal Today
  doi: 10.1016/j.cattod.2017.12.027
– volume: 162
  start-page: 67
  year: 2016
  ident: 10.1016/j.ijhydene.2022.12.076_bib85
  article-title: Hydrothermal synthesis of hierarchical mesoporous NiO nanourchins and their supercapacitor application
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2015.09.123
– volume: 47
  start-page: 30391
  year: 2022
  ident: 10.1016/j.ijhydene.2022.12.076_bib9
  article-title: Density functional theory studies on direct and oxygen assisted activation of C–H bond for dry reforming of methane over Rh–Ni catalyst
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.07.002
– volume: 310
  year: 2021
  ident: 10.1016/j.ijhydene.2022.12.076_bib31
  article-title: Catalytic performance of cubic ordered mesoporous alumina supported nickel catalysts in dry reforming of methane
  publication-title: Microporous Mesoporous Mater
  doi: 10.1016/j.micromeso.2020.110616
– volume: 37
  start-page: 15966
  year: 2012
  ident: 10.1016/j.ijhydene.2022.12.076_bib58
  article-title: Ni-based catalysts for reforming of methane with CO2
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.08.056
– volume: 499
  year: 2020
  ident: 10.1016/j.ijhydene.2022.12.076_bib57
  article-title: Fabrication of the pod-like KCC-1/TiO2 superhydrophobic surface on AZ31 Mg alloy with stability and photocatalytic property
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2019.143933
– volume: 6
  start-page: 8184
  year: 2016
  ident: 10.1016/j.ijhydene.2022.12.076_bib8
  article-title: Room-temperature activation of methane and dry Re-forming with CO2 on Ni-CeO2(111) surfaces: effect of Ce3+ sites and metal-support interactions on C-H bond cleavage
  publication-title: ACS Catal
  doi: 10.1021/acscatal.6b02360
– volume: 40
  start-page: 9201
  year: 2015
  ident: 10.1016/j.ijhydene.2022.12.076_bib81
  article-title: CO2 reforming of methane over Ni-Co/ZSM5 catalysts. Aging and carbon deposition study
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.05.147
– volume: 41
  start-page: 1513
  year: 2016
  ident: 10.1016/j.ijhydene.2022.12.076_bib28
  article-title: CO2 reforming of methane to syngas over highly-stable Ni/SBA-15 catalysts prepared by P123-assisted method
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.11.044
– volume: 2
  start-page: 1425
  year: 2012
  ident: 10.1016/j.ijhydene.2022.12.076_bib48
  article-title: Fibrous nano-silica supported ruthenium (KCC-1/Ru): a sustainable catalyst for the hydrogenolysis of alkanes with good catalytic activity and lifetime
  publication-title: ACS Catal
  doi: 10.1021/cs300179q
– year: 2015
  ident: 10.1016/j.ijhydene.2022.12.076_bib79
– volume: 35
  start-page: 13013
  year: 2010
  ident: 10.1016/j.ijhydene.2022.12.076_bib84
  article-title: Biogas reforming for hydrogen production over a Ni-Co bimetallic catalyst: effect of operating conditions
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.04.075
– volume: 108
  start-page: 7253
  year: 2004
  ident: 10.1016/j.ijhydene.2022.12.076_bib12
  article-title: Reaction pathways and site requirements for the activation and chemical conversion of methane on Ru-based catalysts
  publication-title: J Phys Chem B
  doi: 10.1021/jp030783l
– volume: 18
  start-page: 5890
  year: 2016
  ident: 10.1016/j.ijhydene.2022.12.076_bib51
  article-title: KCC-1 supported palladium nanoparticles as an efficient and sustainable nanocatalyst for carbonylative Suzuki-Miyaura cross-coupling
  publication-title: Green Chem
  doi: 10.1039/C6GC02012G
– volume: 10
  start-page: 6628
  year: 2020
  ident: 10.1016/j.ijhydene.2022.12.076_bib11
  article-title: Investigating methane dry reforming on Ni and B promoted Ni surfaces: DFT assisted microkinetic analysis and addressing the coking problem
  publication-title: Catal Sci Technol
  doi: 10.1039/D0CY00939C
– volume: 45
  start-page: 5252
  year: 2020
  ident: 10.1016/j.ijhydene.2022.12.076_bib19
  article-title: Dry reforming of methane over Ni/MgO–Al2O3 catalysts: thermodynamic equilibrium analysis and experimental application
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.07.200
– volume: 12
  start-page: 1
  year: 2022
  ident: 10.1016/j.ijhydene.2022.12.076_bib53
  article-title: Silica nanospheres KCC-1 as a good catalyst for the preparation of 2-amino-4H-chromenes by ultrasonic irradiation
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-05993-3
– volume: 172
  start-page: 226
  year: 2011
  ident: 10.1016/j.ijhydene.2022.12.076_bib41
  article-title: Rh-Ni/CeO2-Al2O3 catalysts for methane dry reforming
  publication-title: Catal Today
  doi: 10.1016/j.cattod.2011.02.057
– volume: 46
  start-page: 24687
  year: 2021
  ident: 10.1016/j.ijhydene.2022.12.076_bib32
  article-title: Development of nanosilica-based catalyst for syngas production via CO2 reforming of CH4: a review
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.01.086
– volume: 45
  start-page: 9522
  year: 2020
  ident: 10.1016/j.ijhydene.2022.12.076_bib47
  article-title: Favored hydrogenation of linear carbon monoxide over cobalt loaded on fibrous silica KCC-1
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.01.144
– volume: 22
  start-page: 1185
  year: 1989
  ident: 10.1016/j.ijhydene.2022.12.076_bib66
  article-title: Reduction of oxides of iron, cobalt, titanium and niobium by low-energy ion bombardment
  publication-title: J Phys D Appl Phys
  doi: 10.1088/0022-3727/22/8/026
– volume: 82
  start-page: 1002
  year: 2003
  ident: 10.1016/j.ijhydene.2022.12.076_bib54
  article-title: A novel method for preparing Co3O4 nanofibers by using electrospun PVA/cobalt acetate composite fibers as precursor
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2003.09.003
– volume: 5
  start-page: 15688
  year: 2017
  ident: 10.1016/j.ijhydene.2022.12.076_bib43
  article-title: Synthesis and catalytic activity of a Pd doped Ni-MgO catalyst for dry reforming of methane
  publication-title: J Mater Chem
  doi: 10.1039/C7TA04452F
– volume: 45
  start-page: 5182
  year: 2020
  ident: 10.1016/j.ijhydene.2022.12.076_bib23
  article-title: Pt supported on doped CeO2/Al2O3 as catalyst for dry reforming of methane
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.09.207
– volume: 46
  start-page: 31024
  year: 2021
  ident: 10.1016/j.ijhydene.2022.12.076_bib3
  article-title: A comprehensive review on improving the production of rich-hydrogen via combined steam and CO2 reforming of methane over Ni-based catalysts
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.01.049
– volume: 95
  start-page: 374
  year: 2010
  ident: 10.1016/j.ijhydene.2022.12.076_bib76
  article-title: Nickel-grafted TUD-1 mesoporous catalysts for carbon dioxide reforming of methane
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2010.01.016
– volume: 31
  start-page: 632
  year: 1969
  ident: 10.1016/j.ijhydene.2022.12.076_bib88
  article-title: Thermische klärschlammbehandlung
  publication-title: Schweiz Z Hydrol
– volume: 39
  start-page: 198
  year: 2019
  ident: 10.1016/j.ijhydene.2022.12.076_bib1
  article-title: Coke-resistant Au–Ni/MgAl2O4 catalyst for direct methanation of syngas
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2019.03.028
– volume: 505
  start-page: 62
  year: 2015
  ident: 10.1016/j.ijhydene.2022.12.076_bib64
  article-title: Effect of Co/Ni ratios in cobalt nickel mixed oxide catalysts on methane combustion
  publication-title: Appl Catal Gen
  doi: 10.1016/j.apcata.2015.07.040
– volume: 202
  start-page: 683
  year: 2017
  ident: 10.1016/j.ijhydene.2022.12.076_bib22
  article-title: Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2016.09.071
– volume: 97
  start-page: 216
  year: 2019
  ident: 10.1016/j.ijhydene.2022.12.076_bib72
  article-title: Hydrogen production from steam reforming of ethanol over Ni-Co bimetallic catalysts and MCM-41 as support
  publication-title: J Taiwan Inst Chem Eng
  doi: 10.1016/j.jtice.2019.01.025
– volume: 7
  start-page: 427
  year: 2015
  ident: 10.1016/j.ijhydene.2022.12.076_bib73
  article-title: Synergetic effects leading to coke-resistant NiCo bimetallic catalysts for dry reforming of methane
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201402921
– volume: 6
  start-page: 108668
  year: 2016
  ident: 10.1016/j.ijhydene.2022.12.076_bib15
  article-title: An overview on dry reforming of methane: strategies to reduce carbonaceous deactivation of catalysts
  publication-title: RSC Adv
  doi: 10.1039/C6RA20450C
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.ijhydene.2022.12.076_bib14
  article-title: Promotional effect of magnesium oxide for a stable nickel-based catalyst in dry reforming of methane
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-70930-1
– volume: 6
  start-page: 1
  year: 2016
  ident: 10.1016/j.ijhydene.2022.12.076_bib34
  article-title: Size and fiber density controlled synthesis of fibrous nanosilica spheres (KCC-1)
  publication-title: Sci Rep
  doi: 10.1038/srep24888
– volume: 45
  start-page: 17153
  year: 2020
  ident: 10.1016/j.ijhydene.2022.12.076_bib38
  article-title: Eclectic trimetallic Ni–Co–Ru catalyst for the dry reforming of methane
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.04.261
– volume: 32
  start-page: 381
  year: 1988
  ident: 10.1016/j.ijhydene.2022.12.076_bib62
  article-title: The nature of excess oxygen in Co3O4+ε
  publication-title: Appl Surf Sci
  doi: 10.1016/0169-4332(88)90089-X
– volume: 9
  start-page: 1
  year: 2021
  ident: 10.1016/j.ijhydene.2022.12.076_bib44
  article-title: Bimetallic Ni–Ru and Ni–Re catalysts for dry reforming of methane: understanding the synergies of the selected promoters
  publication-title: Front Chem
  doi: 10.3389/fchem.2021.694976
– start-page: 1
  year: 2011
  ident: 10.1016/j.ijhydene.2022.12.076_bib33
– volume: 40
  start-page: 16115
  year: 2015
  ident: 10.1016/j.ijhydene.2022.12.076_bib71
  article-title: Ni-Co catalyst derived from layered double hydroxides for dry reforming of methane
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.09.150
– volume: 6
  start-page: 1447
  year: 2014
  ident: 10.1016/j.ijhydene.2022.12.076_bib10
  article-title: Structure-activity relationships of nickel-hexaaluminates in reforming reactions Part II: activity and stability of nanostructured nickel- hexaaluminate-based catalysts in the dry reforming of methane
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201300958
– volume: 45
  start-page: 18533
  year: 2020
  ident: 10.1016/j.ijhydene.2022.12.076_bib49
  article-title: Dendritic fibrous SBA-15 supported nickel (Ni/DFSBA-15): a sustainable catalyst for hydrogen production
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.05.034
– volume: 9
  start-page: 2693
  year: 2019
  ident: 10.1016/j.ijhydene.2022.12.076_bib70
  article-title: Lattice strained Ni-Co alloy as a high-performance catalyst for catalytic dry reforming of methane
  publication-title: ACS Catal
  doi: 10.1021/acscatal.8b02821
– volume: 431
  year: 2022
  ident: 10.1016/j.ijhydene.2022.12.076_bib30
  article-title: Nickel silicate beta zeolite prepared by interzeolite transformation: a highly active and stable catalyst for dry reforming of methane
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.133364
– volume: 165
  start-page: H3178
  year: 2018
  ident: 10.1016/j.ijhydene.2022.12.076_bib67
  article-title: Electrochemical synthesis of Co 3 O 4-x films for their application as oxygen evolution reaction electrocatalysts: role of oxygen vacancies
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0261804jes
– volume: 10
  year: 2020
  ident: 10.1016/j.ijhydene.2022.12.076_bib52
  article-title: The catalytic performance of Ni-Co/Beta zeolite catalysts in Fischer-Tropsch synthesis
  publication-title: Catalysts
  doi: 10.3390/catal10010112
– volume: 46
  start-page: 31608
  year: 2021
  ident: 10.1016/j.ijhydene.2022.12.076_bib25
  article-title: Lanthanide oxide modified nickel supported on mesoporous silica catalysts for dry reforming of methane
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.07.056
– volume: 44
  start-page: 21546
  year: 2019
  ident: 10.1016/j.ijhydene.2022.12.076_bib2
  article-title: Effect of pre-treatment and calcination temperature on Al2O3-ZrO2 supported Ni-Co catalysts for dry reforming of methane
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.06.085
– volume: 47
  start-page: 16528
  year: 2022
  ident: 10.1016/j.ijhydene.2022.12.076_bib39
  article-title: Ni–Re alloy catalysts on Al2O3 for methane dry reforming
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.03.147
– volume: 37
  start-page: 230
  year: 2020
  ident: 10.1016/j.ijhydene.2022.12.076_bib36
  article-title: Dry reforming of CH4 over stabilized Ni-La@KCC-1 catalyst: effects of la promoter and optimization studies using RSM
  publication-title: J CO2 Util
  doi: 10.1016/j.jcou.2019.12.018
– volume: 10
  start-page: 751
  year: 2018
  ident: 10.1016/j.ijhydene.2022.12.076_bib16
  article-title: Thermodynamic considerations on the oxidation state of Co/γ-Al2O3 and Ni/γ-Al2O3 catalysts under dry and steam reforming conditions
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201701376
– year: 2022
  ident: 10.1016/j.ijhydene.2022.12.076_bib26
  article-title: Mesoporous silica supported Ni-based catalysts for methane dry reforming: a review of recent studies
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.05.297
– volume: 10
  start-page: 6409
  year: 2018
  ident: 10.1016/j.ijhydene.2022.12.076_bib40
  article-title: Facile synthesis of highly disperse Ni-Co nanoparticles over mesoporous silica for enhanced methane dry reforming
  publication-title: Nanoscale
  doi: 10.1039/C7NR09625A
– volume: 176–177
  start-page: 513
  year: 2015
  ident: 10.1016/j.ijhydene.2022.12.076_bib21
  article-title: Coke-resistant Ni at SiO2 catalyst for dry reforming of methane
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2015.04.039
– volume: 32
  start-page: 5802
  year: 2016
  ident: 10.1016/j.ijhydene.2022.12.076_bib35
  article-title: Further insight into the definite morphology and formation mechanism of mesoporous silica KCC-1
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.6b00675
– volume: 44
  start-page: 32003
  year: 2019
  ident: 10.1016/j.ijhydene.2022.12.076_bib4
  article-title: Si-MCM-41 obtained from different sources of silica and its application as support for nickel catalysts used in dry reforming of methane
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.10.118
– volume: 224
  start-page: 370
  year: 2004
  ident: 10.1016/j.ijhydene.2022.12.076_bib13
  article-title: Isotopic and kinetic assessment of the mechanism of reactions of CH 4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts
  publication-title: J Catal
  doi: 10.1016/j.jcat.2004.02.032
– volume: 200
  start-page: 255
  year: 2017
  ident: 10.1016/j.ijhydene.2022.12.076_bib83
  article-title: Ni-Co bimetallic catalysts for the simultaneous production of carbon nanofibres and syngas through biogas decomposition
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2016.07.015
– volume: 165
  start-page: 70
  year: 2000
  ident: 10.1016/j.ijhydene.2022.12.076_bib68
  article-title: Analysis of the NiCo2O4 spinel surface with Auger and X-ray photoelectron spectroscopy
  publication-title: Appl Surf Sci
  doi: 10.1016/S0169-4332(00)00378-0
– start-page: 1
  year: 2018
  ident: 10.1016/j.ijhydene.2022.12.076_bib82
  article-title: NiCo alloy nanoparticles decorated on N-doped carbon nanofibers as highly active and durable oxygen
  publication-title: Electrocatalyst
– volume: 333
  start-page: 251
  year: 2019
  ident: 10.1016/j.ijhydene.2022.12.076_bib50
  article-title: Ni, Co, Fe supported on Ceria and Zr doped Ceria as oxygen carriers for chemical looping dry reforming of methane
  publication-title: Catal Today
  doi: 10.1016/j.cattod.2018.11.064
– volume: 153
  start-page: 74
  year: 2000
  ident: 10.1016/j.ijhydene.2022.12.076_bib65
  article-title: Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: an XRD, XANES, EXAFS, and XPS study
  publication-title: J Solid State Chem
  doi: 10.1006/jssc.2000.8749
– volume: 46
  start-page: 26224
  year: 2021
  ident: 10.1016/j.ijhydene.2022.12.076_bib20
  article-title: Synthetic gas production by dry reforming of methane over Ni/Al2O3–ZrO2 catalysts: high H2/CO ratio
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.05.073
– volume: 9
  start-page: 3349
  year: 2019
  ident: 10.1016/j.ijhydene.2022.12.076_bib46
  article-title: Highly active ceria-supported Ru catalyst for the dry reforming of methane: in situ identification of Ruδ+-Ce3+ interactions for enhanced conversion
  publication-title: ACS Catal
  doi: 10.1021/acscatal.8b05162
– volume: 45
  start-page: 18549
  year: 2020
  ident: 10.1016/j.ijhydene.2022.12.076_bib60
  article-title: Dry reforming of methane to hydrogen-rich syngas over robust fibrous KCC-1 stabilized nickel catalyst with high activity and coke resistance
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.04.126
– volume: 371
  start-page: 54
  year: 2009
  ident: 10.1016/j.ijhydene.2022.12.076_bib74
  article-title: Ni, Co and bimetallic Ni-Co catalysts for the dry reforming of methane
  publication-title: Appl Catal Gen
  doi: 10.1016/j.apcata.2009.09.026
– volume: 360
  start-page: 46
  year: 2021
  ident: 10.1016/j.ijhydene.2022.12.076_bib42
  article-title: Dry reforming of methane over Pt-Ni/CeO2 catalysts: effect of the metal composition on the stability
  publication-title: Catal Today
  doi: 10.1016/j.cattod.2019.06.018
– year: 2022
  ident: 10.1016/j.ijhydene.2022.12.076_bib27
– volume: 484
  start-page: 479
  year: 2019
  ident: 10.1016/j.ijhydene.2022.12.076_bib86
  article-title: Photothermocatalytic performance of ACo 2 O 4 type spinel with light-enhanced mobilizable active oxygen species for toluene oxidation
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2019.04.093
– volume: 808
  year: 2020
  ident: 10.1016/j.ijhydene.2022.12.076_bib37
  article-title: Dendritic mesoporous Ni/KCC-1 for partial oxidation of methane to syngas
  publication-title: IOP Conf Ser Mater Sci Eng
  doi: 10.1088/1757-899X/808/1/012006
– year: 2021
  ident: 10.1016/j.ijhydene.2022.12.076_bib7
  article-title: A review on recent advances in dry reforming of methane over Ni- and Co-based nanocatalysts
  publication-title: Int J Hydrogen Energy
SSID ssj0017049
Score 2.5481343
Snippet Nanofibrous KCC-1 supported Ni–Co bimetallic catalysts were investigated for dry reforming of methane for syngas generation. Monometallic catalysts such as...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 11727
SubjectTerms Bimetallic
Coke deposition
Dry reforming
KCC-1
Mesoporous
Ni–Co
Title Highly coke resistant Ni–Co/KCC-1 catalysts for dry reforming of methane
URI https://dx.doi.org/10.1016/j.ijhydene.2022.12.076
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na8JAEF3EXtpD6Se1H7KHXte4MWbNUULFKvXSCt7CZrNLYyURTQ-5lP6H_sP-ks7ERCwUPPQadkJ4Ozvzssy8IeQ-gj3WWigmeccwx4QRk47HWRh5qgdkTotinM_TxB1OndGsO6sRv-qFwbLKMvZvYnoRrcsnVommtYxj6xliL7bgeNgqiipv2MHuCPTy1se2zIOLkgLDYoard7qE5614_prD8Ua5TNsurgVRe-SvBLWTdAYn5Lhki7S_-aBTUtPJGTna0RA8JyOs1FjkVKVvmsK_M_LBJKOT-Pvzy0-tse8zTotLmnydrSlwVBqtcliJbBXeQFNDcYy0TPQFmQ4eXvwhKwckMNXhdsa0kE7bCSPXOApg7hoBhEFqL5KQZRR3BbA9zo3Xlq5ph66rDYcNEFxBotae6nQuST1JE31FqHF7nMsw5NIAR9FK9lxHeraQwHCwH6hBuhUqgSrVw3GIxSKoysTmQYVmgGgG3A4AzQaxtnbLjX7GXguvAj345QkBBPk9ttf_sL0hhzhKnhU6jreknq3e9R0QjixsFh7VJAf9x_Fw8gMhvNcX
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwED5RGNoOVZ8qfXro6gaHkJARRUW8l4LEZjmOrUJRQJAObP0P_Yf9JT2HBFGpEkPXyBdZn527z87ddwBPEa6xUp6kglU1dXQYUeH4jIaRL-tI5pSXtvPpD9zWyOmMa-MCBHktjEmrzHz_xqen3jp7YmVoWovJxHpF32tKcHxTKmpU3g6gZNSpakUoNdrd1mD7M8HLWDCOp8Zgp1B4-jyZvq3xCzeKmbad3gwa-ZG_YtRO3GmewklGGEljM6czKKj4HI53ZAQvoGOSNWZrIufviuDx2VDCOCGDyffnVzC3ukFAGUnvadarZEWQppJoucaRhrDiG8hcE9NJWsTqEkbNl2HQolmPBCqrzE6o8oRTccLI1Y5EpGvaQ84glB8JDDSSuR4SPsa0XxGuroSuqzTDNfCYxFitfFmtXkExnsfqGoh264yJMGRCI01RUtRdR_i2J5DkmJKgMtRyVLjMBMRNH4sZzzPFpjxHkxs0ObM5olkGa2u32Eho7LXwc9D5r83A0c_vsb35h-0jHLaG_R7vtQfdWzgyneVpKut4B8Vk-aHukX8k4UO2v34Ai1PZyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+coke+resistant+Ni%E2%80%93Co%2FKCC-1+catalysts+for+dry+reforming+of+methane&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Palanichamy%2C+Kuppusamy&rft.au=Umasankar%2C+Samidurai&rft.au=Ganesh%2C+Srinivasan&rft.au=Sasirekha%2C+Natarajan&rft.date=2023-04-12&rft.issn=0360-3199&rft.volume=48&rft.issue=31&rft.spage=11727&rft.epage=11745&rft_id=info:doi/10.1016%2Fj.ijhydene.2022.12.076&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijhydene_2022_12_076
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon