Confronting existing knowledge on ecological preferences of stream macroinvertebrates with independent biomonitoring data using a Bayesian multi-species distribution model
A wide knowledge base regarding the ecological preferences of benthic macroinvertebrates is synthesized in public databases. This knowledge can assist in disentangling the influence of multiple environmental factors on the probability of occurrence of macroinvertebrates and in identifying anthropoge...
Saved in:
Published in | Freshwater science Vol. 40; no. 1; pp. 202 - 220 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Lawrence
The University of Chicago Press
01.03.2021
University of Chicago Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A wide knowledge base regarding the ecological preferences of benthic macroinvertebrates is synthesized in public databases. This knowledge can assist in disentangling the influence of multiple environmental factors on the probability of occurrence of macroinvertebrates and in identifying anthropogenic impacts on the macroinvertebrate assemblage. We aimed to examine and extend current knowledge on ecological preferences by confronting it with independent biomonitoring datasets and to assess how the taxonomic resolution of datasets and the prevalence of taxa affects our ability to do so. We used a habitat suitability-based multi-species distribution model (HS-MSDM) and applied Bayesian inference to confront current knowledge (formalized as prior probability distributions) against independent biomonitoring data across rivers in Switzerland. Shifts in the resulting posterior probability distributions relative to the priors indicate a disagreement with the current knowledge of ecological preferences. Ecological preferences for temperature and organic matter had the highest influence on the predicted occurrence of macroinvertebrates in the model, followed by flow velocity, insecticide pollution, and substratum. Three-fold cross-validation tests demonstrated that the HS-MSDM predicted the distribution of taxa with a relative frequency of occurrence between 0.2 and 0.8 considerably better than a model without consideration of environmental factors. However, it was less able to predict the distribution of taxa with a frequency of occurrence <0.1 or >0.9. Nine taxa with a frequency of occurrence between 0.4 and 0.8 were identified as potentially useful bioindicators, given their strong association with the environmental factors in the model. We also identified 29 taxa for which part of the ecological preference data, particularly temperature and flow-velocity preferences, should be re-examined. For river morphology, 18 sensitive and 10 insensitive taxa were identified, although direct and uniquely linked prior knowledge regarding morphology was lacking for all taxa. Phylogenetically derived information on ecological preferences could be integrated and updated to fill gaps in ecological preference databases. However, the taxonomic resolution of the biomonitoring and ecological preference data plays an important role, as we show by identifying families comprising species that respond differently to environmental factors. These results demonstrate the value of conducting biomonitoring at the most detailed taxonomic level possible. |
---|---|
AbstractList | A wide knowledge base regarding the ecological preferences of benthic macroinvertebrates is synthesized in public databases. This knowledge can assist in disentangling the influence of multiple environmental factors on the probability of occurrence of macroinvertebrates and in identifying anthropogenic impacts on the macroinvertebrate assemblage. We aimed to examine and extend current knowledge on ecological preferences by confronting it with independent biomonitoring datasets and to assess how the taxonomic resolution of datasets and the prevalence of taxa affects our ability to do so. We used a habitat suitability-based multi-species distribution model (HS-MSDM) and applied Bayesian inference to confront current knowledge (formalized as prior probability distributions) against independent biomonitoring data across rivers in Switzerland. Shifts in the resulting posterior probability distributions relative to the priors indicate a disagreement with the current knowledge of ecological preferences. Ecological preferences for temperature and organic matter had the highest influence on the predicted occurrence of macroinvertebrates in the model, followed by flow velocity, insecticide pollution, and substratum. Three-fold cross-validation tests demonstrated that the HS-MSDM predicted the distribution of taxa with a relative frequency of occurrence between 0.2 and 0.8 considerably better than a model without consideration of environmental factors. However, it was less able to predict the distribution of taxa with a frequency of occurrence <0.1 or >0.9. Nine taxa with a frequency of occurrence between 0.4 and 0.8 were identified as potentially useful bioindicators, given their strong association with the environmental factors in the model. We also identified 29 taxa for which part of the ecological preference data, particularly temperature and flow-velocity preferences, should be re-examined. For river morphology, 18 sensitive and 10 insensitive taxa were identified, although direct and uniquely linked prior knowledge regarding morphology was lacking for all taxa. Phylogenetically derived information on ecological preferences could be integrated and updated to fill gaps in ecological preference databases. However, the taxonomic resolution of the biomonitoring and ecological preference data plays an important role, as we show by identifying families comprising species that respond differently to environmental factors. These results demonstrate the value of conducting biomonitoring at the most detailed taxonomic level possible. |
Author | Graf, Wolfram Schuwirth, Nele Schmidt-Kloiber, Astrid Leitner, Patrick Reichert, Peter Vermeiren, Peter |
Author_xml | – sequence: 1 givenname: Peter surname: Vermeiren fullname: Vermeiren, Peter email: peter.vermeiren@gmail.com organization: Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland – sequence: 2 givenname: Peter surname: Reichert fullname: Reichert, Peter email: Peter.Reichert@eawag.ch organization: Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland – sequence: 3 givenname: Wolfram surname: Graf fullname: Graf, Wolfram email: wolfram.graf@boku.ac.at organization: BOKU: University of Natural Resources and Life Sciences, Institute of Hydrobiology and Aquatic Ecosystem Management, Gregor-Mendel-Straße 33, 1180 Vienna, Austria – sequence: 4 givenname: Patrick surname: Leitner fullname: Leitner, Patrick email: patrick.leitner@boku.ac.at organization: BOKU: University of Natural Resources and Life Sciences, Institute of Hydrobiology and Aquatic Ecosystem Management, Gregor-Mendel-Straße 33, 1180 Vienna, Austria – sequence: 5 givenname: Astrid surname: Schmidt-Kloiber fullname: Schmidt-Kloiber, Astrid email: astrid.schmidt-kloiber@boku.ac.at organization: BOKU: University of Natural Resources and Life Sciences, Institute of Hydrobiology and Aquatic Ecosystem Management, Gregor-Mendel-Straße 33, 1180 Vienna, Austria – sequence: 6 givenname: Nele surname: Schuwirth fullname: Schuwirth, Nele email: Nele.Schuwirth@eawag.ch organization: Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland |
BookMark | eNpFkd9OwyAUxomZiXPOZyDReFeF0pb2Uhf_JUu80euG0tOO2UIF6twz-ZIytygXhy85v3wcvnOKJtpoQOickmtK8uyGU0Z5eoSmMc1oVKRZOvnTSXGC5s6tSTgZoSzNpuh7YXRjjfZKtxi-lPsV79psOqhbwEZjkKYzrZKiw4OFBixoCQ6bBjtvQfS4F9IapT_Beqis8KG5UX6Fla5hgFC0x5UyvdHKG7vzr4UXeHQ7KfCd2IJTQuN-7LyK3ABSBYs6zGJVNXoVZuhNDd0ZOm5E52B-uGfo7eH-dfEULV8enxe3y0gyGvsIEl6nlSCQJ4zKGGIQIqMFYaRIKatjWSV5kxUJ8JgJnhRNxQtKmaQZrxsuGzZDF3vfwZqPEZwv12a0OjxZxilhMclZzgN1tafC550LwZSDVb2w25KScreLcr-LAF7uwVGuQoqtCSk69-95wH4AkeuOig |
CitedBy_id | crossref_primary_10_1016_j_ecolmodel_2023_110353 crossref_primary_10_1002_rra_4090 crossref_primary_10_1016_j_mex_2022_101987 |
Cites_doi | 10.11646/zootaxa.2031.1.4 10.1016/j.envpol.2009.01.021 10.1890/06-0333.1 10.1111/j.1529-8817.2010.00946.x 10.1016/j.scitotenv.2011.01.053 10.1146/annurev.ecolsys.110308.120159 10.1111/ele.12189 10.1111/j.1466-8238.2007.00358.x 10.3390/s16040528 10.1016/j.ecolmodel.2020.108956 10.1016/j.scitotenv.2008.05.054 10.1127/archiv-hydrobiol/148/2000/25 10.1002/ece3.1136 10.1016/j.ecolind.2016.09.022 10.1371/journal.pone.0148644 10.1016/S0304-3800(00)00354-9 10.1007/s00027-014-0341-z 10.1111/j.1461-0248.2003.00566.x 10.1146/annurev-ecolsys-110411-160411 10.1023/B:HYDR.0000025270.10807.10 10.1111/j.1365-2664.2010.01819.x 10.1016/j.scitotenv.2007.04.040 10.1111/j.1466-8238.2011.00683.x 10.1016/j.tree.2008.02.001 10.1016/j.ecolind.2020.106280 10.1016/j.ecolind.2015.09.028 10.2307/1468323 10.2307/1468195 10.1111/j.1461-0248.2008.01229.x 10.1023/B:HYDR.0000025275.49062.55 10.1016/j.tree.2017.03.004 10.1021/es202189s 10.1016/j.ecolind.2013.03.027 10.1007/s10661-015-5046-9 10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2 10.1016/j.ecolind.2015.02.007 |
ContentType | Journal Article |
Copyright | 2021 by The Society for Freshwater Science. Copyright University of Chicago Press Mar 2021 |
Copyright_xml | – notice: 2021 by The Society for Freshwater Science. – notice: Copyright University of Chicago Press Mar 2021 |
DBID | AAYXX CITATION 7QG 7QL 7SN 7SS 8FD C1K F1W FR3 H95 H96 H97 H98 H99 L.F L.G M7N P64 |
DOI | 10.1086/713175 |
DatabaseName | CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts ASFA: Marine Biotechnology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
EISSN | 2161-9565 |
EndPage | 220 |
ExternalDocumentID | 10_1086_713175 713175 |
GroupedDBID | -JH 0R~ 4P2 5.N 9EF AAHKG AAXPP ABDBF ABPLY ABPTK ABTLG ACGFS ADALM ADHSS ADTZG AENEX AEPYG AFAZZ ALMA_UNASSIGNED_HOLDINGS EBD EBS ESX HZ~ JBS JLS JST O9- PQ0 RBO RCP SJN TUS UFCQG Y7S AAHBH AAPSS AAYXX ABJNI ABPEO CITATION DGPHC EZTEY 7QG 7QL 7SN 7SS 8FD C1K F1W FR3 H95 H96 H97 H98 H99 L.F L.G M7N P64 |
ID | FETCH-LOGICAL-c312t-e47d5ba0e8431c2e2eaa6190309513d2cb48f694e723a749fb79113c167df7cf3 |
ISSN | 2161-9549 |
IngestDate | Thu Oct 10 15:46:36 EDT 2024 Fri Aug 23 03:58:46 EDT 2024 Tue Apr 25 18:50:22 EDT 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | ecological niches biomonitoring Bayesian inference habitat suitability taxonomic resolution |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c312t-e47d5ba0e8431c2e2eaa6190309513d2cb48f694e723a749fb79113c167df7cf3 |
OpenAccessLink | https://repository.ubn.ru.nl//bitstream/handle/2066/231389/231389pub.pdf |
PQID | 2503208387 |
PQPubID | 4507600 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2503208387 crossref_primary_10_1086_713175 uchicagopress_journals_713175 |
PublicationCentury | 2000 |
PublicationDate | 20210301 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 20210301 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Lawrence |
PublicationPlace_xml | – name: Lawrence |
PublicationTitle | Freshwater science |
PublicationYear | 2021 |
Publisher | The University of Chicago Press University of Chicago Press |
Publisher_xml | – name: The University of Chicago Press – name: University of Chicago Press |
References | rf5 rf4 rf22 rf44 rf25 rf6 rf24 rf9 rf41 rf8 rf21 rf20 rf42 rf27 rf26 rf29 rf28 Liechti P. (rf23) 2020 rf12 rf34 rf11 rf33 rf14 rf36 rf35 rf30 Stucki P. (rf39) rf10 rf32 Stribling J. B. (rf38) 2008; 27 rf31 rf19 rf16 rf15 rf37 rf18 rf17 Cowan W. (rf7) 1956; 37 Arscott D. B. (rf1) 2006; 25 rf3 rf2 |
References_xml | – ident: rf10 doi: 10.11646/zootaxa.2031.1.4 – ident: rf2 doi: 10.1016/j.envpol.2009.01.021 – ident: rf41 doi: 10.1890/06-0333.1 – ident: rf3 doi: 10.1111/j.1529-8817.2010.00946.x – ident: rf34 doi: 10.1016/j.scitotenv.2011.01.053 – ident: rf9 doi: 10.1146/annurev.ecolsys.110308.120159 – ident: rf11 doi: 10.1111/ele.12189 – ident: rf25 doi: 10.1111/j.1466-8238.2007.00358.x – ident: rf26 doi: 10.3390/s16040528 – ident: rf42 doi: 10.1016/j.ecolmodel.2020.108956 – ident: rf24 doi: 10.1016/j.scitotenv.2008.05.054 – ident: rf8 doi: 10.1127/archiv-hydrobiol/148/2000/25 – volume: 37 start-page: 473 year: 1956 ident: rf7 publication-title: Agricultural Engineering contributor: fullname: Cowan W. – ident: rf19 doi: 10.1002/ece3.1136 – ident: rf16 doi: 10.1016/j.ecolind.2016.09.022 – ident: rf44 doi: 10.1371/journal.pone.0148644 – ident: rf12 doi: 10.1016/S0304-3800(00)00354-9 – ident: rf31 doi: 10.1007/s00027-014-0341-z – ident: rf6 doi: 10.1111/j.1461-0248.2003.00566.x – volume-title: Nährstoffe. Umwelt-Vollzug. Bundesamt für Umwelt year: 2020 ident: rf23 contributor: fullname: Liechti P. – ident: rf15 doi: 10.1146/annurev-ecolsys-110411-160411 – volume-title: Umwelt-Vollzug Nr. 1026. Bundesamt für Umwelt ident: rf39 contributor: fullname: Stucki P. – ident: rf36 doi: 10.1023/B:HYDR.0000025270.10807.10 – ident: rf28 doi: 10.1111/j.1365-2664.2010.01819.x – ident: rf33 doi: 10.1016/j.scitotenv.2007.04.040 – volume: 25 start-page: 977 year: 2006 ident: rf1 publication-title: Freshwater Science contributor: fullname: Arscott D. B. – ident: rf17 doi: 10.1111/j.1466-8238.2011.00683.x – ident: rf20 doi: 10.1016/j.tree.2008.02.001 – volume: 27 start-page: 58 year: 2008 ident: rf38 publication-title: Freshwater Science contributor: fullname: Stribling J. B. – ident: rf18 doi: 10.1016/j.ecolind.2020.106280 – ident: rf37 doi: 10.1016/j.ecolind.2015.09.028 – ident: rf22 doi: 10.2307/1468323 – ident: rf5 doi: 10.2307/1468195 – ident: rf27 doi: 10.1111/j.1461-0248.2008.01229.x – ident: rf29 doi: 10.1023/B:HYDR.0000025275.49062.55 – ident: rf4 doi: 10.1016/j.tree.2017.03.004 – ident: rf14 doi: 10.1021/es202189s – ident: rf21 doi: 10.1016/j.ecolind.2013.03.027 – ident: rf32 doi: 10.1007/s10661-015-5046-9 – ident: rf30 doi: 10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2 – ident: rf35 doi: 10.1016/j.ecolind.2015.02.007 |
SSID | ssj0000601356 |
Score | 2.3718703 |
Snippet | A wide knowledge base regarding the ecological preferences of benthic macroinvertebrates is synthesized in public databases. This knowledge can assist in... |
SourceID | proquest crossref uchicagopress |
SourceType | Aggregation Database Publisher |
StartPage | 202 |
SubjectTerms | Anthropogenic factors Bayesian analysis Benthos Bioindicators Biomonitoring Conditional probability Data Datasets Distribution Ecological effects Environmental factors Flow velocity Fluvial morphology Geographical distribution Human influences Identification Indicator organisms Indicator species Insecticides Knowledge Knowledge bases (artificial intelligence) Macroinvertebrates Morphology Organic matter Phylogeny Preferences Probability theory Resolution Rivers Statistical inference Stream pollution Substrata Taxa Taxonomy Temperature Temperature preferences Velocity Zoobenthos |
Title | Confronting existing knowledge on ecological preferences of stream macroinvertebrates with independent biomonitoring data using a Bayesian multi-species distribution model |
URI | https://www.journals.uchicago.edu/doi/abs/10.1086/713175 https://www.proquest.com/docview/2503208387 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB7qLoIv4hXr7uo8-FYizUyuj1vdukhdQVotvoTJZIYt2mbJpoj-Jf-MP8lzZpJ0QmVRX0IYkiFwvpw594-QF2ERiBB0gMfgM71AFL6XRkHqRVKLRIeJlBz7nd9dROeL4O0yXA4Gv5yqpW2dv5Q__thX8j9ShTWQK3bJ_oNku01hAe5BvnAFCcP1r2SM7Xo4gADdfRxpaW66KBnmAZTslNtVxyhiqjewSUSsR2sBmni1QVZmTCFjFNaEZlcdPW49whZ98-ubWj2sKR1tTYhBjCbiuzJtmKYw0cO-TXC9Me3TMWlZsh3XCJ6Ci3_5TeB4xuYAbsX-Ec4JtaqsKuyVDn9QWLNa7dcUv6mEmSv5qfyqK7Ful2dqVTe9PJaF4Isb32BOgZczK_em-hRQlQzsVg8TlvZUc9csE0Wr6-1oqB6mG8U9Zo4NwEyD3v7xMjbZLvDrfUv30p_fffE-my5ms2x-tpzfIocMVB_o3MPTyevJtIv74fwbbkiFu492KK_s1n0baef49PlxHDtofo_cbRwYemrReJ8M1OYBuf25NOmZh-Sng0naYpJ2mKTlhu4wSR1M0lJTi0m6j0mKmKQOJmkPkxQxSQ0mqaAtJmkPk9TFJDWYfEQW07P5q3OvIQTxJPdZ7akgLsJcjFUCZq9kCvSLiMCi5egn8ILJPEh0lAYqZlzEQarzGM5yLv0oLnQsNX9MDjblRj0h1NdjzmUecZ2qQGuWSp9rHRR-CHvEiRqS560Isis79yUz9RpJlFkhDclxK5ms0QnXGTgUnIFXk8RDctKT1u4Z-_rTm18_Ind2P8MxOairrToB87fOnzWI-g3K-8Ih |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Confronting+existing+knowledge+on+ecological+preferences+of+stream+macroinvertebrates+with+independent+biomonitoring+data+using+a+Bayesian+multi-species+distribution+model&rft.jtitle=Freshwater+science&rft.au=Vermeiren%2C+Peter&rft.au=Reichert%2C+Peter&rft.au=Graf%2C+Wolfram&rft.au=Leitner%2C+Patrick&rft.date=2021-03-01&rft.pub=University+of+Chicago+Press&rft.issn=2161-9549&rft.eissn=2161-9565&rft.volume=40&rft.issue=1&rft.spage=202&rft.epage=220&rft_id=info:doi/10.1086%2F713175&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-9549&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-9549&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-9549&client=summon |