Confronting existing knowledge on ecological preferences of stream macroinvertebrates with independent biomonitoring data using a Bayesian multi-species distribution model

A wide knowledge base regarding the ecological preferences of benthic macroinvertebrates is synthesized in public databases. This knowledge can assist in disentangling the influence of multiple environmental factors on the probability of occurrence of macroinvertebrates and in identifying anthropoge...

Full description

Saved in:
Bibliographic Details
Published inFreshwater science Vol. 40; no. 1; pp. 202 - 220
Main Authors Vermeiren, Peter, Reichert, Peter, Graf, Wolfram, Leitner, Patrick, Schmidt-Kloiber, Astrid, Schuwirth, Nele
Format Journal Article
LanguageEnglish
Published Lawrence The University of Chicago Press 01.03.2021
University of Chicago Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A wide knowledge base regarding the ecological preferences of benthic macroinvertebrates is synthesized in public databases. This knowledge can assist in disentangling the influence of multiple environmental factors on the probability of occurrence of macroinvertebrates and in identifying anthropogenic impacts on the macroinvertebrate assemblage. We aimed to examine and extend current knowledge on ecological preferences by confronting it with independent biomonitoring datasets and to assess how the taxonomic resolution of datasets and the prevalence of taxa affects our ability to do so. We used a habitat suitability-based multi-species distribution model (HS-MSDM) and applied Bayesian inference to confront current knowledge (formalized as prior probability distributions) against independent biomonitoring data across rivers in Switzerland. Shifts in the resulting posterior probability distributions relative to the priors indicate a disagreement with the current knowledge of ecological preferences. Ecological preferences for temperature and organic matter had the highest influence on the predicted occurrence of macroinvertebrates in the model, followed by flow velocity, insecticide pollution, and substratum. Three-fold cross-validation tests demonstrated that the HS-MSDM predicted the distribution of taxa with a relative frequency of occurrence between 0.2 and 0.8 considerably better than a model without consideration of environmental factors. However, it was less able to predict the distribution of taxa with a frequency of occurrence <0.1 or >0.9. Nine taxa with a frequency of occurrence between 0.4 and 0.8 were identified as potentially useful bioindicators, given their strong association with the environmental factors in the model. We also identified 29 taxa for which part of the ecological preference data, particularly temperature and flow-velocity preferences, should be re-examined. For river morphology, 18 sensitive and 10 insensitive taxa were identified, although direct and uniquely linked prior knowledge regarding morphology was lacking for all taxa. Phylogenetically derived information on ecological preferences could be integrated and updated to fill gaps in ecological preference databases. However, the taxonomic resolution of the biomonitoring and ecological preference data plays an important role, as we show by identifying families comprising species that respond differently to environmental factors. These results demonstrate the value of conducting biomonitoring at the most detailed taxonomic level possible.
AbstractList A wide knowledge base regarding the ecological preferences of benthic macroinvertebrates is synthesized in public databases. This knowledge can assist in disentangling the influence of multiple environmental factors on the probability of occurrence of macroinvertebrates and in identifying anthropogenic impacts on the macroinvertebrate assemblage. We aimed to examine and extend current knowledge on ecological preferences by confronting it with independent biomonitoring datasets and to assess how the taxonomic resolution of datasets and the prevalence of taxa affects our ability to do so. We used a habitat suitability-based multi-species distribution model (HS-MSDM) and applied Bayesian inference to confront current knowledge (formalized as prior probability distributions) against independent biomonitoring data across rivers in Switzerland. Shifts in the resulting posterior probability distributions relative to the priors indicate a disagreement with the current knowledge of ecological preferences. Ecological preferences for temperature and organic matter had the highest influence on the predicted occurrence of macroinvertebrates in the model, followed by flow velocity, insecticide pollution, and substratum. Three-fold cross-validation tests demonstrated that the HS-MSDM predicted the distribution of taxa with a relative frequency of occurrence between 0.2 and 0.8 considerably better than a model without consideration of environmental factors. However, it was less able to predict the distribution of taxa with a frequency of occurrence <0.1 or >0.9. Nine taxa with a frequency of occurrence between 0.4 and 0.8 were identified as potentially useful bioindicators, given their strong association with the environmental factors in the model. We also identified 29 taxa for which part of the ecological preference data, particularly temperature and flow-velocity preferences, should be re-examined. For river morphology, 18 sensitive and 10 insensitive taxa were identified, although direct and uniquely linked prior knowledge regarding morphology was lacking for all taxa. Phylogenetically derived information on ecological preferences could be integrated and updated to fill gaps in ecological preference databases. However, the taxonomic resolution of the biomonitoring and ecological preference data plays an important role, as we show by identifying families comprising species that respond differently to environmental factors. These results demonstrate the value of conducting biomonitoring at the most detailed taxonomic level possible.
Author Graf, Wolfram
Schuwirth, Nele
Schmidt-Kloiber, Astrid
Leitner, Patrick
Reichert, Peter
Vermeiren, Peter
Author_xml – sequence: 1
  givenname: Peter
  surname: Vermeiren
  fullname: Vermeiren, Peter
  email: peter.vermeiren@gmail.com
  organization: Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
– sequence: 2
  givenname: Peter
  surname: Reichert
  fullname: Reichert, Peter
  email: Peter.Reichert@eawag.ch
  organization: Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
– sequence: 3
  givenname: Wolfram
  surname: Graf
  fullname: Graf, Wolfram
  email: wolfram.graf@boku.ac.at
  organization: BOKU: University of Natural Resources and Life Sciences, Institute of Hydrobiology and Aquatic Ecosystem Management, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
– sequence: 4
  givenname: Patrick
  surname: Leitner
  fullname: Leitner, Patrick
  email: patrick.leitner@boku.ac.at
  organization: BOKU: University of Natural Resources and Life Sciences, Institute of Hydrobiology and Aquatic Ecosystem Management, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
– sequence: 5
  givenname: Astrid
  surname: Schmidt-Kloiber
  fullname: Schmidt-Kloiber, Astrid
  email: astrid.schmidt-kloiber@boku.ac.at
  organization: BOKU: University of Natural Resources and Life Sciences, Institute of Hydrobiology and Aquatic Ecosystem Management, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
– sequence: 6
  givenname: Nele
  surname: Schuwirth
  fullname: Schuwirth, Nele
  email: Nele.Schuwirth@eawag.ch
  organization: Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
BookMark eNpFkd9OwyAUxomZiXPOZyDReFeF0pb2Uhf_JUu80euG0tOO2UIF6twz-ZIytygXhy85v3wcvnOKJtpoQOickmtK8uyGU0Z5eoSmMc1oVKRZOvnTSXGC5s6tSTgZoSzNpuh7YXRjjfZKtxi-lPsV79psOqhbwEZjkKYzrZKiw4OFBixoCQ6bBjtvQfS4F9IapT_Beqis8KG5UX6Fla5hgFC0x5UyvdHKG7vzr4UXeHQ7KfCd2IJTQuN-7LyK3ABSBYs6zGJVNXoVZuhNDd0ZOm5E52B-uGfo7eH-dfEULV8enxe3y0gyGvsIEl6nlSCQJ4zKGGIQIqMFYaRIKatjWSV5kxUJ8JgJnhRNxQtKmaQZrxsuGzZDF3vfwZqPEZwv12a0OjxZxilhMclZzgN1tafC550LwZSDVb2w25KScreLcr-LAF7uwVGuQoqtCSk69-95wH4AkeuOig
CitedBy_id crossref_primary_10_1016_j_ecolmodel_2023_110353
crossref_primary_10_1002_rra_4090
crossref_primary_10_1016_j_mex_2022_101987
Cites_doi 10.11646/zootaxa.2031.1.4
10.1016/j.envpol.2009.01.021
10.1890/06-0333.1
10.1111/j.1529-8817.2010.00946.x
10.1016/j.scitotenv.2011.01.053
10.1146/annurev.ecolsys.110308.120159
10.1111/ele.12189
10.1111/j.1466-8238.2007.00358.x
10.3390/s16040528
10.1016/j.ecolmodel.2020.108956
10.1016/j.scitotenv.2008.05.054
10.1127/archiv-hydrobiol/148/2000/25
10.1002/ece3.1136
10.1016/j.ecolind.2016.09.022
10.1371/journal.pone.0148644
10.1016/S0304-3800(00)00354-9
10.1007/s00027-014-0341-z
10.1111/j.1461-0248.2003.00566.x
10.1146/annurev-ecolsys-110411-160411
10.1023/B:HYDR.0000025270.10807.10
10.1111/j.1365-2664.2010.01819.x
10.1016/j.scitotenv.2007.04.040
10.1111/j.1466-8238.2011.00683.x
10.1016/j.tree.2008.02.001
10.1016/j.ecolind.2020.106280
10.1016/j.ecolind.2015.09.028
10.2307/1468323
10.2307/1468195
10.1111/j.1461-0248.2008.01229.x
10.1023/B:HYDR.0000025275.49062.55
10.1016/j.tree.2017.03.004
10.1021/es202189s
10.1016/j.ecolind.2013.03.027
10.1007/s10661-015-5046-9
10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2
10.1016/j.ecolind.2015.02.007
ContentType Journal Article
Copyright 2021 by The Society for Freshwater Science.
Copyright University of Chicago Press Mar 2021
Copyright_xml – notice: 2021 by The Society for Freshwater Science.
– notice: Copyright University of Chicago Press Mar 2021
DBID AAYXX
CITATION
7QG
7QL
7SN
7SS
8FD
C1K
F1W
FR3
H95
H96
H97
H98
H99
L.F
L.G
M7N
P64
DOI 10.1086/713175
DatabaseName CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
ASFA: Marine Biotechnology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 2161-9565
EndPage 220
ExternalDocumentID 10_1086_713175
713175
GroupedDBID -JH
0R~
4P2
5.N
9EF
AAHKG
AAXPP
ABDBF
ABPLY
ABPTK
ABTLG
ACGFS
ADALM
ADHSS
ADTZG
AENEX
AEPYG
AFAZZ
ALMA_UNASSIGNED_HOLDINGS
EBD
EBS
ESX
HZ~
JBS
JLS
JST
O9-
PQ0
RBO
RCP
SJN
TUS
UFCQG
Y7S
AAHBH
AAPSS
AAYXX
ABJNI
ABPEO
CITATION
DGPHC
EZTEY
7QG
7QL
7SN
7SS
8FD
C1K
F1W
FR3
H95
H96
H97
H98
H99
L.F
L.G
M7N
P64
ID FETCH-LOGICAL-c312t-e47d5ba0e8431c2e2eaa6190309513d2cb48f694e723a749fb79113c167df7cf3
ISSN 2161-9549
IngestDate Thu Oct 10 15:46:36 EDT 2024
Fri Aug 23 03:58:46 EDT 2024
Tue Apr 25 18:50:22 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords ecological niches
biomonitoring
Bayesian inference
habitat suitability
taxonomic resolution
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-e47d5ba0e8431c2e2eaa6190309513d2cb48f694e723a749fb79113c167df7cf3
OpenAccessLink https://repository.ubn.ru.nl//bitstream/handle/2066/231389/231389pub.pdf
PQID 2503208387
PQPubID 4507600
PageCount 19
ParticipantIDs proquest_journals_2503208387
crossref_primary_10_1086_713175
uchicagopress_journals_713175
PublicationCentury 2000
PublicationDate 20210301
2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 20210301
  day: 01
PublicationDecade 2020
PublicationPlace Lawrence
PublicationPlace_xml – name: Lawrence
PublicationTitle Freshwater science
PublicationYear 2021
Publisher The University of Chicago Press
University of Chicago Press
Publisher_xml – name: The University of Chicago Press
– name: University of Chicago Press
References rf5
rf4
rf22
rf44
rf25
rf6
rf24
rf9
rf41
rf8
rf21
rf20
rf42
rf27
rf26
rf29
rf28
Liechti P. (rf23) 2020
rf12
rf34
rf11
rf33
rf14
rf36
rf35
rf30
Stucki P. (rf39)
rf10
rf32
Stribling J. B. (rf38) 2008; 27
rf31
rf19
rf16
rf15
rf37
rf18
rf17
Cowan W. (rf7) 1956; 37
Arscott D. B. (rf1) 2006; 25
rf3
rf2
References_xml – ident: rf10
  doi: 10.11646/zootaxa.2031.1.4
– ident: rf2
  doi: 10.1016/j.envpol.2009.01.021
– ident: rf41
  doi: 10.1890/06-0333.1
– ident: rf3
  doi: 10.1111/j.1529-8817.2010.00946.x
– ident: rf34
  doi: 10.1016/j.scitotenv.2011.01.053
– ident: rf9
  doi: 10.1146/annurev.ecolsys.110308.120159
– ident: rf11
  doi: 10.1111/ele.12189
– ident: rf25
  doi: 10.1111/j.1466-8238.2007.00358.x
– ident: rf26
  doi: 10.3390/s16040528
– ident: rf42
  doi: 10.1016/j.ecolmodel.2020.108956
– ident: rf24
  doi: 10.1016/j.scitotenv.2008.05.054
– ident: rf8
  doi: 10.1127/archiv-hydrobiol/148/2000/25
– volume: 37
  start-page: 473
  year: 1956
  ident: rf7
  publication-title: Agricultural Engineering
  contributor:
    fullname: Cowan W.
– ident: rf19
  doi: 10.1002/ece3.1136
– ident: rf16
  doi: 10.1016/j.ecolind.2016.09.022
– ident: rf44
  doi: 10.1371/journal.pone.0148644
– ident: rf12
  doi: 10.1016/S0304-3800(00)00354-9
– ident: rf31
  doi: 10.1007/s00027-014-0341-z
– ident: rf6
  doi: 10.1111/j.1461-0248.2003.00566.x
– volume-title: Nährstoffe. Umwelt-Vollzug. Bundesamt für Umwelt
  year: 2020
  ident: rf23
  contributor:
    fullname: Liechti P.
– ident: rf15
  doi: 10.1146/annurev-ecolsys-110411-160411
– volume-title: Umwelt-Vollzug Nr. 1026. Bundesamt für Umwelt
  ident: rf39
  contributor:
    fullname: Stucki P.
– ident: rf36
  doi: 10.1023/B:HYDR.0000025270.10807.10
– ident: rf28
  doi: 10.1111/j.1365-2664.2010.01819.x
– ident: rf33
  doi: 10.1016/j.scitotenv.2007.04.040
– volume: 25
  start-page: 977
  year: 2006
  ident: rf1
  publication-title: Freshwater Science
  contributor:
    fullname: Arscott D. B.
– ident: rf17
  doi: 10.1111/j.1466-8238.2011.00683.x
– ident: rf20
  doi: 10.1016/j.tree.2008.02.001
– volume: 27
  start-page: 58
  year: 2008
  ident: rf38
  publication-title: Freshwater Science
  contributor:
    fullname: Stribling J. B.
– ident: rf18
  doi: 10.1016/j.ecolind.2020.106280
– ident: rf37
  doi: 10.1016/j.ecolind.2015.09.028
– ident: rf22
  doi: 10.2307/1468323
– ident: rf5
  doi: 10.2307/1468195
– ident: rf27
  doi: 10.1111/j.1461-0248.2008.01229.x
– ident: rf29
  doi: 10.1023/B:HYDR.0000025275.49062.55
– ident: rf4
  doi: 10.1016/j.tree.2017.03.004
– ident: rf14
  doi: 10.1021/es202189s
– ident: rf21
  doi: 10.1016/j.ecolind.2013.03.027
– ident: rf32
  doi: 10.1007/s10661-015-5046-9
– ident: rf30
  doi: 10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2
– ident: rf35
  doi: 10.1016/j.ecolind.2015.02.007
SSID ssj0000601356
Score 2.3718703
Snippet A wide knowledge base regarding the ecological preferences of benthic macroinvertebrates is synthesized in public databases. This knowledge can assist in...
SourceID proquest
crossref
uchicagopress
SourceType Aggregation Database
Publisher
StartPage 202
SubjectTerms Anthropogenic factors
Bayesian analysis
Benthos
Bioindicators
Biomonitoring
Conditional probability
Data
Datasets
Distribution
Ecological effects
Environmental factors
Flow velocity
Fluvial morphology
Geographical distribution
Human influences
Identification
Indicator organisms
Indicator species
Insecticides
Knowledge
Knowledge bases (artificial intelligence)
Macroinvertebrates
Morphology
Organic matter
Phylogeny
Preferences
Probability theory
Resolution
Rivers
Statistical inference
Stream pollution
Substrata
Taxa
Taxonomy
Temperature
Temperature preferences
Velocity
Zoobenthos
Title Confronting existing knowledge on ecological preferences of stream macroinvertebrates with independent biomonitoring data using a Bayesian multi-species distribution model
URI https://www.journals.uchicago.edu/doi/abs/10.1086/713175
https://www.proquest.com/docview/2503208387
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB7qLoIv4hXr7uo8-FYizUyuj1vdukhdQVotvoTJZIYt2mbJpoj-Jf-MP8lzZpJ0QmVRX0IYkiFwvpw594-QF2ERiBB0gMfgM71AFL6XRkHqRVKLRIeJlBz7nd9dROeL4O0yXA4Gv5yqpW2dv5Q__thX8j9ShTWQK3bJ_oNku01hAe5BvnAFCcP1r2SM7Xo4gADdfRxpaW66KBnmAZTslNtVxyhiqjewSUSsR2sBmni1QVZmTCFjFNaEZlcdPW49whZ98-ubWj2sKR1tTYhBjCbiuzJtmKYw0cO-TXC9Me3TMWlZsh3XCJ6Ci3_5TeB4xuYAbsX-Ec4JtaqsKuyVDn9QWLNa7dcUv6mEmSv5qfyqK7Ful2dqVTe9PJaF4Isb32BOgZczK_em-hRQlQzsVg8TlvZUc9csE0Wr6-1oqB6mG8U9Zo4NwEyD3v7xMjbZLvDrfUv30p_fffE-my5ms2x-tpzfIocMVB_o3MPTyevJtIv74fwbbkiFu492KK_s1n0baef49PlxHDtofo_cbRwYemrReJ8M1OYBuf25NOmZh-Sng0naYpJ2mKTlhu4wSR1M0lJTi0m6j0mKmKQOJmkPkxQxSQ0mqaAtJmkPk9TFJDWYfEQW07P5q3OvIQTxJPdZ7akgLsJcjFUCZq9kCvSLiMCi5egn8ILJPEh0lAYqZlzEQarzGM5yLv0oLnQsNX9MDjblRj0h1NdjzmUecZ2qQGuWSp9rHRR-CHvEiRqS560Isis79yUz9RpJlFkhDclxK5ms0QnXGTgUnIFXk8RDctKT1u4Z-_rTm18_Ind2P8MxOairrToB87fOnzWI-g3K-8Ih
link.rule.ids 315,783,787,27936,27937
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Confronting+existing+knowledge+on+ecological+preferences+of+stream+macroinvertebrates+with+independent+biomonitoring+data+using+a+Bayesian+multi-species+distribution+model&rft.jtitle=Freshwater+science&rft.au=Vermeiren%2C+Peter&rft.au=Reichert%2C+Peter&rft.au=Graf%2C+Wolfram&rft.au=Leitner%2C+Patrick&rft.date=2021-03-01&rft.pub=University+of+Chicago+Press&rft.issn=2161-9549&rft.eissn=2161-9565&rft.volume=40&rft.issue=1&rft.spage=202&rft.epage=220&rft_id=info:doi/10.1086%2F713175&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-9549&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-9549&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-9549&client=summon